Precisely Navigated Biobot Swarms of Bacteria Magnetospirillum magneticum for Water Decontamination

. 2023 Feb 08 ; 15 (5) : 7023-7029. [epub] 20230126

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36700926

Hybrid biological robots (biobots) prepared from living cells are at the forefront of micro-/nanomotor research due to their biocompatibility and versatility toward multiple applications. However, their precise maneuverability is essential for practical applications. Magnetotactic bacteria are hybrid biobots that produce magnetosome magnetite crystals, which are more stable than synthesized magnetite and can orient along the direction of earth's magnetic field. Herein, we used Magnetospirillum magneticum strain AMB-1 (M. magneticum AMB-1) for the effective removal of chlorpyrifos (an organophosphate pesticide) in various aqueous solutions by naturally binding with organic matter. Precision control of M. magneticum AMB-1 was achieved by applying a magnetic field. Under a programed clockwise magnetic field, M. magneticum AMB-1 exhibit swarm behavior and move in a circular direction. Consequently, we foresee that M. magneticum AMB-1 can be applied in various environments to remove and retrieve pollutants by directional control magnetic actuation.

Zobrazit více v PubMed

Mayorga-Martinez C. C.; Zelenka J.; Klima K.; Mayorga-Burrezo P.; Hoang L.; Ruml T.; Pumera M. Swarming Magnetic Photoactive Microrobots for Dental Implant Biofilm Eradication. ACS Nano 2022, 16, 8694–8703. 10.1021/acsnano.2c02516. PubMed DOI

Vaghasiya J.; Mayorga-Martinez C. C.; Matějková S.; Pumera M. Pick up and Dispose of Pollutants from Water via Temperature-Responsive Micellar Copolymers on Magnetite Nanorobots. Nat. Commun. 2022, 13, 1026.10.1038/s41467-022-28406-5. PubMed DOI PMC

Zhou H.; Mayorga-Martinez C. C.; Pumera M. Microplastic Removal and Degradation by Mussel-Inspired Adhesive Magnetic/Enzymatic Microrobots. Small Methods 2021, 5, 2100230.10.1002/smtd.202100230. PubMed DOI

Muñoz J.; Urso M.; Pumera M. Self-Propelled Multifunctional Microrobots Harboring Chiral Supramolecular Selectors for ‘Enantiorecognition-on-the-Fly’. Angew. Chem., Int. Ed. 2022, 61, e20211609010.1002/anie.202116090. PubMed DOI PMC

Mayorga-Martinez C. C.; Vyskočil J.; Novotný F.; Pumera M. Light-Driven Ti3C2 MXene Micromotors: Self-Propelled Autonomous Machines for Photodegradation of Nitroaromatic Explosives. J. Mater. Chem. A 2021, 9, 14904–14910. 10.1039/d1ta02256c. DOI

Urso M.; Ussia M.; Pumera M. Breaking Polymer Chains with Self-Propelled Light-Controlled Navigable Hematite Microrobots. Adv. Funct. Mater. 2021, 31, 2101510.10.1002/adfm.202101510. DOI

Rao K. J.; Li F.; Meng L.; Zheng H.; Cai F.; Wang W. A Force to Be Reckoned With: A Review of Synthetic Microswimmers Powered by Ultrasound. Small 2015, 11, 2836–2846. 10.1002/smll.201403621. PubMed DOI

Mhanna R.; Qiu F.; Zhang L.; Ding Y.; Sugihara K.; Zenobi-Wong M.; Nelson B. J. Artificial Bacterial Flagella for Remote-Controlled Targeted Single-Cell Drug Delivery. Small 2014, 10, 1953–1957. 10.1002/smll.201303538. PubMed DOI

Villa K.; Krejčová L.; Novotný F.; Heger Z.; Sofer Z.; Pumera M. Cooperative Multifunctional Self-Propelled Paramagnetic Microrobots with Chemical Handles for Cell Manipulation and Drug Delivery. Adv. Funct. Mater. 2018, 28, 1804343.10.1002/adfm.201804343. DOI

Mayorga-Martinez C. C.; Pumera M. Self-Propelled Tags for Protein Detection. Adv. Funct. Mater. 2020, 30, 1906449.10.1002/adfm.201906449. DOI

