Smart micro- and nanorobots for water purification

. 2023 ; 1 (4) : 236-251. [epub] 20230206

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid37064655

Less than 1% of Earth's freshwater reserves is accessible. Industrialization, population growth and climate change are further exacerbating clean water shortage. Current water-remediation treatments fail to remove most pollutants completely or release toxic by-products into the environment. The use of self-propelled programmable micro- and nanoscale synthetic robots is a promising alternative way to improve water monitoring and remediation by overcoming diffusion-limited reactions and promoting interactions with target pollutants, including nano- and microplastics, persistent organic pollutants, heavy metals, oils and pathogenic microorganisms. This Review introduces the evolution of passive micro- and nanomaterials through active micro- and nanomotors and into advanced intelligent micro- and nanorobots in terms of motion ability, multifunctionality, adaptive response, swarming and mutual communication. After describing removal and degradation strategies, we present the most relevant improvements in water treatment, highlighting the design aspects necessary to improve remediation efficiency for specific contaminants. Finally, open challenges and future directions are discussed for the real-world application of smart micro- and nanorobots.

Zobrazit více v PubMed

Favere J, et al. Safeguarding the microbial water quality from source to tap. npj Clean Water. 2021;4:28. doi: 10.1038/s41545-021-00118-1. DOI

Wu J, Cao M, Tong D, Finkelstein Z, Hoek EMV. A critical review of point-of-use drinking water treatment in the United States. npj Clean Water. 2021;4:40. doi: 10.1038/s41545-021-00128-z. DOI

Werber JR, Osuji CO, Elimelech M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 2016;1:16018. doi: 10.1038/natrevmats.2016.18. DOI

Nguyen PY, Carvalho G, Reis MAM, Oehmen A. A review of the biotransformations of priority pharmaceuticals in biological wastewater treatment processes. Water Res. 2021;188:116446. doi: 10.1016/j.watres.2020.116446. PubMed DOI

Liu S, et al. Understanding, monitoring, and controlling biofilm growth in drinking water distribution systems. Environ. Sci. Technol. 2016;50:8954–8976. doi: 10.1021/acs.est.6b00835. PubMed DOI

Berendonk TU, et al. Tackling antibiotic resistance: the environmental framework. Nat. Rev. Microbiol. 2015;13:310–317. doi: 10.1038/nrmicro3439. PubMed DOI

Salzano de Luna M. Recent trends in waterborne and bio-based polyurethane coatings for corrosion protection. Adv. Mater. Interfaces. 2022;9:2101775. doi: 10.1002/admi.202101775. DOI

Song Y, Mukasa D, Zhang H, Gao W. Self-powered wearable biosensors. Acc. Mater. Res. 2021;2:184–197. doi: 10.1021/accountsmr.1c00002. DOI

Mestre R, Patiño T, Sánchez S. Biohybrid robotics: from the nanoscale to the macroscale. Wiley Interdisc. Rev. Nanomed. Nanobiotech. 2021;13:e1703. doi: 10.1002/wnan.1703. PubMed DOI

Ussia M, Pumera M. Towards micromachine intelligence: potential of polymers. Chem. Soc. Rev. 2022;51:1558–1572. doi: 10.1039/D1CS00587A. PubMed DOI

Tan L, Davis AC, Cappelleri DJ. Smart polymers for microscale machines. Adv. Funct. Mater. 2021;31:2007125. doi: 10.1002/adfm.202007125. DOI

Soto F, et al. Smart materials for microrobots. Chem. Rev. 2021;122:5365–5403. doi: 10.1021/acs.chemrev.0c00999. PubMed DOI

Li M, Pal A, Aghakhani A, Pena-Francesch A, Sitti M. Soft actuators for real-world applications. Nat. Rev. Mater. 2022;7:235–249. doi: 10.1038/s41578-021-00389-7. PubMed DOI PMC

Pané S, Wendel-Garcia P, Belce Y, Chen X-Z, Puigmartí-Luis J. Powering and fabrication of small-scale robotics systems. Curr. Robot. Rep. 2021;2:427–440. doi: 10.1007/s43154-021-00066-1. PubMed DOI PMC

Palagi S, Fischer P. Bioinspired microrobots. Nat. Rev. Mater. 2018;3:113–124. doi: 10.1038/s41578-018-0016-9. DOI

Wang J. Can man-made nanomachines compete with nature biomotors? ACS Nano. 2009;3:4–9. doi: 10.1021/nn800829k. PubMed DOI

Mallouk TE, Sen A. Powering nanorobots. Sci. Am. 2009;300:72–77. doi: 10.1038/scientificamerican0509-72. PubMed DOI

Zhang Y, Yuan K, Zhang L. Micro/nanomachines: from functionalization to sensing and removal. Adv. Mater. Technol. 2019;4:1800636. doi: 10.1002/admt.201800636. DOI

Karshalev E, Esteban-Fernández De Ávila B, Wang J. Micromotors for ‘chemistry-on-the-fly’. J. Am. Chem. Soc. 2018;140:3810–3820. doi: 10.1021/jacs.8b00088. PubMed DOI

Wang B, Kostarelos K, Nelson BJ, Zhang L. Trends in micro-/nanorobotics: materials development, actuation, localization, and system integration for biomedical applications. Adv. Mater. 2021;33:2002047. doi: 10.1002/adma.202002047. PubMed DOI

