Proteomic Signatures of Human Visceral and Subcutaneous Adipocytes

. 2022 Feb 17 ; 107 (3) : 755-775.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, pozorovací studie, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34669916

CONTEXT: Adipose tissue distribution is a key factor influencing metabolic health and risk in obesity-associated comorbidities. OBJECTIVE: Here we aim to compare the proteomic profiles of mature adipocytes from different depots. METHODS: Abdominal subcutaneous (SA) and omental visceral adipocytes (VA) were isolated from paired adipose tissue biopsies obtained during bariatric surgery on 19 severely obese women (body mass index > 30 kg/m2) and analyzed using state-of-the-art mass spectrometry. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were performed to investigate proteome signature properties and to examine a possible association of the protein expression with the clinical data. RESULTS: We identified 3686 protein groups and found 1140 differentially expressed proteins (adj. P value < 0.05), of which 576 proteins were upregulated in SA and 564 in VA samples. We provide a global protein profile of abdominal SA and omental VA, present the most differentially expressed pathways and processes distinguishing SA from VA, and correlate them with clinical and body composition data. We show that SA are significantly more active in processes linked to vesicular transport and secretion, and to increased lipid metabolism activity. Conversely, the expression of proteins involved in the mitochondrial energy metabolism and translational or biosynthetic activity is higher in VA. CONCLUSION: Our analysis represents a valuable resource of protein expression profiles in abdominal SA and omental VA, highlighting key differences in their role in obesity.

Zobrazit více v PubMed

Sethi JK, Vidal-Puig AJ. Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 2007;48(6):1253-1262. PubMed PMC

Schoettl T, Fischer IP, Ussar S. Heterogeneity of adipose tissue in development and metabolic function. J Exp Biol. 2018;221(Suppl 1):jeb162958. PubMed

Tchkonia T, Thomou T, Zhu Y, et al. . Mechanisms and metabolic implications of regional differences among fat depots. Cell Metab. 2013;17(5):644-656. PubMed PMC

Kwok KH, Lam KS, Xu A. Heterogeneity of white adipose tissue: molecular basis and clinical implications. Exp Mol Med. 2016;48:e215. PubMed PMC

Lee MJ, Wu Y, Fried SK. Adipose tissue heterogeneity: implication of depot differences in adipose tissue for obesity complications. Mol Aspects Med. 2013;34(1):1-11. PubMed PMC

Tchernof A, Després JP. Pathophysiology of human visceral obesity: an update. Physiol Rev. 2013;93(1):359-404. PubMed

Brockman D, Chen X. Proteomics in the characterization of adipose dysfunction in obesity. Adipocyte. 2012;1(1):25-37. PubMed PMC

Gómez-Serrano M, Camafeita E, García-Santos E, et al. . Proteome-wide alterations on adipose tissue from obese patients as age-, diabetes- and gender-specific hallmarks. Sci Rep. 2016;6:1–19. PubMed PMC

Haard PMMV, Herbrink P, Schweitzer DH. Differentiation of paired human subcutaneous and visceral adipose tissues by holistic proteome profiling using LC-MS/MS: a pilot study. Int J Res Stud Biosci. 2016;4(7):32-42.

Murri M, Insenser M, Bernal-Lopez MR, Perez-Martinez P, Escobar-Morreale HF, Tinahones FJ. Proteomic analysis of visceral adipose tissue in pre-obese patients with type 2 diabetes. Mol Cell Endocrinol. 2013;376(1-2):99-106. PubMed

Vogel MAA, Wang P, Bouwman FG, et al. . A comparison between the abdominal and femoral adipose tissue proteome of overweight and obese women. Sci Rep. 2019;9(1):4202. PubMed PMC

Alfadda AA, Benabdelkamel H, Masood A, et al. . Proteomic analysis of mature adipocytes from obese patients in relation to aging. Exp Gerontol. 2013;48(11):1196-1203. PubMed

Benabdelkamel H, Masood A, Almidani GM, et al. . Mature adipocyte proteome reveals differentially altered protein abundances between lean, overweight and morbidly obese human subjects. Mol Cell Endocrinol. 2015;401:142-154. PubMed

Doulamis IP, Konstantopoulos P, Tzani A, et al. . Visceral white adipose tissue and serum proteomic alternations in metabolically healthy obese patients undergoing bariatric surgery. Cytokine. 2019;115:76-83. PubMed

Perez-Riverol Y, Csordas A, Bai J, et al. . The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47(D1): D442-D450. PubMed PMC

Adamczyk P, Bužga M, Holéczy P, et al. . Bone mineral density and body composition after laparoscopic sleeve gastrectomy in men: a short-term longitudinal study. Int J Surg. 2015;23(Pt A):101-107. PubMed

Adamczyk P, Bužga M, Holéczy P, et al. . Body size, bone mineral density, and body composition in obese women after laparoscopic sleeve gastrectomy: a 1-year longitudinal study. Horm Metab Res. 2015;47(12):873-879. PubMed