Pacheco M.; López M. Á.; Jurado-Sánchez B.; Escarpa A. Self-Propelled Micromachines for Analytical Sensing: A Critical Review. Anal. Bioanal. Chem. 2019, 411, 6561–6573. 10.1007/s00216-019-02070-z. PubMed DOI

Kim J.; Mayorga-Martinez C. C.; Vyskočil J.; Ruzek D.; Pumera M. Plasmonic-Magnetic Nanorobots for SARS-CoV-2 RNA Detection through Electronic Readout. Appl. Mater. Today 2022, 27, 101402.10.1016/j.apmt.2022.101402. PubMed DOI PMC

Parmar J.; Vilela D.; Villa K.; Wang J.; Sánchez S. Micro- and Nanomotors as Active Environmental Microcleaners and Sensors. J. Am. Chem. Soc. 2018, 140, 9317–9331. 10.1021/jacs.8b05762. PubMed DOI

Ying Y.; Pumera M. Micro/Nanomotors for Water Purification. Chem.—Eur. J. 2019, 25, 106–121. 10.1002/chem.201804189. PubMed DOI

Zhang F.; Li Z.; Yin L.; Zhang Q.; Askarinam N.; Mundaca-Uribe R.; Tehrani F.; Karshalev E.; Gao W.; Zhang L.; Wang J. ACE2 Receptor-Modified Algae-Based Microrobot for Removal of Sars-Cov-2 in Wastewater. J. Am. Chem. Soc. 2021, 143, 12194–12201. 10.1021/jacs.1c04933. PubMed DOI

Urso M.; Pumera M. Nano/Microplastics Capture and Degradation by Autonomous Nano/Microrobots: A Perspective. Adv. Funct. Mater. 2022, 32, 2112120.10.1002/adfm.202112120. DOI

Urso M.; Ussia M.; Novotný F.; Pumera M. Trapping and detecting nanoplastics by MXene-derived oxide microrobots. Nat. Commun. 2022, 13, 3573.10.1038/s41467-022-31161-2. PubMed DOI PMC

Hermanová S.; Pumera M. Micromachines for Microplastics Treatment. ACS Nanosci. Au 2022, 2, 225–232. 10.1021/acsnanoscienceau.1c00058. PubMed DOI PMC

Zhong D.; Li W.; Qi Y.; He J.; Zhou M. Photosynthetic Biohybrid Nanoswimmers System to Alleviate Tumor Hypoxia for FL/PA/MR Imaging-Guided Enhanced Radio-Photodynamic Synergetic Therapy. Adv. Funct. Mater. 2020, 30, 1910395.10.1002/adfm.201910395. DOI

Xing J.; Yin T.; Li S.; Xu T.; Ma A.; Chen Z.; Luo Y.; Lai Z.; Lv Y.; Pan H. Sequential Magneto-Actuated and Optics-Triggered Biomicrorobots for Targeted Cancer Therapy. Adv. Funct. Mater. 2021, 31, 2008262.10.1002/adfm.202008262. DOI

Ebrahimi N.; Bi C.; Cappelleri D. J.; Ciuti G.; Conn A. T.; Faivre D.; Habibi N.; Hošovský A.; Iacovacci V.; Khalil I. S. M.; Magdanz V.; Misra S.; Pawashe C.; Rashidifar R.; Soto-Rodriguez P. E. D.; Fekete Z.; Jafari A. Magnetic Actuation Methods in Bio/Soft Robotics. Adv. Funct. Mater. 2021, 31, 2005137.10.1002/adfm.202005137. DOI

Zhou H.; Mayorga-Martinez C. C.; Pané S.; Zhang L.; Pumera M. Magnetically Driven Micro and Nanorobots. Chem. Rev. 2021, 121, 4999–5041. 10.1021/acs.chemrev.0c01234. PubMed DOI PMC

Pierce C. J.; Mumper E.; Brown E. E.; Brangham J. T.; Lower B. H.; Lower S. K.; Yang F. Y.; Sooryakumar R. Tuning Bacterial Hydrodynamics with Magnetic Fields. Phys. Rev. E 2017, 95, 062612.10.1103/PhysRevE.95.062612. PubMed DOI