Zhu S, et al. External field-driven untethered microrobots for targeted cargo delivery. Adv. Mater. Technol. 2021;7:2101256. doi: 10.1002/admt.202101256. DOI

Jurado-Sánchez B, Campuzano S, Pingarrón JM, Escarpa A. Janus particles and motors: unrivaled devices for mastering (bio)sensing. Microchim. Acta. 2021;188:416. doi: 10.1007/s00604-021-05053-z. PubMed DOI PMC

Venugopalan PL, Esteban-Fernández De Ávila B, Pal M, Ghosh A, Wang J. Fantastic voyage of nanomotors into the cell. ACS Nano. 2020;14:9423–9439. doi: 10.1021/acsnano.0c05217. PubMed DOI

Schmidt CK, Medina-Sánchez M, Edmondson RJ, Schmidt OG. Engineering microrobots for targeted cancer therapies from a medical perspective. Nat. Commun. 2020;11:5618. doi: 10.1038/s41467-020-19322-7. PubMed DOI PMC

Yuan K, Bujalance-Fernández J, Jurado-Sánchez B, Escarpa A. Light-driven nanomotors and micromotors: envisioning new analytical possibilities for bio-sensing. Microchim. Acta. 2020;187:187–581. doi: 10.1007/s00604-020-04541-y. PubMed DOI

Huang T-Y, Gu H, Nelson BJ. Increasingly intelligent micromachines. Annu. Rev. Control Robot. Auton. Syst. 2022;5:279–312. doi: 10.1146/annurev-control-042920-013322. DOI

Wang H, Pumera M. Fabrication of micro/nanoscale motors. Chem. Rev. 2015;115:8704–8735. doi: 10.1021/acs.chemrev.5b00047. PubMed DOI

Men Y, Peng F, Wilson DA. Micro/nanomotors via self-assembly. Sci. Lett. J. 2016;5:219.

Wu Z, Lin X, Si T, He Q. Recent progress on bioinspired self-propelled micro/nanomotors via controlled molecular self-assembly. Small. 2016;12:3080–3093. doi: 10.1002/smll.201503969. PubMed DOI

Shivalkar S, et al. Autonomous magnetic microbots for environmental remediation developed by organic waste derived carbon dots. J. Environ. Manage. 2021;297:113322. doi: 10.1016/j.jenvman.2021.113322. PubMed DOI

Fernández-Medina M, Ramos-Docampo MA, Hovorka O, Salgueiriño V, Städler B. Recent advances in nano- and micromotors. Adv. Funct. Mater. 2020;30:1908283. doi: 10.1002/adfm.201908283. DOI

Soler L, Sánchez S. Catalytic nanomotors for environmental monitoring and water remediation. Nanoscale. 2014;6:7175–7182. doi: 10.1039/C4NR01321B. PubMed DOI PMC

Dey KK, Wong F, Altemose A, Sen A. Catalytic motors — quo vadimus? Curr. Opin. Colloid Interface Sci. 2016;21:4–13. doi: 10.1016/j.cocis.2015.12.001. DOI

Wilson DA, Nolte RJM, Van Hest JCM. Autonomous movement of platinum-loaded stomatocytes. Nat. Chem. 2012;4:268–274. doi: 10.1038/nchem.1281. PubMed DOI

Tu Y, et al. Self-propelled supramolecular nanomotors with temperature-responsive speed regulation. Nat. Chem. 2017;9:480–486. doi: 10.1038/nchem.2674. PubMed DOI

Moran J, Posner J. Microswimmers with no moving parts. Phys. Today. 2019;72:44–50. doi: 10.1063/PT.3.4203. DOI

Li J, Rozen I, Wang J. Rocket science at the nanoscale. ACS Nano. 2016;10:5619–5634. doi: 10.1021/acsnano.6b02518. PubMed DOI

Urso M, Iffelsberger C, Mayorga-Martinez CC, Pumera M. Nickel sulfide microrockets as self-propelled energy storage devices to power electronic circuits “on-demand”. Small Methods. 2021;5:2100511. doi: 10.1002/smtd.202100511. PubMed DOI

Mathesh M, Sun J, Wilson DA. Enzyme catalysis powered micro/nanomotors for biomedical applications. J. Mater. Chem. B. 2020;8:7319–7334. doi: 10.1039/D0TB01245A. PubMed DOI

Yang Q, et al. Enzyme-driven micro/nanomotors: recent advances and biomedical applications. Int. J. Biol. Macromol. 2021;167:457–469. doi: 10.1016/j.ijbiomac.2020.11.215. PubMed DOI

Yuan H, Liu X, Wang L, Ma X. Fundamentals and applications of enzyme powered micro/nano-motors. Bioact. Mater. 2021;6:1727–1749. doi: 10.1016/j.bioactmat.2020.11.022. PubMed DOI PMC

Hortelao AC, et al. Swarming behavior and in vivo monitoring of enzymatic nanomotors within the bladder. Sci. Robot. 2021;6:eabd2823. doi: 10.1126/scirobotics.abd2823. PubMed DOI

Liu K, et al. Magnesium-based micromotors for enhanced active and synergistic hydrogen chemotherapy. Appl. Mater. Today. 2020;20:100694. doi: 10.1016/j.apmt.2020.100694. DOI

Yang J, et al. γ-Fe2O3@Ag-mSiO2_NH2 magnetic Janus micromotor for active water remediation. Appl. Mater. Today. 2021;25:101190. doi: 10.1016/j.apmt.2021.101190. DOI

