Unraveling adipose tissue proteomic landscapes in severe obesity: insights into metabolic complications and potential biomarkers
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37792298
PubMed Central
PMC10864023
DOI
10.1152/ajpendo.00153.2023
Knihovny.cz E-zdroje
- Klíčová slova
- obesity, proteomics, subcutaneous adipose tissue, type 2 diabetes, visceral adipose tissue,
- MeSH
- biologické markery metabolismus MeSH
- diabetes mellitus 2. typu * metabolismus MeSH
- inzulinová rezistence * MeSH
- lidé MeSH
- morbidní obezita * metabolismus MeSH
- nitrobřišní tuk metabolismus MeSH
- obezita metabolismus MeSH
- podkožní tuk metabolismus MeSH
- proteiny metabolismus MeSH
- proteomika MeSH
- průřezové studie MeSH
- tuková tkáň metabolismus MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biologické markery MeSH
- proteiny MeSH
In this study, we aimed to comprehensively characterize the proteomic landscapes of subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) in patients with severe obesity, to establish their associations with clinical characteristics, and to identify potential serum protein biomarkers indicative of tissue-specific alterations or metabolic states. We conducted a cross-sectional analysis of 32 patients with severe obesity (16 males and 16 females) of Central European descent who underwent bariatric surgery. Clinical parameters and body composition were assessed using dual-energy X-ray absorptiometry (DXA) and bioelectrical impedance, with 15 patients diagnosed with type 2 diabetes (T2D) and 17 with hypertension. Paired SAT and VAT samples, along with serum samples, were subjected to state-of-the-art proteomics liquid chromatography-mass spectrometry (LC-MS). Our analysis identified 7,284 proteins across SAT and VAT, with 1,249 differentially expressed proteins between the tissues and 1,206 proteins identified in serum. Correlation analyses between differential protein expression and clinical traits suggest a significant role of SAT in the pathogenesis of obesity and related metabolic complications. Specifically, the SAT proteomic profile revealed marked alterations in metabolic pathways and processes contributing to tissue fibrosis and inflammation. Although we do not establish a definitive causal relationship, it appears that VAT might respond to SAT metabolic dysfunction by potentially enhancing mitochondrial activity and expanding its capacity. However, when this adaptive response is exceeded, it could possibly contribute to insulin resistance (IR) and in some cases, it may be associated with the progression to T2D. Our findings provide critical insights into the molecular foundations of SAT and VAT in obesity and may inform the development of targeted therapeutic strategies.NEW & NOTEWORTHY This study provides insights into distinct proteomic profiles of subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), and serum in patients with severe obesity and their associations with clinical traits and body composition. It underscores SAT's crucial role in obesity development and related complications, such as insulin resistance (IR) and type 2 diabetes (T2D). Our findings emphasize the importance of understanding the SAT and VAT balance in energy homeostasis, proteostasis, and the potential role of SAT capacity in the development of metabolic disorders.
