Precisely Navigated Biobot Swarms of Bacteria Magnetospirillum magneticum for Water Decontamination
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
36700926
PubMed Central
PMC10016748
DOI
10.1021/acsami.2c16592
Knihovny.cz E-zdroje
- Klíčová slova
- magnetic actuation, magnetotactic bacteria, micromotors, microrobots, nanorobots,
- MeSH
- Bacteria metabolismus MeSH
- bakteriální proteiny metabolismus MeSH
- dekontaminace MeSH
- Magnetospirillum * metabolismus MeSH
- oxid železnato-železitý * MeSH
- robotika metody MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny MeSH
- oxid železnato-železitý * MeSH
Hybrid biological robots (biobots) prepared from living cells are at the forefront of micro-/nanomotor research due to their biocompatibility and versatility toward multiple applications. However, their precise maneuverability is essential for practical applications. Magnetotactic bacteria are hybrid biobots that produce magnetosome magnetite crystals, which are more stable than synthesized magnetite and can orient along the direction of earth's magnetic field. Herein, we used Magnetospirillum magneticum strain AMB-1 (M. magneticum AMB-1) for the effective removal of chlorpyrifos (an organophosphate pesticide) in various aqueous solutions by naturally binding with organic matter. Precision control of M. magneticum AMB-1 was achieved by applying a magnetic field. Under a programed clockwise magnetic field, M. magneticum AMB-1 exhibit swarm behavior and move in a circular direction. Consequently, we foresee that M. magneticum AMB-1 can be applied in various environments to remove and retrieve pollutants by directional control magnetic actuation.
Zobrazit více v PubMed
Mayorga-Martinez C. C.; Zelenka J.; Klima K.; Mayorga-Burrezo P.; Hoang L.; Ruml T.; Pumera M. Swarming Magnetic Photoactive Microrobots for Dental Implant Biofilm Eradication. ACS Nano 2022, 16, 8694–8703. 10.1021/acsnano.2c02516. PubMed DOI
Vaghasiya J.; Mayorga-Martinez C. C.; Matějková S.; Pumera M. Pick up and Dispose of Pollutants from Water via Temperature-Responsive Micellar Copolymers on Magnetite Nanorobots. Nat. Commun. 2022, 13, 1026.10.1038/s41467-022-28406-5. PubMed DOI PMC
Zhou H.; Mayorga-Martinez C. C.; Pumera M. Microplastic Removal and Degradation by Mussel-Inspired Adhesive Magnetic/Enzymatic Microrobots. Small Methods 2021, 5, 2100230.10.1002/smtd.202100230. PubMed DOI
Muñoz J.; Urso M.; Pumera M. Self-Propelled Multifunctional Microrobots Harboring Chiral Supramolecular Selectors for ‘Enantiorecognition-on-the-Fly’. Angew. Chem., Int. Ed. 2022, 61, e20211609010.1002/anie.202116090. PubMed DOI PMC
Mayorga-Martinez C. C.; Vyskočil J.; Novotný F.; Pumera M. Light-Driven Ti3C2 MXene Micromotors: Self-Propelled Autonomous Machines for Photodegradation of Nitroaromatic Explosives. J. Mater. Chem. A 2021, 9, 14904–14910. 10.1039/d1ta02256c. DOI
Urso M.; Ussia M.; Pumera M. Breaking Polymer Chains with Self-Propelled Light-Controlled Navigable Hematite Microrobots. Adv. Funct. Mater. 2021, 31, 2101510.10.1002/adfm.202101510. DOI
Rao K. J.; Li F.; Meng L.; Zheng H.; Cai F.; Wang W. A Force to Be Reckoned With: A Review of Synthetic Microswimmers Powered by Ultrasound. Small 2015, 11, 2836–2846. 10.1002/smll.201403621. PubMed DOI