Nourhani A, Karshalev E, Soto F, Wang J. Multigear bubble propulsion of transient micromotors. Research. 2020;2020:7823615. doi: 10.34133/2020/7823615. PubMed DOI PMC

Gao Y, Xiong Z, Wang J, Tang J, Li D. Light hybrid micro/nano-robots: from propulsion to functional signals. Nano Res. 2022;15:5355–5375. doi: 10.1007/s12274-022-4119-7. DOI

Zhou D, Zhuang R, Chang X, Li L. Enhanced light-harvesting efficiency and adaptation: a review on visible-light-driven micro/nanomotors. Research. 2020;2020:6821595. doi: 10.34133/2020/6821595. PubMed DOI PMC

Villa K, Pumera M. Fuel-free light-driven micro/nanomachines: artificial active matter mimicking nature. Chem. Soc. Rev. 2019;48:4966–4978. doi: 10.1039/C9CS00090A. PubMed DOI

Kong L, Mayorga-Martinez CC, Guan J, Pumera M. Photocatalytic micromotors activated by UV to visible light for environmental remediation, micropumps, reversible assembly, transportation, and biomimicry. Small. 2020;16:1903179. doi: 10.1002/smll.201903179. PubMed DOI

Oral CM, Ussia M, Yavuz DK, Pumera M. Shape engineering of TiO2 microrobots for “on-the-fly” optical brake. Small. 2022;18:2106271. doi: 10.1002/smll.202106271. PubMed DOI

Wu Y, Dong R, Zhang Q, Ren B. Dye-enhanced self-electrophoretic propulsion of light-driven TiO2–Au Janus micromotors. Nanomicro Lett. 2017;9:30. PubMed PMC

Chattopadhyay, P., Heckel, S., Pereira, F. I. & Simmchen, J. A path toward inherently asymmetric micromotors. Adv. Intell. Syst. 2200091 (2022).

Chen XZ, et al. Recent developments in magnetically driven micro- and nanorobots. Appl. Mater. Today. 2017;9:37–48. doi: 10.1016/j.apmt.2017.04.006. DOI

Zhou H, Mayorga-Martinez CC, Pané S, Zhang L, Pumera M. Magnetically driven micro and nanorobots. Chem. Rev. 2021;121:4999–5041. doi: 10.1021/acs.chemrev.0c01234. PubMed DOI PMC

Wang X, et al. MOFBOTS: metal–organic-framework-based biomedical microrobots. Adv. Mater. 2019;31:1901592. doi: 10.1002/adma.201901592. PubMed DOI

Sitti M, Wiersma DS. Pros and cons: magnetic versus optical microrobots. Adv. Mater. 2020;32:1906766. doi: 10.1002/adma.201906766. PubMed DOI

Yang Q, et al. Recent advances in motion control of micro/nanomotors. Adv. Intell. Syst. 2020;2:2000049. doi: 10.1002/aisy.202000049. DOI

Li J, Mayorga-Martinez CC, Ohl CD, Pumera M. Ultrasonically propelled micro- and nanorobots. Adv. Funct. Mater. 2022;32:2102265. doi: 10.1002/adfm.202102265. DOI

Rao KJ, et al. A force to be reckoned with: a review of synthetic microswimmers powered by ultrasound. Small. 2015;11:2836–2846. doi: 10.1002/smll.201403621. PubMed DOI

Xu T, Xu LP, Zhang X. Ultrasound propulsion of micro-/nanomotors. Appl. Mater. Today. 2017;9:493–503. doi: 10.1016/j.apmt.2017.07.011. DOI

Li D, et al. Single-metal hybrid micromotor. Front. Bioeng. Biotechnol. 2022;10:844328. doi: 10.3389/fbioe.2022.844328. PubMed DOI PMC

Esteban-Fernández De Ávila B, et al. Acoustically propelled nanomotors for intracellular siRNA delivery. ACS Nano. 2016;10:4997–5005. doi: 10.1021/acsnano.6b01415. PubMed DOI

Esteban-Fernández De Ávila B, et al. Single cell real-time miRNAs sensing based on nanomotors. ACS Nano. 2015;9:6756–6764. doi: 10.1021/acsnano.5b02807. PubMed DOI

Yang J, et al. Three-dimensional hierarchical HRP-MIL-100(Fe)@TiO2@Fe3O4 Janus magnetic micromotor as a smart active platform for detection and degradation of hydroquinone. ACS Appl. Mater. Interfaces. 2022;14:6484–6498. doi: 10.1021/acsami.1c18086. PubMed DOI

Huang Y, et al. Magnetic-controlled dandelion-like nanocatalytic swarm for targeted biofilm elimination. Nanoscale. 2022;14:6497–6506. doi: 10.1039/D2NR00765G. PubMed DOI

Muñoz J, Urso M, Pumera M. Self-propelled multifunctional microrobots harboring chiral supramolecular selectors for “enantiorecognition-on-the-fly”. Angew. Chem. Int. Ed. 2022;61:e202116090. PubMed PMC

Li Y, et al. Biohybrid bacterial microswimmers with metal–organic framework exoskeletons enable cytoprotection and active drug delivery in a harsh environment. Mater. Today Chem. 2022;23:100609. doi: 10.1016/j.mtchem.2021.100609. DOI

Urso M, Pumera M. Micro- and nanorobots meet DNA. Adv. Funct. Mater. 2022;32:2200711. doi: 10.1002/adfm.202200711. DOI