Central European Institute of Technology Masaryk University Brno Czech Republic
Department of Laboratory Medicine University hospital Ostrava Ostrava Czech Republic
Department of Pathological Physiology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Physiology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Surgery Vitkovice Hospital Ostrava Czech Republic
Department of Surgical Disciplines Faculty of Medicine University of Ostrava Ostrava Czech Republic
RECETOX Faculty of Science Masaryk University Brno Czech Republic
Vascular and Miniinvasive Surgery Center Hospital AGEL Trinec Podlesi Trinec Czech Republic
Zobrazit více v PubMed
The GBD 2015 Obesity Collaborators. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med 377: 13–27, 2017. doi:10.1056/NEJMoa1614362. PubMed DOI PMC
Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu C-Y, Vasan RS, Murabito JM, Meigs JB, Cupples LA, D'Agostino RB, O'Donnell CJ. Abdominal visceral and subcutaneous adipose tissue compartments. Circulation 116: 39–48, 2007. doi:10.1161/CIRCULATIONAHA.106.675355. PubMed DOI
Karlsson T, Rask-Andersen M, Pan G, Höglund J, Wadelius C, Ek WE, Johansson Å. Contribution of genetics to visceral adiposity and its relation to cardiovascular and metabolic disease. Nat Med 25: 1390–1395, 2019. doi:10.1038/s41591-019-0563-7. PubMed DOI
Reijrink M, de Boer SA, Spoor DS, Lefrandt JD, Lambers Heerspink HJ, Boellaard R, Greuter MJ, Borra RJH, Hillebrands J-L, Slart RHJA, Mulder DJ. Visceral adipose tissue volume is associated with premature atherosclerosis in early type 2 diabetes mellitus independent of traditional risk factors. Atherosclerosis 290: 87–93, 2019. doi:10.1016/j.atherosclerosis.2019.09.016. PubMed DOI
Tanaka T, Kishi S, Ninomiya K, Tomii D, Koseki K, Sato Y, Okuno T, Sato K, Koike H, Yahagi K, Komiyama K, Aoki J, Tanabe K. Impact of abdominal fat distribution, visceral fat, and subcutaneous fat on coronary plaque scores assessed by 320-row computed tomography coronary angiography. Atherosclerosis 287: 155–161, 2019. doi:10.1016/j.atherosclerosis.2019.06.910. PubMed DOI
Després J-P. Body fat distribution and risk of cardiovascular disease. Circulation 126: 1301–1313, 2012. doi:10.1161/CIRCULATIONAHA.111.067264. PubMed DOI
Tchkonia T, Thomou T, Zhu Y, Karagiannides I, Pothoulakis C, Jensen MD, Kirkland JL. Mechanisms and metabolic implications of regional differences among fat depots. Cell Metab 17: 644–656, 2013. doi:10.1016/j.cmet.2013.03.008. PubMed DOI PMC
Hruska P, Kucera J, Pekar M, Holéczy P, Mazur M, Buzga M, Kuruczova D, Lenart P, Fialova Kucerova J, Potesil D, Zdrahal Z, Bienertova-Vasku J. Proteomic signatures of human visceral and subcutaneous adipocytes. J Clin Endocrinol Metab 107: 755–775, 2022. doi:10.1210/clinem/dgab756. PubMed DOI PMC
Adamczyk P, Bužga M, Holéczy P, Švagera Z, Šmajstrla V, Zonča P, Pluskiewicz W. Bone mineral density and body composition after laparoscopic sleeve gastrectomy in men: a short-term longitudinal study. Int J Surg 23: 101–107, 2015. doi:10.1016/j.ijsu.2015.09.048. PubMed DOI
Adamczyk P, Bužga M, Holéczy P, Švagera Z, Zonča P, Sievänen H, Pluskiewicz W. Body size, bone mineral density, and body composition in obese women after laparoscopic sleeve gastrectomy: a 1-year longitudinal study. Horm Metab Res 47: 873–879, 2015. doi:10.1055/s-0035-1555758. PubMed DOI
