On-the-Fly Monitoring of the Capture and Removal of Nanoplastics with Nanorobots
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39184834
PubMed Central
PMC11342339
DOI
10.1021/acsnanoscienceau.4c00002
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Nanoplastics are considered an emerging organic persistent pollutant with possible severe long-term implications for the environment and human health; therefore, their remediation is of paramount importance. However, detecting and determining the concentration of nanoparticles in water is challenging and time-consuming due to their small size. In this work, we present a universal yet simple method for the detection and quantification of nanoplastics to monitor their removal from water using magnetic nanorobots. Nanoplastics were stained with a hydrophobic fluorescent dye to enable the use of photoluminescence techniques for their detection and quantification. Magnetic nanorobotic tools were employed to capture and subsequently remove the nanoplastics from contaminated waters. We demonstrated that nanorobots can capture and remove more than 90% of the nanoplastics from an aqueous solution within 120 min. This work shows that easy-to-use common fluorescent dyes combined with photoluminescence spectroscopy methods can be used as an alternative method for the detection and quantification of nanoplastics in water environments and swarming magnetic nanorobots for efficient capture and removal. These methods hold great potential for future research to improve the quantification and removal of nanoplastics in water, and it will ultimately reduce their harmful impact on the environment and human health.
Zobrazit více v PubMed
Hartmann N. B.; Huffer T.; Thompson R. C.; Hassselov M.; Verschoor A.; Daugaard A. E.; Rist S.; Karlsson T.; Brennholt N.; Cole M.; et al. Are We Speaking the Same Language? Recommendations for a Definition and Categorization Framework for Plastic Debris. Environ. Sci. Technol. 2019, 53 (3), 1039–1047. 10.1021/acs.est.8b05297. PubMed DOI
Auta H. S.; Emenike C. U.; Fauziah S. H. Distribution and Importance of Microplastics in the Marine Environment: A Review of the Sources, Fate, Effects, and Potential Solutions. Environ. Int. 2017, 102, 165–176. 10.1016/j.envint.2017.02.013. PubMed DOI
Schwab F.; Rothen-Rutishauser B.; Scherz A.; Meyer T.; Begüm Karakoçar B.; Petri-Fink A. The Need for Awareness and Action in Managing Nanowaste. Nat. Nanotechnol. 2023, 18, 317–321. 10.1038/s41565-023-01331-4. PubMed DOI PMC
An D.; Materić M.; Kasper-Giebl A.; Kau D.; Anten M.; Greilinger M.; Ludewig E.; Van Sebille E.; Rö T.; Holzinger R. Micro-and Nanoplastics in Alpine Snow: A New Method for Chemical Identification and (Semi)Quantification in the Nanogram Range. Environ. Sci. Technol. 2020, 54 (4), 2353–2359. 10.1021/acs.est.9b07540. PubMed DOI PMC
Pabortsava K.; Lampitt R. S. High Concentrations of Plastic Hidden beneath the Surface of the Atlantic Ocean. Nat. Commun. 2020, 11, 4073.10.1038/s41467-020-17932-9. PubMed DOI PMC