Mhanna R.; Qiu F.; Zhang L.; Ding Y.; Sugihara K.; Zenobi-Wong M.; Nelson B. J. Artificial Bacterial Flagella for Remote-Controlled Targeted Single-Cell Drug Delivery. Small 2014, 10, 1953–1957. 10.1002/smll.201303538. PubMed DOI
Villa K.; Krejčová L.; Novotný F.; Heger Z.; Sofer Z.; Pumera M. Cooperative Multifunctional Self-Propelled Paramagnetic Microrobots with Chemical Handles for Cell Manipulation and Drug Delivery. Adv. Funct. Mater. 2018, 28, 1804343.10.1002/adfm.201804343. DOI
Mayorga-Martinez C. C.; Pumera M. Self-Propelled Tags for Protein Detection. Adv. Funct. Mater. 2020, 30, 1906449.10.1002/adfm.201906449. DOI
Pacheco M.; López M. Á.; Jurado-Sánchez B.; Escarpa A. Self-Propelled Micromachines for Analytical Sensing: A Critical Review. Anal. Bioanal. Chem. 2019, 411, 6561–6573. 10.1007/s00216-019-02070-z. PubMed DOI
Kim J.; Mayorga-Martinez C. C.; Vyskočil J.; Ruzek D.; Pumera M. Plasmonic-Magnetic Nanorobots for SARS-CoV-2 RNA Detection through Electronic Readout. Appl. Mater. Today 2022, 27, 101402.10.1016/j.apmt.2022.101402. PubMed DOI PMC
Parmar J.; Vilela D.; Villa K.; Wang J.; Sánchez S. Micro- and Nanomotors as Active Environmental Microcleaners and Sensors. J. Am. Chem. Soc. 2018, 140, 9317–9331. 10.1021/jacs.8b05762. PubMed DOI
Ying Y.; Pumera M. Micro/Nanomotors for Water Purification. Chem.—Eur. J. 2019, 25, 106–121. 10.1002/chem.201804189. PubMed DOI
Zhang F.; Li Z.; Yin L.; Zhang Q.; Askarinam N.; Mundaca-Uribe R.; Tehrani F.; Karshalev E.; Gao W.; Zhang L.; Wang J. ACE2 Receptor-Modified Algae-Based Microrobot for Removal of Sars-Cov-2 in Wastewater. J. Am. Chem. Soc. 2021, 143, 12194–12201. 10.1021/jacs.1c04933. PubMed DOI
Urso M.; Pumera M. Nano/Microplastics Capture and Degradation by Autonomous Nano/Microrobots: A Perspective. Adv. Funct. Mater. 2022, 32, 2112120.10.1002/adfm.202112120. DOI
Urso M.; Ussia M.; Novotný F.; Pumera M. Trapping and detecting nanoplastics by MXene-derived oxide microrobots. Nat. Commun. 2022, 13, 3573.10.1038/s41467-022-31161-2. PubMed DOI PMC
Hermanová S.; Pumera M. Micromachines for Microplastics Treatment. ACS Nanosci. Au 2022, 2, 225–232. 10.1021/acsnanoscienceau.1c00058. PubMed DOI PMC
Zhong D.; Li W.; Qi Y.; He J.; Zhou M. Photosynthetic Biohybrid Nanoswimmers System to Alleviate Tumor Hypoxia for FL/PA/MR Imaging-Guided Enhanced Radio-Photodynamic Synergetic Therapy. Adv. Funct. Mater. 2020, 30, 1910395.10.1002/adfm.201910395. DOI
Xing J.; Yin T.; Li S.; Xu T.; Ma A.; Chen Z.; Luo Y.; Lai Z.; Lv Y.; Pan H. Sequential Magneto-Actuated and Optics-Triggered Biomicrorobots for Targeted Cancer Therapy. Adv. Funct. Mater. 2021, 31, 2008262.10.1002/adfm.202008262. DOI
Ebrahimi N.; Bi C.; Cappelleri D. J.; Ciuti G.; Conn A. T.; Faivre D.; Habibi N.; Hošovský A.; Iacovacci V.; Khalil I. S. M.; Magdanz V.; Misra S.; Pawashe C.; Rashidifar R.; Soto-Rodriguez P. E. D.; Fekete Z.; Jafari A. Magnetic Actuation Methods in Bio/Soft Robotics. Adv. Funct. Mater. 2021, 31, 2005137.10.1002/adfm.202005137. DOI
Zhou H.; Mayorga-Martinez C. C.; Pané S.; Zhang L.; Pumera M. Magnetically Driven Micro and Nanorobots. Chem. Rev. 2021, 121, 4999–5041. 10.1021/acs.chemrev.0c01234. PubMed DOI PMC
