Trapping and detecting nanoplastics by MXene-derived oxide microrobots
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35732658
PubMed Central
PMC9218121
DOI
10.1038/s41467-022-31161-2
PII: 10.1038/s41467-022-31161-2
Knihovny.cz E-zdroje
- MeSH
- mikroplasty * MeSH
- nanočástice * MeSH
- odpadní voda MeSH
- oxidy MeSH
- plastické hmoty MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mikroplasty * MeSH
- odpadní voda MeSH
- oxidy MeSH
- plastické hmoty MeSH
Nanoplastic pollution, the final product of plastic waste fragmentation in the environment, represents an increasing concern for the scientific community due to the easier diffusion and higher hazard associated with their small sizes. Therefore, there is a pressing demand for effective strategies to quantify and remove nanoplastics in wastewater. This work presents the "on-the-fly" capture of nanoplastics in the three-dimensional (3D) space by multifunctional MXene-derived oxide microrobots and their further detection. A thermal annealing process is used to convert Ti3C2Tx MXene into photocatalytic multi-layered TiO2, followed by the deposition of a Pt layer and the decoration with magnetic γ-Fe2O3 nanoparticles. The MXene-derived γ-Fe2O3/Pt/TiO2 microrobots show negative photogravitaxis, resulting in a powerful fuel-free motion with six degrees of freedom under light irradiation. Owing to the unique combination of self-propulsion and programmable Zeta potential, the microrobots can quickly attract and trap nanoplastics on their surface, including the slits between multi-layer stacks, allowing their magnetic collection. Utilized as self-motile preconcentration platforms, they enable nanoplastics' electrochemical detection using low-cost and portable electrodes. This proof-of-concept study paves the way toward the "on-site" screening of nanoplastics in water and its successive remediation.
Zobrazit více v PubMed
MacLeod M, Arp HPH, Tekman MB, Jahnke A. The global threat from plastic pollution. Science. 2021;373:61–65. doi: 10.1126/science.abg5433. PubMed DOI
Nanoplastic should be better understood. Nat. Nanotechnol. 14, 299 (2019). PubMed
Thompson RC, et al. Lost at sea: where is all the plastic? Science. 2004;304:838. doi: 10.1126/science.1094559. PubMed DOI
Gigault J, et al. Nanoplastics are neither microplastics nor engineered nanoparticles. Nat. Nanotechnol. 2021;16:501–507. doi: 10.1038/s41565-021-00886-4. PubMed DOI
Mitrano DM, Wick P, Nowack B. Placing nanoplastics in the context of global plastic pollution. Nat. Nanotechnol. 2021;16:491–500. doi: 10.1038/s41565-021-00888-2. PubMed DOI
Gigault J, et al. Current opinion: What is a nanoplastic? Environ. Pollut. 2018;235:1030–1034. doi: 10.1016/j.envpol.2018.01.024. PubMed DOI
Wagner S, Reemtsma T. Things we know and don’t know about nanoplastic in the environment. Nat. Nanotechnol. 2019;14:300–301. doi: 10.1038/s41565-019-0424-z. PubMed DOI
Rummel CD, Jahnke A, Gorokhova E, Kühnel D, Schmitt-Jansen M. Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment. Environ. Sci. Technol. Lett. 2017;4:258–267. doi: 10.1021/acs.estlett.7b00164. DOI
Triebskorn R, et al. Relevance of nano- and microplastics for freshwater ecosystems: A critical review. TrAC - Trends Anal. Chem. 2019;110:375–392. doi: 10.1016/j.trac.2018.11.023. DOI
Cai H, et al. Analysis of environmental nanoplastics: Progress and challenges. Chem. Eng. J. 2021;410:128208. doi: 10.1016/j.cej.2020.128208. DOI
Schwaferts C, Niessner R, Elsner M, Ivleva NP. Methods for the analysis of submicrometer- and nanoplastic particles in the environment. TrAC - Trends Anal. Chem. 2019;112:52–65. doi: 10.1016/j.trac.2018.12.014. DOI
Mitrano DM, et al. Synthesis of metal-doped nanoplastics and their utility to investigate fate and behaviour in complex environmental systems. Nat. Nanotechnol. 2019;14:362–368. doi: 10.1038/s41565-018-0360-3. PubMed DOI PMC