Pluskiewicz W, Buzga M, Holeczy P, Smajstrla V, Adamczyk P. A comment on ‘Changes in bone mineral density in women following 1-year gastric bypass surgery’ published by Casagrande DS et al.Obes Surg. 2013;23(11):1885. PubMed

Bužga M, Holéczy P, Švagera Z, Švorc P, Zavadilová V. Effects of sleeve gastrectomy on parameters of lipid and glucose metabolism in obese women - 6 months after operation. Wideochirur Inne Tech Maloinwazyjne 2013;8(1):22-8. PubMed PMC

Bužga M, Holéczy P, Švagera Z, Zonča P. Laparoscopic gastric plication and its effect on saccharide and lipid metabolism: a 12-month prospective study. Wideochirur Inne Tech Maloinwazyjne 2015;10(3):398-405. PubMed PMC

Carswell KA, Lee MJ, Fried SK. Culture of isolated human adipocytes and isolated adipose tissue. Methods Mol Biol. 2012;806:203-214. PubMed PMC

Gallagher SR. One-dimensional SDS gel electrophoresis of proteins. Curr Protoc Mol Biol. 2012;97(1):10.2A.1-10.2A.44. PubMed

Wiśniewski JR, Rakus D. Multi-enzyme digestion FASP and the ‘Total Protein Approach’-based absolute quantification of the Escherichia coli proteome. J Proteomics. 2014;109:322-331. PubMed

Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6(5):359-362. PubMed

Yeung YG, Nieves E, Angeletti RH, Stanley ER. Removal of detergents from protein digests for mass spectrometry analysis. Anal Biochem. 2008;382(2):135-137. PubMed PMC

Stejskal K, Potěšil D, Zdráhal Z. Suppression of peptide sample losses in autosampler vials. J Proteome Res. 2013;12(6):3057-3062. PubMed

Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26(12):1367-1372. PubMed

R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; 2016.

Hruska P, Kucera J, Pekar M, et al. . Proteomic signatures of human visceral and subcutaneous adipocytes—supplementary files. Dataset posted on October 27, 2021. doi:10.6084/m9.figshare.14626341.v1. PubMed DOI PMC

Ritchie ME, Phipson B, Wu D, et al. . limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. PubMed PMC

Smyth GK, Michaud J, Scott HS. Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics. 2005;21(9):2067-2075. PubMed

Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B (Methodol). 1995;57(1):289-300.

Ward JH Jr. Hierarchical grouping to optimize an objective function. J Am Stat Assoc 1963;58(301):236-244.

Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559. PubMed PMC

Langfelder P, Horvath S. Fast R functions for robust correlations and hierarchical clustering. J Stat Softw. 2012;46(1):1-17. PubMed PMC

Horvath S, Dong J. Geometric interpretation of gene coexpression network analysis. PLoS Comput Biol. 2008;4(8):e1000117. PubMed PMC

Szklarczyk D, Gable AL, Lyon D, et al. . STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607-D613. PubMed PMC

Bindea G, Mlecnik B, Hackl H, et al. . ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25(8):1091-1093. PubMed PMC

Jassal B, Matthews L, Viteri G, et al. . The reactome pathway knowledgebase. Nucleic Acids Res. 2020;48(D1):D498-D503. PubMed PMC

Almagro Armenteros JJ, Tsirigos KD, Sønderby CK, et al. . SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol. 2019;37(4):420-423. PubMed

Kraunsøe R, Boushel R, Hansen CN, et al. . Mitochondrial respiration in subcutaneous and visceral adipose tissue from patients with morbid obesity. J Physiol. 2010;588(Pt 12):2023-2032. PubMed PMC

Pérez-Pérez R, Ortega-Delgado FJ, García-Santos E, et al. . Differential proteomics of omental and subcutaneous adipose tissue reflects their unalike biochemical and metabolic properties. J Proteome Res. 2009;8(4):1682-1693. PubMed

Fischer B, Schöttl T, Schempp C, et al. . Inverse relationship between body mass index and mitochondrial oxidative phosphorylation capacity in human subcutaneous adipocytes. Am J Physiol Endocrinol Metab. 2015;309(4):E380-E387. PubMed

Wessels B, Honecker J, Schöttl T, et al. . Adipose mitochondrial respiratory capacity in obesity is impaired independently of glycemic status of tissue donors. Obesity (Silver Spring). 2019;27(5):756-766. PubMed

Schöttl T, Pachl F, Giesbertz P, et al. . Proteomic and metabolite profiling reveals profound structural and metabolic reorganization of adipocyte mitochondria in obesity. Obesity (Silver Spring). 2020;28(3):590-600. PubMed