Huang Y.; Ding J.; Zhang G.; Liu S.; Zou H.; Wang Z.; Zhu W.; Geng J. Interactive Effects of Microplastics and Selected Pharmaceuticals on Red Tilapia: Role of Microplastic Aging. Science of The Total Environment 2021, 752, 14225610.1016/j.scitotenv.2020.142256. PubMed DOI
Keys B. C.; Grant M. L.; Rodemann T.; Mylius K. A.; Pinfold T. L.; Rivers-Auty J.; Lavers J. L. New Methods for the Quantification of Ingested Nano- and Ultrafine Plastics in Seabirds. Environ. Sci. Technol. 2023, 57 (1), 310–320. 10.1021/acs.est.2c06973. PubMed DOI
Ragusa A.; Svelato A.; Santacroce C.; Catalano P.; Notarstefano V.; Carnevali O.; Papa F.; Rongioletti M. C. A.; Baiocco F.; Draghi S.; D’Amore E.; Rinaldo D.; Matta M.; Giorgini E. Plasticenta: First Evidence of Microplastics in Human Placenta. Environ. Int. 2021, 146, 10627410.1016/j.envint.2020.106274. PubMed DOI
Leslie H. A.; Van Velzen M. J.; Brandsma S. H.; Vethaak A. D.; Garcia-Vallejo J. J.; Lamoree M. H. Discovery and Quantification of Plastic Particle Pollution in Human Blood. Environ. Int. 2022, 163, 10719910.1016/j.envint.2022.107199. PubMed DOI
Materić D.; Holzinger R.; Niemann H. Nanoplastics and Ultrafine Microplastic in the Dutch Wadden Sea – The Hidden Plastics Debris?. Science of The Total Environment 2022, 846, 15737110.1016/j.scitotenv.2022.157371. PubMed DOI
Barbosa F.; Adeyemi J. A.; Bocato M. Z.; Comas A.; Campiglia A. A Critical Viewpoint on Current Issues, Limitations, and Future Research Needs on Micro- and Nanoplastic Studies: From the Detection to the Toxicological Assessment. Environ. Res. 2020, 182, 10908910.1016/j.envres.2019.109089. PubMed DOI
Yakovenko N.; Carvalho A.; ter Halle A. Emerging Use Thermo-Analytical Method Coupled with Mass Spectrometry for the Quantification of Micro(Nano)Plastics in Environmental Samples. TrAC Trends in Analytical Chemistry 2020, 131, 11597910.1016/j.trac.2020.115979. DOI
Picó Y.; Barceló D. Pyrolysis Gas Chromatography-Mass Spectrometry in Environmental Analysis: Focus on Organic Matter and Microplastics. TrAC Trends in Analytical Chemistry 2020, 130, 11596410.1016/j.trac.2020.115964. DOI
Yu E.-S.; Jeong T.; Lee S.; Kim I. S.; Chung S.; Han S.; Choi I.; Ryu Y.-S. Real-Time Underwater Nanoplastic Detection beyond the Diffusion Limit and Low Raman Scattering Cross-Section via Electro-Photonic Tweezers. ACS Nano 2023, 17 (3), 2114–2123. 10.1021/acsnano.2c07933. PubMed DOI
Zhou X. X.; Liu R.; Hao L. T.; Liu J. F. Identification of Polystyrene Nanoplastics Using Surface Enhanced Raman Spectroscopy. Talanta 2021, 221, 12155210.1016/j.talanta.2020.121552. PubMed DOI
Prata J. C.; Paço A.; Reis V.; da Costa J. P.; Fernandes A. J. S.; da Costa F. M.; Duarte A. C.; Rocha-Santos T. Identification of Microplastics in White Wines Capped with Polyethylene Stoppers Using Micro-Raman Spectroscopy. Food Chem. 2020, 331, 12732310.1016/j.foodchem.2020.127323. PubMed DOI