Pluskiewicz W, Buzga M, Holeczy P, Šmajstrla V, Adamczyk P. A comment on “changes in bone mineral density in women following 1-year gastric bypass surgery” published by Casagrande DS, et al. Obes Surg 23: 1885, 2013. doi:10.1007/s11695-013-1018-8. PubMed DOI
Du Bois D, Du Bois EF. Clinical calorimetry: tenth paper a formula to estimate the approximate surface area if height and weight be known. Arch Intern Med (Chic) XVII: 863–871, 1916. doi:10.1001/archinte.1916.00080130010002. DOI
Aschner P. New IDF clinical practice recommendations for managing type 2 diabetes in primary care. Diabetes Res Clin Pract 132: 169–170, 2017. doi:10.1016/j.diabres.2017.09.002. PubMed DOI
Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, Clement DL, Coca A, de Simone G, Dominiczak A, Kahan T, Mahfoud F, Redon J, Ruilope L, Zanchetti A, Kerins M, Kjeldsen SE, Kreutz R, Laurent S, Lip GYH, McManus R, Narkiewicz K, Ruschitzka F, Schmieder RE, Shlyakhto E, Tsioufis C, Aboyans V, Desormais I; ESC Scientific Document Group. 2018 ESC/ESH Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). Eur Heart J 39: 3021–3104, 2018. [Erratum in Eur Heart J 40: 475, 2019]. doi:10.1093/eurheartj/ehy339. PubMed DOI
Bužga M, Holéczy P, Švagera Z, Švorc P, Zavadilová V. Effects of sleeve gastrectomy on parameters of lipid and glucose metabolism in obese women—6 months after operation. Wideochir Inne Tech Maloinwazyjne 8: 22–28, 2013. doi:10.5114/wiitm.2011.31631. PubMed DOI PMC
Bužga M, Holéczy P, Švagera Z, Zonča P. Laparoscopic gastric plication and its effect on saccharide and lipid metabolism: a 12-month prospective study. Wideochir Inne Tech Maloinwazyjne 10: 398–405, 2015. doi:10.5114/wiitm.2015.54103. PubMed DOI PMC
Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods 6: 359–362, 2009. doi:10.1038/nmeth.1322. PubMed DOI
Wiśniewski JR, Rakus D. Multi-enzyme digestion FASP and the ‘Total Protein Approach’-based absolute quantification of the Escherichia coli proteome. J Proteomics 109: 322–331, 2014. doi:10.1016/j.jprot.2014.07.012. PubMed DOI
Stejskal K, Potěšil D, Zdráhal Z. Suppression of peptide sample losses in autosampler vials. J Proteome Res 12: 3057–3062, 2013. doi:10.1021/pr400183v. PubMed DOI
Meier F, Geyer PE, Winter SV, Cox J, Mann M. BoxCar acquisition method enables single-shot proteomics at a depth of 10,000 proteins in 100 minutes. Nat Methods 15: 440–448, 2018. doi:10.1038/s41592-018-0003-5. PubMed DOI
Wichmann C, Meier F, Winter SV, Brunner A-D, Cox J, Mann M. MaxQuant.Live enables global targeting of more than 25,000 peptides. Mol Cell Proteomics 18: 982–994, 2019. doi:10.1074/mcp.TIR118.001131. PubMed DOI PMC
Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.—range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26: 1367–1372, 2008. doi:10.1038/nbt.1511. PubMed DOI
Demichev V, Messner CB, Vernardis SI, Lilley KS, Ralser M. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat Methods 17: 41–44, 2020. doi:10.1038/s41592-019-0638-x. PubMed DOI PMC
Perez-Riverol Y, Bai J, Bandla C, García-Seisdedos D, Hewapathirana S, Kamatchinathan S, Kundu DJ, Prakash A, Frericks-Zipper A, Eisenacher M, Walzer M, Wang S, Brazma A, Vizcaíno JA. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res 50: D543–D552, 2022. doi:10.1093/nar/gkab1038. PubMed DOI PMC
