Bimetallic nanoparticle production using Cannabis sativa and Vitis vinifera waste extracts
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38343999
PubMed Central
PMC10854393
DOI
10.1039/d3ra07134k
PII: d3ra07134k
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The utilization of waste materials for the synthesis of nanoparticles has gained significant attention due to its potential for waste valorization and contribution to circular economy. In this study, bimetallic nanoparticles were produced using extracts derived from Cannabis sativa and Vitis vinifera waste, focusing on their green synthesis and antimicrobial activity against Gram-negative bacteria, specifically several strains of Pseudomonas aeruginosa. The Vitis vinifera canes and post-extraction waste from Cannabis sativa were processed using an ethanol extraction method. The extract was then mixed with silver nitrate and tetrachloroauric acid solution at different reagent ratios to optimize the synthesis process. The resulting bimetallic nanoparticles (AgAuNPs) were characterized using UV-vis spectrophotometry, transmission electron microscopy, atomic absorption spectrometry, X-ray diffraction, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The antimicrobial activity of the biosynthesized AgAuNPs was evaluated against various strains of Pseudomonas aeruginosa. The minimal inhibitory concentration (MIC) was determined using a microcultivation device, and the minimal bactericidal concentration (MBC) was determined through subsequent solid medium cultivation. Additionally, the minimal biofilm inhibitory concentration (MBIC) was assessed using a polystyrene microtiter plate as biofilm carrier and measured through an assay determining the metabolic activity of biofilm cells. The results demonstrated successful synthesis of bimetallic nanoparticles using the extracts from Cannabis sativa and Vitis vinifera waste. The AgAuNPs exhibited significant antimicrobial activity against the tested Pseudomonas aeruginosa strains, inhibiting their growth and biofilm formation. These findings highlight the potential of waste valorization and circular economy in nanoparticle production and their application as effective antimicrobial agents. This study contributes to the growing field of sustainable nanotechnology and provides insights into the utilization of plant waste extracts for the synthesis of bimetallic nanoparticles with antimicrobial properties. The findings support the development of eco-friendly and cost-effective approaches for nanoparticle production while addressing the challenges of waste management and combating microbial infections.
Zobrazit více v PubMed
Srikar S. K. Giri D. D. Pal D. B. Mishra P. K. Upadhyay S. N. Green Sustainable Chem. 2016;06:34–56.
Chamorro F. Carpena M. Fraga-Corral M. Echave J. Riaz Rajoka M. S. Barba F. J. Cao H. Xiao J. Prieto M. A. Simal-Gandara J. Food Chem. 2022;370:131315. PubMed
Bao Y. He J. Song K. Guo J. Zhou X. Liu S. J. Chem. 2021;2021:e6562687.
Iravani S. Green Chem. 2011;13:2638–2650.
Adelere I. A. Lateef A. Nanotechnol. Rev. 2016;5:567–587.
Arora N. Thangavelu K. Karanikolos G. N. Front. Chem. 2020;8:412. PubMed PMC
Nasrabadi H. T. Abbasi E. Davaran S. Kouhi M. Akbarzadeh A. Artif. Cells, Nanomed., Biotechnol. 2016;44:376–380. PubMed
Fanoro O. T. Oluwafemi O. S. Pharmaceutics. 2020;12:1044. PubMed PMC
Gopinath K. Kumaraguru S. Bhakyaraj K. Mohan S. Venkatesh K. S. Esakkirajan M. Kaleeswarran P. Alharbi N. S. Kadaikunnan S. Govindarajan M. Benelli G. Arumugam A. Microb. Pathog. 2016;101:1–11. PubMed
Miškovská A. Rabochová M. Michailidu J. Masák J. Čejková A. Lorinčík J. Mat'átková O. PLoS One. 2022;17:e0272844. PubMed PMC
Rollová M. Gharwalova L. Krmela A. Schulzová V. Hajšlová J. Jaroš P. Kolouchová I. Mat'átková O. Czech J. Food Sci. 2020;38:137–143.
AbdelHamid A. A. Al-Ghobashy M. A. Fawzy M. Mohamed M. B. Abdel-Mottaleb M. M. S. A. ACS Sustainable Chem. Eng. 2013;1:1520–1529.
Sharma M. Manoharlal R. Negi A. S. Prasad R. FEMS Yeast Res. 2010;10:570–578. PubMed
Serra E. Hidalgo-Bastida L. A. Verran J. Williams D. Malic S. Pathogens. 2018;7:15. PubMed PMC
Rahal J. J. Simberkoff M. S. Antimicrob. Agents Chemother. 1979;16:13–18. PubMed PMC
Sabaeifard P. Abdi-Ali A. Soudi M. R. Dinarvand R. J. Microbiol. Methods. 2014;105:134–140. PubMed
Shin D.-S. Eom Y.-B. Can. J. Microbiol. 2019;65(10):713–721. PubMed
Abbasi B. H. Zaka M. Hashmi S. S. Khan Z. IET Nanobiotechnol. 2018;12:277–284.
Adeyemi J. O. Elemike E. E. Onwudiwe D. C. Singh M. Inorg. Chem. Commun. 2019;109:107569.
Elemike E. E. Onwudiwe D. C. Nundkumar N. Singh M. Iyekowa O. Mater. Lett. 2019;243:148–152.