Pierce C. J.; Mumper E.; Brown E. E.; Brangham J. T.; Lower B. H.; Lower S. K.; Yang F. Y.; Sooryakumar R. Tuning Bacterial Hydrodynamics with Magnetic Fields. Phys. Rev. E 2017, 95, 062612.10.1103/PhysRevE.95.062612. PubMed DOI
Pierce C. J.; Osborne E.; Mumper E.; Lower B. H.; Lower S. K.; Sooryakumar R. Thrust and Power Output of the Bacterial Flagellar Motor: A Micromagnetic Tweezers Approach. Biophys. J. 2019, 117, 1250–1257. 10.1016/j.bpj.2019.08.036. PubMed DOI PMC
Pierce C. J.; Wijesinghe H.; Mumper E.; Lower B. H.; Lower S. K.; Sooryakumar R. Hydrodynamic Interactions, Hidden Order, and Emergent Collective Behavior in an Active Bacterial Suspension. Phys. Rev. Lett. 2018, 121, 188001.10.1103/physrevlett.121.188001. PubMed DOI
Alapan Y.; Bozuyuk U.; Erkoc P.; Karacakol A. C.; Sitti M. Multifunctional Surface Microrollers for Targeted Cargo Delivery in Physiological Blood Flow. Sci. Robot. 2020, 5, eaba572610.1126/scirobotics.aba5726. PubMed DOI
Gao W. W.; de Ávila B. E.; Wang L. F.; Wang J. Targeting and Isolation of Cancer Cells Using Micro/Nanomotors. Adv. Drug Delivery Rev. 2018, 125, 94–101. 10.1016/j.addr.2017.09.002. PubMed DOI PMC
Felfoul O.; Mohammadi M.; Taherkhani S.; de Lanauze D.; Zhong Xu Y. Z.; Loghin D.; Essa S.; Jancik S.; Houle D.; Lafleur M. Magneto-Aerotactic Bacteria Deliver Drug-Containing Nanoliposomes to Tumour Hypoxic Regions. Nat. Nanotechnol. 2016, 11, 941–947. 10.1038/nnano.2016.137. PubMed DOI PMC
Chen C.; Wang P.; Chen H.; Wang X.; Halgamuge M. N.; Chen C.; Song T. Smart Magnetotactic Bacteria Enable the Inhibition of Neuroblastoma under an Alternating Magnetic Field. ACS Appl. Mater. Interfaces 2022, 14, 14049–14058. 10.1021/acsami.1c24154. PubMed DOI
Uebe R.; Schüler D. Magnetosome Biogenesis in Magnetotactic Bacteria. Nat. Rev. Microbiol. 2016, 14, 621–637. 10.1038/nrmicro.2016.99. PubMed DOI
Alphandéry E.; Faure S.; Seksek O.; Guyot F.; Chebbi I. Chains of Magnetosomes Extracted from AMB-1 Magnetotactic Bacteria for Application in Alternative Magnetic Field Cancer Therapy. ACS Nano 2011, 5, 6279–6296. 10.1021/nn201290k. PubMed DOI
Dieudonné A.; Pignol D.; Prévéral S. Magnetosomes: Biogenic Iron Nanoparticles Produced by Environmental Bacteria. Appl. Microbiol. Biotechnol. 2019, 103, 3637.10.1007/s00253-019-09728-9. PubMed DOI
Mittmann E.; Mickoleit F.; Maier D. S.; Stäber A. Y.; Klein M. A.; Niemeyer C. M.; Rabe K. S.; Schüler D. A Magnetosome-Based for Flow Biocatalysis. ACS Appl. Mater. Interfaces 2022, 14, 22138–22150. 10.1021/acsami.2c03337. PubMed DOI PMC
Smit B. A.; Van Zyl E.; Joubert J. J.; Meyer W.; Prévéral S.; Lefèvre C. T.; Venter S. N. Magnetotactic Bacteria Used to Generate Electricity Based on Faraday’s Law of Electromagnetic Induction. Lett. Appl. Microbiol. 2018, 66, 362–367. 10.1111/lam.12862. PubMed DOI
Stanton M. M.; Park B. W.; Vilela D.; Bente K.; Faivre D.; Sitti M.; Sanchez S. Magnetotactic Bacteria Powered Biohybrids Target E. coli Biofilms. ACS Nano 2017, 11, 9968–9978. 10.1021/acsnano.7b04128. PubMed DOI
Makela A. V.; Schott M. A.; Madsen C. S.; Greeson E. M.; Contag C. H. Magnetic Particle Imaging of Magnetotactic Bacteria as Living Contrast Agents Is Improved by Altering Magnetosome Arrangement. Nano Lett. 2022, 22, 4630–4639. 10.1021/acs.nanolett.1c05042. PubMed DOI
