Cholesterol-dependent amyloid β production: space for multifarious interactions between amyloid precursor protein, secretases, and cholesterol

. 2023 Sep 13 ; 13 (1) : 171. [epub] 20230913

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid37705117

Grantová podpora
SVV-260683 Univerzita Karlova v Praze

Odkazy

PubMed 37705117
PubMed Central PMC10500844
DOI 10.1186/s13578-023-01127-y
PII: 10.1186/s13578-023-01127-y
Knihovny.cz E-zdroje

Amyloid β is considered a key player in the development and progression of Alzheimer's disease (AD). Many studies investigating the effect of statins on lowering cholesterol suggest that there may be a link between cholesterol levels and AD pathology. Since cholesterol is one of the most abundant lipid molecules, especially in brain tissue, it affects most membrane-related processes, including the formation of the most dangerous form of amyloid β, Aβ42. The entire Aβ production system, which includes the amyloid precursor protein (APP), β-secretase, and the complex of γ-secretase, is highly dependent on membrane cholesterol content. Moreover, cholesterol can affect amyloidogenesis in many ways. Cholesterol influences the stability and activity of secretases, but also dictates their partitioning into specific cellular compartments and cholesterol-enriched lipid rafts, where the amyloidogenic machinery is predominantly localized. The most complicated relationships have been found in the interaction between cholesterol and APP, where cholesterol affects not only APP localization but also the precise character of APP dimerization and APP processing by γ-secretase, which is important for the production of Aβ of different lengths. In this review, we describe the intricate web of interdependence between cellular cholesterol levels, cholesterol membrane distribution, and cholesterol-dependent production of Aβ, the major player in AD.

Zobrazit více v PubMed

Guerreiro RJ, Gustafson DR, Hardy J. The genetic architecture of Alzheimer’s disease: beyond APP, PSENs and APOE. Neurobiol Aging. 2012;33:437–456. doi: 10.1016/j.neurobiolaging.2010.03.025. PubMed DOI PMC

Karch CM, Goate AM. Alzheimer's disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry. 2015;77:43–51. doi: 10.1016/j.biopsych.2014.05.006. PubMed DOI PMC

Ko YA, Billheimer JT, Lyssenko NN, Kueider-Paisley A, Wolk DA, Arnold SE, Leung YY, Shaw LM, Trojanowski JQ, Kaddurah-Daouk RF, Kling MA, Rader DJ. ApoJ/Clusterin concentrations are determinants of cerebrospinal fluid cholesterol efflux capacity and reduced levels are associated with Alzheimer's disease. Alzheimers Res Ther. 2022;14:194. doi: 10.1186/s13195-022-01119-z. PubMed DOI PMC

Mishra S, Knupp A, Szabo MP, Williams CA, Kinoshita C, Hailey DW, Wang Y, Andersen OM, Young JE. The Alzheimer's gene SORL1 is a regulator of endosomal traffic and recycling in human neurons. Cell Mol Life Sci. 2022;79:162. doi: 10.1007/s00018-022-04182-9. PubMed DOI PMC

Muhammad A, Flores I, Zhang H, Yu R, Staniszewski A, Planel E, Herman M, Ho LL, Kreber R, Honig LS, Ganetzky B, Duff K, Arancio O, Small SA. Retromer deficiency observed in Alzheimer's disease causes hippocampal dysfunction, neurodegeneration, and Abeta accumulation. Proc Natl Acad Sci U S A. 2008;105:7327–7332. doi: 10.1073/pnas.0802545105. PubMed DOI PMC

van der Kant R, Goldstein LSB, Ossenkoppele R. Amyloid-beta-independent regulators of tau pathology in Alzheimer disease. Nat Rev Neurosci. 2020;21:21–35. doi: 10.1038/s41583-019-0240-3. PubMed DOI

Haass C, Selkoe D. If amyloid drives Alzheimer disease, why have anti-amyloid therapies not yet slowed cognitive decline? PLoS Biol. 2022;20:e3001694. doi: 10.1371/journal.pbio.3001694. PubMed DOI PMC

Lee A, Kondapalli C, Virga DM, Lewis TL, Jr, Koo SY, Ashok A, Mairet-Coello G, Herzig S, Foretz M, Viollet B, Shaw R, Sproul A, Polleux F. Abeta42 oligomers trigger synaptic loss through CAMKK2-AMPK-dependent effectors coordinating mitochondrial fission and mitophagy. Nat Commun. 2022;13:4444. doi: 10.1038/s41467-022-32130-5. PubMed DOI PMC

Li S, Selkoe DJ. A mechanistic hypothesis for the impairment of synaptic plasticity by soluble Abeta oligomers from Alzheimer's brain. J Neurochem. 2020;154:583–597. doi: 10.1111/jnc.15007. PubMed DOI PMC

Ho CL, Kao NJ, Lin CI, Cross TL, Lin SH. Quercetin increases mitochondrial biogenesis and reduces free radicals in neuronal SH-SY5Y cells. Nutrients. 2020;14:3310. doi: 10.3390/nu14163310. PubMed DOI PMC

Shang Y, Sun X, Chen X, Wang Q, Wang EJ, Miller E, Xu R, Pieper AA, Qi X. A CHCHD6-APP axis connects amyloid and mitochondrial pathology in Alzheimer's disease. Acta Neuropathol. 2020;144:911–938. doi: 10.1007/s00401-022-02499-0. PubMed DOI PMC

Shevtsova EF, Angelova PR, Stelmashchuk OA, Esteras N, Vasil'eva NA, Maltsev AV, Shevtsov PN, Shaposhnikov AV, Fisenko VP, Bachurin SO, Abramov AY. Pharmacological sequestration of mitochondrial calcium uptake protects against dementia and beta-amyloid neurotoxicity. Sci Rep. 2022;12:12766. doi: 10.1038/s41598-022-16817-9. PubMed DOI PMC

Trushina E, Nemutlu E, Zhang S, Christensen T, Camp J, Mesa J, Siddiqui A, Tamura Y, Sesaki H, Wengenack TM, Dzeja PP, Poduslo JF. Defects in mitochondrial dynamics and metabolomic signatures of evolving energetic stress in mouse models of familial Alzheimer's disease. PLoS ONE. 2012;7:e32737. doi: 10.1371/journal.pone.0032737. PubMed DOI PMC

Ye X, Sun XQ, Starovoytov V, Cai Q. Parkin-mediated mitophagy in mutant hAPP neurons and Alzheimer's disease patient brains. Hum Mol Genet. 2015;24:2938–2951. doi: 10.1093/hmg/ddv056. PubMed DOI PMC

Ba L, Chen XH, Chen YL, Nie Q, Li ZJ, Ding FF, Zhang M. Distinct Rab7-related endosomal-autophagic-lysosomal dysregulation observed in cortex and hippocampus in APPswe/PSEN1dE9 mouse model of Alzheimer's disease. Chin Med J (Engl) 2017;130:2941–2950. doi: 10.4103/0366-6999.220311. PubMed DOI PMC

Hung COY, Livesey FJ. Altered gamma-secretase processing of APP disrupts lysosome and autophagosome function in monogenic Alzheimer's disease. Cell Rep. 2018;25(3647–3660):e3642. PubMed PMC

Kelly BL, Ferreira A. beta-Amyloid-induced dynamin 1 degradation is mediated by N-methyl-D-aspartate receptors in hippocampal neurons. J Biol Chem. 2006;281:28079–28089. doi: 10.1074/jbc.M605081200. PubMed DOI

Kelly BL, Ferreira A. Beta-amyloid disrupted synaptic vesicle endocytosis in cultured hippocampal neurons. Neuroscience. 2007;147:60–70. doi: 10.1016/j.neuroscience.2007.03.047. PubMed DOI PMC

Lie PPY, Nixon RA. Lysosome trafficking and signaling in health and neurodegenerative diseases. Neurobiol Dis. 2019;122:94–105. doi: 10.1016/j.nbd.2018.05.015. PubMed DOI PMC

Nixon RA. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease. FASEB J. 2017;31:2729–2743. doi: 10.1096/fj.201700359. PubMed DOI PMC

Woodruff G, Reyna SM, Dunlap M, Van der Kant R, Callender JA, Young JE, Roberts EA, Goldstein LSB. Defective transcytosis of APP and lipoproteins in human iPSC-derived neurons with familial Alzheimer's disease mutations. Cell Rep. 2016;17:759–773. doi: 10.1016/j.celrep.2016.09.034. PubMed DOI PMC

de la Cueva M, Antequera D, Ordonez-Gutierrez L, Wandosell F, Camins A, Carro E, Bartolome F. Amyloid-beta impairs mitochondrial dynamics and autophagy in Alzheimer's disease experimental models. Sci Rep. 2022;12:10092. doi: 10.1038/s41598-022-13683-3. PubMed DOI PMC

Du F, Yu Q, Yan S, Hu G, Lue LF, Walker DG, Wu L, Yan SF, Tieu K, Yan SS. PINK1 signalling rescues amyloid pathology and mitochondrial dysfunction in Alzheimer's disease. Brain. 2017;140:3233–3251. doi: 10.1093/brain/awx258. PubMed DOI PMC

Lopez-Toledo G, Silva-Lucero MD, Herrera-Diaz J, Garcia DE, Arias-Montano JA, Cardenas-Aguayo MD. Patient-derived fibroblasts with presenilin-1 mutations, that model aspects of Alzheimer's disease pathology, constitute a potential object for early diagnosis. Front Aging Neurosci. 2022;14:921573. doi: 10.3389/fnagi.2022.921573. PubMed DOI PMC

Martin-Maestro P, Gargini R, Perry G, Avila J, Garcia-Escudero V. PARK2 enhancement is able to compensate mitophagy alterations found in sporadic Alzheimer's disease. Hum Mol Genet. 2016;25:792–806. doi: 10.1093/hmg/ddv616. PubMed DOI PMC

Roca-Agujetas V, Barbero-Camps E, de Dios C, Podlesniy P, Abadin X, Morales A, Mari M, Trullas R, Colell A. Cholesterol alters mitophagy by impairing optineurin recruitment and lysosomal clearance in Alzheimer's disease. Mol Neurodegener. 2021;16:15. doi: 10.1186/s13024-021-00435-6. PubMed DOI PMC

Roca-Agujetas V, de Dios C, Abadin X, Colell A. Upregulation of brain cholesterol levels inhibits mitophagy in Alzheimer disease. Autophagy. 2021;17:1555–1557. doi: 10.1080/15548627.2021.1920814. PubMed DOI PMC

Bandaru VV, Troncoso J, Wheeler D, Pletnikova O, Wang J, Conant K, Haughey NJ. ApoE4 disrupts sterol and sphingolipid metabolism in Alzheimer's but not normal brain. Neurobiol Aging. 2009;30:591–599. doi: 10.1016/j.neurobiolaging.2007.07.024. PubMed DOI PMC

Cutler RG, Kelly J, Storie K, Pedersen WA, Tammara A, Hatanpaa K, Troncoso JC, Mattson MP. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer's disease. Proc Natl Acad Sci U S A. 2004;101:2070–2075. doi: 10.1073/pnas.0305799101. PubMed DOI PMC

Gamba P, Giannelli S, Staurenghi E, Testa G, Sottero B, Biasi F, Poli G, Leonarduzzi G. The controversial role of 24-S-hydroxycholesterol in Alzheimer's disease. Antioxidants (Basel) 2021;10:740. doi: 10.3390/antiox10050740. PubMed DOI PMC

Gylys KH, Fein JA, Yang F, Miller CA, Cole GM. Increased cholesterol in Abeta-positive nerve terminals from Alzheimer's disease cortex. Neurobiol Aging. 2007;28:8–17. doi: 10.1016/j.neurobiolaging.2005.10.018. PubMed DOI

Kelley AR. Mass spectrometry-based analysis of lipid involvement in Alzheimer's disease pathology-a review. Metabolites. 2022;12:510. doi: 10.3390/metabo12060510. PubMed DOI PMC

Kivipelto M, Helkala EL, Hanninen T, Laakso MP, Hallikainen M, Alhainen K, Soininen H, Tuomilehto J, Nissinen A. Midlife vascular risk factors and late-life mild cognitive impairment: a population-based study. Neurology. 2001;56:1683–1689. doi: 10.1212/WNL.56.12.1683. PubMed DOI

Lazar AN, Bich C, Panchal M, Desbenoit N, Petit VW, Touboul D, Dauphinot L, Marquer C, Laprevote O, Brunelle A, Duyckaerts C. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging reveals cholesterol overload in the cerebral cortex of Alzheimer disease patients. Acta Neuropathol. 2013;125:133–144. doi: 10.1007/s00401-012-1041-1. PubMed DOI

Mori T, Paris D, Town T, Rojiani AM, Sparks DL, Delledonne A, Crawford F, Abdullah LI, Humphrey JA, Dickson DW, Mullan MJ. Cholesterol accumulates in senile plaques of Alzheimer disease patients and in transgenic APP(sw) mice. J Neuropathol Exp Neurol. 2001;60:778–785. doi: 10.1093/jnen/60.8.778. PubMed DOI

Popp J, Meichsner S, Kolsch H, Lewczuk P, Maier W, Kornhuber J, Jessen F, Lutjohann D. Cerebral and extracerebral cholesterol metabolism and CSF markers of Alzheimer's disease. Biochem Pharmacol. 2013;86:37–42. doi: 10.1016/j.bcp.2012.12.007. PubMed DOI

Puglielli L, Konopka G, Pack-Chung E, Ingano LAM, Berezovska O, Hyman BT, Chang TY, Tanzi RE, Kovacs DM. Acyl-coenzyme A: cholesterol acyltransferase modulates the generation of the amyloid beta-peptide. Nat Cell Biol. 2001;3:905–912. doi: 10.1038/ncb1001-905. PubMed DOI