R Development Core Team. R: A Language and Environment for Statistical Computing. VIenna, Austria: R Foundation for Statistical Computing, 2016. doi:10.1007/978-3-540-74686-7. DOI
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43: e47, 2015. doi:10.1093/nar/gkv007. PubMed DOI PMC
Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Fridman W-H, Pagès F, Trajanoski Z, Galon J. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25: 1091–1093, 2009. doi:10.1093/bioinformatics/btp101. PubMed DOI PMC
Jassal B, Matthews L, Viteri G, Gong C, Lorente P, Fabregat A, Sidiropoulos K, Cook J, Gillespie M, Haw R, Loney F, May B, Milacic M, Rothfels K, Sevilla C, Shamovsky V, Shorser S, Varusai T, Weiser J, Wu G, Stein L, Hermjakob H, D'Eustachio P. The reactome pathway knowledgebase. Nucleic Acids Res 48: D498–D503, 2020. doi:10.1093/nar/gkz1031. PubMed DOI PMC
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering C. V. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47: D607–D613, 2019. doi:10.1093/nar/gky1131. PubMed DOI PMC
Teufel F, Almagro Armenteros JJ, Johansen AR, Gíslason MH, Pihl SI, Tsirigos KD, Winther O, Brunak S, von Heijne G, Nielsen H. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat Biotechnol 40: 1023–1025, 2022. doi:10.1038/s41587-021-01156-3. PubMed DOI PMC
Langfelder P, Horvath S. Fast R functions for robust correlations and hierarchical clustering. J Stat Softw 46: i11, 2012. doi:10.18637/jss.v046.i11. PubMed DOI PMC
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9: 559, 2008. doi:10.1186/1471-2105-9-559. PubMed DOI PMC
Arderiu G, Mendieta G, Gallinat A, Lambert C, Díez-Caballero A, Ballesta C, Badimon L. Type 2 diabetes in obesity: a systems biology study on serum and adipose tissue proteomic profiles. Int J Mol Sci 24: 827, 2023. doi:10.3390/ijms24010827. PubMed DOI PMC
Insenser M, Montes-Nieto R, Vilarrasa N, Lecube A, Simó R, Vendrell J, Escobar-Morreale HF. A nontargeted proteomic approach to the study of visceral and subcutaneous adipose tissue in human obesity. Mol Cell Endocrinol 363: 10–19, 2012. doi:10.1016/j.mce.2012.07.001. PubMed DOI
Gómez-Serrano M, Camafeita E, García-Santos E, López JA, Rubio MA, Sánchez-Pernaute A, Torres A, Vázquez J, Peral B. Proteome-wide alterations on adipose tissue from obese patients as age-, diabetes- and gender-specific hallmarks. Sci Rep 6: 25756, 2016. doi:10.1038/srep25756. PubMed DOI PMC
Guzmán-Ruiz R, Tercero-Alcázar C, Rabanal-Ruiz Y, Díaz-Ruiz A, El Bekay R, Rangel-Zuñiga OA, Navarro-Ruiz MC, Molero L, Membrives A, Ruiz-Rabelo JF, Pandit A, López-Miranda J, Tinahones FJ, Malagón MM. Adipose tissue depot-specific intracellular and extracellular cues contributing to insulin resistance in obese individuals. FASEB J 34: 7520–7539, 2020. doi:10.1096/fj.201902703R. PubMed DOI PMC
Tang X, Li J, Zhao W-G, Sun H, Guo Z, Jing L, She Z, Yuan T, Liu S-N, Liu Q, Fu Y, Sun W. Comprehensive map and functional annotation of the mouse white adipose tissue proteome. PeerJ 7: e7352, 2019. doi:10.7717/peerj.7352. PubMed DOI PMC