Fdez-Gubieda M. L.; Alonso J.; García-Prieto A.; García-Arribas A.; Fernández Barquín L.; Muela A. Magnetotactic Bacteria for Cancer Therapy. J. Appl. Phys. 2020, 128, 070902.10.1063/5.0018036. DOI
Alphandéry E. Applications of Magnetotactic Bacteria and Magnetosome for Cancer Treatment: A Review Emphasizing on Practical and Mechanistic Aspects. Drug Discovery 2020, 25, 1444–1452. 10.1016/j.drudis.2020.06.010. PubMed DOI
Wang X.; Li Y.; Zhao J.; Yao H.; Chu S.; Song Z.; He Z.; Zhang W. Magnetotactic Bacteria: Characteristics and Environmental Applications. Front. Environ. Sci. Eng. 2020, 14, 56.10.1007/s11783-020-1235-z. DOI
Yadav M.; Shukla A. K.; Srivastva N.; Upadhyay S. N.; Dubey S. K. Utilization of Microbial Community Potential for Removal of Chlorpyrifos: A Review. Crit. Rev. Biotechnol. 2016, 36, 727–742. 10.3109/07388551.2015.1015958. PubMed DOI
McKnight U. S.; Rasmussen J. J.; Kronvang B.; Binning P. J.; Bjerg P. L. Sources, Occurrence and Predicted Aquatic Impact of Legacy and Contemporary Pesticides in Streams. Environ. Pollut. 2015, 200, 64–76. 10.1016/j.envpol.2015.02.015. PubMed DOI
Wang P. P.; Dai W. J.; Ge L.; Yan M.; Ge S. G.; Yu J. H. Visible Light Photoelectrochemical Sensor Based on Au Nanoparticles and Molecularly Imprinted Poly(o-phenylenediamine)-Modified TiO2 Nanotubes for Specific and Sensitive Detection Chlorpyrifos. Analyst 2013, 138, 939–945. 10.1039/c2an36266j. PubMed DOI
Ginet N.; Pardoux R.; Adryanczyk G.; Garcia D.; Brutesco C.; Pignol D. Single-Step Production of a Recyclable Nanobiocatalyst for Organophosphate Pesticides Biodegradation Using Functionalized Bacterial Magnetosomes. PLoS One 2011, 6, e2144210.1371/journal.pone.0021442. PubMed DOI PMC
Dong Y.; Wang L.; Yuan K.; Ji F.; Gao J.; Zhang Z.; Du X.; Tian Y.; Wang Q.; Zhang L. Magnetic Microswarm Composed of Porous Nanocatalysts for Targeted Elimination of Biofilm Occlusion. ACS Nano 2021, 15, 5056–5067. 10.1021/acsnano.0c10010. PubMed DOI
Li Q.; Chen H.; Feng X.; Yu C.; Feng F.; Chai Y.; Lu P.; Song T.; Wang X.; Yao L. Nanoparticle-Regulated Semi-Artificial Magnetotactic Bacteria with Tunable Magnetic Moment and Magnetic Sensitivity. Small 2019, 15, 1900427.10.1002/smll.201900427. PubMed DOI
Huang H.; Huang T.; Charilaou M.; Lyttle S.; Zhang Q.; Pané S.; Nelson B. J. Investigation of Magnetotaxis of Reconfigurable Micro-Origami Swimmers with Competitive and Cooperative Anisotropy. Adv. Funct. Mater. 2018, 28, 1802110.10.1002/adfm.201802110. DOI
Faivre D.; Schüler D. Magnetotactic Bacteria and Magnetosomes. Chem. Rev. 2008, 108, 4875–4898. 10.1021/cr078258w. PubMed DOI
Wang X.; Hu C.; Schurz L.; De Marco C.; Chen X.; Pané S.; Nelson B. J. Surface Chemistry-Mediated Control of Individual Magnetic Helical Microswimmers in a Swarm. ACS Nano 2018, 12, 6210–6217. 10.1021/acsnano.8b02907. PubMed DOI
Bozuyuk U.; Yasa O.; Yasa I. C.; Ceylan H.; Kizilel S.; Sitti M. Light-Triggered Drug Release from 3D-Printed Magnetic Chitosan Microswimmers. ACS Nano 2018, 12, 9617–9625. 10.1021/acsnano.8b05997. PubMed DOI
