Trapping and detecting nanoplastics by MXene-derived oxide microrobots

. 2022 Jun 22 ; 13 (1) : 3573. [epub] 20220622

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35732658
Odkazy

PubMed 35732658
PubMed Central PMC9218121
DOI 10.1038/s41467-022-31161-2
PII: 10.1038/s41467-022-31161-2
Knihovny.cz E-zdroje

Nanoplastic pollution, the final product of plastic waste fragmentation in the environment, represents an increasing concern for the scientific community due to the easier diffusion and higher hazard associated with their small sizes. Therefore, there is a pressing demand for effective strategies to quantify and remove nanoplastics in wastewater. This work presents the "on-the-fly" capture of nanoplastics in the three-dimensional (3D) space by multifunctional MXene-derived oxide microrobots and their further detection. A thermal annealing process is used to convert Ti3C2Tx MXene into photocatalytic multi-layered TiO2, followed by the deposition of a Pt layer and the decoration with magnetic γ-Fe2O3 nanoparticles. The MXene-derived γ-Fe2O3/Pt/TiO2 microrobots show negative photogravitaxis, resulting in a powerful fuel-free motion with six degrees of freedom under light irradiation. Owing to the unique combination of self-propulsion and programmable Zeta potential, the microrobots can quickly attract and trap nanoplastics on their surface, including the slits between multi-layer stacks, allowing their magnetic collection. Utilized as self-motile preconcentration platforms, they enable nanoplastics' electrochemical detection using low-cost and portable electrodes. This proof-of-concept study paves the way toward the "on-site" screening of nanoplastics in water and its successive remediation.

Komentář v

PubMed

Zobrazit více v PubMed

MacLeod M, Arp HPH, Tekman MB, Jahnke A. The global threat from plastic pollution. Science. 2021;373:61–65. doi: 10.1126/science.abg5433. PubMed DOI

Nanoplastic should be better understood. Nat. Nanotechnol. 14, 299 (2019). PubMed

Thompson RC, et al. Lost at sea: where is all the plastic? Science. 2004;304:838. doi: 10.1126/science.1094559. PubMed DOI

Gigault J, et al. Nanoplastics are neither microplastics nor engineered nanoparticles. Nat. Nanotechnol. 2021;16:501–507. doi: 10.1038/s41565-021-00886-4. PubMed DOI

Mitrano DM, Wick P, Nowack B. Placing nanoplastics in the context of global plastic pollution. Nat. Nanotechnol. 2021;16:491–500. doi: 10.1038/s41565-021-00888-2. PubMed DOI

Gigault J, et al. Current opinion: What is a nanoplastic? Environ. Pollut. 2018;235:1030–1034. doi: 10.1016/j.envpol.2018.01.024. PubMed DOI

Wagner S, Reemtsma T. Things we know and don’t know about nanoplastic in the environment. Nat. Nanotechnol. 2019;14:300–301. doi: 10.1038/s41565-019-0424-z. PubMed DOI

Rummel CD, Jahnke A, Gorokhova E, Kühnel D, Schmitt-Jansen M. Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment. Environ. Sci. Technol. Lett. 2017;4:258–267. doi: 10.1021/acs.estlett.7b00164. DOI

Triebskorn R, et al. Relevance of nano- and microplastics for freshwater ecosystems: A critical review. TrAC - Trends Anal. Chem. 2019;110:375–392. doi: 10.1016/j.trac.2018.11.023. DOI

Cai H, et al. Analysis of environmental nanoplastics: Progress and challenges. Chem. Eng. J. 2021;410:128208. doi: 10.1016/j.cej.2020.128208. DOI

Schwaferts C, Niessner R, Elsner M, Ivleva NP. Methods for the analysis of submicrometer- and nanoplastic particles in the environment. TrAC - Trends Anal. Chem. 2019;112:52–65. doi: 10.1016/j.trac.2018.12.014. DOI