Wang J. Will future microbots be task-specific customized machines or multi-purpose “all in one” vehicles? Nat. Commun. 2021;12:7125. doi: 10.1038/s41467-021-26675-0. PubMed DOI PMC

Mattingly HH, Kamino K, Machta BB, Emonet T. Escherichia coli chemotaxis is information limited. Nat. Phys. 2021;17:1426–1431. doi: 10.1038/s41567-021-01380-3. PubMed DOI PMC

Giometto A, Altermatt F, Maritan A, Stocker R, Rinaldo A. Generalized receptor law governs phototaxis in the phytoplankton Euglena gracilis. Proc. Natl Acad. Sci. USA. 2015;112:7045–7050. doi: 10.1073/pnas.1422922112. PubMed DOI PMC

Gao C, Feng Y, Wilson DA, Tu Y, Peng F. Micro–nano motors with taxis behavior: principles, designs, and biomedical applications. Small. 2022;18:2106263. doi: 10.1002/smll.202106263. PubMed DOI

You M, Chen C, Xu L, Mou F, Guan J. Intelligent micro/nanomotors with taxis. Acc. Chem. Res. 2018;51:3006–3014. doi: 10.1021/acs.accounts.8b00291. PubMed DOI

Ye Y, et al. Apoptotic tumor DNA activated nanomotor chemotaxis. Nano Lett. 2021;21:8086–8094. doi: 10.1021/acs.nanolett.1c02441. PubMed DOI

Xu D, et al. Enzyme-powered liquid metal nanobots endowed with multiple biomedical functions. ACS Nano. 2021;15:11543–11554. doi: 10.1021/acsnano.1c01573. PubMed DOI

Frank BD, Baryzewska AW, Giusto P, Seeberger PH, Zeininger L. Reversible morphology-resolved chemotactic actuation and motion of Janus emulsion droplets. Nat. Commun. 2022;13:2562. doi: 10.1038/s41467-022-30229-3. PubMed DOI PMC

Cao S, et al. Photoactivated nanomotors via aggregation induced emission for enhanced phototherapy. Nat. Commun. 2021;12:2077. doi: 10.1038/s41467-021-22279-w. PubMed DOI PMC

Lin G, et al. Programmable phototaxis of metal–phenolic particle microswimmers. Adv. Mater. 2021;33:2006177. doi: 10.1002/adma.202006177. PubMed DOI

He X, et al. Dipole-moment induced phototaxis and fuel-free propulsion of ZnO/Pt Janus micromotors. Small. 2021;17:2101388. doi: 10.1002/smll.202101388. PubMed DOI

Dai B, et al. Programmable artificial phototactic microswimmer. Nat. Nanotechnol. 2016;11:1087–1092. doi: 10.1038/nnano.2016.187. PubMed DOI

Zhang J, et al. Photochemical micromotor of eccentric core in isotropic hollow shell exhibiting multimodal motion behavior. Appl. Mater. Today. 2022;26:101371. doi: 10.1016/j.apmt.2022.101371. DOI

Zhou C, Zhang HP, Tang J, Wang W. Photochemically powered AgCl Janus micromotors as a model system to understand ionic self-diffusiophoresis. Langmuir. 2018;34:3289–3295. doi: 10.1021/acs.langmuir.7b04301. PubMed DOI

Urso M, Ussia M, Novotný F, Pumera M. Trapping and detecting nanoplastics by MXene-derived oxide microrobots. Nat. Commun. 2022;13:3573. doi: 10.1038/s41467-022-31161-2. PubMed DOI PMC

Huang HW, et al. Investigation of magnetotaxis of reconfigurable micro-origami swimmers with competitive and cooperative anisotropy. Adv. Funct. Mater. 2018;28:1802110. doi: 10.1002/adfm.201802110. DOI

Santomauro G, et al. Incorporation of terbium into a microalga leads to magnetotactic swimmers. Adv. Biosyst. 2018;2:1800039. doi: 10.1002/adbi.201800039. DOI

Li Q, et al. Nanoparticle-regulated semiartificial magnetotactic bacteria with tunable magnetic moment and magnetic sensitivity. Small. 2019;15:1900427. doi: 10.1002/smll.201900427. PubMed DOI

Wang H, Pumera M. Coordinated behaviors of artificial micro/nanomachines: from mutual interactions to interactions with the environment. Chem. Soc. Rev. 2020;49:3211–3230. doi: 10.1039/C9CS00877B. PubMed DOI

Yang L, et al. Autonomous environment-adaptive microrobot swarm navigation enabled by deep learning-based real-time distribution planning. Nat. Mach. Intell. 2022;4:480–493. doi: 10.1038/s42256-022-00482-8. DOI

Zhang J, et al. Cooperative transport by flocking phototactic micromotors. Nanoscale Adv. 2021;3:6157–6163. doi: 10.1039/D1NA00641J. PubMed DOI PMC

Chen Z, et al. Visible light-regulated BiVO4-based micromotor with biomimetic ‘predator-bait’ behavior. J. Mater. Sci. 2022;57:4092–4103. doi: 10.1007/s10853-022-06882-w. DOI

Shen Y, et al. Adaptive control of nanomotor swarms for magnetic-field-programmed cancer cell destruction. ACS Nano. 2021;15:20020–20031. doi: 10.1021/acsnano.1c07615. PubMed DOI