Dai L, Zou L, Meng L, Qiang G, Yan M, Zhang Z. Cholesterol metabolism in neurodegenerative diseases: molecular mechanisms and therapeutic targets. Mol Neurobiol. 2021;58:2183–2201. doi: 10.1007/s12035-020-02232-6. PubMed DOI

Mancini G, Dias C, Lourenco CF, Laranjinha J, de Bem A, Ledo A. A high fat/cholesterol diet recapitulates some Alzheimer's disease-like features in mice: focus on hippocampal mitochondrial dysfunction. J Alzheimers Dis. 2021;82:1619–1633. doi: 10.3233/JAD-210122. PubMed DOI

Rudge JD. A new hypothesis for Alzheimer's disease: the lipid invasion model. J Alzheimers Dis Rep. 2022;6:129–161. doi: 10.3233/ADR-210299. PubMed DOI PMC

Wieckowska-Gacek A, Mietelska-Porowska A, Chutoranski D, Wydrych M, Dlugosz J, Wojda U. Western diet induces impairment of liver-brain axis accelerating neuroinflammation and amyloid pathology in Alzheimer's Disease. Front Aging Neurosci. 2021;13:654509. doi: 10.3389/fnagi.2021.654509. PubMed DOI PMC

An Y, Zhang X, Wang Y, Wang Y, Liu W, Wang T, Qin Z, Xiao R. Longitudinal and nonlinear relations of dietary and Serum cholesterol in midlife with cognitive decline: results from EMCOA study. Mol Neurodegen. 2019;14:51. doi: 10.1186/s13024-019-0353-1. PubMed DOI PMC

Diaz G, Lengele L, Sourdet S, Soriano G, de Souto BP. Nutrients and amyloid beta status in the brain: a narrative review. Ageing Res Rev. 2022;81:101728. doi: 10.1016/j.arr.2022.101728. PubMed DOI

Refolo LM, Pappolla MA, Malester B, LaFrancois J, Bryant-Thomas T, Wang R, Tint GS, Sambamurti K, Duff K. Hypercholesterolemia accelerates the Alzheimer's amyloid pathology in a transgenic mouse model. Neurobiol Dis. 2000;7:321–331. doi: 10.1006/nbdi.2000.0304. PubMed DOI

Solomon A, Kivipelto M, Wolozin B, Zhou JF, Whitmer RA. Midlife serum cholesterol and increased risk of Alzheimer's and vascular dementia three decades later. Dement Geriatr Cogn Disord. 2009;28:75–80. doi: 10.1159/000231980. PubMed DOI PMC

Wu MA, Zhai YY, Liang XY, Chen WC, Lin RY, Ma LL, Huang Y, Zhao D, Liang Y, Zhao W, Fang JS, Fang SH, Chen YB, Wang Q, Li WR. Connecting the dots between hypercholesterolemia and Alzheimer's disease: a potential mechanism based on 27-hydroxycholesterol. Front Neurosci. 2022;16:842814. doi: 10.3389/fnins.2022.842814. PubMed DOI PMC

Yang N, Lin K, Zhang J, Wang JP, Meng T, Zhu J, Yang L, Zhou YQ. Amelioration of cholesterol rich diet-induced impaired cognition in AD transgenic mice by an LXR agonist TO901317 is associated with the activation of the LXR-beta-RXR-alpha-ABCA1 transmembrane transport system and improving the composition of lipid raft. Exp Aging Res. 2023;49:214–225. doi: 10.1080/0361073X.2022.2095605. PubMed DOI

Ding D, Zhou F, Cao Y, Liang X, Wu W, Xiao Z, Zhao Q, Deng W. Cholesterol profiles and incident cognitive decline among older adults: the Shanghai Aging Study. Age Ageing. 2021;50:472–479. doi: 10.1093/ageing/afaa140. PubMed DOI

Howland DS, Trusko SP, Savage MJ, Reaume AG, Lang DM, Hirsch JD, Maeda N, Siman R, Greenberg BD, Scott RW, Flood DG. Modulation of secreted beta-amyloid precursor protein and amyloid beta-peptide in brain by cholesterol. J Biol Chem. 1998;273:16576–16582. doi: 10.1074/jbc.273.26.16576. PubMed DOI

Mielke MM, Zandi PP, Sjogren M, Gustafson D, Ostling S, Steen B, Skoog I. High total cholesterol levels in late life associated with a reduced risk of dementia. Neurology. 2005;64:1689–1695. doi: 10.1212/01.WNL.0000161870.78572.A5. PubMed DOI

Ylilauri MPT, Voutilainen S, Lonnroos E, Mursu J, Virtanen HEK, Koskinen TT, Salonen JT, Tuomainen TP, Virtanen JK. Association of dietary cholesterol and egg intakes with the risk of incident dementia or Alzheimer disease: the Kuopio Ischaemic Heart Disease Risk Factor Study. Am J Clin Nutr. 2017;105:476–484. doi: 10.3945/ajcn.116.146753. PubMed DOI

Guo Y, Li P, Ma X, Huang X, Liu Z, Ren X, Yang Y, Halm-Lutterodt NV, Yuan L. Association of circulating cholesterol level with cognitive function and mild cognitive impairment in the elderly: a community-based population study. Curr Alzheimer Res. 2020;17:556–565. doi: 10.2174/1567205017666200810165758. PubMed DOI

Wang CZ, Najm R, Xu Q, Jeong DE, Walker D, Balestra ME, Yoon SY, Yuan HD, Li G, Miller ZA, Miller BL, Malloy MJ, Huang YD. Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. Nat Med. 2018;24:647–657. doi: 10.1038/s41591-018-0004-z. PubMed DOI PMC

Cordy JM, Hussain I, Dingwall C, Hooper NM, Turner AJ. Exclusively targeting beta-secretase to lipid rafts by GPI-anchor addition up-regulates beta-site processing of the amyloid precursor protein. Proc Natl Acad Sci U S A. 2003;100:11735–11740. doi: 10.1073/pnas.1635130100. PubMed DOI PMC

Fassbender K, Simons M, Bergmann C, Stroick M, Lutjohann D, Keller P, Runz H, Kuhl S, Bertsch T, von Bergmann K, Hennerici M, Beyreuther K, Hartmann T. Simvastatin strongly reduces levels of Alzheimer's disease beta -amyloid peptides Abeta 42 and Abeta 40 in vitro and in vivo. Proc Natl Acad Sci U S A. 2001;98:5856–5861. doi: 10.1073/pnas.081620098. PubMed DOI PMC

Jick H, Zornberg GL, Jick SS, Seshadri S, Drachman DA. Statins and the risk of dementia. Lancet. 2000;356:1627–1631. doi: 10.1016/S0140-6736(00)03155-X. PubMed DOI

Simons M, Keller P, De Strooper B, Beyreuther K, Dotti CG, Simons K. Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons. Proc Natl Acad Sci U S A. 1998;95:6460–6464. doi: 10.1073/pnas.95.11.6460. PubMed DOI PMC

Wolozin B. Cholesterol and the biology of Alzheimer's disease. Neuron. 2004;41:7–10. doi: 10.1016/S0896-6273(03)00840-7. PubMed DOI

Cordle A, Landreth G. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors attenuate beta-amyloid-induced microglial inflammatory responses. J Neurosci. 2005;25:299–307. doi: 10.1523/JNEUROSCI.2544-04.2005. PubMed DOI PMC

Huang W, Li Z, Zhao L, Zhao W. Simvastatin ameliorate memory deficits and inflammation in clinical and mouse model of Alzheimer's disease via modulating the expression of miR-106b. Biomed Pharmacother. 2017;92:46–57. doi: 10.1016/j.biopha.2017.05.060. PubMed DOI

Avdulov NA, Chochina SV, Igbavboa U, Warden CS, Vassiliev AV, Wood WG. Lipid binding to amyloid beta-peptide aggregates: preferential binding of cholesterol as compared with phosphatidylcholine and fatty acids. J Neurochem. 1997;69:1746–1752. doi: 10.1046/j.1471-4159.1997.69041746.x. PubMed DOI

Di Scala C, Yahi N, Lelievre C, Garmy N, Chahinian H, Fantini J. Biochemical identification of a linear cholesterol-binding domain within Alzheimer's beta amyloid peptide. ACS Chem Neurosci. 2013;4:509–517. doi: 10.1021/cn300203a. PubMed DOI PMC

Henry S, Bercu NB, Bobo C, Cullin C, Molinari M, Lecomte S. Interaction of Abeta(1–42) peptide or their variant with model membrane of different composition probed by infrared nanospectroscopy. Nanoscale. 2018;10:936–940. doi: 10.1039/C7NR07489A. PubMed DOI

Mizuno T, Nakata M, Naiki H, Michikawa M, Wang R, Haass C, Yanagisawa K. Cholesterol-dependent generation of a seeding amyloid beta-protein in cell culture. J Biol Chem. 1999;274:15110–15114. doi: 10.1074/jbc.274.21.15110. PubMed DOI

Nicholson AM, Ferreira A. Increased membrane cholesterol might render mature hippocampal neurons more susceptible to beta-amyloid-induced calpain activation and tau toxicity. J Neurosci. 2009;29:4640–4651. doi: 10.1523/JNEUROSCI.0862-09.2009. PubMed DOI PMC

Rudajev V, Novotny J. Cholesterol as a key player in amyloid beta-mediated toxicity in Alzheimer's disease. Front Mol Neurosci. 2022;15:937056. doi: 10.3389/fnmol.2022.937056. PubMed DOI PMC

Yanagisawa K. Cholesterol and amyloid beta fibrillogenesis. Subcell Biochem. 2005;38:179–202. doi: 10.1007/0-387-23226-5_9. PubMed DOI

Lee CY, Tse W, Smith JD, Landreth GE. Apolipoprotein E promotes beta-amyloid trafficking and degradation by modulating microglial cholesterol levels. J Biol Chem. 2012;287:2032–2044. doi: 10.1074/jbc.M111.295451. PubMed DOI PMC

Maulik M, Westaway D, Jhamandas JH, Kar S. Role of cholesterol in APP metabolism and its significance in Alzheimer's disease pathogenesis. Mol Neurobiol. 2013;47:37–63. doi: 10.1007/s12035-012-8337-y. PubMed DOI

Quan G, Xie CL, Dietschy JM, Turley SD. Ontogenesis and regulation of cholesterol metabolism in the central nervous system of the mouse. Dev Brain Res. 2003;146:87–98. doi: 10.1016/j.devbrainres.2003.09.015. PubMed DOI

Berghoff SA, Spieth L, Sun T, Hosang L, Schlaphoff L, Depp C, Duking T, Winchenbach J, Neuber J, Ewers D, Scholz P, van der Meer F, Cantuti-Castelvetri L, Sasmita AO, Meschkat M, Ruhwedel T, Mobius W, Sankowski R, Prinz M, Huitinga I, Sereda MW, Odoardi F, Ischebeck T, Simons M, Stadelmann-Nessler C, Edgar JM, Nave KA, Saher G. Microglia facilitate repair of demyelinated lesions via post-squalene sterol synthesis. Nat Neurosci. 2021;4:47–60. doi: 10.1038/s41593-020-00757-6. PubMed DOI PMC

Allinquant B, Clamagirand C, Potier MC. Role of cholesterol metabolism in the pathogenesis of Alzheimer's disease. Curr Opin Clin Nutr Metab Care. 2014;17:319–323. doi: 10.1097/MCO.0000000000000069. PubMed DOI

Roher AE, Weiss N, Kokjohn TA, Kuo YM, Kalback W, Anthony J, Watson D, Luehrs DC, Sue L, Walker D, Emmerling M, Goux W, Beach T. Increased A beta peptides and reduced cholesterol and myelin proteins characterize white matter degeneration in Alzheimer's disease. Biochemistry. 2002;41:11080–11090. doi: 10.1021/bi026173d. PubMed DOI

Wolozin B. A fluid connection: cholesterol and A beta. Proc Natl Acad Sci U S A. 2001;98:5371–5373. doi: 10.1073/pnas.101123198. PubMed DOI PMC

Dietschy JM, Turley SD. Thematic review series: brain lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J Lipid Res. 2004;45:1375–1397. doi: 10.1194/jlr.R400004-JLR200. PubMed DOI

Dietschy JM. Central nervous system: cholesterol turnover, brain development and neurodegeneration. Biol Chem. 2009;390:287–293. doi: 10.1515/BC.2009.035. PubMed DOI PMC

Saher G. Cholesterol metabolism in aging and age-related disorders. Annu Rev Neurosci. 2023;46:59–78. doi: 10.1146/annurev-neuro-091922-034237. PubMed DOI

Xie CL, Lund EG, Turley SD, Russell DW, Dietschy JM. Quantitation of two pathways for cholesterol excretion from the brain in normal mice and mice with neurodegeneration. J Lipid Res. 2003;44:1780–1789. doi: 10.1194/jlr.M300164-JLR200. PubMed DOI

Nieweg K, Schaller H, Pfrieger FW. Marked differences in cholesterol synthesis between neurons and glial cells from postnatal rats. J Neurochem. 2009;109:125–134. doi: 10.1111/j.1471-4159.2009.05917.x. PubMed DOI

Funfschilling U, Jockusch WJ, Sivakumar N, Mobius W, Corthals K, Li S, Quintes S, Kim Y, Schaap IAT, Rhee JS, Nave KA, Saher G. Critical time window of neuronal cholesterol synthesis during neurite outgrowth. J Neurosci. 2012;32:7632–7645. doi: 10.1523/JNEUROSCI.1352-11.2012. PubMed DOI PMC

Wang H, Kulas JA, Wang C, Holtzman DM, Ferris HA, Hansen SB. Regulation of beta-amyloid production in neurons by cholesterol. Proc Natl Acad Sci U S A. 2021;118:e2102191118. doi: 10.1073/pnas.2102191118. PubMed DOI PMC

Pfrieger FW. Outsourcing in the brain: do neurons depend on cholesterol delivery by astrocytes? BioEssays. 2003;25:72–78. doi: 10.1002/bies.10195. PubMed DOI

