Reconfigurable self-assembly of photocatalytic magnetic microrobots for water purification
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article
PubMed
37914692
PubMed Central
PMC10620202
DOI
10.1038/s41467-023-42674-9
PII: 10.1038/s41467-023-42674-9
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
The development of artificial small-scale robotic swarms with nature-mimicking collective behaviors represents the frontier of research in robotics. While microrobot swarming under magnetic manipulation has been extensively explored, light-induced self-organization of micro- and nanorobots is still challenging. This study demonstrates the interaction-controlled, reconfigurable, reversible, and active self-assembly of TiO2/α-Fe2O3 microrobots, consisting of peanut-shaped α-Fe2O3 (hematite) microparticles synthesized by a hydrothermal method and covered with a thin layer of TiO2 by atomic layer deposition (ALD). Due to their photocatalytic and ferromagnetic properties, microrobots autonomously move in water under light irradiation, while a magnetic field precisely controls their direction. In the presence of H2O2 fuel, concentration gradients around the illuminated microrobots result in mutual attraction by phoretic interactions, inducing their spontaneous organization into self-propelled clusters. In the dark, clusters reversibly reconfigure into microchains where microrobots are aligned due to magnetic dipole-dipole interactions. Microrobots' active motion and photocatalytic properties were investigated for water remediation from pesticides, obtaining the rapid degradation of the extensively used, persistent, and hazardous herbicide 2,4-Dichlorophenoxyacetic acid (2,4D). This study potentially impacts the realization of future intelligent adaptive metamachines and the application of light-powered self-propelled micro- and nanomotors toward the degradation of persistent organic pollutants (POPs) or micro- and nanoplastics.
See more in PubMed
Cazamine, S. et al. Self-Organization in Biological Systems (Princeton University Press, 2001).
Anderson C, Theraulaz G, Deneubourg JL. Self-assemblages in insect societies. Insectes Soc. 2002;49:99–110. doi: 10.1007/s00040-002-8286-y. DOI
Mlot NJ, Tovey CA, Hu DL. Fire ants self-assemble into waterproof rafts to survive floods. Proc. Natl. Acad. Sci. USA. 2011;108:7669–7673. doi: 10.1073/pnas.1016658108. PubMed DOI PMC
Liu D, et al. Bionic morphological design and interface-free fabrication of Halfmoon microrobots with enhanced motion performance. Chem. Eng. J. 2023;452:139464. doi: 10.1016/j.cej.2022.139464. DOI
Sun M, et al. Magnetic microswarm and fluoroscopy-guided platform for biofilm eradication in biliary stents. Adv. Mater. 2022;34:2201888. doi: 10.1002/adma.202201888. PubMed DOI
Xu Z, Xu Q. Collective behaviors of magnetic microparticle swarms: from dexterous tentacles to reconfigurable carpets. ACS Nano. 2022;16:13728–13739. doi: 10.1021/acsnano.2c05244. PubMed DOI
Wang B, et al. Spatiotemporally actuated hydrogel by magnetic swarm nanorobotics. ACS Nano. 2022;16:20985–21001. doi: 10.1021/acsnano.2c08626. PubMed DOI
Li M, et al. A diatom-based biohybrid microrobot with a high drug-loading capacity and pH-sensitive drug release for target therapy. Acta Biomater. 2022;154:443–453. doi: 10.1016/j.actbio.2022.10.019. PubMed DOI
Fonseca ADC, Kohler T, Ahmed D. Ultrasound-controlled swarmbots under physiological flow conditions. Adv. Mater. Interfaces. 2022;9:2200877. doi: 10.1002/admi.202200877. DOI