Corami F.; Rosso B.; Bravo B.; Gambaro A.; Barbante C. A Novel Method for Purification, Quantitative Analysis and Characterization of Microplastic Fibers Using Micro-FTIR. Chemosphere 2020, 238, 12456410.1016/j.chemosphere.2019.124564. PubMed DOI
Shim W. J.; Song Y. K.; Hong S. H.; Jang M. Identification and Quantification of Microplastics Using Nile Red Staining. Mar. Pollut. Bull. 2016, 113 (1–2), 469–476. 10.1016/j.marpolbul.2016.10.049. PubMed DOI
Erni-Cassola G.; Gibson M. I.; Thompson R. C.; Christie-Oleza J. A. Lost, but Found with Nile Red: A Novel Method for Detecting and Quantifying Small Microplastics (1 Mm to 20 Μm) in Environmental Samples. Environ. Sci. Technol. 2017, 51 (23), 13641–13648. 10.1021/acs.est.7b04512. PubMed DOI
Sancataldo G.; Ferrara V.; Bonomo F. P.; Chillura Martino D. F.; Licciardi M.; Pignataro B. G.; Vetri V. Identification of Microplastics Using 4-Dimethylamino-4′-Nitrostilbene Solvatochromic Fluorescence. Microsc Res. Tech 2021, 84 (12), 2820–2831. 10.1002/jemt.23841. PubMed DOI PMC
Prata J. C.; Reis V.; Matos J. T. V.; da Costa J. P.; Duarte A. C.; Rocha-Santos T. A New Approach for Routine Quantification of Microplastics Using Nile Red and Automated Software (MP-VAT). Science of The Total Environment 2019, 690, 1277–1283. 10.1016/j.scitotenv.2019.07.060. PubMed DOI
Gagné F.; Auclair J.; Quinn B. Detection of Polystyrene Nanoplastics in Biological Samples Based on the Solvatochromic Properties of Nile Red: Application in Hydra Attenuata Exposed to Nanoplastics. Environmental Science and Pollution Research 2019, 26 (32), 33524–33531. 10.1007/s11356-019-06501-3. PubMed DOI
Bianco A.; Carena L.; Peitsaro N.; Sordello F.; Vione D.; Passananti M. Rapid Detection of Nanoplastics and Small Microplastics by Nile-Red Staining and Flow Cytometry. Environ. Chem. Lett. 2023, 21 (2), 647–653. 10.1007/s10311-022-01545-3. DOI
Shan Z.; Lu M.; Curry D. E.; Beale S.; Campbell S.; Poduska K. M.; Bennett C.; Oakes K. D.; Zhang X. Regenerative Nanobots Based on Magnetic Layered Double Hydroxide for Azo Dye Removal and Degradation. Chem. Commun. 2017, 53 (75), 10456–10458. 10.1039/C7CC05081J. PubMed DOI
Mushtaq F.; Chen X.; Torlakcik H.; Nelson B. J.; Pané S. Enhanced Catalytic Degradation of Organic Pollutants by Multi-Stimuli Activated Multiferroic Nanoarchitectures. Nano Res. 2020, 13, 2183–2191. 10.1007/s12274-020-2829-2. DOI
Jancik-Prochazkova A.; Mayorga-Martinez C. C.; Vyskočil J.; Pumera M. Swarming Magnetically Navigated Indigo-Based Hydrophobic Microrobots for Oil Removal. ACS Appl. Mater. Interfaces 2022, 14 (40), 45545–45552. 10.1021/acsami.2c09527. PubMed DOI
Guix M.; Orozco J.; Garcia M.; Gao W.; Sattayasamitsathit S.; Merkoči A.; Escarpa A.; Wang J. Superhydrophobic Alkanethiol-Coated Microsubmarines for Effective Removal of Oil. ACS Nano 2012, 6 (5), 4445–4451. 10.1021/nn301175b. PubMed DOI