Vance JE, Pan DB, Campenot RB, Bussiere M, Vance DE. Evidence that the major membrane-lipids, except cholesterol, are made in axons of cultured rat sympathetic neurons. J Neurochem. 1994;62:329–337. doi: 10.1046/j.1471-4159.1994.62010329.x. PubMed DOI

de Chaves EIP, Rusinol AE, Vance DE, Campenot RB, Vance JE. Role of lipoproteins in the delivery of lipids to axons during axonal regeneration. J Biol Chem. 1997;272:30766–30773. doi: 10.1074/jbc.272.49.30766. PubMed DOI

Hayashi H, Campenot RB, Vance DE, Vance JE. Glial lipoproteins stimulate axon growth of central nervous system neurons in compartmented cultures. J Biol Chem. 2004;279:14009–14015. doi: 10.1074/jbc.M313828200. PubMed DOI

Berghoff SA, Spieth L, Sun T, Hosang L, Depp C, Sasmita AO, Vasileva MH, Scholz P, Zhao Y, Krueger-Burg D, Wichert S, Brown ER, Michail K, Nave KA, Bonn S, Odoardi F, Rossner M, Ischebeck T, Edgar JM, Saher G. Neuronal cholesterol synthesis is essential for repair of chronically demyelinated lesions in mice. Cell Rep. 2021;37:109889. doi: 10.1016/j.celrep.2021.109889. PubMed DOI

Gatta AT, Wong LH, Sere YY, Calderon-Norena DM, Cockcroft S, Menon AK, Levine TP. A new family of StART domain proteins at membrane contact sites has a role in ER-PM sterol transport. Elife. 2015;4:e07253. doi: 10.7554/eLife.07253. PubMed DOI PMC

Staurenghi E, Cerrato V, Gamba P, Testa G, Giannelli S, Leoni V, Caccia C, Buffo A, Noble W, Perez-Nievas BG, Leonarduzzi G. Oxysterols present in Alzheimer's disease brain induce synaptotoxicity by activating astrocytes: A major role for lipocalin-2. Redox Biol. 2021;9:101837. doi: 10.1016/j.redox.2020.101837. PubMed DOI PMC

Chang TY, Yamauchi Y, Hasan MT, Chang C. Cellular cholesterol homeostasis and Alzheimer's disease. J Lipid Res. 2017;58:2239–2254. doi: 10.1194/jlr.R075630. PubMed DOI PMC

Steck TL, Lange Y. Cell cholesterol homeostasis: Mediation by active cholesterol. Trends Cell Biol. 2010;20:680–687. doi: 10.1016/j.tcb.2010.08.007. PubMed DOI PMC

Yamauchi Y, Yokoyama S, Chang TY. ABCA1-dependent sterol release: sterol molecule specificity and potential membrane domain for HDL biogenesis. J Lipid Res. 2016;57:77–88. doi: 10.1194/jlr.M063784. PubMed DOI PMC

Farmer BC, Walsh AE, Kluemper JC, Johnson LA. Lipid droplets in neurodegenerative disorders. Front Neurosci. 2020;14:742. doi: 10.3389/fnins.2020.00742. PubMed DOI PMC

Anderson RG, Jacobson K. A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science. 2002;296:1821–1825. doi: 10.1126/science.1068886. PubMed DOI

Brown RE. Sphingolipid organization in biomembranes: what physical studies of model membranes reveal. J Cell Sci. 1998;111(Pt 1):1–9. doi: 10.1242/jcs.111.1.1. PubMed DOI PMC

Lingwood D, Simons K. Lipid rafts as a membrane-organizing principle. Science. 2010;327:46–50. doi: 10.1126/science.1174621. PubMed DOI

Matousek P, Novotny J, Rudajev V, Svoboda P. Prolonged agonist stimulation does not alter the protein composition of membrane domains in spite of dramatic changes induced in a specific signaling cascade. Cell Biochem Biophys. 2005;42:21–40. doi: 10.1385/CBB:42:1:021. PubMed DOI

Rudajev V, Novotny J, Hejnova L, Milligan G, Svoboda P. Dominant portion of thyrotropin-releasing hormone receptor is excluded from lipid domains. Detergent-resistant and detergent-sensitive pools of TRH receptor and G(q)alpha/G(11)alpha protein. J Biochem. 2005;138:111–125. doi: 10.1093/jb/mvi114. PubMed DOI

Rushworth JV, Hooper NM. Lipid rafts: linking Alzheimer's amyloid-beta production, aggregation, and toxicity at neuronal membranes. Int J Alzheimers Dis. 2010;2011:603052. PubMed PMC

Bissig C, Gruenberg J. Lipid sorting and multivesicular endosome biogenesis. Cold Spring Harb Perspect Biol. 2013;5:a016816. doi: 10.1101/cshperspect.a016816. PubMed DOI PMC

Steck TL, Lange Y. Transverse distribution of plasma membrane bilayer cholesterol: Picking sides. Traffic. 2018;19:750–760. doi: 10.1111/tra.12586. PubMed DOI

Engberg O, Hautala V, Yasuda T, Dehio H, Murata M, Slotte JP, Nyholm TKM. The affinity of cholesterol for different phospholipids affects lateral segregation in bilayers. Biophys J. 2016;111:546–556. doi: 10.1016/j.bpj.2016.06.036. PubMed DOI PMC

Ingolfsson HI, Carpenter TS, Bhatia H, Bremer PT, Marrink SJ, Lightstone FC. Computational lipidomics of the neuronal plasma membrane. Biophys J. 2017;113:2271–2280. doi: 10.1016/j.bpj.2017.10.017. PubMed DOI PMC

Ingolfsson HI, Melo MN, van Eerden FJ, Arnarez C, Lopez CA, Wassenaar TA, Periole X, de Vries AH, Tieleman DP, Marrink SJ. Lipid organization of the plasma membrane. J Am Chem Soc. 2014;136:14554–14559. doi: 10.1021/ja507832e. PubMed DOI

Liu SL, Sheng R, Jung JH, Wang L, Stec E, O'Connor MJ, Song S, Bikkavilli RK, Winn RA, Lee D, Baek K, Ueda K, Levitan I, Kim KP, Cho W. Orthogonal lipid sensors identify transbilayer asymmetry of plasma membrane cholesterol. Nat Chem Biol. 2017;13:268–274. doi: 10.1038/nchembio.2268. PubMed DOI PMC

Lonnfors M, Doux JP, Killian JA, Nyholm TK, Slotte JP. Sterols have higher affinity for sphingomyelin than for phosphatidylcholine bilayers even at equal acyl-chain order. Biophys J. 2011;100:2633–2641. doi: 10.1016/j.bpj.2011.03.066. PubMed DOI PMC

Marquardt D, Geier B, Pabst G. Asymmetric lipid membranes: towards more realistic model systems. Membranes (Basel) 2015;5:180–196. doi: 10.3390/membranes5020180. PubMed DOI PMC

Murate M, Kobayashi T. Revisiting transbilayer distribution of lipids in the plasma membrane. Chem Phys Lipids. 2016;194:58–71. doi: 10.1016/j.chemphyslip.2015.08.009. PubMed DOI

Rivel T, Ramseyer C, Yesylevskyy S. The asymmetry of plasma membranes and their cholesterol content influence the uptake of cisplatin. Sci Rep. 2019;9:5627. doi: 10.1038/s41598-019-41903-w. PubMed DOI PMC

Igbavboa U, Avdulov NA, Schroeder F, Wood WG. Increasing age alters transbilayer fluidity and cholesterol asymmetry in synaptic plasma membranes of mice. J Neurochem. 1996;66:1717–1725. doi: 10.1046/j.1471-4159.1996.66041717.x. PubMed DOI

Mondal M, Mesmin B, Mukherjee S, Maxfield FR. Sterols are mainly in the cytoplasmic leaflet of the plasma membrane and the endocytic recycling compartment in CHO cells. Mol Biol Cell. 2009;20:581–588. doi: 10.1091/mbc.e08-07-0785. PubMed DOI PMC

Schroeder F, Nemecz G, Wood WG, Joiner C, Morrot G, Ayraut-Jarrier M, Devaux PF. Transmembrane distribution of sterol in the human erythrocyte. Biochim Biophys Acta. 1991;1066:183–192. doi: 10.1016/0005-2736(91)90185-B. PubMed DOI

Wood WG, Schroeder F, Hogy L, Rao AM, Nemecz G. Asymmetric distribution of a fluorescent sterol in synaptic plasma-membranes—effects of chronic ethanol-consumption. bioch biophys acta. 1990;1025:243–246. doi: 10.1016/0005-2736(90)90103-U. PubMed DOI

Kirsch C, Eckert GP, Mueller WE. Statin effects on cholesterol micro-domains in brain plasma membranes. Biochem Pharmacol. 2003;65:843–856. doi: 10.1016/S0006-2952(02)01654-4. PubMed DOI

Burns MP, Igbavboa U, Wang L, Wood WG, Duff K. Cholesterol distribution, not total levels, correlate with altered amyloid precursor protein processing in statin-treated mice. Neuromol Med. 2006;8:319–328. doi: 10.1385/NMM:8:3:319. PubMed DOI

Wood WG, Igbavboa U, Muller WE, Eckert GP. Cholesterol asymmetry in synaptic plasma membranes. J Neurochem. 2011;116:684–689. doi: 10.1111/j.1471-4159.2010.07017.x. PubMed DOI PMC

Giang H, Schick M. How cholesterol could be drawn to the cytoplasmic leaf of the plasma membrane by phosphatidylethanolamine. Biophys J. 2014;107:2337–2344. doi: 10.1016/j.bpj.2014.10.012. PubMed DOI PMC

Courtney KC, Pezeshkian W, Raghupathy R, Zhang C, Darbyson A, Ipsen JH, Ford DA, Khandelia H, Presley JF, Zha X. C24 sphingolipids govern the transbilayer asymmetry of cholesterol and lateral organization of model and live-cell plasma membranes. Cell Rep. 2018;24:1037–1049. doi: 10.1016/j.celrep.2018.06.104. PubMed DOI

Solanko LM, Sullivan DP, Sere YY, Szomek M, Lunding A, Solanko KA, Pizovic A, Stanchev LD, Pomorski TG, Menon AK, Wustner D. Ergosterol is mainly located in the cytoplasmic leaflet of the yeast plasma membrane. Traffic. 2018;19:198–214. doi: 10.1111/tra.12545. PubMed DOI

Maekawa M, Fairn GD. Complementary probes reveal that phosphatidylserine is required for the proper transbilayer distribution of cholesterol. J Cell Sci. 2015;128:1422–1433. doi: 10.1242/jcs.164715. PubMed DOI

Leoni V, Shafaati M, Salomon A, Kivipelto M, Bjorkhem I, Wahlund LO. Are the CSF levels of 24S-hydroxycholesterol a sensitive biomarker for mild cognitive impairment? Neurosci Lett. 2006;397:83–87. doi: 10.1016/j.neulet.2005.11.046. PubMed DOI

Czuba E, Steliga A, Lietzau G, Kowianski P. Cholesterol as a modifying agent of the neurovascular unit structure and function under physiological and pathological conditions. Metab Brain Dis. 2017;32:935–948. doi: 10.1007/s11011-017-0015-3. PubMed DOI PMC

Russell DW, Halford RW, Ramirez DM, Shah R, Kotti T. Cholesterol 24-hydroxylase: an enzy of cholesterol turnover in the brain. Annu Rev Biochem. 2009;78:1017–1040. doi: 10.1146/annurev.biochem.78.072407.103859. PubMed DOI PMC

Wang YQ, Muneton S, Sjovall J, Jovanovic JN, Griffiths WJ. The effect of 24S-hydroxycholesterol on cholesterol homeostasis in neurons: quantitative changes to the cortical neuron proteome. J Proteome Res. 2008;7:1606–1614. doi: 10.1021/pr7006076. PubMed DOI PMC

Heverin M, Bogdanovic N, Lutjohann D, Bayer T, Pikuleva I, Bretillon L, Diczfalusy U, Winblad B, Bjorkhem I. Changes in the levels of cerebral and extracerebral sterols in the brain of patients with Alzheimer's disease. J Lipid Res. 2004;45:186–193. doi: 10.1194/jlr.M300320-JLR200. PubMed DOI

Kao YC, Ho PC, Tu YK, Jou IM, Tsai KJ. Lipids and Alzheimer's disease. Int J Mol Sci. 2020;21:1505. doi: 10.3390/ijms21041505. PubMed DOI PMC

Loera-Valencia R, Vazquez-Juarez E, Munoz A, Gerenu G, Gomez-Galan M, Lindskog M, DeFelipe J, Cedazo-Minguez A, Merino-Serrais P. High levels of 27-hydroxycholesterol results in synaptic plasticity alterations in the hippocampus. Sci Rep. 2021;11:3736. doi: 10.1038/s41598-021-83008-3. PubMed DOI PMC

Reitz C. Dyslipidemia and the risk of Alzheimer’s disease. Curr Atheroscler Rep. 2013;15:307. doi: 10.1007/s11883-012-0307-3. PubMed DOI PMC

Wilson KA, Wang L, O'Mara ML. Site of cholesterol oxidation impacts its localization and domain formation in the neuronal plasma membrane. ACS Chem Neurosci. 2021;12:3873–3884. doi: 10.1021/acschemneuro.1c00395. PubMed DOI

Phan HTT, Hata T, Morita M, Yoda T, Hamada T, Vestergaard MC, Takagi M. The effect of oxysterols on the interaction of Alzheimer's amyloid beta with model membranes. Biochim Biophys Acta - Biomembr. 2013;1828:2487–2495. doi: 10.1016/j.bbamem.2013.06.021. PubMed DOI

Silva T, Teixeira J, Remiao F, Borges F. Alzheimer's disease, cholesterol, and statins: the junctions of important metabolic pathways. Angew Chem Int Ed Engl. 2013;52:1110–1121. doi: 10.1002/anie.201204964. PubMed DOI