Mitrano DM, et al. Synthesis of metal-doped nanoplastics and their utility to investigate fate and behaviour in complex environmental systems. Nat. Nanotechnol. 2019;14:362–368. doi: 10.1038/s41565-018-0360-3. PubMed DOI PMC

Koelmans AA. Proxies for nanoplastic. Nat. Nanotechnol. 2019;14:307–308. doi: 10.1038/s41565-019-0416-z. PubMed DOI

Nguyen B, et al. Separation and analysis of microplastics and nanoplastics in complex environmental samples. Acc. Chem. Res. 2019;52:858–866. doi: 10.1021/acs.accounts.8b00602. PubMed DOI

Sarcletti M, et al. The remediation of nano-/microplastics from water. Mater. Today. 2021;48:38–46. doi: 10.1016/j.mattod.2021.02.020. DOI

Ussia M, et al. Active Light-Powered Antibiofilm ZnO micromotors with chemically programmable properties. Adv. Funct. Mater. 2021;31:2101178. doi: 10.1002/adfm.202101178. DOI

Oral CM, Ussia M, Pumera M. Self-propelled activated carbon micromotors for ‘on-the-fly’ capture of nitroaromatic explosives. J. Phys. Chem. C. 2021;125:18040–18045. doi: 10.1021/acs.jpcc.1c05136. DOI

Zhang F, et al. ACE2 receptor-modified algae-based microrobot for removal of SARS-CoV-2 in wastewater. J. Am. Chem. Soc. 2021;143:12194–12201. doi: 10.1021/jacs.1c04933. PubMed DOI

Patino T, et al. Self-sensing enzyme-powered micromotors equipped with pH-responsive DNA nanoswitches. Nano Lett. 2019;19:3440–3447. doi: 10.1021/acs.nanolett.8b04794. PubMed DOI

Pacheco M, de la Asunción-Nadal V, Jurado-Sánchez B, Escarpa A. Engineering Janus micromotors with WS2 and affinity peptides for turn-on fluorescent sensing of bacterial lipopolysaccharides. Biosens. Bioelectron. 2020;165:112286. doi: 10.1016/j.bios.2020.112286. PubMed DOI

Venugopalan PL, Esteban-Fernández De Ávila B, Pal M, Ghosh A, Wang J. Fantastic voyage of nanomotors into the cell. ACS Nano. 2020;14:9423–9439. doi: 10.1021/acsnano.0c05217. PubMed DOI

Schmidt CK, Medina-Sánchez M, Edmondson RJ, Schmidt OG. Engineering microrobots for targeted cancer therapies from a medical perspective. Nat. Commun. 2020;11:5618. doi: 10.1038/s41467-020-19322-7. PubMed DOI PMC

Urso M, Iffelsberger C, Mayorga-Martinez CC, Pumera M. Nickel sulfide microrockets as self-propelled energy storage devices to power electronic circuits “on-demand”. Small Methods. 2021;5:2100511. doi: 10.1002/smtd.202100511. PubMed DOI

Ying Y, Pumera M. Micro/nanomotors for water purification. Chem. - A Eur. J. 2019;25:106–121. doi: 10.1002/chem.201804189. PubMed DOI

Urso M, Ussia M, Pumera M. Breaking polymer chains with self-propelled light-controlled navigable hematite microrobots. Adv. Funct. Mater. 2021;31:2101510. doi: 10.1002/adfm.202101510. DOI

Maric T, Nasir MZM, Webster RD, Pumera M. Tailoring metal/TiO2 interface to influence motion of light-activated janus micromotors. Adv. Funct. Mater. 2020;30:1908614. doi: 10.1002/adfm.201908614. DOI

Pourrahimi AM, et al. Catalytic and light-driven ZnO/Pt janus nano/micromotors: switching of motion mechanism via interface roughness and defect tailoring at the nanoscale. Adv. Funct. Mater. 2019;29:1–8. doi: 10.1002/adfm.201808678. DOI