Yue H, Chang X, Liu J, Zhou D, Li L. Wheel-like magnetic-driven microswarm with a band-aid imitation for patching up microscale intestinal perforation. ACS Appl. Mater. Interfaces. 2022;14:8743–8752. doi: 10.1021/acsami.1c21352. PubMed DOI

Lu X, et al. Universal control for micromotor swarms with a hybrid sonoelectrode. Small. 2021;17:2104516. doi: 10.1002/smll.202104516. PubMed DOI

Peng X, Urso M, Ussia M, Pumera M. Shape-controlled self-assembly of light-powered microrobots into ordered microchains for cells transport and water remediation. ACS Nano. 2022;16:7615–7625. doi: 10.1021/acsnano.1c11136. PubMed DOI

Gardi G, Ceron S, Wang W, Petersen K, Sitti M. Microrobot collectives with reconfigurable morphologies, behaviors, and functions. Nat. Commun. 2022;13:2239. doi: 10.1038/s41467-022-29882-5. PubMed DOI PMC

Huang L, Moran JL, Wang W. Designing chemical micromotors that communicate — a survey of experiments. JCIS Open. 2021;2:100006. doi: 10.1016/j.jciso.2021.100006. DOI

Cheng Y, et al. Long-range hydrodynamic communication among synthetic self-propelled micromotors. Cell Rep. Phys. Sci. 2022;3:100739. doi: 10.1016/j.xcrp.2022.100739. DOI

Urso M, Pumera M. Nano/microplastics capture and degradation by autonomous nano/microrobots: a perspective. Adv. Funct. Mater. 2022;32:2112120. doi: 10.1002/adfm.202112120. DOI

Shivalkar S, Gautam PK, Chaudhary S, Samanta SK, Sahoo AK. Recent development of autonomously driven micro/nanobots for efficient treatment of polluted water. J. Environ. Manage. 2021;281:111750. doi: 10.1016/j.jenvman.2020.111750. PubMed DOI

Zhou H, Mayorga-Martinez CC, Pumera M. Microplastic removal and degradation by mussel-inspired adhesive magnetic/enzymatic microrobots. Small Methods. 2021;5:2100230. doi: 10.1002/smtd.202100230. PubMed DOI

Wang L, Kaeppler A, Fischer D, Simmchen J. Photocatalytic TiO2 micromotors for removal of microplastics and suspended matter. ACS Appl. Mater. Interfaces. 2019;11:32937–32944. doi: 10.1021/acsami.9b06128. PubMed DOI

Ameta, S. C. in Advanced Oxidation Processes For Wastewater Treatment: Emerging Green Chemical Technology (eds Ameta, S. & Ameta, R.) 1–13 (Elsevier, 2018).

Glaze WH, Kang JW, Chapin DH. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Sci. Eng. 1987;9:335–352. doi: 10.1080/01919518708552148. DOI

Kumar, L. & Bharadvaja, N. Ein Smart Bioremediation Technologies: Microbial Enzymes (ed. Bhatt, P.) 99–118 (Academic, 2019).

Ussia M, et al. Active light-powered antibiofilm ZnO micromotors with chemically programmable properties. Adv. Funct. Mater. 2021;31:2101178. doi: 10.1002/adfm.202101178. DOI

Li J, et al. Water-driven micromotors for rapid photocatalytic degradation of biological and chemical warfare agents. ACS Nano. 2014;8:11118–11125. doi: 10.1021/nn505029k. PubMed DOI

Yuan K, Jurado-Sánchez B, Escarpa A. Dual-propelled lanbiotic based Janus micromotors for selective inactivation of bacterial biofilms. Angew. Chem. Int. Ed. 2021;60:4915–4924. doi: 10.1002/anie.202011617. PubMed DOI

Dong Y, et al. Magnetic microswarm composed of porous nanocatalysts for targeted elimination of biofilm occlusion. ACS Nano. 2021;15:5056–5067. doi: 10.1021/acsnano.0c10010. PubMed DOI

Bhuyan T, et al. Magnetotactic T-budbots to kill-n-clean biofilms. ACS Appl. Mater. Interfaces. 2020;12:43352–43364. doi: 10.1021/acsami.0c08444. PubMed DOI

Chamas A, et al. Degradation rates of plastics in the environment. ACS Sustain. Chem. Eng. 2020;8:3494–3511. doi: 10.1021/acssuschemeng.9b06635. DOI

Mitrano DM, Wick P, Nowack B. Placing nanoplastics in the context of global plastic pollution. Nat. Nanotechnol. 2021;16:491–500. doi: 10.1038/s41565-021-00888-2. PubMed DOI

Leslie HA, et al. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 2022;163:107199. doi: 10.1016/j.envint.2022.107199. PubMed DOI

Sun M, et al. Cooperative recyclable magnetic microsubmarines for oil and microplastics removal from water. Appl. Mater. Today. 2020;20:100682. doi: 10.1016/j.apmt.2020.100682. DOI

Ye H, et al. Magnetically steerable iron oxides-manganese dioxide core–shell micromotors for organic and microplastic removals. J. Colloid Interface Sci. 2021;588:510–521. doi: 10.1016/j.jcis.2020.12.097. PubMed DOI

Villa K, Děkanovský L, Plutnar J, Kosina J, Pumera M. Swarming of perovskite-like Bi2WO6 microrobots destroy textile fibers under visible light. Adv. Funct. Mater. 2020;30:2007073. doi: 10.1002/adfm.202007073. DOI