Sandebring-Matton A, Goikolea J, Bjorkhem I, Paternain L, Kemppainen N, Laatikainen T, Ngandu T, Rinne J, Soininen H, Cedazo-Minguez A, Solomon A, Kivipelto M. 27-Hydroxycholesterol, cognition, and brain imaging markers in the FINGER randomized controlled trial. Alzheimers Res Ther. 2021;13:56. doi: 10.1186/s13195-021-00790-y. PubMed DOI PMC

Pincon A, Thomas MH, Huguet M, Allouche A, Colin JC, Georges A, Derrien A, Lanhers MC, Malaplate-Armand C, Oster T, Corbier C, Pillot T, Olivier JL, Yen FT. Increased susceptibility of dyslipidemic LSR+/− mice to amyloid stress is associated with changes in cortical cholesterol levels. J Alzheimers Dis. 2015;45:195–204. doi: 10.3233/JAD-142127. PubMed DOI

Brown J, 3rd, Theisler C, Silberman S, Magnuson D, Gottardi-Littell N, Lee JM, Yager D, Crowley J, Sambamurti K, Rahman MM, Reiss AB, Eckman CB, Wolozin B. Differential expression of cholesterol hydroxylases in Alzheimer's disease. J Biol Chem. 2004;279:34674–34681. doi: 10.1074/jbc.M402324200. PubMed DOI

Hudry E, Van Dam D, Kulik W, De Deyn PP, Stet FS, Ahouansou O, Benraiss A, Delacourte A, Bougneres P, Aubourg P, Cartier N. Adeno-associated virus gene therapy with cholesterol 24-hydroxylase reduces the amyloid pathology before or after the onset of amyloid plaques in mouse models of Alzheimer's disease. Mol Ther. 2010;18:44–53. doi: 10.1038/mt.2009.175. PubMed DOI PMC

Dolejsi E, Liraz O, Rudajev V, Zimcik P, Dolezal V, Michaelson DM. Apolipoprotein E4 reduces evoked hippocampal acetylcholine release in adult mice. J Neurochem. 2016;136:503–509. doi: 10.1111/jnc.13417. PubMed DOI PMC

Fernandez CG, Hamby ME, McReynolds ML, Ray WJ. The role of APOE4 in disrupting the homeostatic functions of astrocytes and microglia in aging and Alzheimer’s disease. Front Aging Neurosci. 2019;11:14. doi: 10.3389/fnagi.2019.00014. PubMed DOI PMC

Nunes VS, Cazita PM, Catanozi S, Nakandakare ER, Quintao ECR. Decreased content, rate of synthesis and export of cholesterol in the brain of apoE knockout mice. J Bioenerg Biomembr. 2018;50:283–287. doi: 10.1007/s10863-018-9757-9. PubMed DOI

Oikawa N, Hatsuta H, Murayama S, Suzuki A, Yanagisawa K. Influence of APOE genotype and the presence of Alzheimer's pathology on synaptic membrane lipids of human brains. J Neurosci Res. 2014;92:641–650. doi: 10.1002/jnr.23341. PubMed DOI

de Leeuw SM, Kirschner AWT, Lindner K, Rust R, Budny V, Wolski WE, Gavin AC, Nitsch RM, Tackenberg C. APOE2, E3, and E4 differentially modulate cellular homeostasis, cholesterol metabolism, and inflammatory response in isogenic iPSC-derived astrocytes. Stem Cell Rep. 2022;17:110–126. doi: 10.1016/j.stemcr.2021.11.007. PubMed DOI PMC

de Oliveira FF, Chen ES, Smith MC, Bertolucci PHF. Longitudinal lipid profile variations and clinical change in Alzheimer's disease dementia. Neurosci Lett. 2017;646:36–42. doi: 10.1016/j.neulet.2017.03.003. PubMed DOI

Hayashi H, Igbavboa U, Hamanaka H, Kobayashi M, Fujita SC, Wood WG, Yanagisawa K. Cholesterol is increased in the exofacial leaflet of synaptic plasma membranes of human apolipoprotein E4 knock-in mice. NeuroReport. 2002;13:383–386. doi: 10.1097/00001756-200203250-00004. PubMed DOI

Lanfranco MF, Ng CA, Rebeck GW. ApoE lipidation as a therapeutic target in Alzheimer's disease. Int J Mol Sci. 2020;21:6336. doi: 10.3390/ijms21176336. PubMed DOI PMC

Lee SI, Jeong W, Lim H, Cho S, Lee H, Jang Y, Cho J, Bae S, Lin YT, Tsai LH, Moon DW, Seo J. APOE4-carrying human astrocytes oversupply cholesterol to promote neuronal lipid raft expansion and Abeta generation. Stem Cell Rep. 2021;16:2128–2137. doi: 10.1016/j.stemcr.2021.07.017. PubMed DOI PMC

Leoni V, Solomon A, Kivipelto M. Links between ApoE, brain cholesterol metabolism, tau and amyloid beta-peptide in patients with cognitive impairment. Biochem Soc Trans. 2010;38:1021–1025. doi: 10.1042/BST0381021. PubMed DOI

Schilling S, Tzourio C, Soumare A, Kaffashian S, Dartigues JF, Ancelin ML, Samieri C, Dufouil C, Debette S. Differential associations of plasma lipids with incident dementia and dementia subtypes in the 3C Study: a longitudinal, population-based prospective cohort study. PLoS Med. 2017;14:e1002265. doi: 10.1371/journal.pmed.1002265. PubMed DOI PMC

Wood WG, Li L, Muller WE, Eckert GP. Cholesterol as a causative factor in Alzheimer's disease: a debatable hypothesis. J Neurochem. 2014;129:559–572. doi: 10.1111/jnc.12637. PubMed DOI PMC

Lin YT, Seo J, Gao F, Feldman HM, Wen HL, Penney J, Cam HP, Gjoneska E, Raja WK, Cheng J, Rueda R, Kritskiy O, Abdurrob F, Peng Z, Milo B, Yu CJ, Elmsaouri S, Dey D, Ko T, Yankner BA, Tsai LH. APOE4 causes widespread molecular and cellular alterations associated with Alzheimer's disease phenotypes in human iPSC-derived brain cell types. Neuron. 2018;98:1141–1154. doi: 10.1016/j.neuron.2018.05.008. PubMed DOI PMC

Liu CC, Zhao N, Fu Y, Wang N, Linares C, Tsai CW, Bu G. ApoE4 accelerates early seeding of amyloid pathology. Neuron. 2017;96:1024–1032. doi: 10.1016/j.neuron.2017.11.013. PubMed DOI PMC

Vance JE, Hayashi H. Formation and function of apolipoprotein E-containing lipoproteins in the nervous system. Biochim Biophys Acta - Mol Cell Biol Lipids. 2010;1801:806–818. doi: 10.1016/j.bbalip.2010.02.007. PubMed DOI

Youmans KL, Tai LM, Nwabuisi-Heath E, Jungbauer L, Kanekiyo T, Gan M, Kim J, Eimer WA, Estus S, Rebeck GW, Weeber EJ, Bu GJ, Yu CJ, LaDu MJ. APOE4-specific changes in A beta accumulation in a new transgenic mouse model of Alzheimer disease. J Biol Chem. 2012;287:41774–41786. doi: 10.1074/jbc.M112.407957. PubMed DOI PMC

Kang DE, Pietrzik CU, Baum L, Chevallier N, Merriam DE, Kounnas MZ, Wagner SL, Troncoso JC, Kawas CH, Katzman R, Koo EH. Modulation of amyloid beta-protein clearance and Alzheimer's disease susceptibility by the LDL receptor-related protein pathway. J Clin Invest. 2000;106:1159–1166. doi: 10.1172/JCI11013. PubMed DOI PMC

Prasad H, Rao R. The Na+/H+ exchanger NHE6 modulates endosomal pH to control processing of amyloid precursor protein in a cell culture model of Alzheimer disease. J Biol Chem. 2015;290:5311–5327. doi: 10.1074/jbc.M114.602219. PubMed DOI PMC

Prasad H, Rao R. Amyloid clearance defect in ApoE4 astrocytes is reversed by epigenetic correction of endosomal pH. Proc Natl Acad Sci U S A. 2018;115:E6640–E6649. doi: 10.1073/pnas.1801612115. PubMed DOI PMC

Behl T, Kaur I, Sehgal A, Kumar A, Uddin MS, Bungau S. The interplay of ABC transporters in Abeta translocation and cholesterol metabolism: implicating their roles in Alzheimer's disease. Mol Neurobiol. 2021;58:1564–1582. doi: 10.1007/s12035-020-02211-x. PubMed DOI

Tansley GH, Burgess BL, Bryan MT, Su YA, Hirsch-Reimshagen V, Pearce J, Chan JY, Wilkinson A, Evans J, Naus KE, McIsaac S, Bromley K, Song WH, Yang HC, Wang N, DeMattos RB, Wellington CL. The cholesterol transporter ABCG1 modulates the subcellular distribution and proteolytic processing of beta-amyloid precursor protein. J Lipid Res. 2007;48:1022–1034. doi: 10.1194/jlr.M600542-JLR200. PubMed DOI

Ikonen E. Cellular cholesterol trafficking and compartmentalization. Nat Rev Mol Cell Biol. 2008;9:125–138. doi: 10.1038/nrm2336. PubMed DOI

Petrov AM, Kasimov MR, Zefirov AL. Brain cholesterol metabolism and its defects: linkage to neurodegenerative diseases and synaptic dysfunction. Acta Naturae. 2016;8:58–73. doi: 10.32607/20758251-2016-8-1-58-73. PubMed DOI PMC

Gamba P, Testa G, Gargiulo S, Staurenghi E, Poli G, Leonarduzzi G. Oxidized cholesterol as the driving force behind the development of Alzheimer's disease. Front Aging Neurosci. 2015;7:119. doi: 10.3389/fnagi.2015.00119. PubMed DOI PMC

Fan J, Zhao RQ, Parro C, Zhao W, Chou HY, Robert J, Deeb TZ, Raynoschek C, Barichievy S, Engkvist O, Maresca M, Hicks R, Meuller J, Moss SJ, Brandon NJ, Wood MW, Kulic I, Wellington CL. Small molecule inducers of ABCA1 and apoE that act through indirect activation of the LXR pathway. J Lipid Res. 2018;59:830–842. doi: 10.1194/jlr.M081851. PubMed DOI PMC

Azizidoost S, Babaahmadi-Rezaei H, Nazeri Z, Cheraghzadeh M, Kheirollah A. Amyloid beta increases ABCA1 and HMGCR protein expression, and cholesterol synthesis and accumulation in mice neurons and astrocytes. Biochim Biophys Acta Mol Cell Biol Lipids. 2022;1867:159069. doi: 10.1016/j.bbalip.2021.159069. PubMed DOI

Rawat V, Wang SW, Sima J, Bar R, Liraz O, Gundimeda U, Parekh T, Chan J, Johansson JO, Tang CR, Chui HC, Harrington MG, Michaelson DM, Yassine HN. ApoE4 alters ABCA1 membrane trafficking in astrocytes. J Neurosci. 2019;39:9611–9622. doi: 10.1523/JNEUROSCI.1400-19.2019. PubMed DOI PMC

Ledesma MD, Brugger B, Bunning C, Wieland FT, Dotti CG. Maturation of the axonal plasma membrane requires upregulation of sphingomyelin synthesis and formation of protein-lipid complexes. EMBO J. 1999;18:1761–1771. doi: 10.1093/emboj/18.7.1761. PubMed DOI PMC

Malchiodi-Albedi F, Contrusciere V, Raggi C, Fecchi K, Rainaldi G, Paradisi S, Matteucci A, Santini MT, Sargiacomo M, Frank C, Gaudiano MC, Diociaiuti M. Lipid raft disruption protects mature neurons against amyloid oligomer toxicity. Biochim Biophys Acta. 2010;1802:406–415. doi: 10.1016/j.bbadis.2010.01.007. PubMed DOI

Sanchez-Melgar A, Izquierdo-Ramirez PJ, Grinan-Ferre C, Pallas M, Martin M, Albasanz JL. Neuroprotective effects of resveratrol by modifying cholesterol metabolism and Abeta processing in SAMP8 mice. Int J Mol Sci. 2022;23:7580. doi: 10.3390/ijms23147580. PubMed DOI PMC

Xiong HQ, Callaghan D, Jones A, Walker DG, Lue LF, Beach TG, Sue LI, Woulfe J, Xu HX, Stanimirovic DB, Zhang WD. Cholesterol retention in Alzheimer's brain is responsible for high beta- and gamma-secretase activities and A beta production. Neurobiol Dis. 2008;29:422–437. doi: 10.1016/j.nbd.2007.10.005. PubMed DOI PMC

Sparks DL. Coronary artery disease, hypertension, ApoE, and cholesterol: a link to Alzheimer's disease? Annu N Y Acad Aci. 1997;826:128–146. doi: 10.1111/j.1749-6632.1997.tb48466.x. PubMed DOI

Barbero-Camps E, Roca-Agujetas V, Bartolessis I, de Dios C, Fernandez-Checa JC, Mari M, Morales A, Hartmann T, Colell A. Cholesterol impairs autophagy-mediated clearance of amyloid beta while promoting its secretion. Autophagy. 2018;14:1129–1154. doi: 10.1080/15548627.2018.1438807. PubMed DOI PMC

Fernandez A, Llacuna L, Fernandez-Checa JC, Colell A. Mitochondrial cholesterol loading exacerbates amyloid beta peptide-induced inflammation and neurotoxicity. J Neurosci. 2009;29:6394–6405. doi: 10.1523/JNEUROSCI.4909-08.2009. PubMed DOI PMC

Ledesma MD, Abad-Rodriguez J, Galvan C, Biondi E, Navarro P, Delacourte A, Dingwall C, Dotti CG. Raft disorganization leads to reduced plasmin activity in Alzheimer's disease brains. EMBO Rep. 2003;4:1190–1196. doi: 10.1038/sj.embor.7400021. PubMed DOI PMC