Peng X, Urso M, Pumera M. Photo-fenton degradation of nitroaromatic explosives by light-powered hematite microrobots: when higher speed is not what we go for. Small Methods. 2021;5:2100617. doi: 10.1002/smtd.202100617. PubMed DOI

Villa K, et al. Visible-light-driven single-component BiVO4 micromotors with the autonomous ability for capturing microorganisms. ACS Nano. 2019;13:8135–8145. doi: 10.1021/acsnano.9b03184. PubMed DOI

Villa K, Děkanovský L, Plutnar J, Kosina J, Pumera M. Swarming of perovskite-Like Bi2WO6 microrobots destroy textile fibers under visible light. Adv. Funct. Mater. 2020;30:2007073. doi: 10.1002/adfm.202007073. DOI

Urso M, Pumera M. Nano/microplastics capture and degradation by autonomous nano/microrobots: a perspective. Adv. Funct. Mater. 2022;32:2112120. doi: 10.1002/adfm.202112120. DOI

Wang L, Kaeppler A, Fischer D, Simmchen J. Photocatalytic TiO2 micromotors for removal of microplastics and suspended matter. ACS Appl. Mater. Interfaces. 2019;11:32937–32944. doi: 10.1021/acsami.9b06128. PubMed DOI

Beladi-Mousavi SM, Hermanová S, Ying Y, Plutnar J, Pumera M. A maze in plastic wastes: autonomous motile photocatalytic microrobots against microplastics. ACS Appl. Mater. Interfaces. 2021;13:25102–25110. doi: 10.1021/acsami.1c04559. PubMed DOI

Zhou H, Mayorga-Martinez CC, Pumera M. Microplastic removal and degradation by mussel-inspired adhesive magnetic/enzymatic microrobots. Small Methods. 2021;5:2100230. doi: 10.1002/smtd.202100230. PubMed DOI

Ye H, et al. Magnetically steerable iron oxides-manganese dioxide core–shell micromotors for organic and microplastic removals. J. Colloid Interface Sci. 2021;588:510–521. doi: 10.1016/j.jcis.2020.12.097. PubMed DOI

Gogotsi Y, Anasori B. The rise of MXenes. ACS Nano. 2019;13:8491–8494. doi: 10.1021/acsnano.9b06394. PubMed DOI

Alhabeb M, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene) Chem. Mater. 2017;29:7633–7644. doi: 10.1021/acs.chemmater.7b02847. DOI

Dixit F, et al. Application of MXenes for water treatment and energy-efficient desalination: A review. J. Hazard. Mater. 2022;423:127050. doi: 10.1016/j.jhazmat.2021.127050. PubMed DOI

Khandelwal N, Darbha GK. A decade of exploring MXenes as aquatic cleaners: Covering a broad range of contaminants, current challenges and future trends. Chemosphere. 2021;279:130587. doi: 10.1016/j.chemosphere.2021.130587. PubMed DOI

Wu Y, et al. Recent advances in transition metal carbides and nitrides (MXenes): Characteristics, environmental remediation and challenges. Chem. Eng. J. 2021;418:129296. doi: 10.1016/j.cej.2021.129296. DOI

Mayorga-Martinez CC, Vyskočil J, Novotný F, Pumera M. Light-driven Ti3C2 MXene micromotors: self-propelled autonomous machines for photodegradation of nitroaromatic explosives. J. Mater. Chem. A. 2021;9:14904–14910. doi: 10.1039/D1TA02256C. DOI

Ying Y, Plutnar J, Pumera M. Six-degree-of-freedom steerable visible-light-driven microsubmarines using water as a fuel: application for explosives decontamination. Small. 2021;17:2100294. doi: 10.1002/smll.202100294. PubMed DOI

Low J, Zhang L, Tong T, Shen B, Yu J. TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity. J. Catal. 2018;361:255–266. doi: 10.1016/j.jcat.2018.03.009. DOI