Huang T-Y, Gu H, Nelson BJ. Increasingly intelligent micromachines. Annu. Rev. Control. Robot. Auton. Syst. 2022;5:279–312. doi: 10.1146/annurev-control-042920-013322. DOI
Soto F, et al. Smart materials for microrobots. Chem. Rev. 2022;122:5365–5403. doi: 10.1021/acs.chemrev.0c00999. PubMed DOI
Urso M, Pumera M. Micro- and nanorobots meet DNA. Adv. Funct. Mater. 2022;32:2200711. doi: 10.1002/adfm.202200711. DOI
Huang H, et al. Large-scale self-assembly of MOFs colloidosomes for bubble-propelled micromotors and stirring-free environmental remediation. Angew. Chem. Int. Ed. 2022;61:e202211163. doi: 10.1002/anie.202211163. PubMed DOI
Wang L, et al. Contaminants-fueled laccase-powered Fe3O4@SiO2 nanomotors for synergistical degradation of multiple pollutants. Mater. Today Chem. 2022;26:101059. doi: 10.1016/j.mtchem.2022.101059. DOI
Gordón Pidal JM, Arruza L, Moreno-Guzmán M, López MÁ, Escarpa A. OFF-ON on-the-fly aptassay for rapid and accurate determination of procalcitonin in very low birth weight infants with sepsis suspicion. Sens. Actuators B Chem. 2023;378:133107. doi: 10.1016/j.snb.2022.133107. DOI
Gordón J, et al. On the move-sensitive fluorescent aptassay on board catalytic micromotors for the determination of interleukin-6 in ultra-low serum volumes for neonatal sepsis diagnostics. ACS Sens. 2022;7:3144–3152. doi: 10.1021/acssensors.2c01635. PubMed DOI PMC
Zhang F, et al. Nanoparticle-modified microrobots for in vivo antibiotic delivery to treat acute bacterial pneumonia. Nat. Mater. 2022;21:1324–1332. doi: 10.1038/s41563-022-01360-9. PubMed DOI PMC
Oral CM, et al. Radiopaque nanorobots as magnetically navigable contrast agents for localized in vivo imaging of the gastrointestinal tract. Adv. Healthc. Mater. 2023;12:2202682. doi: 10.1002/adhm.202202682. PubMed DOI
de la Asunción-Nadal V, et al. MoSBOTs: magnetically driven biotemplated MoS2-based microrobots for biomedical applications. Small. 2022;18:2203821. doi: 10.1002/smll.202203821. PubMed DOI
Yang W, Wang X, Wang Z, Liang W, Ge Z. Light-powered microrobots: recent progress and future challenges. Opt. Lasers Eng. 2023;161:107380. doi: 10.1016/j.optlaseng.2022.107380. DOI
Moran J, Posner J. Microswimmers with no moving parts. Phys. Today. 2019;72:44–50. doi: 10.1063/PT.3.4203. DOI
Dong R, Zhang Q, Gao W, Pei A, Ren B. Highly efficient light-driven TiO2-Au Janus micromotors. ACS Nano. 2016;10:839–844. doi: 10.1021/acsnano.5b05940. PubMed DOI
Xiao Z, et al. Synergistic speed enhancement of an electric-photochemical hybrid micromotor by tilt rectification. ACS Nano. 2020;14:8658–8667. doi: 10.1021/acsnano.0c03022. PubMed DOI
Xiao Z, et al. Bimetallic coatings synergistically enhance the speeds of photocatalytic TiO2 micromotors. Chem. Commun. 2020;56:4728–4731. doi: 10.1039/D0CC00212G. PubMed DOI
Ussia M, et al. Light-propelled nanorobots for facial titanium implants biofilms removal. Small. 2022;18:2200708. doi: 10.1002/smll.202200708. PubMed DOI
Sachs J, Kottapalli SN, Fischer P, Botin D, Palberg T. Characterization of active matter in dense suspensions with heterodyne laser Doppler velocimetry. Colloid Polym. Sci. 2021;299:269–280. doi: 10.1007/s00396-020-04693-6. DOI
Chen X, et al. Highly efficient visible-light-driven Cu2O@CdSe micromotors adsorbent. Appl. Mater. Today. 2021;25:101200. doi: 10.1016/j.apmt.2021.101200. DOI
Zhang Y, Li Y, Yuan Y. Carbon quantum dot-decorated BiOBr/Bi2WO6 photocatalytic micromotor for environmental remediation and DFT calculation. ACS Catal. 2022;12:13897–13909. doi: 10.1021/acscatal.2c04149. DOI
Meijer JM, Rossi L. Preparation, properties, and applications of magnetic hematite microparticles. Soft Matter. 2021;17:2354–2368. doi: 10.1039/D0SM01977A. PubMed DOI