Koelmans AA. Proxies for nanoplastic. Nat. Nanotechnol. 2019;14:307–308. doi: 10.1038/s41565-019-0416-z. PubMed DOI
Nguyen B, et al. Separation and analysis of microplastics and nanoplastics in complex environmental samples. Acc. Chem. Res. 2019;52:858–866. doi: 10.1021/acs.accounts.8b00602. PubMed DOI
Sarcletti M, et al. The remediation of nano-/microplastics from water. Mater. Today. 2021;48:38–46. doi: 10.1016/j.mattod.2021.02.020. DOI
Ussia M, et al. Active Light-Powered Antibiofilm ZnO micromotors with chemically programmable properties. Adv. Funct. Mater. 2021;31:2101178. doi: 10.1002/adfm.202101178. DOI
Oral CM, Ussia M, Pumera M. Self-propelled activated carbon micromotors for ‘on-the-fly’ capture of nitroaromatic explosives. J. Phys. Chem. C. 2021;125:18040–18045. doi: 10.1021/acs.jpcc.1c05136. DOI
Zhang F, et al. ACE2 receptor-modified algae-based microrobot for removal of SARS-CoV-2 in wastewater. J. Am. Chem. Soc. 2021;143:12194–12201. doi: 10.1021/jacs.1c04933. PubMed DOI
Patino T, et al. Self-sensing enzyme-powered micromotors equipped with pH-responsive DNA nanoswitches. Nano Lett. 2019;19:3440–3447. doi: 10.1021/acs.nanolett.8b04794. PubMed DOI
Pacheco M, de la Asunción-Nadal V, Jurado-Sánchez B, Escarpa A. Engineering Janus micromotors with WS2 and affinity peptides for turn-on fluorescent sensing of bacterial lipopolysaccharides. Biosens. Bioelectron. 2020;165:112286. doi: 10.1016/j.bios.2020.112286. PubMed DOI
Venugopalan PL, Esteban-Fernández De Ávila B, Pal M, Ghosh A, Wang J. Fantastic voyage of nanomotors into the cell. ACS Nano. 2020;14:9423–9439. doi: 10.1021/acsnano.0c05217. PubMed DOI
Schmidt CK, Medina-Sánchez M, Edmondson RJ, Schmidt OG. Engineering microrobots for targeted cancer therapies from a medical perspective. Nat. Commun. 2020;11:5618. doi: 10.1038/s41467-020-19322-7. PubMed DOI PMC
Urso M, Iffelsberger C, Mayorga-Martinez CC, Pumera M. Nickel sulfide microrockets as self-propelled energy storage devices to power electronic circuits “on-demand”. Small Methods. 2021;5:2100511. doi: 10.1002/smtd.202100511. PubMed DOI
Ying Y, Pumera M. Micro/nanomotors for water purification. Chem. - A Eur. J. 2019;25:106–121. doi: 10.1002/chem.201804189. PubMed DOI
Urso M, Ussia M, Pumera M. Breaking polymer chains with self-propelled light-controlled navigable hematite microrobots. Adv. Funct. Mater. 2021;31:2101510. doi: 10.1002/adfm.202101510. DOI
Maric T, Nasir MZM, Webster RD, Pumera M. Tailoring metal/TiO2 interface to influence motion of light-activated janus micromotors. Adv. Funct. Mater. 2020;30:1908614. doi: 10.1002/adfm.201908614. DOI
Pourrahimi AM, et al. Catalytic and light-driven ZnO/Pt janus nano/micromotors: switching of motion mechanism via interface roughness and defect tailoring at the nanoscale. Adv. Funct. Mater. 2019;29:1–8. doi: 10.1002/adfm.201808678. DOI
Peng X, Urso M, Pumera M. Photo-fenton degradation of nitroaromatic explosives by light-powered hematite microrobots: when higher speed is not what we go for. Small Methods. 2021;5:2100617. doi: 10.1002/smtd.202100617. PubMed DOI
Villa K, et al. Visible-light-driven single-component BiVO4 micromotors with the autonomous ability for capturing microorganisms. ACS Nano. 2019;13:8135–8145. doi: 10.1021/acsnano.9b03184. PubMed DOI
Villa K, Děkanovský L, Plutnar J, Kosina J, Pumera M. Swarming of perovskite-Like Bi2WO6 microrobots destroy textile fibers under visible light. Adv. Funct. Mater. 2020;30:2007073. doi: 10.1002/adfm.202007073. DOI
Urso M, Pumera M. Nano/microplastics capture and degradation by autonomous nano/microrobots: a perspective. Adv. Funct. Mater. 2022;32:2112120. doi: 10.1002/adfm.202112120. DOI
Wang L, Kaeppler A, Fischer D, Simmchen J. Photocatalytic TiO2 micromotors for removal of microplastics and suspended matter. ACS Appl. Mater. Interfaces. 2019;11:32937–32944. doi: 10.1021/acsami.9b06128. PubMed DOI