Beladi-Mousavi SM, Hermanová S, Ying Y, Plutnar J, Pumera M. A maze in plastic wastes: autonomous motile photocatalytic microrobots against microplastics. ACS Appl. Mater. Interfaces. 2021;13:25102–25110. doi: 10.1021/acsami.1c04559. PubMed DOI

Urso M, Ussia M, Pumera M. Breaking polymer chains with self-propelled light-controlled navigable hematite microrobots. Adv. Funct. Mater. 2021;31:2101510. doi: 10.1002/adfm.202101510. DOI

Peng X, et al. Eco-friendly porous iron(iii) oxide micromotors for efficient wastewater cleaning. N. J. Chem. 2019;43:12594–12600. doi: 10.1039/C9NJ02592H. DOI

Dong Y, et al. Graphene-based helical micromotors constructed by ‘microscale liquid rope-coil effect’ with microfluidics. ACS Nano. 2020;14:16600–16613. doi: 10.1021/acsnano.0c07067. PubMed DOI

Terzopoulou A, et al. Biotemplating of metal–organic framework nanocrystals for applications in small-scale robotics. Adv. Funct. Mater. 2022;32:2107421. doi: 10.1002/adfm.202107421. DOI

Ma W, Wang K, Pan S, Wang H. Iron-exchanged zeolite micromotors for enhanced degradation of organic pollutants. Langmuir. 2020;36:6924–6929. doi: 10.1021/acs.langmuir.9b02137. PubMed DOI

Bayraktaroğlu M, Jurado-Sánchez B, Uygun M. Peroxidase driven micromotors for dynamic bioremediation. J. Hazard. Mater. 2021;418:126268. doi: 10.1016/j.jhazmat.2021.126268. PubMed DOI

Oral CM, Ussia M, Pumera M. Self-propelled activated carbon micromotors for ‘on-the-fly’ capture of nitroaromatic explosives. J. Phys. Chem. C. 2021;125:18040–18045. doi: 10.1021/acs.jpcc.1c05136. DOI

Mayorga-Martinez CC, Vyskočil J, Novotný F, Pumera M. Light-driven Ti3C2 MXene micromotors: self-propelled autonomous machines for photodegradation of nitroaromatic explosives. J. Mater. Chem. A. 2021;9:14904–14910. doi: 10.1039/D1TA02256C. DOI

Ma E, Wang K, Hu Z, Wang H. Dual-stimuli-responsive CuS-based micromotors for efficient photo-Fenton degradation of antibiotics. J. Colloid Interface Sci. 2021;603:685–694. doi: 10.1016/j.jcis.2021.06.142. PubMed DOI

Feng, K., Zhang, L., Gong, J., Qu, J. & Niu, R. Visible light triggered exfoliation of COF micro/nanomotors for efficient photocatalysis. Green Energy Environ.10.1016/j.gee.2021.09.002 (2021).

Tesař J, Ussia M, Alduhaish O, Pumera M. Autonomous self-propelled MnO2 micromotors for hormones removal and degradation. Appl. Mater. Today. 2022;26:101312. doi: 10.1016/j.apmt.2021.101312. DOI

Kochergin YS, Villa K, Nemeškalová A, Kuchař M, Pumera M. Hybrid inorganic–organic visible-light-driven microrobots based on donor–acceptor organic polymer for degradation of toxic psychoactive substances. ACS Nano. 2021;15:18458–18468. doi: 10.1021/acsnano.1c08136. PubMed DOI

Soto F, et al. Rotibot: use of rotifers as self-propelling biohybrid microcleaners. Adv. Funct. Mater. 2019;29:1900658. doi: 10.1002/adfm.201900658. DOI

Dekanovsky L, et al. Chemically programmable microrobots weaving a web from hormones. Nat. Mach. Intell. 2020;2:711–718. doi: 10.1038/s42256-020-00248-0. DOI

Peng X, Urso M, Pumera M. Photo-Fenton degradation of nitroaromatic explosives by light-powered hematite microrobots: when higher speed is not what we go for. Small Methods. 2021;5:2100617. doi: 10.1002/smtd.202100617. PubMed DOI

Vilela D, Guix M, Parmar J, Blanco-blanes À, Sánchez S. Micromotor-in-sponge platform for multicycle large-volume degradation of organic pollutants. Small. 2022;18:2107619. doi: 10.1002/smll.202107619. PubMed DOI

Yang J, et al. Micromotor-assisted highly efficient Fenton catalysis by a laccase/Fe–BTC–NiFe2O4 nanozyme hybrid with a 3D hierarchical structure. Environ. Sci. Nano. 2020;7:2573–2583. doi: 10.1039/C9EN01443H. DOI

Uygun M, et al. Dye removal by laccase-functionalized micromotors. Appl. Mater. Today. 2021;23:101045. doi: 10.1016/j.apmt.2021.101045. DOI

Mena-Giraldo P, Orozco J. Photosensitive polymeric Janus micromotor for enzymatic activity protection and enhanced substrate degradation. ACS Appl. Mater. Interfaces. 2022;14:5897–5907. doi: 10.1021/acsami.1c14663. PubMed DOI

Chen L, Wang X, Lu W, Wu X, Li J. Molecular imprinting: perspectives and applications. Chem. Soc. Rev. 2016;45:2137–2211. doi: 10.1039/C6CS00061D. PubMed DOI

Li J, et al. Bioinspired Pt-free molecularly imprinted hydrogel-based magnetic Janus micromotors for temperature-responsive recognition and adsorption of erythromycin in water. Chem. Eng. J. 2019;369:611–620. doi: 10.1016/j.cej.2019.03.101. DOI