Vaghasiya J. V.; Mayorga-Martinez C. C.; Matějková S.; Pumera M. Pick up and Dispose of Pollutants from Water via Temperature-Responsive Micellar Copolymers on Magnetite Nanorobots. Nat. Commun. 2022, 13 (1), 1–10. 10.1038/s41467-022-28406-5. PubMed DOI PMC
Tang Q.; Wu J.; Kim D.; Franco C.; Terzopoulou A.; Veciana A.; Puigmartí-Luis J.; Chen X. Z.; Nelson B. J.; Pané S. Enhanced Piezocatalytic Performance of BaTiO3 Nanosheets with Highly Exposed {001} Facets. Adv. Funct Mater. 2022, 32 (35), 2202180.10.1002/adfm.202202180. DOI
Dong Y.; Wang L.; Yuan K.; Ji F.; Gao J.; Zhang Z.; Du X.; Tian Y.; Wang Q.; Zhang L. Magnetic Microswarm Composed of Porous Nanocatalysts for Targeted Elimination of Biofilm Occlusion. ACS Nano 2021, 15 (3), 5056–5067. 10.1021/acsnano.0c10010. PubMed DOI
Urso M.; Ussia M.; Pumera M. Breaking Polymer Chains with Self-Propelled Light-Controlled Navigable Hematite Microrobots. Adv. Funct Mater. 2021, 31 (28), 2101510.10.1002/adfm.202101510. DOI
Zhou H.; Mayorga-Martinez C. C.; Pumera M. Microplastic Removal and Degradation by Mussel-Inspired Adhesive Magnetic/Enzymatic Microrobots. Small Methods 2021, 5 (9), 2100230.10.1002/smtd.202100230. PubMed DOI
Won S.; Lee H. E.; Cho Y. S.; Yang K.; Park J. E.; Yang S. J.; Wie J. J. Multimodal Collective Swimming of Magnetically Articulated Modular Nanocomposite Robots. Nat. Commun. 2022, 13 (1), 1–11. 10.1038/s41467-022-34430-2. PubMed DOI PMC
Urso M.; Ussia M.; Pumera M. Smart Micro- and Nanorobots for Water Purification. Nature Reviews Bioengineering 2023, 1 (4), 236–251. 10.1038/s44222-023-00025-9. PubMed DOI PMC
Li W.; Wang J.; Xiong Z.; Li D. Micro/Nanorobots for Efficient Removal and Degradation of Micro/Nanoplastics. Cell Rep. Phys. Sci. 2023, 4 (11), 10163910.1016/j.xcrp.2023.101639. DOI
Li J.; Mayorga-Martinez C. C.; Ohl C. D.; Pumera M. Ultrasonically Propelled Micro- and Nanorobots. Adv. Funct Mater. 2022, 32 (5), 2102265.10.1002/adfm.202102265. DOI
Terzopoulou A.; Nicholas J. D.; Chen X. Z.; Nelson B. J.; Pane S.; Puigmartí-Luis J. Metal–organic Frameworks in Motion. Chem. Rev. 2020, 120 (20), 11175–11193. 10.1021/acs.chemrev.0c00535. PubMed DOI
Chen X. Z.; Jang B.; Ahmed D.; Hu C.; De Marco C.; Hoop M.; Mushtaq F.; Nelson B. J.; Pané S. Small-Scale Machines Driven by External Power Sources. Adv. Mater. 2018, 30 (15), 1705061.10.1002/adma.201705061. PubMed DOI
Shi X.; Zhang X.; Gao W.; Zhang Y.; He D. Removal of Microplastics from Water by Magnetic Nano-Fe3O4. Science of The Total Environment 2022, 802, 14983810.1016/j.scitotenv.2021.149838. PubMed DOI
Beladi-Mousavi S. M.; Hermanova S.; Ying Y.; Plutnar J.; Pumera M. A Maze in Plastic Wastes: Autonomous Motile Photocatalytic Microrobots against Microplastics. ACS Appl. Mater. Interfaces 2021, 13 (21), 25102–25110. 10.1021/acsami.1c04559. PubMed DOI
Li W.; Wu C.; Xiong Z.; Liang C.; Li Z.; Liu B.; Cao Q.; Wang J.; Tang J.; Li D. Self-Driven Magnetorobots for Recyclable and Scalable Micro/Nanoplastic Removal from Nonmarine Waters. Sci. Adv. 2022, 8 (45), eade173110.1126/SCIADV.ADE1731. PubMed DOI PMC