Mason RP, Shoemaker WJ, Shajenko L, Chambers TE, Herbette LG. Evidence for changes in the Alzheimer's disease brain cortical membrane structure mediated by cholesterol. Neurobiol Aging. 1992;3:413–419. doi: 10.1016/0197-4580(92)90116-F. PubMed DOI

Michal P, Rudajev V, El-Fakahany EE, Dolezal V. Membrane cholesterol content influences binding properties of muscarinic M2 receptors and differentially impacts activation of second messenger pathways. Eur J Pharmacol. 2009;606:50–60. doi: 10.1016/j.ejphar.2009.01.028. PubMed DOI PMC

Randakova A, Dolejsi E, Rudajev V, Zimcik P, Dolezal V, El-Fakahany EE, Jakubik J. Role of membrane cholesterol in differential sensitivity of muscarinic receptor subtypes to persistently bound xanomeline. Neuropharmacology. 2018;133:129–144. doi: 10.1016/j.neuropharm.2018.01.027. PubMed DOI

Arbor SC, LaFontaine M, Cumbay M. Amyloid-beta Alzheimer targets—protein processing, lipid rafts, and amyloid-beta pores. Yale J Biol Med. 2016;89:5–21. PubMed PMC

Fraering PC, Ye W, Strub JM, Dolios G, LaVoie MJ, Ostaszewski BL, van Dorsselaer A, Wang R, Selkoe DJ, Wolfe MS. Purification and characterization of the human gamma-secretase complex. Biochemistry. 2004;43:9774–9789. doi: 10.1021/bi0494976. PubMed DOI

Chen GF, Xu TH, Yan Y, Zhou YR, Jiang Y, Melcher K, Xu HE. Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol Sin. 2017;38:1205–1235. doi: 10.1038/aps.2017.28. PubMed DOI PMC

Chow VW, Mattson MP, Wong PC, Gleichmann M. An overview of APP processing enzymes and products. Neuromolecular Med. 2010;12:1–12. doi: 10.1007/s12017-009-8104-z. PubMed DOI PMC

Kienlen-Campard P, Miolet S, Tasiaux B, Octave JN. Intracellular amyloid-beta 1–42, but not extracellular soluble amyloid-beta peptides, induces neuronal apoptosis. J Biol Chem. 2002;277:15666–15670. doi: 10.1074/jbc.M200887200. PubMed DOI

Qi-Takahara Y, Morishima-Kawashima M, Tanimura Y, Dolios G, Hirotani N, Horikoshi Y, Kametani F, Maeda M, Saido TC, Wang R, Ihara Y. Longer forms of amyloid beta protein: Implications for the mechanism of intramembrane cleavage by gamma-secretase. J Neurosci. 2005;25:436–445. doi: 10.1523/JNEUROSCI.1575-04.2005. PubMed DOI PMC

Takami M, Nagashima Y, Sano Y, Ishihara S, Morishima-Kawashima M, Funamoto S, Ihara Y. Gamma-secretase: successive tripeptide and tetrapeptide release from the transmembrane domain of beta-carboxyl terminal fragment. J Neurosci. 2009;9:13042–13052. doi: 10.1523/JNEUROSCI.2362-09.2009. PubMed DOI PMC

Bucciantini M, Rigacci S, Stefani M. Amyloid aggregation: role of biological membranes and the aggregate-membrane system. J Phys Chem Lett. 2014;5:517–527. doi: 10.1021/jz4024354. PubMed DOI

Cecchi C, Stefani M. The amyloid-cell membrane system. The interplay between the biophysical features of oligomers/fibrils and cell membrane defines amyloid toxicity. Biophys Chem. 2013;182:30–43. doi: 10.1016/j.bpc.2013.06.003. PubMed DOI

Evangelisti E, Cascella R, Becatti M, Marrazza G, Dobson CM, Chiti F, Stefani M, Cecchi C. Binding affinity of amyloid oligomers to cellular membranes is a generic indicator of cellular dysfunction in protein misfolding diseases. Sci Rep. 2016;6:32721. doi: 10.1038/srep32721. PubMed DOI PMC

Evangelisti E, Zampagni M, Cascella R, Becatti M, Fiorillo C, Caselli A, Bagnoli S, Nacmias B, Cecchi C. Plasma membrane injury depends on bilayer lipid composition in Alzheimer's disease. J Alzheimers Dis. 2014;41:289–300. doi: 10.3233/JAD-131406. PubMed DOI

Fabelo N, Martin V, Marin R, Moreno D, Ferrer I, Diaz M. Altered lipid composition in cortical lipid rafts occurs at early stages of sporadic Alzheimer's disease and facilitates APP/BACE1 interactions. Neurobiol Aging. 2014;35:1801–1812. doi: 10.1016/j.neurobiolaging.2014.02.005. PubMed DOI

Tonnies E, Trushina E. Oxidative Stress, Synaptic Dysfunction, and Alzheimer's Disease. J Alzheimers Dis. 2017;57:1105–1121. doi: 10.3233/JAD-161088. PubMed DOI PMC

Williams TL, Day IJ, Serpell LC. The effect of Alzheimer's A beta aggregation state on the permeation of biomimetic lipid vesicles. Langmuir. 2010;26:17260–17268. doi: 10.1021/la101581g. PubMed DOI

Yagi-Utsumi M, Kato K. Conformational variability of amyloid-beta and the morphological diversity of its aggregates. Molecules. 2022;27:4787. doi: 10.3390/molecules27154787. PubMed DOI PMC

Amaro M, Sachl R, Aydogan G, Mikhalyov II, Vacha R, Hof M. GM1 ganglioside inhibits beta-amyloid oligomerization induced by sphingomyelin. Angew Chem Int Ed Engl. 2016;55:9411–9415. doi: 10.1002/anie.201603178. PubMed DOI PMC

Matsubara T, Nishihara M, Yasumori H, Nakai M, Yanagisawa K, Sato T. Size and shape of amyloid fibrils induced by ganglioside nanoclusters: role of sialyl oligosaccharide in fibril formation. Langmuir. 2017;33:13874–13881. doi: 10.1021/acs.langmuir.7b02091. PubMed DOI

Matsuzaki K. How do membranes initiate Alzheimer's Disease? Formation of toxic amyloid fibrils by the amyloid beta-protein on ganglioside clusters. Acc Chem Res. 2014;47:2397–2404. doi: 10.1021/ar500127z. PubMed DOI

Rudajev V, Novotny J. The role of lipid environment in ganglioside GM1-induced amyloid beta aggregation. Membranes. 2020;10:226. doi: 10.3390/membranes10090226. PubMed DOI PMC

Aydin D, Weyer SW, Muller UC. Functions of the APP gene family in the nervous system: insights from mouse models. Exp Brain Res. 2012;217:423–434. doi: 10.1007/s00221-011-2861-2. PubMed DOI

Dawkins E, Small DH. Insights into the physiological function of the beta-amyloid precursor protein: beyond Alzheimer's disease. J Neurochem. 2014;129:756–769. doi: 10.1111/jnc.12675. PubMed DOI PMC

Stahl R, Schilling S, Soba P, Rupp C, Hartmann T, Wagner K, Merdes G, Eggert S, Kins S. Shedding of APP limits its synaptogenic activity and cell adhesion properties. Front Cell Neurosci. 2014;8:410. doi: 10.3389/fncel.2014.00410. PubMed DOI PMC

Coburger I, Dahms SO, Roeser D, Guhrs KH, Hortschansky P, Than ME. Analysis of the overall structure of the multi-domain amyloid precursor protein (APP) PLoS ONE. 2013;8:e81926. doi: 10.1371/journal.pone.0081926. PubMed DOI PMC

Lee S, Xue Y, Hu J, Wang Y, Liu X, Demeler B, Ha Y. The E2 domains of APP and APLP1 share a conserved mode of dimerization. Biochemistry. 2011;50:5453–5464. doi: 10.1021/bi101846x. PubMed DOI PMC

Pfundstein G, Nikonenko AG, Sytnyk V. Amyloid precursor protein (APP) and amyloid beta (A beta) interact with cell adhesion molecules: implications in Alzheimer's disease and normal physiology. Front Cell Dev Biol. 2022;10:969547. doi: 10.3389/fcell.2022.969547. PubMed DOI PMC

Wang YC, Ha Y. The X-ray structure of an antiparaliel dimer of the human amyloid precursor protein E2 domain. Mol Cell. 2004;15:343–353. doi: 10.1016/j.molcel.2004.06.037. PubMed DOI

Xue Y, Lee S, Ha Y. Crystal structure of amyloid precursor-like protein 1 and heparin complex suggests a dual role of heparin in E2 dimerization. Proc Natl Acad Sci U S A. 2011;108:16229–16234. doi: 10.1073/pnas.1103407108. PubMed DOI PMC

Beel AJ, Mobley CK, Kim HJ, Tian F, Hadziselimovic A, Jap B, Prestegard JH, Sanders CR. Structural studies of the transmembrane C-terminal domain of the amyloid precursor protein (APP): does APP function as a cholesterol sensor? Biochemistry. 2008;47:9428–9446. doi: 10.1021/bi800993c. PubMed DOI PMC

Beel AJ, Sakakura M, Barrett PJ, Sanders CR. Direct binding of cholesterol to the amyloid precursor protein: an important interaction in lipid-Alzheimer's disease relationships? Biochim Biophys Acta. 2010;1801:975–982. doi: 10.1016/j.bbalip.2010.03.008. PubMed DOI PMC

Nierzwicki L, Czub J. Specific binding of cholesterol to the amyloid precursor protein: structure of the complex and driving forces characterized in molecular detail. J Phys Chem Lett. 2015;6:784–790. doi: 10.1021/acs.jpclett.5b00197. PubMed DOI

Pantelopulos GA, Straub JE, Thirumalai D, Sugita Y. Structure of APP-C99(1–99) and implications for role of extra-membrane domains in function and oligomerization. Biochim Biophys Acta - Biomembr. 2018;1860:1698–1708. doi: 10.1016/j.bbamem.2018.04.002. PubMed DOI PMC

Dominguez L, Foster L, Meredith SC, Straub JE, Thirumalai D. Structural heterogeneity in transmembrane amyloid precursor protein homodimer is a consequence of environmental selection. J Am Chem Soc. 2014;136:9619–9626. doi: 10.1021/ja503150x. PubMed DOI PMC

Dominguez L, Foster L, Straub JE, Thirumalai D. Impact of membrane lipid composition on the structure and stability of the transmembrane domain of amyloid precursor protein. Proc Natl Acad Sci U S A. 2016;113:E5281–5287. doi: 10.1073/pnas.1606482113. PubMed DOI PMC

Dominguez L, Meredith SC, Straub JE, Thirumalai D. Transmembrane fragment structures of amyloid precursor protein depend on membrane surface curvature. J Am Chem Soc. 2014;136:854–857. doi: 10.1021/ja410958j. PubMed DOI PMC

Gotz A, Scharnagl C. Dissecting conformational changes in APP's transmembrane domain linked to epsilon-efficiency in familial Alzheimer's disease. PLoS ONE. 2018;13:e0200077. doi: 10.1371/journal.pone.0200077. PubMed DOI PMC

Itkin A, Salnikov ES, Aisenbrey C, Raya J, Glattard E, Raussens V, Ruysschaert JM, Bechinger B. Structural characterization of the amyloid precursor protein transmembrane domain and its gamma-cleavage site. ACS Omega. 2017;2:6525–6534. doi: 10.1021/acsomega.7b00619. PubMed DOI PMC

Pester O, Barrett PJ, Hornburg D, Hornburg P, Probstle R, Widmaier S, Kutzner C, Durrbaum M, Kapurniotu A, Sanders CR, Scharnagl C, Langosch D. The backbone dynamics of the amyloid precursor protein transmembrane helix provides a rationale for the sequential cleavage mechanism of gamma-secretase. J Am Chem Soc. 2013;35:1317–1329. doi: 10.1021/ja3112093. PubMed DOI PMC

Osenkowski P, Ye W, Wang R, Wolfe MS, Selkoe DJ. Direct and potent regulation of gamma-secretase by its lipid microenvironment. J Biol Chem. 2008;283:22529–22540. doi: 10.1074/jbc.M801925200. PubMed DOI PMC

Winkler E, Kamp F, Scheuring J, Ebke A, Fukumori A, Steiner H. Generation of Alzheimer disease-associated amyloid beta(42/43) peptide by gamma-secretase can be inhibited directly by modulation of membrane thickness. J Biol Chem. 2012;287:21326–21334. doi: 10.1074/jbc.M112.356659. PubMed DOI PMC

Hitschler L, Lang T. The transmembrane domain of the amyloid precursor protein is required for antiamyloidogenic processing by alpha-secretase ADAM10. J Biol Chem. 2022;298:101911. doi: 10.1016/j.jbc.2022.101911. PubMed DOI PMC

Nunan J, Small DH. Regulation of APP cleavage by alpha-, beta- and gamma-secretases. FEBS Lett. 2000;483:6–10. doi: 10.1016/S0014-5793(00)02076-7. PubMed DOI

Bolduc DM, Montagna DR, Seghers MC, Wolfe MS, Selkoe DJ. The amyloid-beta forming tripeptide cleavage mechanism of gamma-secretase. Elife. 2016;5:e17578. doi: 10.7554/eLife.17578. PubMed DOI PMC

Jung JI, Ran Y, Cruz PE, Rosario AM, Ladd TB, Kukar TL, Koo EH, Felsenstein KM, Golde TE. Complex relationships between substrate sequence and sensitivity to alterations in gamma-secretase processivity induced by gamma-secretase modulators. Biochemistry. 2014;53:1947–1957. doi: 10.1021/bi401521t. PubMed DOI PMC