Shahzad A, et al. Two-dimensional Ti3C2Tx MXene nanosheets for efficient copper removal from water. ACS Sustain. Chem. Eng. 2017;5:11481–11488. doi: 10.1021/acssuschemeng.7b02695. DOI

Uekawa N, Ono Y, Kojima T. Synthesis of gluconate modified layered titanate particles using hydrolysis reaction of Ti alkoxide and characterization of their swelling behavior and structural color. J. Sol.-Gel Sci. Technol. 2018;85:48–58. doi: 10.1007/s10971-017-4517-6. DOI

Luttrell T, et al. Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO2 films. Sci. Rep. 2015;4:4043. doi: 10.1038/srep04043. PubMed DOI PMC

Halim J, et al. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes) Appl. Surf. Sci. 2016;362:406–417. doi: 10.1016/j.apsusc.2015.11.089. DOI

Ghosh K, Pumera M. MXene and MoS3−x Coated 3D-printed hybrid electrode for solid-state asymmetric supercapacitor. Small Methods. 2021;5:2100451. doi: 10.1002/smtd.202100451. PubMed DOI

Zhou C, Zhang HP, Tang J, Wang W. Photochemically powered AgCl janus micromotors as a model system to understand ionic self-diffusiophoresis. Langmuir. 2018;34:3289–3295. doi: 10.1021/acs.langmuir.7b04301. PubMed DOI

Singh DP, Uspal WE, Popescu MN, Wilson LG, Fischer P. Photogravitactic microswimmers. Adv. Funct. Mater. 2018;28:1706660. doi: 10.1002/adfm.201706660. DOI

Zhang J, et al. Photochemical micromotor of eccentric core in isotropic hollow shell exhibiting multimodal motion behavior. Appl. Mater. Today. 2022;26:101371. doi: 10.1016/j.apmt.2022.101371. DOI

Xiao Z, et al. Synergistic speed enhancement of an electric-photochemical hybrid micromotor by tilt rectification. ACS Nano. 2020;14:8658–8667. doi: 10.1021/acsnano.0c03022. PubMed DOI

Oral CM, Ussia M, Yavuz DK, Pumera M. Shape engineering of TiO2 microrobots for “on-the-fly” optical brake. Small. 2021;18:2106271. doi: 10.1002/smll.202106271. PubMed DOI

Lyu X, et al. Active, yet little mobility: asymmetric decomposition of H2O2 is not sufficient in propelling catalytic micromotors. J. Am. Chem. Soc. 2021;143:12154–12164. doi: 10.1021/jacs.1c04501. PubMed DOI

Gallego-Urrea JA, Tuoriniemi J, Hassellöv M. Applications of particle-tracking analysis to the determination of size distributions and concentrations of nanoparticles in environmental, biological and food samples. TrAC - Trends Anal. Chem. 2011;30:473–483. doi: 10.1016/j.trac.2011.01.005. DOI

Wilson DA, Nolte RJM, Van Hest JCM. Autonomous movement of platinum-loaded stomatocytes. Nat. Chem. 2012;4:268–274. doi: 10.1038/nchem.1281. PubMed DOI

Novotný F, Pumera M. Nanomotor tracking experiments at the edge of reproducibility. Sci. Rep. 2019;9:13222. doi: 10.1038/s41598-019-49527-w. PubMed DOI PMC

Heckel S, Simmchen J. Photocatalytic BiVO4 microswimmers with bimodal swimming strategies. Adv. Intell. Syst. 2019;1:1900093. doi: 10.1002/aisy.201900093. DOI

Ramirez Arenas L, Ramseier Gentile S, Zimmermann S, Stoll S. Nanoplastics adsorption and removal efficiency by granular activated carbon used in drinking water treatment process. Sci. Total Environ. 2021;791:148175. doi: 10.1016/j.scitotenv.2021.148175. PubMed DOI

