Magnetically boosted 1D photoactive microswarm for COVID-19 face mask disruption
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
36804569
PubMed Central
PMC9939864
DOI
10.1038/s41467-023-36650-6
PII: 10.1038/s41467-023-36650-6
Knihovny.cz E-resources
- MeSH
- COVID-19 * prevention & control MeSH
- Humans MeSH
- Masks * MeSH
- Pandemics prevention & control MeSH
- Plastics MeSH
- Polypropylenes MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Plastics MeSH
- Polypropylenes MeSH
The recent COVID-19 pandemic has resulted in the massive discard of pandemic-related plastic wastes, causing serious ecological harm and a high societal burden. Most single-use face masks are made of synthetic plastics, thus their careless disposal poses a direct threat to wildlife as well as potential ecotoxicological effects in the form of microplastics. Here, we introduce a 1D magnetic photoactive microswarm capable of actively navigating, adhering to, and accelerating the degradation of the polypropylene microfiber of COVID-19 face masks. 1D microrobots comprise an anisotropic magnetic core (Fe3O4) and photocatalytic shell (Bi2O3/Ag), which enable wireless magnetic maneuvering and visible-light photocatalysis. The actuation of a programmed rotating magnetic field triggers a fish schooling-like 1D microswarm that allows active interfacial interactions with the microfiber network. The follow-up light illumination accelerates the disruption of the polypropylene microfiber through the photo-oxidative process as corroborated by morphological, compositional, and structural analyses. The active magnetic photocatalyst microswarm suggests an intriguing microrobotic solution to treat various plastic wastes and other environmental pollutants.
See more in PubMed
Selvaranjan K, Navaratnam S, Rajeev P, Ravintherakumaran N. Environmental challenges induced by extensive use of face masks during COVID-19: a review and potential solutions. Environ. Chall. 2021;3:100039. doi: 10.1016/j.envc.2021.100039. PubMed DOI PMC
Silva ALP, et al. Risks of COVID-19 face masks to wildlife: present and future research needs. Sci. Total Environ. 2021;792:148505. doi: 10.1016/j.scitotenv.2021.148505. PubMed DOI PMC
Peng Y, Wu P, Schartup AT, Zhang Y. Plastic waste release caused by COVID-19 and its fate in the global ocean. Proc. Natl Acad. Sci. USA. 2021;118:e2111530118. doi: 10.1073/pnas.2111530118. PubMed DOI PMC
Prata JC, Silva AL, Walker TR, Duarte AC, Rocha-Santos T. COVID-19 pandemic repercussions on the use and management of plastics. Environ. Sci. Technol. 2020;54:7760–7765. doi: 10.1021/acs.est.0c02178. PubMed DOI
Du H, Huang S, Wang J. Environmental risks of polymer materials from disposable face masks linked to the COVID-19 pandemic. Sci. Total Environ. 2022;815:152980. doi: 10.1016/j.scitotenv.2022.152980. PubMed DOI PMC
Sun J, et al. Release of microplastics from discarded surgical masks and their adverse impacts on the marine copepod Tigriopus japonicus. Environ. Sci. Technol. Lett. 2021;8:1065–1070. doi: 10.1021/acs.estlett.1c00748. DOI
Kwak JI, An Y. Post COVID-19 pandemic: Biofragmentation and soil ecotoxicological effects of microplastics derived from face masks. J. Hazard. Mater. 2021;416:126169. doi: 10.1016/j.jhazmat.2021.126169. PubMed DOI PMC
Deng W, et al. Masks for COVID‐19. Adv. Sci. 2022;9:2102189. doi: 10.1002/advs.202102189. PubMed DOI PMC
Liang H, et al. Release kinetics of microplastics from disposable face masks into the aqueous environment. Sci. Total Environ. 2022;816:151650. doi: 10.1016/j.scitotenv.2021.151650. PubMed DOI PMC
Leslie HA, et al. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 2022;163:107199. doi: 10.1016/j.envint.2022.107199. PubMed DOI
Ragusa A, et al. Plasticenta: first evidence of microplastics in human placenta. Environ. Int. 2021;146:106274. doi: 10.1016/j.envint.2020.106274. PubMed DOI