Beladi-Mousavi SM, Hermanová S, Ying Y, Plutnar J, Pumera M. A maze in plastic wastes: autonomous motile photocatalytic microrobots against microplastics. ACS Appl. Mater. Interfaces. 2021;13:25102–25110. doi: 10.1021/acsami.1c04559. PubMed DOI
Zhou H, Mayorga-Martinez CC, Pumera M. Microplastic removal and degradation by mussel-inspired adhesive magnetic/enzymatic microrobots. Small Methods. 2021;5:2100230. doi: 10.1002/smtd.202100230. PubMed DOI
Ye H, et al. Magnetically steerable iron oxides-manganese dioxide core–shell micromotors for organic and microplastic removals. J. Colloid Interface Sci. 2021;588:510–521. doi: 10.1016/j.jcis.2020.12.097. PubMed DOI
Gogotsi Y, Anasori B. The rise of MXenes. ACS Nano. 2019;13:8491–8494. doi: 10.1021/acsnano.9b06394. PubMed DOI
Alhabeb M, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene) Chem. Mater. 2017;29:7633–7644. doi: 10.1021/acs.chemmater.7b02847. DOI
Dixit F, et al. Application of MXenes for water treatment and energy-efficient desalination: A review. J. Hazard. Mater. 2022;423:127050. doi: 10.1016/j.jhazmat.2021.127050. PubMed DOI
Khandelwal N, Darbha GK. A decade of exploring MXenes as aquatic cleaners: Covering a broad range of contaminants, current challenges and future trends. Chemosphere. 2021;279:130587. doi: 10.1016/j.chemosphere.2021.130587. PubMed DOI
Wu Y, et al. Recent advances in transition metal carbides and nitrides (MXenes): Characteristics, environmental remediation and challenges. Chem. Eng. J. 2021;418:129296. doi: 10.1016/j.cej.2021.129296. DOI
Mayorga-Martinez CC, Vyskočil J, Novotný F, Pumera M. Light-driven Ti3C2 MXene micromotors: self-propelled autonomous machines for photodegradation of nitroaromatic explosives. J. Mater. Chem. A. 2021;9:14904–14910. doi: 10.1039/D1TA02256C. DOI
Ying Y, Plutnar J, Pumera M. Six-degree-of-freedom steerable visible-light-driven microsubmarines using water as a fuel: application for explosives decontamination. Small. 2021;17:2100294. doi: 10.1002/smll.202100294. PubMed DOI
Low J, Zhang L, Tong T, Shen B, Yu J. TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity. J. Catal. 2018;361:255–266. doi: 10.1016/j.jcat.2018.03.009. DOI
Shahzad A, et al. Two-dimensional Ti3C2Tx MXene nanosheets for efficient copper removal from water. ACS Sustain. Chem. Eng. 2017;5:11481–11488. doi: 10.1021/acssuschemeng.7b02695. DOI
Uekawa N, Ono Y, Kojima T. Synthesis of gluconate modified layered titanate particles using hydrolysis reaction of Ti alkoxide and characterization of their swelling behavior and structural color. J. Sol.-Gel Sci. Technol. 2018;85:48–58. doi: 10.1007/s10971-017-4517-6. DOI
Luttrell T, et al. Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO2 films. Sci. Rep. 2015;4:4043. doi: 10.1038/srep04043. PubMed DOI PMC
Halim J, et al. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes) Appl. Surf. Sci. 2016;362:406–417. doi: 10.1016/j.apsusc.2015.11.089. DOI
Ghosh K, Pumera M. MXene and MoS3−x Coated 3D-printed hybrid electrode for solid-state asymmetric supercapacitor. Small Methods. 2021;5:2100451. doi: 10.1002/smtd.202100451. PubMed DOI
Zhou C, Zhang HP, Tang J, Wang W. Photochemically powered AgCl janus micromotors as a model system to understand ionic self-diffusiophoresis. Langmuir. 2018;34:3289–3295. doi: 10.1021/acs.langmuir.7b04301. PubMed DOI
Singh DP, Uspal WE, Popescu MN, Wilson LG, Fischer P. Photogravitactic microswimmers. Adv. Funct. Mater. 2018;28:1706660. doi: 10.1002/adfm.201706660. DOI
Zhang J, et al. Photochemical micromotor of eccentric core in isotropic hollow shell exhibiting multimodal motion behavior. Appl. Mater. Today. 2022;26:101371. doi: 10.1016/j.apmt.2022.101371. DOI