Batool A, Valiyaveettil S. Surface functionalized cellulose fibers – A renewable adsorbent for removal of plastic nanoparticles from water. J. Hazard. Mater. 2021;413:125301. doi: 10.1016/j.jhazmat.2021.125301. PubMed DOI

Yen PL, Hsu CH, Huang ML, Liao VHC. Removal of nano-sized polystyrene plastic from aqueous solutions using untreated coffee grounds. Chemosphere. 2022;286:131863. doi: 10.1016/j.chemosphere.2021.131863. PubMed DOI

Urso M, et al. Ultrasensitive electrochemical impedance detection of mycoplasma agalactiae DNA by low-cost and disposable Au-Decorated NiO nanowall electrodes. ACS Appl. Mater. Interfaces. 2020;12:50143–50151. doi: 10.1021/acsami.0c14679. PubMed DOI

Vasilescu A, Nunes G, Hayat A, Latif U, Marty JL. Electrochemical affinity biosensors based on disposable screen-printed electrodes for detection of food allergens. Sensors. 2016;16:1863. doi: 10.3390/s16111863. PubMed DOI PMC

Zhang N, Halali MA, de Lannoy CF. Detection of fouling on electrically conductive membranes by electrical impedance spectroscopy. Sep. Purif. Technol. 2020;242:116823. doi: 10.1016/j.seppur.2020.116823. DOI

Urso M, et al. Ni(OH)2@Ni core-shell nanochains as low-cost high-rate performance electrode for energy storage applications. Sci. Rep. 2019;9:7736. doi: 10.1038/s41598-019-44285-1. PubMed DOI PMC

Yildiz A, Lisesivdin SB, Kasap M, Mardare D. Electrical properties of TiO2 thin films. J. Non Cryst. Solids. 2008;354:4944–4947. doi: 10.1016/j.jnoncrysol.2008.07.009. DOI

Luo D, Liu B, Gao R, Su L, Su Y. TiO2/CuInS2-sensitized structure for sensitive photoelectrochemical immunoassay of cortisol in saliva. J. Solid State Electrochem. 2022;26:749–759. doi: 10.1007/s10008-021-05101-x. DOI

Qi XY, et al. Enhanced electrical conductivity in polystyrene nanocomposites at ultra-low graphene content. ACS Appl. Mater. Interfaces. 2011;3:3130–3133. doi: 10.1021/am200628c. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Magneto-Fluorescent Microrobots with Selective Detection Intelligence for High-Energy Explosives and Antibiotics in Aqueous Environments

. 2025 Apr 09 ; 17 (14) : 21691-21704. [epub] 20250327

Light-Programmable g-C3N4 Microrobots with Negative Photogravitaxis for Photocatalytic Antibiotic Degradation

. 2025 ; 8 () : 0565. [epub] 20250128

Active Microrobots for Dual Removal of Biofilms via Chemical and Physical Mechanisms

. 2025 Jan 15 ; 17 (2) : 3608-3619. [epub] 20250102

Magnetic Microrobot Swarms with Polymeric Hands Catching Bacteria and Microplastics in Water

. 2024 May 21 ; 18 (20) : 13171-13183. [epub] 20240508

Laser-Induced MXene-Functionalized Graphene Nanoarchitectonics-Based Microsupercapacitor for Health Monitoring Application

. 2023 Oct 24 ; 17 (20) : 20537-20550. [epub] 20231004

Magnetically boosted 1D photoactive microswarm for COVID-19 face mask disruption

. 2023 Feb 20 ; 14 (1) : 935. [epub] 20230220

Precisely Navigated Biobot Swarms of Bacteria Magnetospirillum magneticum for Water Decontamination

. 2023 Feb 08 ; 15 (5) : 7023-7029. [epub] 20230126

Smart micro- and nanorobots for water purification

. 2023 ; 1 (4) : 236-251. [epub] 20230206

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.19904512

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...