Pierce C. J.; Osborne E.; Mumper E.; Lower B. H.; Lower S. K.; Sooryakumar R. Thrust and Power Output of the Bacterial Flagellar Motor: A Micromagnetic Tweezers Approach. Biophys. J. 2019, 117, 1250–1257. 10.1016/j.bpj.2019.08.036. PubMed DOI PMC

Pierce C. J.; Wijesinghe H.; Mumper E.; Lower B. H.; Lower S. K.; Sooryakumar R. Hydrodynamic Interactions, Hidden Order, and Emergent Collective Behavior in an Active Bacterial Suspension. Phys. Rev. Lett. 2018, 121, 188001.10.1103/physrevlett.121.188001. PubMed DOI

Alapan Y.; Bozuyuk U.; Erkoc P.; Karacakol A. C.; Sitti M. Multifunctional Surface Microrollers for Targeted Cargo Delivery in Physiological Blood Flow. Sci. Robot. 2020, 5, eaba572610.1126/scirobotics.aba5726. PubMed DOI

Gao W. W.; de Ávila B. E.; Wang L. F.; Wang J. Targeting and Isolation of Cancer Cells Using Micro/Nanomotors. Adv. Drug Delivery Rev. 2018, 125, 94–101. 10.1016/j.addr.2017.09.002. PubMed DOI PMC

Felfoul O.; Mohammadi M.; Taherkhani S.; de Lanauze D.; Zhong Xu Y. Z.; Loghin D.; Essa S.; Jancik S.; Houle D.; Lafleur M. Magneto-Aerotactic Bacteria Deliver Drug-Containing Nanoliposomes to Tumour Hypoxic Regions. Nat. Nanotechnol. 2016, 11, 941–947. 10.1038/nnano.2016.137. PubMed DOI PMC

Chen C.; Wang P.; Chen H.; Wang X.; Halgamuge M. N.; Chen C.; Song T. Smart Magnetotactic Bacteria Enable the Inhibition of Neuroblastoma under an Alternating Magnetic Field. ACS Appl. Mater. Interfaces 2022, 14, 14049–14058. 10.1021/acsami.1c24154. PubMed DOI

Uebe R.; Schüler D. Magnetosome Biogenesis in Magnetotactic Bacteria. Nat. Rev. Microbiol. 2016, 14, 621–637. 10.1038/nrmicro.2016.99. PubMed DOI

Alphandéry E.; Faure S.; Seksek O.; Guyot F.; Chebbi I. Chains of Magnetosomes Extracted from AMB-1 Magnetotactic Bacteria for Application in Alternative Magnetic Field Cancer Therapy. ACS Nano 2011, 5, 6279–6296. 10.1021/nn201290k. PubMed DOI

Dieudonné A.; Pignol D.; Prévéral S. Magnetosomes: Biogenic Iron Nanoparticles Produced by Environmental Bacteria. Appl. Microbiol. Biotechnol. 2019, 103, 3637.10.1007/s00253-019-09728-9. PubMed DOI

Mittmann E.; Mickoleit F.; Maier D. S.; Stäber A. Y.; Klein M. A.; Niemeyer C. M.; Rabe K. S.; Schüler D. A Magnetosome-Based for Flow Biocatalysis. ACS Appl. Mater. Interfaces 2022, 14, 22138–22150. 10.1021/acsami.2c03337. PubMed DOI PMC

Smit B. A.; Van Zyl E.; Joubert J. J.; Meyer W.; Prévéral S.; Lefèvre C. T.; Venter S. N. Magnetotactic Bacteria Used to Generate Electricity Based on Faraday’s Law of Electromagnetic Induction. Lett. Appl. Microbiol. 2018, 66, 362–367. 10.1111/lam.12862. PubMed DOI

Stanton M. M.; Park B. W.; Vilela D.; Bente K.; Faivre D.; Sitti M.; Sanchez S. Magnetotactic Bacteria Powered Biohybrids Target E. coli Biofilms. ACS Nano 2017, 11, 9968–9978. 10.1021/acsnano.7b04128. PubMed DOI

Makela A. V.; Schott M. A.; Madsen C. S.; Greeson E. M.; Contag C. H. Magnetic Particle Imaging of Magnetotactic Bacteria as Living Contrast Agents Is Improved by Altering Magnetosome Arrangement. Nano Lett. 2022, 22, 4630–4639. 10.1021/acs.nanolett.1c05042. PubMed DOI