Sridhar V, et al. Light-driven carbon nitride microswimmers with propulsion in biological and ionic media and responsive on-demand drug delivery. Sci. Robot. 2022;7:eabm1421. doi: 10.1126/scirobotics.abm1421. PubMed DOI PMC
Mayorga‐Burrezo P, Mayorga‐Martinez CC, Pumera M. Light‐driven micromotors to dissociate protein aggregates that cause neurodegenerative diseases. Adv. Funct. Mater. 2022;32:2106699. doi: 10.1002/adfm.202106699. DOI
Mayorga-Martinez CC, et al. Swarming magnetic photoactive microrobots for dental implant biofilm eradication. ACS Nano. 2022;16:8694–8703. doi: 10.1021/acsnano.2c02516. PubMed DOI
Sun M, et al. Magnetic microswarm and fluoroscopy‐guided platform for biofilm eradication in biliary stents. Adv. Mater. 2022;34:2201888. doi: 10.1002/adma.202201888. PubMed DOI
Vaghasiya JV, Mayorga-Martinez CC, Matějková S, Pumera M. Pick up and dispose of pollutants from water via temperature-responsive micellar copolymers on magnetite nanorobots. Nat. Commun. 2022;13:1–10. doi: 10.1038/s41467-022-28406-5. PubMed DOI PMC
Song S, Mayorga-Martinez CC, Huska D, Pumera M. Engineered magnetic plant biobots for nerve agent removal. NPG Asia Mater. 2022;14:1–10. doi: 10.1038/s41427-022-00425-0. DOI
Kim J, Mayorga-Martinez CC, Pumera M. Microrobotic photocatalyst on-the-fly: 1D/2D nanoarchitectonic hybrid-based layered metal thiophosphate magnetic micromachines for enhanced photodegradation of nerve agent. Chem. Eng. J. 2022;446:137342. doi: 10.1016/j.cej.2022.137342. DOI
Mayorga-Burrezo P, Mayorga-Martinez CC, Kim J, Pumera M. Hybrid magneto-photocatalytic microrobots for sunscreens pollutants decontamination. Chem. Eng. J. 2022;446:137139. doi: 10.1016/j.cej.2022.137139. DOI
Wang L, Kaeppler A, Fischer D, Simmchen J. Photocatalytic TiO2 micromotors for removal of microplastics and suspended matter. ACS Appl. Mater. Interfaces. 2019;11:32937–32944. doi: 10.1021/acsami.9b06128. PubMed DOI
Sun M, et al. Cooperative recyclable magnetic microsubmarines for oil and microplastics removal from water. Appl. Mater. Today. 2020;20:100682. doi: 10.1016/j.apmt.2020.100682. DOI
Urso M, Ussia M, Novotný F, Pumera M. Trapping and detecting nanoplastics by MXene-derived oxide microrobots. Nat. Commun. 2022;13:1–14. doi: 10.1038/s41467-022-31161-2. PubMed DOI PMC
Li W, et al. Self-driven magnetorobots for recyclable and scalable micro/nanoplastic removal from nonmarine waters. Sci. Adv. 2022;8:eade1731. doi: 10.1126/sciadv.ade1731. PubMed DOI PMC
Villa K, Děkanovský L, Plutnar J, Kosina J, Pumera M. Swarming of perovskite‐like Bi2WO6 microrobots destroy textile fibers under visible light. Adv. Funct. Mater. 2020;30:2007073. doi: 10.1002/adfm.202007073. DOI
Beladi-Mousavi SM, Hermanova S, Ying Y, Plutnar J, Pumera M. A maze in plastic wastes: autonomous motile photocatalytic microrobots against microplastics. ACS Appl. Mater. Interfaces. 2021;13:25102–25110. doi: 10.1021/acsami.1c04559. PubMed DOI
Zhou H, Mayorga‐Martinez CC, Pumera M. Microplastic removal and degradation by mussel‐inspired adhesive magnetic/enzymatic microrobots. Small Methods. 2021;5:2100230. doi: 10.1002/smtd.202100230. PubMed DOI
Mayorga-Martinez CC, Vyskočil J, Novotný F, Pumera M. Light-driven Ti3C2 MXene micromotors: self-propelled autonomous machines for photodegradation of nitroaromatic explosives. J. Mater. Chem. A. 2021;9:14904–14910. doi: 10.1039/D1TA02256C. DOI
Kong L, Mayorga‐Martinez CC, Guan J, Pumera M. Photocatalytic micromotors activated by UV to visible light for environmental remediation, micropumps, reversible assembly, transportation, and biomimicry. Small. 2020;16:1903179. doi: 10.1002/smll.201903179. PubMed DOI
Sitti M, Wiersma DS. Pros and cons: Magnetic versus optical microrobots. Adv. Mater. 2020;32:1906766. doi: 10.1002/adma.201906766. PubMed DOI
Mushtaq F, et al. Magnetically driven Bi2O3/BiOCl-based hybrid microrobots for photocatalytic water remediation. J. Mater. Chem. A. 2015;3:23670–23676. doi: 10.1039/C5TA05825B. DOI