Xie H, et al. Reconfigurable magnetic microrobot swarm: multimode transformation, locomotion, and manipulation. Sci. Robot. 2019;4:aav8006. doi: 10.1126/scirobotics.aav8006. PubMed DOI
Yang L, et al. Autonomous environment-adaptive microrobot swarm navigation enabled by deep learning-based real-time distribution planning. Nat. Mach. Intell. 2022;4:480–493. doi: 10.1038/s42256-022-00482-8. DOI
Kang N, Zhu J, Zhang X, Wang H, Zhang Z. Reconfiguring self-assembly of photoresponsive hybrid colloids. J. Am. Chem. Soc. 2022;144:4754–4758. doi: 10.1021/jacs.2c00432. PubMed DOI
Mou F, et al. Phototactic flocking of photochemical micromotors. iScience. 2019;19:415–424. doi: 10.1016/j.isci.2019.07.050. PubMed DOI PMC
Palacci J, Sacanna S, Steinberg AP, Pine DJ, Chaikin PM. Living crystals of light-activated colloidal surfers. Science. 2013;339:936–940. doi: 10.1126/science.1230020. PubMed DOI
Singh DP, Choudhury U, Fischer P, Mark AG. Non-equilibrium assembly of light-activated colloidal mixtures. Adv. Mater. 2017;29:1701328. doi: 10.1002/adma.201701328. PubMed DOI
Che S, et al. Light-programmable assemblies of isotropic micromotors. Research. 2022;2022:9816562. doi: 10.34133/2022/9816562. PubMed DOI PMC
Wang L, Kaeppler A, Fischer D, Simmchen J. Photocatalytic TiO2 micromotors for removal of microplastics and suspended matter. ACS Appl. Mater. Interfaces. 2019;11:32937–32944. doi: 10.1021/acsami.9b06128. PubMed DOI
Guo X, et al. Phototactic micromotor assemblies in dynamic line formations for wide-range micromanipulations. J. Mater. Chem. C. 2022;10:5079–5087. doi: 10.1039/D1TC06078C. DOI
Peng X, Urso M, Ussia M, Pumera M. Shape-controlled self-assembly of light-powered microrobots into ordered microchains for cells transport and water remediation. ACS Nano. 2022;16:7615–7625. doi: 10.1021/acsnano.1c11136. PubMed DOI
Peng X, Urso M, Pumera M. Photo-fenton degradation of nitroaromatic explosives by light-powered hematite microrobots: when higher speed is not what we go for. Small Methods. 2021;5:2100617. doi: 10.1002/smtd.202100617. PubMed DOI
Li J, et al. Water-driven micromotors for rapid photocatalytic degradation of biological and chemical warfare agents. ACS Nano. 2014;8:11118–11125. doi: 10.1021/nn505029k. PubMed DOI
Parkinson GS. Iron oxide surfaces. Surf. Sci. Rep. 2016;71:272–365. doi: 10.1016/j.surfrep.2016.02.001. DOI
Luttrell T, et al. Why is anatase a better photocatalyst than rutile? Model studies on epitaxial TiO2 films. Sci. Rep. 2015;4:4043. doi: 10.1038/srep04043. PubMed DOI PMC
Moreira GF, Peçanha ER, Monte MBM, Leal Filho LS, Stavale F. XPS study on the mechanism of starch-hematite surface chemical complexation. Miner. Eng. 2017;110:96–103. doi: 10.1016/j.mineng.2017.04.014. DOI
Biesinger MC, et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011;257:2717–2730. doi: 10.1016/j.apsusc.2010.10.051. DOI
Biesinger MC, Lau LWM, Gerson AR, Smart RSC. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010;257:887–898. doi: 10.1016/j.apsusc.2010.07.086. DOI
Zhou C, Zhang HP, Tang J, Wang W. Photochemically powered AgCl Janus micromotors as a model system to understand ionic self-diffusiophoresis. Langmuir. 2018;34:3289–3295. doi: 10.1021/acs.langmuir.7b04301. PubMed DOI
Rajagopal S, Paramasivam B, Muniyasamy K. Photocatalytic removal of cationic and anionic dyes in the textile wastewater by H2O2 assisted TiO2 and micro-cellulose composites. Sep. Purif. Technol. 2020;252:117444. doi: 10.1016/j.seppur.2020.117444. DOI