Amina M. Al Musayeib N. M. Alarfaj N. A. El-Tohamy M. F. Al-Hamoud G. A. Nanomaterials. 2020;10:2453. PubMed PMC
Mat'átková O. Michailidu J. Miškovská A. Kolouchová I. Masák J. Čejková A. Biotechnol. Adv. 2022;58:107905. PubMed
Singh P. Pandit S. Garnæs J. Tunjic S. Mokkapati V. R. Sultan A. Thygesen A. Mackevica A. Mateiu R. V. Daugaard A. E. Baun A. Mijakovic I. Int. J. Nanomed. 2018;13:3571–3591. PubMed PMC
Lee H.-J., Lee G., Jang N. R., Yun J. H., Song J. Y. and Kim B. S., Technical Proceedings of the 2011 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech 2011, 2011, vol. 1, pp. 371–374
Filippi A. Mattiello A. Musetti R. Petrussa E. Braidot E. Marchiol L. AIP Conf. Proc. 2017;1873:020004.
Mozhayeva D. Engelhard C. J. Anal. At. Spectrom. 2020;35:1740–1783.
Rana S. Kapoor S. Sharma S. Kalia A. Food Sci. Biotechnol. 2023;32:2079–2092. PubMed PMC
Akilandaeaswari B. Muthu K. J. Taiwan Inst. Chem. Eng. 2021;127:292–301.
Elegbede J. A. Lateef A. Azeez M. A. Asafa T. B. Yekeen T. A. Oladipo I. C. Hakeem A. S. Beukes L. S. Gueguim-Kana E. B. Biotechnol. Prog. 2019;35:e2829. PubMed
Pahal V. Kumar P. Kumar P. Kumar V. Plant Sci. Today. 2022;9:345–356.
Song J. Y. Kim B. S. Korean J. Chem. Eng. 2008;25:808–811.
Weng Y. Li J. Ding X. Wang B. Dai S. Zhou Y. Pang R. Zhao Y. Xu H. Tian B. Hua Y. Int. J. Nanomed. 2020;15:1823–1835. PubMed PMC
Ganaie S. U. Abbasi T. Abbasi S. A. J. Exp. Nanosci. 2016;11:395–417.
Gupta S. Hemlata H. Tejavath K. K. Synthesis, characterization and comparative anticancer potential of photosynthesized mono and bimetallic nanoparticles using Moringa oleifera aqueous leaf extract. Nano. 2022;17(06):2250047.
Lagashetty A. Ganiger S. K. Shashidhar Heliyon. 2019;5:e02794. PubMed PMC
Li J. Sun S. Acc. Chem. Res. 2019;52:2015–2025. PubMed
Wang X. Altmann L. Stöver J. Zielasek V. Bäumer M. Al-Shamery K. Borchert H. Parisi J. Kolny-Olesiak J. Chem. Mater. 2013;25:1400–1407.
Loza K. Heggen M. Epple M. Adv. Funct. Mater. 2020;30:1909260.
Singh T. Jyoti K. Patnaik A. Singh A. Chauhan S. C. Alexandria Eng. J. 2018;57:3043–3051.
Gultekin D. D. Nadaroglu H. Gungor A. A. Kishali N. H. Int. J. Second. Metab. 2017;4:77–84.
Khalil M. Prog. Nanotechnol. Nanomater. 2014;3:1–12.
Venkateswarlu S. Kumar B. N. Prathima B. Anitha K. Jyothi N. V. V. Phys. B. 2015;457:30–35.
Ayala-Núñez N. V. Lara Villegas H. H. del Carmen Ixtepan Turrent L. Rodríguez Padilla C. Nanobiotechnol. 2009;5:2–9.
Schofs L. Sparo M. D. Sánchez Bruni S. F. Pharmacol. Res. Perspect. 2021;9:e00761. PubMed PMC
Macia M. D. Rojo-Molinero E. Oliver A. Clin. Microbiol. Infect. 2014;20:981–990. PubMed
Alzahrani S. Ali H. M. Althubaiti E. H. Ahmed M. M. Indian J. Pharm. Sci. 2022:42–53.
Bhatia E. Banerjee R. J. Mater. Chem. B. 2020;8:4890–4898. PubMed
Ali S. G. Ansari M. A. Khan H. M. Jalal M. Mahdi A. A. Cameotra S. S. J. Bionanosci. 2018;8:544–553.
Arokiyaraj S. Vincent S. Saravanan M. Lee Y. Oh Y. K. Kim K. H. Artif. Cells, Nanomed., Biotechnol. 2017;45:372–379. PubMed
Feizi S. Taghipour E. Ghadam P. Mohammadi P. Microb. Pathog. 2018;125:33–42. PubMed
Diem P. N. H. Phuong T. N. M. Hien N. Q. Quang D. T. Hoa T. T. Cuong N. D. J. Nanomater. 2020;2020:e7195048.
Khalaj M. Kamali M. Costa M. E. V. Capela I. J. Cleaner Prod. 2020;267:122036.
Vishwanath R. Negi B. Curr. Res. Green Sustainable Chem. 2021;4:100205.
Kumar S. Basumatary I. B. Sudhani H. P. K. Bajpai V. K. Chen L. Shukla S. Mukherjee A. Trends Food Sci. Technol. 2021;112:651–666.