Matsumura N, Takami M, Okochi M, Wada-Kakuda S, Fujiwara H, Tagami S, Funamoto S, Ihara Y, Morishima-Kawashima M. gamma-Secretase associated with lipid rafts: multiple interactive pathways in the stepwise processing of beta-carboxyl-terminal fragment. J Biol Chem. 2014;289:5109–5121. doi: 10.1074/jbc.M113.510131. PubMed DOI PMC

Ahmed RR, Holler CJ, Webb RL, Li F, Beckett TL, Murphy MP. BACE1 and BACE2 enzymatic activities in Alzheimer's disease. J Neurochem. 2010;112:1045–1053. doi: 10.1111/j.1471-4159.2009.06528.x. PubMed DOI PMC

Antonino M, Marmo P, Freites CL, Quassollo GE, Sanchez MF, Lorenzo A, Bignante EA. Abeta assemblies promote amyloidogenic processing of APP and intracellular accumulation of Abeta42 through Go/Gbetagamma signaling. Front Cell Dev Biol. 2022;10:852738. doi: 10.3389/fcell.2022.852738. PubMed DOI PMC

Aow J, Huang TR, Thinakaran G, Koo EH. Enhanced cleavage of APP by co-expressed Bace1 alters the distribution of APP and its fragments in neuronal and non-neuronal cells. Mol Neurobiol. 2022;59:3073–3090. doi: 10.1007/s12035-022-02733-6. PubMed DOI

Haass C. Take five–BACE and the gamma-secretase quartet conduct Alzheimer's amyloid beta-peptide generation. EMBO J. 2004;23:483–488. doi: 10.1038/sj.emboj.7600061. PubMed DOI PMC

Haass C, Kaether C, Thinakaran G, Sisodia S. Trafficking and proteolytic processing of APP. Cold Spring Harb Perspect Med. 2012;2:a006270. doi: 10.1101/cshperspect.a006270. PubMed DOI PMC

Huse JT, Pijak DS, Leslie GJ, Lee VM, Doms RW. Maturation and endosomal targeting of beta-site amyloid precursor protein-cleaving enzyme. The Alzheimer's disease beta-secretase. J Biol Chem. 2000;275:33729–33737. doi: 10.1074/jbc.M004175200. PubMed DOI

Kalvodova L, Kahya N, Schwille P, Ehehalt R, Verkade P, Drechsel D, Simons K. Lipids as modulators of proteolytic activity of BACE: involvement of cholesterol, glycosphingolipids, and anionic phospholipids in vitro. J Biol Chem. 2005;280:36815–36823. doi: 10.1074/jbc.M504484200. PubMed DOI

Park H, Hundley FV, Yu Q, Overmyer KA, Brademan DR, Serrano L, Paulo JA, Paoli JC, Swarup S, Coon JJ, Gygi SP, Harper JW. Spatial snapshots of amyloid precursor protein intramembrane processing via early endosome proteomics. Nat Commun. 2022;13:6112. doi: 10.1038/s41467-022-33881-x. PubMed DOI PMC

Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S, Amarante P, Loeloff R, Luo Y, Fisher S, Fuller L, Edenson S, Lile J, Jarosinski MA, Biere AL, Curran E, Burgess T, Louis JC, Collins F, Treanor J, Rogers G, Citron M. beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science. 1999;286:735–741. doi: 10.1126/science.286.5440.735. PubMed DOI

Riddell DR, Christie G, Hussain I, Dingwall C. Compartmentalization of beta-secretase (Asp2) into low-buoyant density, noncaveolar lipid rafts. Curr Biol. 2001;11:1288–1293. doi: 10.1016/S0960-9822(01)00394-3. PubMed DOI

Ehehalt R, Keller P, Haass C, Thiele C, Simons K. Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J Cell Biol. 2003;160:113–123. doi: 10.1083/jcb.200207113. PubMed DOI PMC

Fourriere L, Gleeson PA. Amyloid beta production along the neuronal secretory pathway: dangerous liaisons in the Golgi? Traffic. 2021;22:319–327. doi: 10.1111/tra.12808. PubMed DOI

Audagnotto M, Lorkowski AK, Dal Peraro M. Recruitment of the amyloid precursor protein by gamma-secretase at the synaptic plasma membrane. Biochem Biophys Res Commun. 2018;498:334–341. doi: 10.1016/j.bbrc.2017.10.164. PubMed DOI

Vetrivel KS, Cheng HP, Lin W, Sakurai T, Li T, Nukina N, Wong PC, Xu HX, Thinakaran G. Association of gamma-secretase with lipid rafts in post-golgi and endosome membranes. J Biol Chem. 2004;279:44945–44954. doi: 10.1074/jbc.M407986200. PubMed DOI PMC

Runz H, Rietdorf J, Tomic I, de Bernard M, Beyreuther K, Pepperkok R, Hartmann T. Inhibition of intracellular cholesterol transport alters presenilin localization and amyloid precursor protein processing in neuronal cells. J Neurosci. 2002;22:1679–1689. doi: 10.1523/JNEUROSCI.22-05-01679.2002. PubMed DOI PMC

Maesako M, Houser MCQ, Turchyna Y, Wolfe MS, Berezovska O. Presenilin/gamma-secretase activity is located in acidic compartments of live neurons. J Neurosci. 2022;42:145–154. doi: 10.1523/JNEUROSCI.1698-21.2021. PubMed DOI PMC

McKendell AK, Houser MCQ, Mitchell SPC, Wolfe MS, Berezovska O, Maesako M. In-depth characterization of endo-lysosomal Abeta in intact neurons. Biosensors (Basel) 2022;12:663. doi: 10.3390/bios12080663. PubMed DOI PMC

Sannerud R, Esselens C, Ejsmont P, Mattera R, Rochin L, Tharkeshwar AK, De Baets G, De Wever V, Habets R, Baert V, Vermeire W, Michiels C, Groot AJ, Wouters R, Dillen K, Vints K, Baatsen P, Munck S, Derua R, Waelkens E, Basi GS, Mercken M, Vooijs M, Bollen M, Schymkowitz J, Rousseau F, Bonifacino JS, Van Niel G, De Strooper B, Annaert W. Restricted location of PSEN2/gamma-secretase determines substrate specificity and generates an intracellular A beta pool. Cell. 2016;166:193–208. doi: 10.1016/j.cell.2016.05.020. PubMed DOI PMC

Ren Z, Schenk D, Basi GS, Shapiro IP. Amyloid beta-protein precursor juxtamembrane domain regulates specificity of gamma-secretase-dependent cleavages. J Biol Chem. 2007;282:35350–35360. doi: 10.1074/jbc.M702739200. PubMed DOI

Lu X, Huang J. A thermodynamic investigation of amyloid precursor protein processing by human gamma-secretase. Commun Biol. 2022;5:837. doi: 10.1038/s42003-022-03818-7. PubMed DOI PMC

Sato T, Tang TC, Reubins G, Fei JZ, Fujimoto T, Kienlen-Campard P, Constantinescu SN, Octave JN, Aimoto S, Smith SO. A helix-to-coil transition at the epsilon-cut site in the transmembrane dimer of the amyloid precursor protein is required for proteolysis. Proc Natl Acad Sci U S A. 2009;106:1421–1426. doi: 10.1073/pnas.0812261106. PubMed DOI PMC

Jung JI, Premraj S, Cruz PE, Ladd TB, Kwak Y, Koo EH, Felsenstein KM, Golde TE, Ran Y. Independent relationship between amyloid precursor protein (APP) dimerization and gamma-secretase processivity. PLoS ONE. 2014;9:e111553. doi: 10.1371/journal.pone.0111553. PubMed DOI PMC

Orzel U, Jakowiecki J, Mlynarczyk K, Filipek S. The role of cholesterol in amyloidogenic substrate binding to the gamma-secretase complex. Biomolecules. 2021;11:935. doi: 10.3390/biom11070935. PubMed DOI PMC

Ousson S, Saric A, Baguet A, Losberger C, Genoud S, Vilbois F, Permanne B, Hussain I, Beher D. Substrate determinants in the C99 juxtamembrane domains differentially affect secretase cleavage specificity and modulator pharmacology. J Neurochem. 2013;125:610–619. doi: 10.1111/jnc.12129. PubMed DOI

Kukar TL, Ladd TB, Robertson P, Pintchovski SA, Moore B, Bann MA, Ren Z, Jansen-West K, Malphrus K, Eggert S, Maruyama H, Cottrell BA, Das P, Basi GS, Koo EH, Golde TE. Lysine 624 of the amyloid precursor protein (APP) is a critical determinant of amyloid beta peptide length: support for a sequential model of gamma-secretase intramembrane proteolysis and regulation by the amyloid beta precursor protein (APP) juxtamembrane region. J Biol Chem. 2011;286:39804–39812. doi: 10.1074/jbc.M111.274696. PubMed DOI PMC

Perez RG, Soriano S, Hayes JD, Ostaszewski B, Xia WM, Selkoe DJ, Chen XH, Stokin GB, Koo EH. Mutagenesis identifies new signals for beta-amyloid precursor protein endocytosis, turnover, and the generation of secreted fragments, including A beta 42. J Biol Chem. 1999;274:18851–18856. doi: 10.1074/jbc.274.27.18851. PubMed DOI

Schneider A, Rajendran L, Honsho M, Gralle M, Donnert G, Wouters F, Hell SW, Simons M. Flotillin-dependent clustering of the amyloid precursor protein regulates its endocytosis and amyloidogenic processing in neurons. J Neurosci. 2008;28:2874–2882. doi: 10.1523/JNEUROSCI.5345-07.2008. PubMed DOI PMC

Eggert S, Gonzalez AC, Thomas C, Schilling S, Schwarz SM, Tischer C, Adam V, Strecker P, Schmidt V, Willnow TE, Hermey G, Pietrzik CU, Koo EH, Kins S. Dimerization leads to changes in APP (amyloid precursor protein) trafficking mediated by LRP1 and SorLA. Cell Mol Life Sci. 2018;75:301–322. doi: 10.1007/s00018-017-2625-7. PubMed DOI PMC

Januario YC, Eden J, de Oliveira LS, De Pace R, Tavares LA, da Silva-Januario ME, Apolloni VB, Wilby EL, Altmeyer R, Burgos PV, Correa SAL, Gershlick DC, daSilva LLP. Clathrin adaptor AP-1-mediated Golgi export of amyloid precursor protein is crucial for the production of neurotoxic amyloid fragments. J Biol Chem. 2022;298:102172. doi: 10.1016/j.jbc.2022.102172. PubMed DOI PMC

Kaden D, Munter LM, Joshi M, Treiber C, Weise C, Bethge T, Voigt P, Schaefer M, Beyermann M, Reif B, Multhaup G. Homophilic interactions of the amyloid precursor protein (APP) ectodomain are regulated by the loop region and affect beta-secretase cleavage of APP. J Biol Chem. 2008;283:7271–7279. doi: 10.1074/jbc.M708046200. PubMed DOI

Nadezhdin KD, Bocharova OV, Bocharov EV, Arseniev AS. Dimeric structure of transmembrane domain of amyloid precursor protein in micellar environment. FEBS Lett. 2012;586:1687–1692. doi: 10.1016/j.febslet.2012.04.062. PubMed DOI

Richter L, Munter LM, Ness J, Hildebrand PW, Dasari M, Unterreitmeier S, Bulic B, Beyermann M, Gust R, Reif B, Weggen S, Langosch D, Multhaup G. Amyloid beta 42 peptide (A beta 42)-lowering compounds directly bind to A beta and interfere with amyloid precursor protein (APP) transmembrane dimerization. Proc Natl Acad Sci U S A. 2010;107:14597–14602. doi: 10.1073/pnas.1003026107. PubMed DOI PMC

So PP, Khodr CE, Chen CD, Abraham CR. Comparable dimerization found in wildtype and familial Alzheimer's disease amyloid precursor protein mutants. Am J Neurodegener Dis. 2013;2:15–28. PubMed PMC

Song YL, Hustedt EJ, Brandon S, Sanders CR. Competition between homodimerization and cholesterol binding to the C99 domain of the amyloid precursor protein. Biochemistry. 2013;52:5051–5064. doi: 10.1021/bi400735x. PubMed DOI PMC

Yan Y, Xu TH, Harikumar KG, Miller LJ, Melcher K, Xu HE. Dimerization of the transmembrane domain of amyloid precursor protein is determined by residues around the gamma - secretase cleavage sites. J Biol Chem. 2017;292:15826–15837. doi: 10.1074/jbc.M117.789669. PubMed DOI PMC

Hoefgen S, Coburger I, Roeser D, Schaub Y, Dahms SO, Than ME. Heparin induced dimerization of APP is primarily mediated by E1 and regulated by its acidic domain. J Struct Biol. 2014;187:30–37. doi: 10.1016/j.jsb.2014.05.006. PubMed DOI

Kienlen-Campard P, Tasiaux B, Van Hees J, Li M, Huysseune S, Sato T, Fei JZ, Aimoto S, Courtoy PJ, Smith SO, Constantinescu SN, Octave JN. Amyloidogenic processing but not amyloid precursor protein (APP) intracellular C-terminal domain production requires a precisely oriented APP dimer assembled by transmembrane GXXXG motifs. J Biol Chem. 2008;283:7733–7744. doi: 10.1074/jbc.M707142200. PubMed DOI PMC

Gralle M, Botelho MG, Wouters FS. Neuroprotective secreted amyloid precursor protein acts by disrupting amyloid precursor protein dimers. J Biol Chem. 2009;284:15016–15025. doi: 10.1074/jbc.M808755200. PubMed DOI PMC

Gralle M, Oliveira CL, Guerreiro LH, McKinstry WJ, Galatis D, Masters CL, Cappai R, Parker MW, Ramos CH, Torriani I, Ferreira ST. Solution conformation and heparin-induced dimerization of the full-length extracellular domain of the human amyloid precursor protein. J Mol Biol. 2006;357:493–508. doi: 10.1016/j.jmb.2005.12.053. PubMed DOI