Palacci J, Sacanna S, Vatchinsky A, Chaikin PM, Pine DJ. Photoactivated colloidal dockers for cargo transportation. J. Am. Chem. Soc. 2013;135:15978–15981. doi: 10.1021/ja406090s. PubMed DOI
Lin Z, et al. Light-activated active colloid ribbons. Angew. Chem. - Int. Ed. 2017;56:13517–13520. doi: 10.1002/anie.201708155. PubMed DOI
Lin Z, et al. Magnetically actuated peanut colloid motors for cell manipulation and patterning. ACS Nano. 2018;12:2539–2545. doi: 10.1021/acsnano.7b08344. PubMed DOI
Debata S, Kherani NA, Panda SK, Singh DP. Light-driven microrobots: capture and transport of bacteria and microparticles in a fluid medium. J. Mater. Chem. B. 2022;10:8235–8243. doi: 10.1039/D2TB01367C. PubMed DOI
Wang X, et al. Multistimuli-responsive hydroplaning superhydrophobic microrobots with programmable motion and multifunctional applications. ACS Nano. 2022;16:14895–14906. doi: 10.1021/acsnano.2c05783. PubMed DOI
Peng X, Urso M, Balvan J, Masarik M, Pumera M. Self-propelled magnetic dendrite-shaped microrobots for photodynamic prostate cancer therapy. Angew. Chem. Int. Ed. 2022;61:e202213505. doi: 10.1002/anie.202213505. PubMed DOI
Peng Y, et al. Generic rules for distinguishing autophoretic colloidal motors. Angew. Chem. Int. Ed. 2022;61:e202116041. doi: 10.1002/anie.202116041. PubMed DOI
Lee SH, Liddell CM. Anisotropic magnetic colloids: a strategy to form complex structures using nonspherical building blocks. Small. 2009;5:1957–1962. doi: 10.1002/smll.200900135. PubMed DOI
Urso M, Ussia M, Pumera M. Smart micro- and nanorobots for water purification. Nat. Rev. Bioeng. 2023;1:236–251. doi: 10.1038/s44222-023-00025-9. PubMed DOI PMC
Ye H, et al. Design and fabrication of micro/nano-motors for environmental and sensing applications. Appl. Mater. Today. 2021;23:101007. doi: 10.1016/j.apmt.2021.101007. DOI
Shivalkar S, Gautam PK, Chaudhary S, Samanta SK, Sahoo AK. Recent development of autonomously driven micro/nanobots for efficient treatment of polluted water. J. Environ. Manag. 2021;281:111750. doi: 10.1016/j.jenvman.2020.111750. PubMed DOI
Tang FHM, Lenzen M, McBratney A, Maggi F. Risk of pesticide pollution at the global scale. Nat. Geosci. 2021;14:206–210. doi: 10.1038/s41561-021-00712-5. DOI
Carvalho FP. Pesticides, environment, and food safety. Food Energy Secur. 2017;6:48–60. doi: 10.1002/fes3.108. DOI
Camara MC, et al. Development of stimuli-responsive nano-based pesticides: emerging opportunities for agriculture. J. Nanobiotechnol. 2019;17:100. doi: 10.1186/s12951-019-0533-8. PubMed DOI PMC
González-Rodríguez RM, Rial-Otero R, Cancho-Grande B, Gonzalez-Barreiro C, Simal-Gándara J. A review on the fate of pesticides during the processes within the food-production chain. Crit. Rev. Food Sci. Nutr. 2011;51:99–114. doi: 10.1080/10408390903432625. PubMed DOI
Möhring N, et al. Pathways for advancing pesticide policies. Nat. Food. 2020;1:535–540. doi: 10.1038/s43016-020-00141-4. PubMed DOI
Loomis D, et al. Carcinogenicity of lindane, DDT, and 2,4-dichlorophenoxyacetic acid. Lancet Oncol. 2015;16:891–892. doi: 10.1016/S1470-2045(15)00081-9. PubMed DOI
Zheng X, et al. A carnation-like rGO/Bi2O2CO3/BiOCl composite: efficient photocatalyst for the degradation of ciprofloxacin. J. Mater. Sci. Mater. Electron. 2019;30:5986–5994. doi: 10.1007/s10854-019-00898-w. DOI
Lu Q, Zhang Y, Liu S. Graphene quantum dots enhanced photocatalytic activity of zinc porphyrin toward the degradation of methylene blue under visible-light irradiation. J. Mater. Chem. A. 2015;3:8552–8558. doi: 10.1039/C5TA00525F. DOI