Vogel MAA, Wang P, Bouwman FG, Hoebers N, Blaak EE, Renes J, Mariman EC, Goossens GH. A comparison between the abdominal and femoral adipose tissue proteome of overweight and obese women. Sci Rep 9: 4202, 2019. doi:10.1038/s41598-019-40992-x. PubMed DOI PMC
Ruiz-Ojeda FJ, Méndez-Gutiérrez A, Aguilera CM, Plaza-Díaz J. Extracellular matrix remodeling of adipose tissue in obesity and metabolic diseases. Int J Mol Sci 20: 4888, 2019. doi:10.3390/ijms20194888. PubMed DOI PMC
Khan T, Muise ES, Iyengar P, Wang ZV, Chandalia M, Abate N, Zhang BB, Bonaldo P, Chua S, Scherer PE. Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI. Mol Cell Biol 29: 1575–1591, 2009. doi:10.1128/MCB.01300-08. PubMed DOI PMC
Pasarica M, Gowronska-Kozak B, Burk D, Remedios I, Hymel D, Gimble J, Ravussin E, Bray GA, Smith SR. Adipose tissue collagen VI in obesity. J Clin Endocrinol Metab 94: 5155–5162, 2009. doi:10.1210/jc.2009-0947. PubMed DOI PMC
Gesta S, Guntur K, Majumdar ID, Akella S, Vishnudas VK, Sarangarajan R, Narain NR. Reduced expression of collagen VI α 3 (COL6A3) confers resistance to inflammation-induced MCP1 expression in adipocytes. Obesity (Silver Spring) 24: 1695–1703, 2016. doi:10.1002/oby.21565. PubMed DOI
Lawler HM, Underkofler CM, Kern PA, Erickson C, Bredbeck B, Rasouli N. Adipose tissue hypoxia, inflammation, and fibrosis in obese insulin-sensitive and obese insulin-resistant subjects. J Clin Endocrinol Metab 101: 1422–1428, 2016. doi:10.1210/jc.2015-4125. PubMed DOI PMC
Spencer M, Yao-Borengasser A, Unal R, Rasouli N, Gurley CM, Zhu B, Peterson CA, Kern PA. Adipose tissue macrophages in insulin-resistant subjects are associated with collagen VI and fibrosis and demonstrate alternative activation. Am J Physiol Endocrinol Metab 299: E1016–E1027, 2010. doi:10.1152/ajpendo.00329.2010. PubMed DOI PMC
Liu Y, Aron-Wisnewsky J, Marcelin G, Genser L, Le Naour G, Torcivia A, Bauvois B, Bouchet S, Pelloux V, Sasso M, Miette V, Tordjman J, Clément K. Accumulation and changes in composition of collagens in subcutaneous adipose tissue after bariatric surgery. J Clin Endocrinol Metab 101: 293–304, 2016. doi:10.1210/jc.2015-3348. PubMed DOI
Nakazeki F, Nishiga M, Horie T, Nishi H, Nakashima Y, Baba O, Kuwabara Y, Nishino T, Nakao T, Ide Y, Koyama S, Kimura M, Tsuji S, Sowa N, Yoshida S, Conway SJ, Yanagita M, Kimura T, Ono K. Loss of periostin ameliorates adipose tissue inflammation and fibrosis in vivo. Sci Rep 8: 8553, 2018. doi:10.1038/s41598-018-27009-9. PubMed DOI PMC
Yang Y, Zhang Y, Zhou X, Chen D, Ouyang G, Liu Y, Cui D. Periostin deficiency attenuates lipopolysaccharide- and obesity-induced adipose tissue fibrosis. FEBS Lett 595: 2099–2112, 2021. doi:10.1002/1873-3468.14154. PubMed DOI
Chen X, Chen J, Xu D, Zhao S, Song H, Peng Y. Effects of osteoglycin (OGN) on treating senile osteoporosis by regulating MSCs. BMC Musculoskelet Disord 18: 423, 2017. doi:10.1186/s12891-017-1779-7. PubMed DOI PMC
Pessentheiner AR, Ducasa GM, Gordts PLSM. Proteoglycans in obesity-associated metabolic dysfunction and meta-inflammation. Front Immunol 11: 769, 2020. doi:10.3389/fimmu.2020.00769. PubMed DOI PMC
Sakashita H, Yamada S, Kinoshita M, Kajikawa T, Iwayama T, Murakami S. Mice lacking PLAP-1/asporin counteracts high fat diet-induced metabolic disorder and alveolar bone loss by controlling adipose tissue expansion. Sci Rep 11: 4970, 2021. doi:10.1038/s41598-021-84512-2. PubMed DOI PMC