Kong L, Ambrosi A, Nasir MZM, Guan J, Pumera M. Self-propelled 3D-printed “aircraft carrier” of light-powered smart micromachines for large-volume nitroaromatic explosives removal. Adv. Funct. Mater. 2019;29:1903872. doi: 10.1002/adfm.201903872. DOI

Xu D, Yuan H, Ma X. Performance of tubular micromotors in real sewage for water treatment: towards a practical scenario. ChemNanoMat. 2021;7:439–442. doi: 10.1002/cnma.202100044. DOI

Fu F, Wang Q. Removal of heavy metal ions from wastewaters: a review. J. Environ. Manage. 2011;92:407–418. doi: 10.1016/j.jenvman.2010.11.011. PubMed DOI

Rehman K, Fatima F, Waheed I, Akash MSH. Prevalence of exposure of heavy metals and their impact on health consequences. J. Cell. Biochem. 2018;119:157–184. doi: 10.1002/jcb.26234. PubMed DOI

Jurado-Sánchez B, et al. Self-propelled activated carbon Janus micromotors for efficient water purification. Small. 2015;11:499–506. doi: 10.1002/smll.201402215. PubMed DOI

Uygun DA, Jurado-Sánchez B, Uygun M, Wang J. Self-propelled chelation platforms for efficient removal of toxic metals. Environ. Sci. Nano. 2016;3:559–566. doi: 10.1039/C6EN00043F. DOI

Maric T, et al. Nanorobots constructed from nanoclay: using nature to create self-propelled autonomous nanomachines. Adv. Funct. Mater. 2018;28:1802762. doi: 10.1002/adfm.201802762. DOI

Maric T, et al. Microrobots derived from variety plant pollen grains for efficient environmental clean up and as an anti-cancer drug carrier. Adv. Funct. Mater. 2020;30:2000112. doi: 10.1002/adfm.202000112. DOI

Yang W, et al. Bioinspired 3D hierarchical BSA-NiCo2O4@MnO2/C multifunctional micromotors for simultaneous spectrophotometric determination of enzyme activity and pollutant removal. J. Clean. Prod. 2021;309:127294. doi: 10.1016/j.jclepro.2021.127294. DOI

Gong D, Li B, Celi N, Cai J, Zhang D. Efficient removal of Pb(ii) from aqueous systems using spirulina-based biohybrid magnetic helical microrobots. ACS Appl. Mater. Interfaces. 2021;13:53131–53142. doi: 10.1021/acsami.1c18435. PubMed DOI

Villa K, Manzanares Palenzuela CL, Sofer Z, Matějková S, Pumera M. Metal-free visible-light photoactivated C3N4 bubble-propelled tubular micromotors with inherent fluorescence and on/off capabilities. ACS Nano. 2018;12:12482–12491. doi: 10.1021/acsnano.8b06914. PubMed DOI

Zhang D, et al. One-step synthesis of PCL/Mg Janus micromotor for precious metal ion sensing, removal and recycling. J. Mater. Sci. 2019;54:7322–7332. doi: 10.1007/s10853-019-03390-2. DOI

Qiu B, et al. Interfacially super-assembled asymmetric and H2O2 sensitive multilayer-sandwich magnetic mesoporous silica nanomotors for detecting and removing heavy metal ions. Adv. Funct. Mater. 2021;31:2010694. doi: 10.1002/adfm.202010694. DOI

Ying Y, Pourrahimi AM, Sofer Z, Matějková S, Pumera M. Radioactive uranium preconcentration via self-propelled autonomous microrobots based on metal–organic frameworks. ACS Nano. 2019;13:11477–11487. doi: 10.1021/acsnano.9b04960. PubMed DOI

Guo Z, et al. Biocatalytic metal–organic framework nanomotors for active water decontamination. Chem. Commun. 2020;56:14837–14840. doi: 10.1039/D0CC06429G. PubMed DOI

Hou T, et al. Effective removal of inorganic and organic heavy metal pollutants with poly(amino acid)-based micromotors. Nanoscale. 2020;12:5227–5232. doi: 10.1039/C9NR09813E. PubMed DOI

Wang H, Khezri B, Pumera M. Catalytic DNA-functionalized self-propelled micromachines for environmental remediation. Chem. 2016;1:473–481. doi: 10.1016/j.chempr.2016.08.009. DOI

Lee Y, et al. Sulfur-encapsulated zeolite micromotors for the selective removal of cesium from high-salt water with accelerated cleanup times. Chemosphere. 2021;276:130190. doi: 10.1016/j.chemosphere.2021.130190. PubMed DOI

Park CW, Kim T, Yang HM, Lee Y, Kim HJ. Active and selective removal of Cs from contaminated water by self-propelled magnetic illite microspheres. J. Hazard. Mater. 2021;416:126226. doi: 10.1016/j.jhazmat.2021.126226. PubMed DOI

Vaghasiya JV, Mayorga-Martinez CC, Matějková S, Pumera M. Pick up and dispose of pollutants from water via temperature-responsive micellar copolymers on magnetite nanorobots. Nat. Commun. 2022;13:1026. doi: 10.1038/s41467-022-28406-5. PubMed DOI PMC

Beladi-Mousavi SM, Khezri B, Matějková S, Sofer Z, Pumera M. Supercapacitors in motion: autonomous microswimmers for natural-resource recovery. Angew. Chem. Int. Ed. 2019;58:13340–13344. doi: 10.1002/anie.201906642. PubMed DOI