Xiao Z, et al. Synergistic speed enhancement of an electric-photochemical hybrid micromotor by tilt rectification. ACS Nano. 2020;14:8658–8667. doi: 10.1021/acsnano.0c03022. PubMed DOI
Oral CM, Ussia M, Yavuz DK, Pumera M. Shape engineering of TiO2 microrobots for “on-the-fly” optical brake. Small. 2021;18:2106271. doi: 10.1002/smll.202106271. PubMed DOI
Lyu X, et al. Active, yet little mobility: asymmetric decomposition of H2O2 is not sufficient in propelling catalytic micromotors. J. Am. Chem. Soc. 2021;143:12154–12164. doi: 10.1021/jacs.1c04501. PubMed DOI
Gallego-Urrea JA, Tuoriniemi J, Hassellöv M. Applications of particle-tracking analysis to the determination of size distributions and concentrations of nanoparticles in environmental, biological and food samples. TrAC - Trends Anal. Chem. 2011;30:473–483. doi: 10.1016/j.trac.2011.01.005. DOI
Wilson DA, Nolte RJM, Van Hest JCM. Autonomous movement of platinum-loaded stomatocytes. Nat. Chem. 2012;4:268–274. doi: 10.1038/nchem.1281. PubMed DOI
Novotný F, Pumera M. Nanomotor tracking experiments at the edge of reproducibility. Sci. Rep. 2019;9:13222. doi: 10.1038/s41598-019-49527-w. PubMed DOI PMC
Heckel S, Simmchen J. Photocatalytic BiVO4 microswimmers with bimodal swimming strategies. Adv. Intell. Syst. 2019;1:1900093. doi: 10.1002/aisy.201900093. DOI
Ramirez Arenas L, Ramseier Gentile S, Zimmermann S, Stoll S. Nanoplastics adsorption and removal efficiency by granular activated carbon used in drinking water treatment process. Sci. Total Environ. 2021;791:148175. doi: 10.1016/j.scitotenv.2021.148175. PubMed DOI
Batool A, Valiyaveettil S. Surface functionalized cellulose fibers – A renewable adsorbent for removal of plastic nanoparticles from water. J. Hazard. Mater. 2021;413:125301. doi: 10.1016/j.jhazmat.2021.125301. PubMed DOI
Yen PL, Hsu CH, Huang ML, Liao VHC. Removal of nano-sized polystyrene plastic from aqueous solutions using untreated coffee grounds. Chemosphere. 2022;286:131863. doi: 10.1016/j.chemosphere.2021.131863. PubMed DOI
Urso M, et al. Ultrasensitive electrochemical impedance detection of mycoplasma agalactiae DNA by low-cost and disposable Au-Decorated NiO nanowall electrodes. ACS Appl. Mater. Interfaces. 2020;12:50143–50151. doi: 10.1021/acsami.0c14679. PubMed DOI
Vasilescu A, Nunes G, Hayat A, Latif U, Marty JL. Electrochemical affinity biosensors based on disposable screen-printed electrodes for detection of food allergens. Sensors. 2016;16:1863. doi: 10.3390/s16111863. PubMed DOI PMC
Zhang N, Halali MA, de Lannoy CF. Detection of fouling on electrically conductive membranes by electrical impedance spectroscopy. Sep. Purif. Technol. 2020;242:116823. doi: 10.1016/j.seppur.2020.116823. DOI
Urso M, et al. Ni(OH)2@Ni core-shell nanochains as low-cost high-rate performance electrode for energy storage applications. Sci. Rep. 2019;9:7736. doi: 10.1038/s41598-019-44285-1. PubMed DOI PMC
Yildiz A, Lisesivdin SB, Kasap M, Mardare D. Electrical properties of TiO2 thin films. J. Non Cryst. Solids. 2008;354:4944–4947. doi: 10.1016/j.jnoncrysol.2008.07.009. DOI
Luo D, Liu B, Gao R, Su L, Su Y. TiO2/CuInS2-sensitized structure for sensitive photoelectrochemical immunoassay of cortisol in saliva. J. Solid State Electrochem. 2022;26:749–759. doi: 10.1007/s10008-021-05101-x. DOI
Qi XY, et al. Enhanced electrical conductivity in polystyrene nanocomposites at ultra-low graphene content. ACS Appl. Mater. Interfaces. 2011;3:3130–3133. doi: 10.1021/am200628c. PubMed DOI
Active Microrobots for Dual Removal of Biofilms via Chemical and Physical Mechanisms
Magnetic Microrobot Swarms with Polymeric Hands Catching Bacteria and Microplastics in Water
Magnetically boosted 1D photoactive microswarm for COVID-19 face mask disruption
Precisely Navigated Biobot Swarms of Bacteria Magnetospirillum magneticum for Water Decontamination
Smart micro- and nanorobots for water purification
figshare
10.6084/m9.figshare.19904512