Bozuyuk U, Alapan Y, Aghakhani A, Yunusa M, Sitti M. Shape anisotropy-governed locomotion of surface microrollers on vessel-like microtopographies against physiological flows. Proc. Natl Acad. Sci. USA. 2021;118:e2022090118. doi: 10.1073/pnas.2022090118. PubMed DOI PMC
Xie H, et al. Reconfigurable magnetic microrobot swarm: multimode transformation, locomotion, and manipulation. Sci. Robot. 2019;4:eaav8006. doi: 10.1126/scirobotics.aav8006. PubMed DOI
Yigit B, Alapan Y, Sitti M. Programmable collective behavior in dynamically self‐assembled mobile microrobotic swarms. Adv. Sci. 2019;6:1801837. doi: 10.1002/advs.201801837. PubMed DOI PMC
Liu W, et al. From passive inorganic oxides to active matters of micro/nanomotors. Adv. Funct. Mater. 2020;30:2003195. doi: 10.1002/adfm.202003195. DOI
Chen P, et al. Bi‐based photocatalysts for light‐driven environmental and energy applications: structural tuning, reaction mechanisms, and challenges. EcoMat. 2020;2:e12047. doi: 10.1002/eom2.12047. DOI
Zhong X, et al. Ag-decorated Bi2O3 nanospheres with enhanced visible-light-driven photocatalytic activities for water treatment. RSC Adv. 2015;5:69312–69318. doi: 10.1039/C5RA12779C. DOI
Balachandran S, Prakash N, Swaminathan M. Heteroarchitectured Ag–Bi2O3–ZnO as a bifunctional nanomaterial. RSC Adv. 2016;6:20247–20257. doi: 10.1039/C5RA27882A. DOI
Kim J, et al. Scalable solvothermal synthesis of superparamagnetic Fe3O4 nanoclusters for bioseparation and theragnostic probes. ACS Appl. Mater. Interfaces. 2018;10:41935–41946. doi: 10.1021/acsami.8b14156. PubMed DOI
Oh S, et al. Magnetic nanozyme-linked immunosorbent assay for ultrasensitive influenza A virus detection. ACS Appl. Mater. Interfaces. 2018;10:12534–12543. doi: 10.1021/acsami.8b02735. PubMed DOI
Wang Y, et al. Self‐assembled 3D flowerlike hierarchical Fe3O4@ Bi2O3 core–shell architectures and their enhanced photocatalytic activity under visible light. Chem.–A Eur. J. 2011;17:4802–4808. doi: 10.1002/chem.201001846. PubMed DOI
Xu H, et al. Flexible asymmetric micro‐supercapacitors based on Bi2O3 and MnO2 nanoflowers: larger areal mass promises higher energy density. Adv. Energy Mater. 2015;5:1401882. doi: 10.1002/aenm.201401882. DOI
Kim J, Mayorga-Martinez CC, Vyskočil J, Ruzek D, Pumera M. Plasmonic-magnetic nanorobots for SARS-CoV-2 RNA detection through electronic readout. Appl. Mater. Today. 2022;27:101402. doi: 10.1016/j.apmt.2022.101402. PubMed DOI PMC
Kim J, et al. Early detection of the growth of Mycobacterium tuberculosis using magnetophoretic immunoassay in liquid culture. Biosens. Bioelectron. 2017;96:68–76. doi: 10.1016/j.bios.2017.04.025. PubMed DOI
Zheng T, et al. Robust nonenzymatic hybrid nanoelectrocatalysts for signal amplification toward ultrasensitive electrochemical cytosensing. J. Am. Chem. Soc. 2014;136:2288–2291. doi: 10.1021/ja500169y. PubMed DOI
Tran VT, et al. Magnetic layer-by-layer assembly: from linear plasmonic polymers to oligomers. ACS Appl. Mater. Interfaces. 2020;12:16584–16591. doi: 10.1021/acsami.9b22684. PubMed DOI
Tran VT, Kim J, Oh S, Jeong K, Lee J. Rapid assembly of magnetoplasmonic photonic arrays for brilliant, noniridescent, and stimuli‐responsive structural colors. Small. 2022;18:2200317. doi: 10.1002/smll.202200317. PubMed DOI
Kim J, et al. Clinical trial: magnetoplasmonic ELISA for urine-based active tuberculosis detection and anti-tuberculosis therapy monitoring. ACS Cent. Sci. 2021;7:1898–1907. doi: 10.1021/acscentsci.1c00948. PubMed DOI PMC
Wu H, Lee D, Tufa LT, Kim J, Lee J. Synthesis mechanism of magnetite nanorods containing ordered mesocages. Chem. Mater. 2019;31:2263–2268. doi: 10.1021/acs.chemmater.9b00256. DOI
Tian Z, Chee T, Zhang X, Lei L, Xiao C. Novel bismuth-based electrospinning materials for highly efficient capture of radioiodine. Chem. Eng. J. 2021;412:128687. doi: 10.1016/j.cej.2021.128687. DOI
Zhao Y, et al. Controlled synthesis and photocatalysis of sea urchin-like Fe3O4@ TiO2@ Ag nanocomposites. Nanoscale. 2016;8:5313–5326. doi: 10.1039/C5NR08624H. PubMed DOI