Mishra S, Chauhan G, Verma S, Singh U. The emergence of nanotechnology in mitigating petroleum oil spills. Mar. Pollut. Bull. 2022;178:113609. doi: 10.1016/j.marpolbul.2022.113609. PubMed DOI

Guix M, et al. Superhydrophobic alkanethiol-coated microsubmarines for effective removal of oil. ACS Nano. 2012;6:4445–4451. doi: 10.1021/nn301175b. PubMed DOI

Gao W, et al. Seawater-driven magnesium based Janus micromotors for environmental remediation. Nanoscale. 2013;5:4696–4700. doi: 10.1039/c3nr01458d. PubMed DOI

Su Y, et al. Bubble-propelled hierarchical porous micromotors from evolved double emulsions. Ind. Eng. Chem. Res. 2019;58:1590–1600. doi: 10.1021/acs.iecr.8b05791. DOI

Wang D, et al. One-step fabrication of dual optically/magnetically modulated walnut-like micromotor. Langmuir. 2019;35:2801–2807. doi: 10.1021/acs.langmuir.8b02904. PubMed DOI

Ma W, Wang H. Magnetically driven motile superhydrophobic sponges for efficient oil removal. Appl. Mater. Today. 2019;15:263–266. doi: 10.1016/j.apmt.2019.02.004. DOI

Wang L, Hortelão AC, Huang X, Sánchez S. Lipase-powered mesoporous silica nanomotors for triglyceride degradation. Angew. Chem. Int. Ed. 2019;58:7992–7996. doi: 10.1002/anie.201900697. PubMed DOI

Wang L, et al. Enzyme conformation influences the performance of lipase-powered nanomotors research articles. Angew. Chem. Int. Ed. 2020;59:21080–21087. doi: 10.1002/anie.202008339. PubMed DOI

Xing Y, Tang S, Du X, Xu T, Zhang X. Near-infrared light-driven yolk@shell carbon@silica nanomotors for fuel-free triglyceride degradation. Nano Res. 2021;14:654–659. doi: 10.1007/s12274-020-3092-2. DOI

Some S, et al. Microbial pollution of water with special reference to coliform bacteria and their nexus with environment. Energy Nexus. 2021;1:100008. doi: 10.1016/j.nexus.2021.100008. DOI

Ciofu O, Moser C, Jensen PØ, Høiby N. Tolerance and resistance of microbial biofilms. Nat. Rev. Microbiol. 2022;20:621–635. doi: 10.1038/s41579-022-00682-4. PubMed DOI

Paruch L, Paruch AM, Eiken HG, Sørheim R. Faecal pollution affects abundance and diversity of aquatic microbial community in anthropo-zoogenically influenced lotic ecosystems. Sci. Rep. 2019;9:19469. doi: 10.1038/s41598-019-56058-x. PubMed DOI PMC

Clayton GE, Thorn RMS, Reynolds DM. The efficacy of chlorine-based disinfectants against planktonic and biofilm bacteria for decentralised point-of-use drinking water. npj Clean Water. 2021;4:48. doi: 10.1038/s41545-021-00139-w. DOI

Qiu W, et al. Remediation of surface water contaminated by pathogenic microorganisms using calcium peroxide: matrix effect, micro-mechanisms and morphological–physiological changes. Water Res. 2022;211:118074. doi: 10.1016/j.watres.2022.118074. PubMed DOI

Zhang Z, et al. Micro-/nanorobots in antimicrobial applications: recent progress, challenges, and opportunities. Adv. Healthc. Mater. 2022;11:2101991. doi: 10.1002/adhm.202101991. PubMed DOI

Hwang G, et al. Catalytic antimicrobial robots for biofilm eradication. Sci. Robot. 2019;4:aaw2388. doi: 10.1126/scirobotics.aaw2388. PubMed DOI PMC

Zheng C, et al. Spirulina-templated porous hollow carbon@magnetite core-shell microswimmers. Appl. Mater. Today. 2021;22:100962. doi: 10.1016/j.apmt.2021.100962. DOI

Ussia M, et al. Light-propelled nanorobots for facial titanium implants biofilms removal. Small. 2022;18:e2200708. doi: 10.1002/smll.202200708. PubMed DOI

Villa K, et al. Visible-light-driven single-component BiVO4 micromotors with the autonomous ability for capturing microorganisms. ACS Nano. 2019;13:8135–8145. doi: 10.1021/acsnano.9b03184. PubMed DOI

Zhang F, et al. ACE2 receptor-modified algae-based microrobot for removal of SARS-CoV-2 in wastewater. J. Am. Chem. Soc. 2021;143:12194–12201. doi: 10.1021/jacs.1c04933. PubMed DOI

Moran JL, Posner JD. Role of solution conductivity in reaction induced charge auto-electrophoresis. Phys. Fluids. 2014;26:042001. doi: 10.1063/1.4869328. DOI

Xiao Z, et al. Synergistic speed enhancement of an electric-photochemical hybrid micromotor by tilt rectification. ACS Nano. 2020;14:8658–8667. doi: 10.1021/acsnano.0c03022. PubMed DOI

Oral CM, Ussia M, Pumera M. Hybrid enzymatic/photocatalytic degradation of antibiotics via morphologically programmable light-driven ZnO microrobots. Small. 2022;18:2202600. doi: 10.1002/smll.202202600. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...