Fdez-Gubieda M. L.; Alonso J.; García-Prieto A.; García-Arribas A.; Fernández Barquín L.; Muela A. Magnetotactic Bacteria for Cancer Therapy. J. Appl. Phys. 2020, 128, 070902.10.1063/5.0018036. DOI

Alphandéry E. Applications of Magnetotactic Bacteria and Magnetosome for Cancer Treatment: A Review Emphasizing on Practical and Mechanistic Aspects. Drug Discovery 2020, 25, 1444–1452. 10.1016/j.drudis.2020.06.010. PubMed DOI

Wang X.; Li Y.; Zhao J.; Yao H.; Chu S.; Song Z.; He Z.; Zhang W. Magnetotactic Bacteria: Characteristics and Environmental Applications. Front. Environ. Sci. Eng. 2020, 14, 56.10.1007/s11783-020-1235-z. DOI

Yadav M.; Shukla A. K.; Srivastva N.; Upadhyay S. N.; Dubey S. K. Utilization of Microbial Community Potential for Removal of Chlorpyrifos: A Review. Crit. Rev. Biotechnol. 2016, 36, 727–742. 10.3109/07388551.2015.1015958. PubMed DOI

McKnight U. S.; Rasmussen J. J.; Kronvang B.; Binning P. J.; Bjerg P. L. Sources, Occurrence and Predicted Aquatic Impact of Legacy and Contemporary Pesticides in Streams. Environ. Pollut. 2015, 200, 64–76. 10.1016/j.envpol.2015.02.015. PubMed DOI

Wang P. P.; Dai W. J.; Ge L.; Yan M.; Ge S. G.; Yu J. H. Visible Light Photoelectrochemical Sensor Based on Au Nanoparticles and Molecularly Imprinted Poly(o-phenylenediamine)-Modified TiO2 Nanotubes for Specific and Sensitive Detection Chlorpyrifos. Analyst 2013, 138, 939–945. 10.1039/c2an36266j. PubMed DOI

Ginet N.; Pardoux R.; Adryanczyk G.; Garcia D.; Brutesco C.; Pignol D. Single-Step Production of a Recyclable Nanobiocatalyst for Organophosphate Pesticides Biodegradation Using Functionalized Bacterial Magnetosomes. PLoS One 2011, 6, e2144210.1371/journal.pone.0021442. PubMed DOI PMC

Dong Y.; Wang L.; Yuan K.; Ji F.; Gao J.; Zhang Z.; Du X.; Tian Y.; Wang Q.; Zhang L. Magnetic Microswarm Composed of Porous Nanocatalysts for Targeted Elimination of Biofilm Occlusion. ACS Nano 2021, 15, 5056–5067. 10.1021/acsnano.0c10010. PubMed DOI

Li Q.; Chen H.; Feng X.; Yu C.; Feng F.; Chai Y.; Lu P.; Song T.; Wang X.; Yao L. Nanoparticle-Regulated Semi-Artificial Magnetotactic Bacteria with Tunable Magnetic Moment and Magnetic Sensitivity. Small 2019, 15, 1900427.10.1002/smll.201900427. PubMed DOI

Huang H.; Huang T.; Charilaou M.; Lyttle S.; Zhang Q.; Pané S.; Nelson B. J. Investigation of Magnetotaxis of Reconfigurable Micro-Origami Swimmers with Competitive and Cooperative Anisotropy. Adv. Funct. Mater. 2018, 28, 1802110.10.1002/adfm.201802110. DOI

Faivre D.; Schüler D. Magnetotactic Bacteria and Magnetosomes. Chem. Rev. 2008, 108, 4875–4898. 10.1021/cr078258w. PubMed DOI

Wang X.; Hu C.; Schurz L.; De Marco C.; Chen X.; Pané S.; Nelson B. J. Surface Chemistry-Mediated Control of Individual Magnetic Helical Microswimmers in a Swarm. ACS Nano 2018, 12, 6210–6217. 10.1021/acsnano.8b02907. PubMed DOI

Bozuyuk U.; Yasa O.; Yasa I. C.; Ceylan H.; Kizilel S.; Sitti M. Light-Triggered Drug Release from 3D-Printed Magnetic Chitosan Microswimmers. ACS Nano 2018, 12, 9617–9625. 10.1021/acsnano.8b05997. PubMed DOI