Dahms SO, Hoefgen S, Roeser D, Schlott B, Guhrs KH, Than ME. Structure and biochemical analysis of the heparin-induced E1 dimer of the amyloid precursor protein. Proc Natl Acad Sci U S A. 2010;107:5381–5386. doi: 10.1073/pnas.0911326107. PubMed DOI PMC

Herr UM, Strecker P, Storck SE, Thomas C, Rabiej V, Junker A, Schilling S, Schmidt N, Dowds CM, Eggert S, Pietrzik CU, Kins S. LRP1 modulates APP intraneuronal transport and processing in its monomeric and dimeric state. Front Mol Neurosci. 2017;10:118. doi: 10.3389/fnmol.2017.00118. PubMed DOI PMC

Decock M, El Haylani L, Stanga S, Dewachter I, Octave JN, Smith SO, Constantinescu SN, Kienlen-Campard P. Analysis by a highly sensitive split luciferase assay of the regions involved in APP dimerization and its impact on processing. FEBS Open Bio. 2015;5:763–773. doi: 10.1016/j.fob.2015.09.002. PubMed DOI PMC

Asada-Utsugi M, Uemura K, Noda Y, Kuzuya A, Maesako M, Ando K, Kubota M, Watanabe K, Takahashi M, Kihara T, Shimohama S, Takahashi R, Berezovska O, Kinoshita A. N-cadherin enhances APP dimerization at the extracellular domain and modulates A beta production. J Neurochem. 2011;119:354–363. doi: 10.1111/j.1471-4159.2011.07364.x. PubMed DOI PMC

Libeu CA, Descamps O, Zhang Q, John V, Bredesen DE. Altering APP proteolysis: increasing sAPPalpha production by targeting dimerization of the APP ectodomain. PLoS ONE. 2012;7:e40027. doi: 10.1371/journal.pone.0040027. PubMed DOI PMC

Scheuermann S, Hambsch B, Hesse L, Stumm J, Schmidt C, Beher D, Bayer TA, Beyreuther K, Multhaup G. Homodimerization of amyloid precursor protein and its implication in the amyloidogenic pathway of Alzheimer's disease. J Biol Chem. 2001;276:33923–33929. doi: 10.1074/jbc.M105410200. PubMed DOI

So PP, Zeldich E, Seyb KI, Huang MM, Concannon JB, King GD, Chen CD, Cuny GD, Glicksman MA, Abraham CR. Lowering of amyloid beta peptide production with a small molecule inhibitor of amyloid-beta precursor protein dimerization. Am J Neurodegener Dis. 2012;1:75–87. PubMed PMC

Noda Y, Asada M, Kubota M, Maesako M, Watanabe K, Uemura M, Kihara T, Shimohama S, Takahashi R, Kinoshita A, Uemura K. Copper enhances APP dimerization and promotes A beta production. Neurosci Lett. 2013;547:10–15. doi: 10.1016/j.neulet.2013.04.057. PubMed DOI

Andersen OM, Reiche J, Schmidt V, Gotthardt M, Spoelgen R, Behlke J, von Arnim CA, Breiderhoff T, Jansen P, Wu X, Bales KR, Cappai R, Masters CL, Gliemann J, Mufson EJ, Hyman BT, Paul SM, Nykjaer A, Willnow TE. Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein. Proc Natl Acad Sci U S A. 2005;102:13461–13466. doi: 10.1073/pnas.0503689102. PubMed DOI PMC

Schmidt V, Baum K, Lao A, Rateitschak K, Schmitz Y, Teichmann A, Wiesner B, Petersen CM, Nykjaer A, Wolf J, Wolkenhauer O, Willnow TE. Quantitative modelling of amyloidogenic processing and its influence by SORLA in Alzheimer's disease. EMBO J. 2012;31:187–200. doi: 10.1038/emboj.2011.352. PubMed DOI PMC

Choy RW, Cheng Z, Schekman R. Amyloid precursor protein (APP) traffics from the cell surface via endosomes for amyloid beta (Abeta) production in the trans-Golgi network. Proc Natl Acad Sci U S A. 2012;109:E2077–2082. doi: 10.1073/pnas.1208635109. PubMed DOI PMC

Munter LM, Voigt P, Harmeier A, Kaden D, Gottschalk KE, Weise C, Pipkorn R, Schaefer M, Langosch D, Multhaup G. GxxxG motifs within the amyloid precursor protein transmembrane sequence are critical for the etiology of A beta 42. EMBO J. 2007;26:1702–1712. doi: 10.1038/sj.emboj.7601616. PubMed DOI PMC

Decock M, Stanga S, Octave JN, Dewachter I, Smith SO, Constantinescu SN, Kienlen-Campard P. Glycines from the APP GXXXG/GXXXA transmembrane motifs promote formation of pathogenic Abeta oligomers in cells. Front Aging Neurosci. 2016;8:107. doi: 10.3389/fnagi.2016.00107. PubMed DOI PMC

Miyashita N, Straub JE, Thirumalai D, Sugita Y. Transmembrane structures of amyloid precursor protein dimer predicted by replica-exchange molecular dynamics simulations. J Am Chem Soc. 2009;131:3438–3439. doi: 10.1021/ja809227c. PubMed DOI PMC

Perrin F, Papadopoulos N, Suelves N, Opsomer R, Vadukul DM, Vrancx C, Smith SO, Vertommen D, Kienlen-Campard P, Constantinescu SN. Dimeric transmembrane orientations of APP/C99 regulate gamma-secretase processing line impacting signaling and oligomerization. Iscience. 2020;23:101887. doi: 10.1016/j.isci.2020.101887. PubMed DOI PMC

Khalifa NB, Van Hees J, Tasiaux B, Huysseune S, Smith SO, Constantinescu SN, Octave JN, Kienlen-Campard P. What is the role of amyloid precursor protein dimerization? Cell Adh Migr. 2010;4:268–272. doi: 10.4161/cam.4.2.11476. PubMed DOI PMC

Pace CN, Scholtz JM. A helix propensity scale based on experimental studies of peptides and proteins. Biophys J. 1998;75:422–427. doi: 10.1016/S0006-3495(98)77529-0. PubMed DOI PMC

Higashide H, Ishihara S, Nobuhara M, Ihara Y, Funamoto S. Alanine substitutions in the GXXXG motif alter C99 cleavage by gamma-secretase but not its dimerization. J Neurochem. 2017;140:955–962. doi: 10.1111/jnc.13942. PubMed DOI

Gorman PM, Kim S, Guo M, Melnyk RA, McLaurin J, Fraser PE, Bowie JU, Chakrabartty A. Dimerization of the transmembrane domain of amyloid precursor proteins and familial Alzheimer's disease mutants. BMC Neurosci. 2008;9:17. doi: 10.1186/1471-2202-9-17. PubMed DOI PMC

Eggert S, Midthune B, Cottrell B, Koo EH. Induced dimerization of the amyloid precursor protein leads to decreased amyloid-beta protein production. J Biol Chem. 2009;284:28943–28952. doi: 10.1074/jbc.M109.038646. PubMed DOI PMC

Di Paolo G, Kim TW. Linking lipids to Alzheimer's disease: cholesterol and beyond. Nat Rev Neurosci. 2011;12:284–296. doi: 10.1038/nrn3012. PubMed DOI PMC

Parkin ET, Turner AJ, Hooper NM. Amyloid precursor protein, although partially detergent-insoluble in mouse cerebral cortex, behaves as an atypical lipid raft protein. Biochem J. 1999;344:23–30. doi: 10.1042/bj3440023. PubMed DOI PMC

Bhattacharyya R, Barren C, Kovacs DM. Palmitoylation of amyloid precursor protein regulates amyloidogenic processing in lipid rafts. J Neurosci. 2013;33:11169–11183. doi: 10.1523/JNEUROSCI.4704-12.2013. PubMed DOI PMC

Besshoh S, Chen S, Brown IR, Gurd JW. Developmental changes in the association of NMDA receptors with lipid rafts. J Neurosci Res. 2007;85:1876–1883. doi: 10.1002/jnr.21336. PubMed DOI

de Dios C, Bartolessis I, Roca-Agujetas V, Barbero-Camps E, Mari M, Morales A, Colell A. Oxidative inactivation of amyloid beta-degrading proteases by cholesterol-enhanced mitochondrial stress. Redox Biol. 2019;26:101283. doi: 10.1016/j.redox.2019.101283. PubMed DOI PMC

Diaz M, Fabelo N, Ferrer I, Marin R. "Lipid raft aging" in the human frontal cortex during nonpathological aging: gender influences and potential implications in Alzheimer's disease. Neurobiol Aging. 2018;67:42–52. doi: 10.1016/j.neurobiolaging.2018.02.022. PubMed DOI

Diaz M, Fabelo N, Martin V, Ferrer I, Gomez T, Marin R. Biophysical alterations in lipid rafts from human cerebral cortex associate with increased BACE1/AbetaPP interaction in early stages of Alzheimer's disease. J Alzheimers Dis. 2015;43:1185–1198. doi: 10.3233/JAD-141146. PubMed DOI

Marquet-de Rouge P, Clamagirand C, Facchinetti P, Rose C, Sargueil F, Guihenneuc-Jouyaux C, Cynober L, Moinard C, Allinquant B. Citrulline diet supplementation improves specific age-related raft changes in wild-type rodent hippocampus. Age (Dordr) 2013;35:1589–1606. PubMed PMC

Martin V, Fabelo N, Santpere G, Puig B, Marin R, Ferrer I, Diaz M. Lipid alterations in lipid rafts from Alzheimer's disease human brain cortex. J Alzheimers Dis. 2010;19:489–502. doi: 10.3233/JAD-2010-1242. PubMed DOI

Molander-Melin M, Blennow K, Bogdanovic N, Dellheden B, Mansson JE, Fredman P. Structural membrane alterations in Alzheimer brains found to be associated with regional disease development; increased density of gangliosides GM1 and GM2 and loss of cholesterol in detergent-resistant membrane domains. J Neurochem. 2005;92:171–182. doi: 10.1111/j.1471-4159.2004.02849.x. PubMed DOI

Lin FC, Chuang YS, Hsieh HM, Lee TC, Chiu KF, Liu CK, Wu MT. Early statin use and the progression of Alzheimer disease: a total population-based case-control study. Medicine (Baltimore) 2015;94:e2143. doi: 10.1097/MD.0000000000002143. PubMed DOI PMC

Xuan K, Zhao TM, Qu GB, Liu HX, Chen X, Sun YH. The efficacy of statins in the treatment of Alzheimer's disease: a meta-analysis of randomized controlled trial. Neurol Sci. 2020;41:1391–1404. doi: 10.1007/s10072-020-04243-6. PubMed DOI

Cossec JC, Simon A, Marquer C, Moldrich RX, Leterrier C, Rossier J, Duyckaerts C, Lenkei Z, Potier MC. Clathrin-dependent APP endocytosis and Abeta secretion are highly sensitive to the level of plasma membrane cholesterol. Biochim Biophys Acta. 2010;801:846–852. doi: 10.1016/j.bbalip.2010.05.010. PubMed DOI

Hanbouch L, Schaack B, Kasri A, Fontaine G, Gkanatsiou E, Brinkmalm G, Camporesi E, Portelius E, Blennow K, Mourier G, Gilles N, Millan MJ, Marquer C, Zetterberg H, Boussicault L, Potier MC. Specific mutations in the cholesterol-binding site of APP alter its processing and favor the production of shorter. Less Toxic Abeta Peptides Mol Neurobiol. 2022;59:7056–7073. doi: 10.1007/s12035-022-03025-9. PubMed DOI PMC

Kosicek M, Malnar M, Goate A, Hecimovic S. Cholesterol accumulation in Niemann Pick type C (NPC) model cells causes a shift in APP localization to lipid rafts. Biochem Biophys Res. 2010;393:404–409. doi: 10.1016/j.bbrc.2010.02.007. PubMed DOI PMC

Marquer C, Laine J, Dauphinot L, Hanbouch L, Lemercier-Neuillet C, Pierrot N, Bossers K, Le M, Corlier F, Benstaali C, Saudou F, Thinakaran G, Cartier N, Octave JN, Duyckaerts C, Potier MC. Increasing membrane cholesterol of neurons in culture recapitulates Alzheimer's disease early phenotypes. Mol Neurodegener. 2014;9:60. doi: 10.1186/1750-1326-9-60. PubMed DOI PMC

Djelti F, Braudeau J, Hudry E, Dhenain M, Varin J, Bieche I, Marquer C, Chali F, Ayciriex S, Auzeil N, Alves S, Langui D, Potier MC, Laprevote O, Vidaud M, Duyckaerts C, Miles R, Aubourg P, Cartier N. CYP46A1 inhibition, brain cholesterol accumulation and neurodegeneration pave the way for Alzheimer's disease. Brain. 2015;138:2383–2398. doi: 10.1093/brain/awv166. PubMed DOI

Kim Y, Kim C, Jang HY, Mook-Jung I. Inhibition of cholesterol biosynthesis reduces gamma-secretase activity and amyloid-beta generation. J Alzheimers Dis. 2016;51:1057–1068. doi: 10.3233/JAD-150982. PubMed DOI

Cho YY, Kwon OH, Chung S. Preferred endocytosis of amyloid precursor protein from cholesterol-enriched lipid raft microdomains. Molecules. 2020;25:5490. doi: 10.3390/molecules25235490. PubMed DOI PMC

Cho YY, Kwon OH, Park MK, Kim TW, Chung S. Elevated cellular cholesterol in familial Alzheimer's presenilin 1 mutation is associated with lipid raft localization of beta-amyloid precursor protein. PLoS ONE. 2019;14:e0210535. doi: 10.1371/journal.pone.0210535. PubMed DOI PMC

Takasugi N, Komai M, Kaneshiro N, Ikeda A, Kamikubo Y, Uehara T. The pursuit of the "Inside" of the amyloid hypothesis-Is C99 a promising therapeutic target for Alzheimer's disease? Cells. 2023;12:454. doi: 10.3390/cells12030454. PubMed DOI PMC