Frankel R. B.; Bazylinski D. A.; Johnson M. S.; Taylor B. L. Magneto-Aerotaxis in Marine Coccoid Bacteria. Biophys. J. 1997, 73, 994–1000. 10.1016/s0006-3495(97)78132-3. PubMed DOI PMC
Greenberg M.; Canter K.; Mahler I.; Tornheim A. Observation of Magnetoreceptive Behavior in a Multicellular Magnetotactic Prokaryote in higher than Geomagnetic Fields. Biophys. J. 2005, 88, 1496–1499. 10.1529/biophysj.104.047068. PubMed DOI PMC
Ambashta R. D.; Sillanpää M. Water Purification Using Magnetic Assistance: A Review. J. Hazard. Mater. 2010, 180, 38–49. 10.1016/j.jhazmat.2010.04.105. PubMed DOI
Vargas G.; Cypriano J.; Correa T.; Leão P.; Bazylinski D. A.; Abreu F. Applications of Magnetotactic Bacteria Magnetosomes and Magnetosome Crystals in Biotechnology and Nanotechnology: Mini-Review. Molecules 2018, 23, 2438.10.3390/molecules23102438. PubMed DOI PMC
Li J.; Pan Y.; Chen G.; Liu Q.; Tian L.; Lin W. Magnetite Magnetosome and Fragmental Chain Formation of Magnetospirillum Magneticum AMB-1: Transmission Electron Microscopy and Magnetic Observations. Geophys. J. Int. 2009, 177, 33–42. 10.1111/j.1365-246x.2009.04043.x. DOI
Heyen U.; Schüler D. Growth and Magnetosome Formation by Microaerophilic Magnetospirillum Strains in an Oxygen-Controlled Fermentor. Appl. Microbiol. Biotechnol. 2003, 61, 536–544. 10.1007/s00253-002-1219-x. PubMed DOI
Amor M.; Busigny V.; Louvat P.; Tharaud M.; Gélabert A.; Cartigny P.; Carlut J.; Isambert A.; Durand-Dubief M.; Ona-Nguema G. Iron Uptake and Magnetite Biomineralization in the Magnetotactic Bacterium Magnetospirillum Magneticum Strain AMB-1: An Iron Isotope Study. Geochim. Cosmochim. Acta 2018, 232, 225–243. 10.1016/j.gca.2018.04.020. DOI
Seong S.; Park T. H. Swimming Characteristics of Magnetic Bacterium, Magnetospirillum sp. AMB-1, and Implications as Toxicity Measurement. Biotechnol. Bioeng. 2001, 76, 11–16. 10.1002/bit.1021. PubMed DOI
Chen C.; Ma Q.; Jiang W.; Song T. Phototaxis in the Magnetotactic Bacterium Magnetospirillum Magneticum strain AMB-1 is Independent of Magnetic Fields. Appl. Microbiol. Biotechnol. 2011, 90, 269–275. 10.1007/s00253-010-3017-1. PubMed DOI
Komeili A.; Vali H.; Beveridge T. J.; Newman D. K. Magnetosome Vesicles are Present before Magnetite Formation, and MamA is Required for their Activation. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 3839–3844. 10.1073/pnas.0400391101. PubMed DOI PMC
Makino Y.; Oshita S.; Murayama Y.; Mori M.; Kawagoe Y.; Sakai K. Nondestructive Analysis of Chlorpyrifos on Apple Skin using UV Reflectance. Trans. ASABE 2009, 52, 1955–1960. 10.13031/2013.29191. DOI
Jacob M. M.; Ponnuchamy M.; Kapoor A.; Sivaraman P. Bagasse Based Biochar for the Adsorptive Removal of Chlorpyrifos from Contaminated Water. J. Environ. Chem. Eng. 2020, 8, 103904.10.1016/j.jece.2020.103904. DOI
Mao H.; Zuo Z.; Yang N.; Huang J. S.; Yan Y. A Microfluidic Colorimetric Biosensor for Chlorpyrifos Determination based on Peroxidase-like CuFe2O4/GQDs Magnetic Nanoparticles. J. Residuals Sci. Technol. 2017, 14, 255–269. 10.12783/issn.1544-8053/14/1/30. DOI
Magnetically Driven Living Microrobot Swarms for Aquatic Micro- and Nanoplastic Cleanup
Technology Roadmap of Micro/Nanorobots
Magnetically Propelled Microrobots toward Photosynthesis of Green Ammonia from Nitrates