Han CY, Kang I, Harten IA, Gebe JA, Chan CK, Omer M, Alonge KM, den Hartigh LJ, Gomes Kjerulf D, Goodspeed L, Subramanian S, Wang S, Kim F, Birk DE, Wight TN, Chait A. Adipocyte-derived versican and macrophage-derived biglycan control adipose tissue inflammation in obesity. Cell Rep 31: 107818, 2020. doi:10.1016/j.celrep.2020.107818. PubMed DOI PMC
Svensson L, Närlid I, Oldberg A. Fibromodulin and lumican bind to the same region on collagen type I fibrils. FEBS Lett 470: 178–182, 2000. doi:10.1016/s0014-5793(00)01314-4. PubMed DOI
Wolff G, Taranko AE, Meln I, Weinmann J, Sijmonsma T, Lerch S, Heide D, Billeter AT, Tews D, Krunic D, Fischer-Posovszky P, Müller-Stich BP, Herzig S, Grimm D, Heikenwälder M, Kao WW, Vegiopoulos A. Diet-dependent function of the extracellular matrix proteoglycan Lumican in obesity and glucose homeostasis. Mol Metab 19: 97–106, 2019. doi:10.1016/j.molmet.2018.10.007. PubMed DOI PMC
Kodama K, Horikoshi M, Toda K, Yamada S, Hara K, Irie J, Sirota M, Morgan AA, Chen R, Ohtsu H, Maeda S, Kadowaki T, Butte AJ. Expression-based genome-wide association study links the receptor CD44 in adipose tissue with type 2 diabetes. Proc Natl Acad Sci USA 109: 7049–7054, 2012. doi:10.1073/pnas.1114513109. PubMed DOI PMC
Petrus P, Fernandez TL, Kwon MM, Huang JL, Lei V, Safikhan NS, Karunakaran S, O'Shannessy DJ, Zheng X, Catrina S-B, Albone E, Laine J, Virtanen K, Clee SM, Kieffer TJ, Noll C, Carpentier AC, Johnson JD, Rydén M, Conway EM. Specific loss of adipocyte CD248 improves metabolic health via reduced white adipose tissue hypoxia, fibrosis and inflammation. EBioMedicine 44: 489–501, 2019. doi:10.1016/j.ebiom.2019.05.057. PubMed DOI PMC
Nicholls HT, Kowalski G, Kennedy DJ, Risis S, Zaffino LA, Watson N, Kanellakis P, Watt MJ, Bobik A, Bonen A, Febbraio M, Lancaster GI, Febbraio MA. Hematopoietic cell–restricted deletion of CD36 reduces high-fat diet–induced macrophage infiltration and improves insulin signaling in adipose tissue. Diabetes 60: 1100–1110, 2011. doi:10.2337/db10-1353. PubMed DOI PMC
Blaszczak AM, Wright VP, Anandani K, Liu J, Jalilvand A, Bergin S, Nicoloro SM, Czech MP, Lafuse W, Deng T, Bradley D, Hsueh WA. Loss of antigen presentation in adipose tissue macrophages or in adipocytes, but not both, improves glucose metabolism. J Immunol 202: 2451–2459, 2019. doi:10.4049/jimmunol.1801470. PubMed DOI PMC
Cho KW, Morris DL, DelProposto JL, Geletka L, Zamarron B, Martinez-Santibanez G, Meyer KA, Singer K, O'Rourke RW, Lumeng CN. An MHC class II dependent activation loop between adipose tissue macrophages and CD4+ T cells controls obesity-induced inflammation. Cell Rep 9: 605–617, 2014. doi:10.1016/j.celrep.2014.09.004. PubMed DOI PMC
Deng T, Lyon CJ, Minze LJ, Lin J, Zou J, Liu JZ, Ren Y, Yin Z, Hamilton DJ, Reardon PR, Sherman V, Wang HY, Phillips KJ, Webb P, Wong STC, Wang R-F, Hsueh WA. Class II major histocompatibility complex plays an essential role in obesity-induced adipose inflammation. Cell Metab 17: 411–422, 2013. doi:10.1016/j.cmet.2013.02.009. PubMed DOI PMC
Aziz MH, Cui K, Das M, Brown KE, Ardell CL, Febbraio M, Pluskota E, Han J, Wu H, Ballantyne CM, Smith JD, Cathcart MK, Yakubenko VP. The upregulation of integrin αDβ2 (CD11d/CD18) on inflammatory macrophages promotes macrophage retention in vascular lesions and development of atherosclerosis. J Immunol 198: 4855–4867, 2017. doi:10.4049/jimmunol.1602175. PubMed DOI PMC