Tran VT, et al. Porosity-controllable magnetoplasmonic nanoparticles and their assembled arrays. Nanoscale. 2020;12:8453–8465. doi: 10.1039/D0NR01178A. PubMed DOI
Amano F, Nogami K, Tanaka M, Ohtani B. Correlation between surface area and photocatalytic activity for acetaldehyde decomposition over bismuth tungstate particles with a hierarchical structure. Langmuir. 2010;26:7174–7180. doi: 10.1021/la904274c. PubMed DOI
Lukowiak MC, et al. Polyglycerol coated polypropylene surfaces for protein and bacteria resistance. Polym. Chem. 2015;6:1350–1359. doi: 10.1039/C4PY01375A. DOI
McCarty LS, Whitesides GM. Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets. Angew. Chem. Int. Ed. 2008;47:2188–2207. doi: 10.1002/anie.200701812. PubMed DOI
Slepička P, et al. Argon plasma irradiation of polypropylene. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atom. 2010;268:2111–2114. doi: 10.1016/j.nimb.2010.02.012. DOI
Mayorga-Martinez CC, et al. Collective behavior of magnetic microrobots through immuno-sandwich assay: On-the-fly COVID-19 sensing. Appl. Mater. Today. 2022;26:101337. doi: 10.1016/j.apmt.2021.101337. PubMed DOI PMC
Zhou H, Mayorga-Martinez CC, Pané S, Zhang L, Pumera M. Magnetically driven micro and nanorobots. Chem. Rev. 2021;121:4999–5041. doi: 10.1021/acs.chemrev.0c01234. PubMed DOI PMC
Palagi S, Fischer P. Bioinspired microrobots. Nat. Rev. Mater. 2018;3:113–124. doi: 10.1038/s41578-018-0016-9. DOI
Huang Y, et al. Effect of carbon doping on the mesoporous structure of nanocrystalline titanium dioxide and its solar-light-driven photocatalytic degradation of NOx. Langmuir. 2008;24:3510–3516. doi: 10.1021/la703333z. PubMed DOI
Uheida A, Mejía HG, Abdel-Rehim M, Hamd W, Dutta J. Visible light photocatalytic degradation of polypropylene microplastics in a continuous water flow system. J. Hazard. Mater. 2021;406:124299. doi: 10.1016/j.jhazmat.2020.124299. PubMed DOI
Verma R, et al. Photocatalytic degradation of polypropylene film using TiO2-based nanomaterials under solar irradiation. Mater. Des. 2017;133:10–18. doi: 10.1016/j.matdes.2017.07.042. DOI
García-Montelongo X, Martínez-De LCA, Vázquez-Rodríguez S, Torres-Martínez LM. Photo-oxidative degradation of TiO2/polypropylene films. Mater. Res. Bull. 2014;51:56–62. doi: 10.1016/j.materresbull.2013.11.040. DOI
Thomas RT, Nair V, Sandhyarani N. TiO2 nanoparticle assisted solid phase photocatalytic degradation of polythene film: a mechanistic investigation. Colloids Surf. A: Physicochem. Eng. Asp. 2013;422:1–9. doi: 10.1016/j.colsurfa.2013.01.017. DOI
Pino-Ramos VH, Bucio E, Diaz D. Fast photocatalytic polypropylene degradation by nanostructured bismuth catalysts. Polym. Degrad. Stab. 2021;190:109648. doi: 10.1016/j.polymdegradstab.2021.109648. DOI
Almond J, Sugumaar P, Wenzel MN, Hill G, Wallis C. Determination of the carbonyl index of polyethylene and polypropylene using specified area under band methodology with ATR-FTIR spectroscopy. e-Polymers. 2020;20:369–381. doi: 10.1515/epoly-2020-0041. DOI
Nabi I, Ahmad F, Zhang L. Application of titanium dioxide for the photocatalytic degradation of macro-and micro-plastics: a review. J. Environ. Chem. Eng. 2021;9:105964. doi: 10.1016/j.jece.2021.105964. DOI
Chu S, et al. Photocatalytic conversion of plastic waste: from photodegradation to photosynthesis. Adv. Energy Mater. 2022;12:2200435. doi: 10.1002/aenm.202200435. DOI
Magnetically Driven Living Microrobot Swarms for Aquatic Micro- and Nanoplastic Cleanup
Technology Roadmap of Micro/Nanorobots
High-throughput Photoactive Magnetic Microrobots for Food Quality Control
Magnetically Propelled Microrobots toward Photosynthesis of Green Ammonia from Nitrates
On-the-Fly Monitoring of the Capture and Removal of Nanoplastics with Nanorobots
Magnetic Microrobot Swarms with Polymeric Hands Catching Bacteria and Microplastics in Water
figshare
10.6084/m9.figshare.22045199