Keuper M, Jastroch M, Yi CX, et al. . Spare mitochondrial respiratory capacity permits human adipocytes to maintain ATP homeostasis under hypoglycemic conditions. FASEB J. 2014;28(2):761-770. PubMed

Gealekman O, Guseva N, Hartigan C, et al. . Depot-specific differences and insufficient subcutaneous adipose tissue angiogenesis in human obesity. Circulation. 2011;123(2):186-194. PubMed PMC

Dadson P, Landini L, Helmiö M, et al. . Effect of bariatric surgery on adipose tissue glucose metabolism in different depots in patients with or without type 2 diabetes. Diabetes Care. 2016;39(2):292-299. PubMed

Boden G, Merali S. Measurement of the increase in endoplasmic reticulum stress-related proteins and genes in adipose tissue of obese, insulin-resistant individuals. Methods Enzymol. 2011;489:67-82. PubMed PMC

Xie X, Yi Z, Bowen B, et al. . Characterization of the human adipocyte proteome and reproducibility of protein abundance by one-dimensional gel electrophoresis and HPLC-ESI-MS/MS. J Proteome Res. 2010;9(9):4521-4534. PubMed PMC

Kozlov G, Gehring K. Calnexin cycle—structural features of the ER chaperone system. FEBS J. 2020;287(20):4322-4340. PubMed PMC

Gurkan C, Lapp H, Alory C, Su AI, Hogenesch JB, Balch WE. Large-scale profiling of Rab GTPase trafficking networks: the membrome. Mol Biol Cell. 2005;16(8):3847-3864. PubMed PMC

Li C, Yu SS. Rab proteins as regulators of lipid droplet formation and lipolysis. Cell Biol Int. 2016;40(10):1026-1032. PubMed

Kaddai V, Le Marchand-Brustel Y, Cormont M. Rab proteins in endocytosis and Glut4 trafficking. Acta Physiol (Oxf). 2008;192(1):75-88. PubMed

Dominiczak MH, Caslake MJ. Apolipoproteins: metabolic role and clinical biochemistry applications. Ann Clin Biochem. 2011;48(Pt 6):498-515. PubMed

Huang ZH, Espiritu DJ, Uy A, Holterman AX, Vitello J, Mazzone T. Adipose tissue depot-specific differences in adipocyte apolipoprotein E expression. Metabolism. 2011;60(12):1692-1701. PubMed PMC

Clemente-Postigo M, Queipo-Ortuño MI, Fernandez-Garcia D, Gomez-Huelgas R, Tinahones FJ, Cardona F. Adipose tissue gene expression of factors related to lipid processing in obesity. PLoS One. 2011;6(9):e24783. PubMed PMC

Langeveld M, Aerts JM. Glycosphingolipids and insulin resistance. Prog Lipid Res. 2009;48(3-4):196-205. PubMed

Ruiz-Ojeda FJ, Méndez-Gutiérrez A, Aguilera CM, Plaza-Díaz J. Extracellular matrix remodeling of adipose tissue in obesity and metabolic diseases. Int J Mol Sci. 2019;20(19): 4888. PubMed PMC

Roca-Rivada A, Bravo SB, Pérez-Sotelo D, et al. . CILAIR-based secretome analysis of obese visceral and subcutaneous adipose tissues reveals distinctive ECM remodeling and inflammation mediators. Sci Rep. 2015;5:12214. PubMed PMC

Bertola A, Deveaux V, Bonnafous S, et al. . Elevated expression of osteopontin may be related to adipose tissue macrophage accumulation and liver steatosis in morbid obesity. Diabetes. 2009;58(1):125-133. PubMed PMC

Liu LF, Kodama K, Wei K, et al. . The receptor CD44 is associated with systemic insulin resistance and proinflammatory macrophages in human adipose tissue. Diabetologia. 2015;58(7):1579-1586. PubMed

Petrus P, Fernandez TL, Kwon MM, et al. . Specific loss of adipocyte CD248 improves metabolic health via reduced white adipose tissue hypoxia, fibrosis and inflammation. EBioMedicine. 2019;44:489-501. PubMed PMC

Insenser M, Montes-Nieto R, Vilarrasa N, et al. . A nontargeted proteomic approach to the study of visceral and subcutaneous adipose tissue in human obesity. Mol Cell Endocrinol. 2012;363(1-2):10-19. PubMed

Pessentheiner AR, Ducasa GM, Gordts PLSM. Proteoglycans in obesity-associated metabolic dysfunction and meta-inflammation. Front Immunol. 2020;11:1–18. PubMed PMC

Lim JM, Wollaston-Hayden EE, Teo CF, Hausman D, Wells L. Quantitative secretome and glycome of primary human adipocytes during insulin resistance. Clin Proteomics. 2014;11(1):20. PubMed PMC

Kochkodan J, Telem DA, Ghaferi AA. Physiologic and psychological gender differences in bariatric surgery. Surg Endosc. 2018;32(3):1382-1388. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...