Grimm MO, Grimm HS, Tomic I, Beyreuther K, Hartmann T, Bergmann C. Independent inhibition of Alzheimer disease beta- and gamma-secretase cleavage by lowered cholesterol levels. J Biol Chem. 2008;283:11302–11311. doi: 10.1074/jbc.M801520200. PubMed DOI

Sathya M, Moorthi P, Premkumar P, Kandasamy M, Jayachandran KS, Anusuyadevi M. Resveratrol intervenes cholesterol- and isoprenoid-mediated amyloidogenic processing of AbetaPP in familial Alzheimer's disease. J Alzheimers Dis. 2017;60:S3–S23. doi: 10.3233/JAD-161034. PubMed DOI

Wahrle S, Das P, Nyborg AC, McLendon C, Shoji M, Kawarabayashi T, Younkin LH, Younkin SG, Golde TE. Cholesterol-dependent gamma-secretase activity in buoyant cholesterol-rich membrane microdomains. Neurobiol Dis. 2002;9:11–23. doi: 10.1006/nbdi.2001.0470. PubMed DOI

Nierzwicki L, Olewniczak M, Chodnicki P, Czub J. Role of cholesterol in substrate recognition by gamma-secretase. Sci Rep. 2021;11:15213. doi: 10.1038/s41598-021-94618-2. PubMed DOI PMC

Epand RM. Proteins and cholesterol-rich domains. Biochim Biophys Acta. 2008;1778:1576–1582. doi: 10.1016/j.bbamem.2008.03.016. PubMed DOI

Chew H, Solomon VA, Fonteh AN. Involvement of lipids in Alzheimer's disease pathology and potential therapies. Front Physiol. 2020;11:598. doi: 10.3389/fphys.2020.00598. PubMed DOI PMC

Kojro E, Gimpl G, Lammich S, Marz W, Fahrenholz F. Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the alpha -secretase ADAM 10. Proc Natl Acad Sci U S A. 2001;98:5815–5820. doi: 10.1073/pnas.081612998. PubMed DOI PMC

Bodovitz S, Klein WL. Cholesterol modulates alpha-secretase cleavage of amyloid precursor protein. J Biol Chem. 1996;271:4436–4440. doi: 10.1074/jbc.271.8.4436. PubMed DOI

Park IH, Hwang EM, Hong HS, Boo JH, Oh SS, Lee J, Jung MW, Bang OY, Kim SU, Mook-Jung IH. Lovastatin enhances A beta production and senile plaque deposition in female Tg2576 mice. Neurobiol Aging. 2003;24:637–643. doi: 10.1016/S0197-4580(02)00155-0. PubMed DOI

Area-Gomez E, de Groof AJ, Boldogh I, Bird TD, Gibson GE, Koehler CM, Yu WH, Duff KE, Yaffe MP, Pon LA, Schon EA. Presenilins are enriched in endoplasmic reticulum membranes associated with mitochondria. Am J Pathol. 2009;175:1810–1816. doi: 10.2353/ajpath.2009.090219. PubMed DOI PMC

Fabiani C, Antollini SS. Alzheimer's disease as a membrane disorder: spatial cross-talk among beta-amyloid peptides, nicotinic acetylcholine receptors and lipid rafts. Front Cell Neurosci. 2019;13:309. doi: 10.3389/fncel.2019.00309. PubMed DOI PMC

Chung J, Phukan G, Vergote D, Mohamed A, Maulik M, Stahn M, Andrew RJ, Thinakaran G, Posse de Chaves E, Kar S. Endosomal-lysosomal cholesterol sequestration by U18666A differentially regulates amyloid precursor protein (APP) metabolism in normal and APP-overexpressing cells. Mol Cell Biol. 2018;38:e00529–e1517. doi: 10.1128/MCB.00529-17. PubMed DOI PMC

DelBove CE, Strothman CE, Lazarenko RM, Huang H, Sanders CR, Zhang Q. Reciprocal modulation between amyloid precursor protein and synaptic membrane cholesterol revealed by live cell imaging. Neurobiol Dis. 2019;127:449–461. doi: 10.1016/j.nbd.2019.03.009. PubMed DOI PMC

Panahi A, Bandara A, Pantelopulos GA, Dominguez L, Straub JE. Specific binding of cholesterol to C99 domain of amyloid precursor protein depends critically on charge state of protein. J Phys Chem Lett. 2016;7:3535–3541. doi: 10.1021/acs.jpclett.6b01624. PubMed DOI PMC

von Arnim CAF, von Einem B, Weber P, Wagner M, Schwanzar D, Spoelgen R, Strauss WLS, Schneckenburger H. Impact of cholesterol level upon APP and BACE proximity and APP cleavage. BiocheM Biophys Res Commun. 2008;370:207–212. doi: 10.1016/j.bbrc.2008.03.047. PubMed DOI

Agrawal RR, Montesinos J, Larrea D, Area-Gomez E, Pera M. The silence of the fats: A MAM's story about Alzheimer. Neurobiol Dis. 2020;145:105062. doi: 10.1016/j.nbd.2020.105062. PubMed DOI

Barrett PJ, Song Y, Van Horn WD, Hustedt EJ, Schafer JM, Hadziselimovic A, Beel AJ, Sanders CR. The amyloid precursor protein has a flexible transmembrane domain and binds cholesterol. Science. 2012;336:1168–1171. doi: 10.1126/science.1219988. PubMed DOI PMC

Marquer C, Devauges V, Cossec JC, Liot G, Lecart S, Saudou F, Duyckaerts C, Leveque-Fort S, Potier MC. Local cholesterol increase triggers amyloid precursor protein-Bace1 clustering in lipid rafts and rapid endocytosis. FASEB J. 2011;25:1295–1305. doi: 10.1096/fj.10-168633. PubMed DOI

Pantelopulos GA, Panahi A, Straub JE. Impact of cholesterol concentration and lipid phase on structure and fluctuation of amyloid precursor protein. J Phys Chem B. 2020;124:10173–10185. doi: 10.1021/acs.jpcb.0c07615. PubMed DOI PMC

Sun FD, Chen L, Wei P, Chai MY, Ding XF, Xu LD, Luo SZ. Dimerization and structural stability of amyloid precursor proteins affected by the membrane microenvironments. J Chem Inf Mod. 2017;57:1375–1387. doi: 10.1021/acs.jcim.7b00196. PubMed DOI

Abad-Rodriguez J, Ledesma MD, Craessaerts K, Perga S, Medina M, Delacourte A, Dingwall C, De Strooper B, Dotti CG. Neuronal membrane cholesterol loss enhances amyloid peptide generation. J Cell Biol. 2004;167:953–960. doi: 10.1083/jcb.200404149. PubMed DOI PMC

Stange AD, Hsu JPC, Ravnkilde LK, Berglund N, Schiott B. Effect of cholesterol on the dimerization of C99-A molecular modeling perspective. Biointerphases. 2021;16:031002. doi: 10.1116/6.0000985. PubMed DOI

Guardia-Laguarta C, Coma M, Pera M, Clarimon J, Sereno L, Agullo JM, Molina-Porcel L, Gallardo E, Deng A, Berezovska O, Hyman BT, Blesa R, Gomez-Isla T, Lleo A. Mild cholesterol depletion reduces amyloid-beta production by impairing APP trafficking to the cell surface. J Neurochem. 2009;110:220–230. doi: 10.1111/j.1471-4159.2009.06126.x. PubMed DOI PMC

Sun Y, Yao J, Kim TW, Tall AR. Expression of liver X receptor target genes decreases cellular amyloid beta peptide secretion. JBiol Chem. 2003;278:27688–27694. doi: 10.1074/jbc.M300760200. PubMed DOI

Kaether C, Haass C. A lipid boundary separates APP and secretases and limits amyloid beta-peptide generation. J Cell Biol. 2004;167:809–812. doi: 10.1083/jcb.200410090. PubMed DOI PMC

Li CD, Xu Q, Gu RX, Qu J, Wei DQ. The dynamic binding of cholesterol to the multiple sites of C99: as revealed by coarse-grained and all-atom simulations. Phys Chem Chem Phys. 2017;19:3845–3856. doi: 10.1039/C6CP07873G. PubMed DOI

Langness VF, van der Kant R, Das U, Wang L, Chaves RDS, Goldstein LSB. Cholesterol-lowering drugs reduce APP processing to Abeta by inducing APP dimerization. Mol Biol Cell. 2021;2:247–259. doi: 10.1091/mbc.E20-05-0345. PubMed DOI PMC

Feringa FM, van der Kant R. Cholesterol and Alzheimer's disease; from risk genes to pathological effects. Front Aging Neurosci. 2021;13:690372. doi: 10.3389/fnagi.2021.690372. PubMed DOI PMC

Hutter-Paier B, Huttunen HJ, Puglielli L, Eckman CB, Kim DY, Hofmeister A, Moir RD, Domnitz SB, Frosch MP, Windisch M, Kovacs DM. The ACAT inhibitor CP-113,818 markedly reduces amyloid pathology in a mouse model of Alzheimer's disease. Neuron. 2004;44:227–238. doi: 10.1016/j.neuron.2004.08.043. PubMed DOI

Huttunen HJ, Havas D, Peach C, Barren C, Duller S, Xia W, Frosch MP, Hutter-Paier B, Windisch M, Kovacs DM. The acyl-coenzyme A: cholesterol acyltransferase inhibitor CI-1011 reverses diffuse brain amyloid pathology in aged amyloid precursor protein transgenic mice. J Neuropathol Exp Neurol. 2010;69:777–788. doi: 10.1097/NEN.0b013e3181e77ed9. PubMed DOI PMC

Bryleva EY, Rogers MA, Chang CC, Buen F, Harris BT, Rousselet E, Seidah NG, Oddo S, LaFerla FM, Spencer TA, Hickey WF, Chang TY. ACAT1 gene ablation increases 24(S)-hydroxycholesterol content in the brain and ameliorates amyloid pathology in mice with AD. Proc Natl Acad Sci U S A. 2010;107:3081–3086. doi: 10.1073/pnas.0913828107. PubMed DOI PMC

Huttunen HJ, Peach C, Bhattacharyya R, Barren C, Pettingell W, Hutter-Paier B, Windisch M, Berezovska O, Kovacs DM. Inhibition of acyl-coenzyme A: cholesterol acyl transferase modulates amyloid precursor protein trafficking in the early secretory pathway. FASEB J. 2009;23:3819–3828. doi: 10.1096/fj.09-134999. PubMed DOI PMC

Pierrot N, Tyteca D, D'auria L, Dewachter I, Gailly P, Hendrickx A, Tasiaux B, El Haylani L, Muls N, N'Kuli F, Laquerriere A, Demoulin JB, Campion D, Brion JP, Courtoy PJ, Kienlen-Campard P, Octave JN. Amyloid precursor protein controls cholesterol turnover needed for neuronal activity. EMBO Mol Med. 2013;5:608–625. doi: 10.1002/emmm.201202215. PubMed DOI PMC

Fong LK, Yang MM, Dos Santos CR, Reyna SM, Langness VF, Woodruff G, Roberts EA, Young JE, Goldstein LSB. Full-length amyloid precursor protein regulates lipoprotein metabolism and amyloid-beta clearance in human astrocytes. J Biol Chem. 2018;293:11341–11357. doi: 10.1074/jbc.RA117.000441. PubMed DOI PMC

Kinoshita A, Whelan CM, Smith CJ, Mikhailenko I, Rebeck GW, Strickland DK, Hyman BT. Demonstration by fluorescence resonance energy transfer of two sites of interaction between the low-density lipoprotein receptor-related protein and the amyloid precursor protein: role of the intracellular adapter protein Fe65. J Neurosci. 2001;21:8354–8361. doi: 10.1523/JNEUROSCI.21-21-08354.2001. PubMed DOI PMC

Lakshmana MK, Chen E, Yoon IS, Kang DE. C-terminal 37 residues of LRP promote the amyloidogenic processing of APP independent of FE65. J Cell Mol Med. 2008;12:2665–2674. doi: 10.1111/j.1582-4934.2008.00320.x. PubMed DOI PMC

Pietrzik CU, Yoon IS, Jaeger S, Busse T, Weggen S, Koo EH. FE65 constitutes the functional link between the low-density lipoprotein receptor-related protein and the amyloid precursor protein. J Neurosci. 2004;24:4259–4265. doi: 10.1523/JNEUROSCI.5451-03.2004. PubMed DOI PMC

Montesinos J, Pera M, Larrea D, Guardia-Laguarta C, Agrawal RR, Velasco KR, Yun TD, Stavrovskaya IG, Xu YM, Koo SY, Snead AM, Sproul AA, Area-Gomez E. The Alzheimer's disease-associated C99 fragment of APP regulates cellular cholesterol trafficking. EMBO J. 2020;39:e103791. doi: 10.15252/embj.2019103791. PubMed DOI PMC

Amtul Z, Uhrig M, Rozmahel RF, Beyreuther K. Structural insight into the differential effects of omega-3 and omega-6 fatty acids on the production of Abeta peptides and amyloid plaques. J Biol Chem. 2011;286:6100–6107. doi: 10.1074/jbc.M110.183608. PubMed DOI PMC

Lu Y, Shi XF, Nguyen PH, Sterpone F, Salsbury FR, Jr, Derreumaux P. Amyloid-beta(29–42) dimeric conformations in membranes rich in omega-3 and omega-6 polyunsaturated fatty acids. J Phys Chem B. 2019;123:2687–2696. doi: 10.1021/acs.jpcb.9b00431. PubMed DOI

Brzustowicz MR, Cherezov V, Caffrey M, Stillwell W, Wassall SR. Molecular organization of cholesterol in polyunsaturated membranes: microdomain formation. Biophys J. 2002;82:285–298. doi: 10.1016/S0006-3495(02)75394-0. PubMed DOI PMC

Sanders CR. How gamma-secretase hits a moving target. Elife. 2016;5:e20043. doi: 10.7554/eLife.20043. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...