Frankel R. B.; Bazylinski D. A.; Johnson M. S.; Taylor B. L. Magneto-Aerotaxis in Marine Coccoid Bacteria. Biophys. J. 1997, 73, 994–1000. 10.1016/s0006-3495(97)78132-3. PubMed DOI PMC

Greenberg M.; Canter K.; Mahler I.; Tornheim A. Observation of Magnetoreceptive Behavior in a Multicellular Magnetotactic Prokaryote in higher than Geomagnetic Fields. Biophys. J. 2005, 88, 1496–1499. 10.1529/biophysj.104.047068. PubMed DOI PMC

Ambashta R. D.; Sillanpää M. Water Purification Using Magnetic Assistance: A Review. J. Hazard. Mater. 2010, 180, 38–49. 10.1016/j.jhazmat.2010.04.105. PubMed DOI

Vargas G.; Cypriano J.; Correa T.; Leão P.; Bazylinski D. A.; Abreu F. Applications of Magnetotactic Bacteria Magnetosomes and Magnetosome Crystals in Biotechnology and Nanotechnology: Mini-Review. Molecules 2018, 23, 2438.10.3390/molecules23102438. PubMed DOI PMC

Li J.; Pan Y.; Chen G.; Liu Q.; Tian L.; Lin W. Magnetite Magnetosome and Fragmental Chain Formation of Magnetospirillum Magneticum AMB-1: Transmission Electron Microscopy and Magnetic Observations. Geophys. J. Int. 2009, 177, 33–42. 10.1111/j.1365-246x.2009.04043.x. DOI

Heyen U.; Schüler D. Growth and Magnetosome Formation by Microaerophilic Magnetospirillum Strains in an Oxygen-Controlled Fermentor. Appl. Microbiol. Biotechnol. 2003, 61, 536–544. 10.1007/s00253-002-1219-x. PubMed DOI

Amor M.; Busigny V.; Louvat P.; Tharaud M.; Gélabert A.; Cartigny P.; Carlut J.; Isambert A.; Durand-Dubief M.; Ona-Nguema G. Iron Uptake and Magnetite Biomineralization in the Magnetotactic Bacterium Magnetospirillum Magneticum Strain AMB-1: An Iron Isotope Study. Geochim. Cosmochim. Acta 2018, 232, 225–243. 10.1016/j.gca.2018.04.020. DOI

Seong S.; Park T. H. Swimming Characteristics of Magnetic Bacterium, Magnetospirillum sp. AMB-1, and Implications as Toxicity Measurement. Biotechnol. Bioeng. 2001, 76, 11–16. 10.1002/bit.1021. PubMed DOI

Chen C.; Ma Q.; Jiang W.; Song T. Phototaxis in the Magnetotactic Bacterium Magnetospirillum Magneticum strain AMB-1 is Independent of Magnetic Fields. Appl. Microbiol. Biotechnol. 2011, 90, 269–275. 10.1007/s00253-010-3017-1. PubMed DOI

Komeili A.; Vali H.; Beveridge T. J.; Newman D. K. Magnetosome Vesicles are Present before Magnetite Formation, and MamA is Required for their Activation. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 3839–3844. 10.1073/pnas.0400391101. PubMed DOI PMC

Makino Y.; Oshita S.; Murayama Y.; Mori M.; Kawagoe Y.; Sakai K. Nondestructive Analysis of Chlorpyrifos on Apple Skin using UV Reflectance. Trans. ASABE 2009, 52, 1955–1960. 10.13031/2013.29191. DOI

Jacob M. M.; Ponnuchamy M.; Kapoor A.; Sivaraman P. Bagasse Based Biochar for the Adsorptive Removal of Chlorpyrifos from Contaminated Water. J. Environ. Chem. Eng. 2020, 8, 103904.10.1016/j.jece.2020.103904. DOI

Mao H.; Zuo Z.; Yang N.; Huang J. S.; Yan Y. A Microfluidic Colorimetric Biosensor for Chlorpyrifos Determination based on Peroxidase-like CuFe2O4/GQDs Magnetic Nanoparticles. J. Residuals Sci. Technol. 2017, 14, 255–269. 10.12783/issn.1544-8053/14/1/30. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...