Cui K, Ardell CL, Podolnikova NP, Yakubenko VP. Distinct migratory properties of M1, M2, and resident macrophages are regulated by αDβ2 and αMβ2 integrin-mediated adhesion. Front Immunol 9: 2650, 2018. doi:10.3389/fimmu.2018.02650. PubMed DOI PMC
Zheng C, Yang Q, Xu C, Shou P, Cao J, Jiang M, Chen Q, Cao G, Han Y, Li F, Cao W, Zhang L, Zhang L, Shi Y, Wang Y. CD11b regulates obesity-induced insulin resistance via limiting alternative activation and proliferation of adipose tissue macrophages. Proc Natl Acad Sci USA 112: E7239–E7248, 2015. doi:10.1073/pnas.1500396113. PubMed DOI PMC
Heinonen S, Jokinen R, Rissanen A, Pietiläinen KH. White adipose tissue mitochondrial metabolism in health and in obesity. Obes Rev 21: e12958, 2020. doi:10.1111/obr.12958. PubMed DOI
Chattopadhyay M, Guhathakurta I, Behera P, Ranjan KR, Khanna M, Mukhopadhyay S, Chakrabarti S. Mitochondrial bioenergetics is not impaired in nonobese subjects with type 2 diabetes mellitus. Metabolism 60: 1702–1710, 2011. doi:10.1016/j.metabol.2011.04.015. PubMed DOI
Gómez-Serrano M, Camafeita E, López JA, Rubio MA, Bretón I, García-Consuegra I, García-Santos E, Lago J, Sánchez-Pernaute A, Torres A, Vázquez J, Peral B. Differential proteomic and oxidative profiles unveil dysfunctional protein import to adipocyte mitochondria in obesity-associated aging and diabetes. Redox Biol 11: 415–428, 2017. doi:10.1016/j.redox.2016.12.013. PubMed DOI PMC
Schöttl T, Kappler L, Fromme T, Klingenspor M. Limited OXPHOS capacity in white adipocytes is a hallmark of obesity in laboratory mice irrespective of the glucose tolerance status. Mol Metab 4: 631–642, 2015. doi:10.1016/j.molmet.2015.07.001. PubMed DOI PMC
Wilson-Fritch L, Nicoloro S, Chouinard M, Lazar MA, Chui PC, Leszyk J, Straubhaar J, Czech MP, Corvera S. Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone. J Clin Invest 114: 1281–1289, 2004. doi:10.1172/JCI21752. PubMed DOI PMC
Fischer B, Schöttl T, Schempp C, Fromme T, Hauner H, Klingenspor M, Skurk T. Inverse relationship between body mass index and mitochondrial oxidative phosphorylation capacity in human subcutaneous adipocytes. Am J Physiol Endocrinol Metab 309: E380–E387, 2015. doi:10.1152/ajpendo.00524.2014. PubMed DOI
Kraunsøe R, Boushel R, Hansen CN, Schjerling P, Qvortrup K, Støckel M, Mikines KJ, Dela F. Mitochondrial respiration in subcutaneous and visceral adipose tissue from patients with morbid obesity. J Physiol 588: 2023–2032, 2010. [Erratum in J Physiol 588: 4055, 2010]. doi:10.1113/jphysiol.2009.184754. PubMed DOI PMC
Auguet T, Guiu-Jurado E, Berlanga A, Terra X, Martinez S, Porras JA, Ceausu A, Sabench F, Hernandez M, Aguilar C, Sirvent JJ, Del Castillo D, Richart C. Downregulation of lipogenesis and fatty acid oxidation in the subcutaneous adipose tissue of morbidly obese women. Obesity (Silver Spring) 22: 2032–2038, 2014. doi:10.1002/oby.20809. PubMed DOI
Arner P, Bernard S, Salehpour M, Possnert G, Liebl J, Steier P, Buchholz BA, Eriksson M, Arner E, Hauner H, Skurk T, Rydén M, Frayn KN, Spalding KL. Dynamics of human adipose lipid turnover in health and metabolic disease. Nature 478: 110–113, 2011. doi:10.1038/nature10426. PubMed DOI PMC