He Z, Xia Y, Su J. Fabrication of novel AgBr/Bi24O31Br10 composites with excellent photocatalytic performance. RSC Adv. 2018;8:39187–39196. doi: 10.1039/C8RA08733D. PubMed DOI PMC
Pan D, et al. Synthesis, characterization and photocatalytic activity of mixed-metal oxides derived from NiCoFe ternary layered double hydroxides. Dalt. Trans. 2018;47:9765–9778. doi: 10.1039/C8DT01045E. PubMed DOI
Lim PF, et al. Mechanism insight of dual synergistic effects of plasmonic Pd-SrTiO3 for enhanced solar energy photocatalysis. Appl. Phys. A Mater. Sci. Process. 2020;126:550. doi: 10.1007/s00339-020-03739-4. DOI
Reguero-Márquez GA, et al. Photodegradation of 2,4-D (dichlorophenoxyacetic acid) with Rh/TiO2; comparative study with other noble metals (Ru, Pt, and Au) RSC Adv. 2022;12:25711–25721. doi: 10.1039/D2RA03552A. PubMed DOI PMC
Silva RT, et al. Effective photodegradation of 2,4-dichlorophenoxyacetic acid on TiO2 nanocrystals anchored on SBA-15 mesoporous material. Int. J. Environ. Sci. Technol. 2022;19:11905–11918. doi: 10.1007/s13762-022-03934-1. DOI
Limón-Rocha I, et al. Co, Cu, Fe, and Ni deposited over TiO2 and their photocatalytic activity in the degradation of 2,4-dichlorophenol and 2,4-dichlorophenoxyacetic acid. Inorganics. 2022;10:157. doi: 10.3390/inorganics10100157. DOI
Akintunde OO, et al. Disinfection and photocatalytic degradation of organic contaminants using visible light-activated GCN/Ag2CrO4 nanocomposites. Catalysts. 2022;12:943. doi: 10.3390/catal12090943. DOI
Hernández-Del Castillo PC, Oliva J, Rodriguez-Gonzalez V. An eco-friendly and sustainable support of agave-fibers functionalized with graphene/TiO2:SnO2 for the photocatalytic degradation of the 2,4-D herbicide from the drinking water. J. Environ. Manag. 2022;317:115514. doi: 10.1016/j.jenvman.2022.115514. PubMed DOI
Lam SM, et al. Surface decorated coral-like magnetic BiFeO3 with Au nanoparticles for effective sunlight photodegradation of 2,4-D and E. coli inactivation. J. Mol. Liq. 2021;326:115372. doi: 10.1016/j.molliq.2021.115372. DOI
Hernández-Moreno EJ, et al. Synthesis, characterization, and visible light-induced photocatalytic evaluation of WO3/NaNbO3 composites for the degradation of 2,4-D herbicide. Mater. Today Chem. 2021;19:100406. doi: 10.1016/j.mtchem.2020.100406. DOI
Zhang Z, Zhao A, Wang F, Ren J, Qu X. Design of a plasmonic micromotor for enhanced photo-remediation of polluted anaerobic stagnant waters. Chem. Commun. 2016;52:5550–5553. doi: 10.1039/C6CC00910G. PubMed DOI
Lukong VT, Ukoba K, Jen TC. Review of self-cleaning TiO2 thin films deposited with spin coating. Int. J. Adv. Manuf. Technol. 2022;122:3525–3546. doi: 10.1007/s00170-022-10043-3. DOI
Obregón S, Rodríguez-González V. Photocatalytic TiO2 thin films and coatings prepared by sol–gel processing: a brief review. J. Sol. Gel Sci. Technol. 2022;102:125–141. doi: 10.1007/s10971-021-05628-5. DOI
Sugimoto T, Itoh H, Mochida T. Shape control of monodisperse hematite particles by organic additives in the gel-sol system. J. Colloid Interface Sci. 1998;205:42–52. doi: 10.1006/jcis.1998.5588. PubMed DOI
Wang W, Chiang TY, Velegol D, Mallouk TE. Understanding the efficiency of autonomous nano- and microscale motors. J. Am. Chem. Soc. 2013;135:10557–10565. doi: 10.1021/ja405135f. PubMed DOI
Urso, M., Ussia, M., Peng, X., Oral, C. M. & Pumera, M. Reconfigurable self-assembly of photocatalytic magnetic microrobots for water purification. Figshare10.6084/m9.figshare.24013836 (2023). PubMed PMC
Magnetic Microrobot Swarms with Polymeric Hands Catching Bacteria and Microplastics in Water
Reconfigurable self-assembly of photocatalytic magnetic microrobots for water purification