Hanif M. A.; Ibrahim N.; Dahalan F. A.; Md Ali U. F.; Hasan M.; Jalil A. A. Microplastics and Nanoplastics: Recent Literature Studies and Patents on Their Removal from Aqueous Environment. Science of The Total Environment 2022, 810, 15211510.1016/j.scitotenv.2021.152115. PubMed DOI
Yang Z.; Zhang L. Magnetic Actuation Systems for Miniature Robots: A Review. Advanced Intelligent Systems 2020, 2 (9), 2000082.10.1002/aisy.202000082. DOI
Vyskočil J.; Mayorga-Martinez C. C.; Jablonská E. J.; Novotný F.; Tomáš N.; Ruml T.; Pumera M. Cancer Cells Microsurgery via Asymmetric Bent Surface Au/Ag/Ni Microrobotic Scalpels Through a Transversal Rotating Magnetic Field. ACS Nano 2020, 14 (7), 8247–8256. 10.1021/acsnano.0c01705. PubMed DOI
Kim J.; Mayorga-Martinez C. C.; Pumera M. Magnetically Boosted 1D Photoactive Microswarm for COVID-19 Face Mask Disruption. Nat. Commun. 2023, 14 (1), 935.10.1038/s41467-023-36650-6. PubMed DOI PMC
Li P.; Zou X.; Wang X.; Su M.; Chen C.; Sun X.; Zhang H. A Preliminary Study of the Interactions between Microplastics and Citrate-Coated Silver Nanoparticles in Aquatic Environments. J. Hazard Mater. 2020, 385, 12160110.1016/j.jhazmat.2019.121601. PubMed DOI
Zandieh M.; Liu J. Removal and Degradation of Microplastics Using the Magnetic and Nanozyme Activities of Bare Iron Oxide Nanoaggregates. Angew. Chem., Int. Ed. 2022, 61 (47), 202212013.10.1002/anie.202212013. PubMed DOI
Sarcletti M.; Park H.; Wirth J.; Englisch S.; Eigen A.; Drobek D.; Vivod D.; Friedrich B.; Tietze R.; Alexiou C.; Zahn D.; Apeleo Zubiri B.; Spiecker E.; Halik M. The Remediation of Nano-/Microplastics from Water. Mater. Today 2021, 48, 38–46. 10.1016/j.mattod.2021.02.020. DOI
Zhou G.; Huang X.; Xu H.; Wang Q.; Wang M.; Wang Y.; Li Q.; Zhang Y.; Ye Q.; Zhang J. Removal of Polystyrene Nanoplastics from Water by CuNi Carbon Material: The Role of Adsorption. Science of The Total Environment 2022, 820, 15319010.1016/j.scitotenv.2022.153190. PubMed DOI
Egerton R. F.Physical Principles of Electron Microscopy. In Physical Principles of Electron Microscopy; Springer: Cham, 2016; pp. 121–147.
Greenspan P.; Mayer E. P.; Fowler S. D. Nile Red: A Selective Fluorescent Stain for Intracellular Lipid Droplets. J. Cell Biol. 1985, 100 (3), 965–973. 10.1083/jcb.100.3.965. PubMed DOI PMC
Wang L.; Kaeppler A.; Fischer D.; Simmchen J. Photocatalytic TiO2Micromotors for Removal of Microplastics and Suspended Matter. ACS Appl. Mater. Interfaces 2019, 11 (36), 32937–32944. 10.1021/acsami.9b06128. PubMed DOI
Grbic J.; Nguyen B.; Guo E.; You J. B.; Sinton D.; Rochman C. M. Magnetic Extraction of Microplastics from Environmental Samples. Environ. Sci. Technol. Lett. 2019, 6 (2), 68–72. 10.1021/acs.estlett.8b00671. DOI
Sun M.; Chen W.; Fan X.; Tian C.; Sun L.; Xie H. Cooperative Recyclable Magnetic Microsubmarines for Oil and Microplastics Removal from Water. Appl. Mater. Today 2020, 20, 10068210.1016/j.apmt.2020.100682. DOI