Arner P, Rydén M. Human white adipose tissue: a highly dynamic metabolic organ. J Intern Med 291: 611–621, 2022. doi:10.1111/joim.13435. PubMed DOI
Lemmer IL, Willemsen N, Hilal N, Bartelt A. A guide to understanding endoplasmic reticulum stress in metabolic disorders. Mol Metab 47: 101169, 2021. doi:10.1016/j.molmet.2021.101169. PubMed DOI PMC
Slimen IB, Najar T, Ghram A, Dabbebi H, Ben Mrad M, Abdrabbah M. Reactive oxyen species, heat stress and oxidative-induced mitochondrial damage. A review. Int J Hyperthermia 30: 513–523, 2014. doi:10.3109/02656736.2014.971446. PubMed DOI
Yin L, Huang D, Liu X, Wang Y, Liu J, Liu F, Yu B. Omentin-1 effects on mesenchymal stem cells: proliferation, apoptosis, and angiogenesis in vitro. Stem Cell Res Ther 8: 224, 2017. doi:10.1186/s13287-017-0676-1. PubMed DOI PMC
Liu F, Fang S, Liu X, Li J, Wang X, Cui J, Chen T, Li Z, Yang F, Tian J, Li H, Yin L, Yu B. Omentin-1 protects against high glucose-induced endothelial dysfunction via the AMPK/PPARδ signaling pathway. Biochem Pharmacol 174: 113830, 2020. doi:10.1016/j.bcp.2020.113830. PubMed DOI
Francisco V, Ruiz-Fernández C, Pino J, Mera A, González-Gay MA, Gómez R, Lago F, Mobasheri A, Gualillo O. Adipokines: linking metabolic syndrome, the immune system, and arthritic diseases. Biochem Pharmacol 165: 196–206, 2019. doi:10.1016/j.bcp.2019.03.030. PubMed DOI
Zhao S, Kusminski CM, Scherer PE. Adiponectin, leptin and cardiovascular disorders. Circ Res 128: 136–149, 2021. doi:10.1161/CIRCRESAHA.120.314458. PubMed DOI PMC
Neeland IJ, Ayers CR, Rohatgi AK, Turer AT, Berry JD, Das SR, Vega GL, Khera A, McGuire DK, Grundy SM, de Lemos JA. Associations of visceral and abdominal subcutaneous adipose tissue with markers of cardiac and metabolic risk in obese adults. Obesity (Silver Spring) 21: E439–E447, 2013. doi:10.1002/oby.20135. PubMed DOI PMC
Samaras K, Botelho NK, Chisholm DJ, Lord RV. Subcutaneous and visceral adipose tissue gene expression of serum adipokines that predict type 2 diabetes. Obesity (Silver Spring) 18: 884–889, 2010. doi:10.1038/oby.2009.443. PubMed DOI
Mejhert N, Wilfling F, Esteve D, Galitzky J, Pellegrinelli V, Kolditz C-I, Viguerie N, Tordjman J, Näslund E, Trayhurn P, Lacasa D, Dahlman I, Stich V, Lång P, Langin D, Bouloumié A, Clément K, Rydén M. Semaphorin 3C is a novel adipokine linked to extracellular matrix composition. Diabetologia 56: 1792–1801, 2013. doi:10.1007/s00125-013-2931-z. PubMed DOI
Nam JS, Ahn CW, Park HJ, Kim YS. Semaphorin 3 C is a novel adipokine representing exercise-induced improvements of metabolism in metabolically healthy obese young males. Sci Rep 10: 10005, 2020. doi:10.1038/s41598-020-67004-7. PubMed DOI PMC
Lu Y-C, Chang C-C, Wang C-P, Hung W-C, Tsai I-T, Tang W-H, Wu C-C, Wei C-T, Chung F-M, Lee Y-J, Hsu C-C. Circulating fatty acid-binding protein 1 (FABP1) and nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus. Int J Med Sci 17: 182–190, 2020. doi:10.7150/ijms.40417. PubMed DOI PMC
Tsai I-T, Wu C-C, Hung W-C, Lee T-L, Hsuan C-F, Wei C-T, Lu Y-C, Yu T-H, Chung F-M, Lee Y-J, Wang C-P. FABP1 and FABP2 as markers of diabetic nephropathy. Int J Med Sci 17: 2338–2345, 2020. doi:10.7150/ijms.49078. PubMed DOI PMC