• This record comes from PubMed

Self-Propelled Multifunctional Microrobots Harboring Chiral Supramolecular Selectors for "Enantiorecognition-on-the-Fly"

. 2022 Mar 28 ; 61 (14) : e202116090. [epub] 20220209

Language English Country Germany Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Herein, a general procedure for the synthesis of multifunctional MRs, which simultaneously exhibit i) chiral, ii) magnetic, and iii) fluorescent properties in combination with iv) self-propulsion, is reported. Self-propelled Ni@Pt superparamagnetic microrockets have been functionalized with fluorescent CdS quantum dots carrying a chiral host biomolecule as β-cyclodextrin (β-CD). The "on-the-fly" chiral recognition potential of MRs has been interrogated by taking advantage of the β-CD affinity to supramolecularly accommodate different chiral biomolecules (i.e., amino acids). As a proof-of-concept, tryptophan enantiomers have been discriminated with a dual-mode (optical and electrochemical) readout. This approach paves the way to devise intelligent cargo micromachines with "built-in" chiral supramolecular recognition capabilities to elucidate the concept of "enantiorecognition-on-the-fly", which might be facilely customized by tailoring the supramolecular host-guest encapsulation.

See more in PubMed

Lin X., Wu Z., Wu Y., Xuan M., He Q., Adv. Mater. 2016, 28, 1060–1072. PubMed

Zarei M., Zarei M., Small 2018, 14, 1800912. PubMed

Santiago I., Nano Today 2018, 19, 11–15;

Li J., Pumera M., Chem. Soc. Rev. 2021, 50, 2794–2838; PubMed

Karshalev E., Esteban-Fernández de Ávila B., Wang J., J. Am. Chem. Soc. 2018, 140, 3810–3820; PubMed

Soto F., Karshalev E., Zhang F., Esteban-Fernandez de Avila B., Nourhani A., Wang J., Chem. Rev. 2021, doi: 10.1021/acs.chemrev.0c00999; PubMed

Parmar J., Vilela D., Villa K., Wang J., Sánchez S., J. Am. Chem. Soc. 2018, 140, 9317–9331; PubMed

Ussia M., Pumera M., Chem. Soc. Rev. 2022, doi: 10.1039/D1CS00587A.

Jurado-Sánchez B., Pacheco M., Rojo J., Escarpa A., Angew. Chem. Int. Ed. 2017, 56, 6957–6961; PubMed

Angew. Chem. 2017, 129, 7061–7065.

Wang J., Biosens. Bioelectron. 2016, 76, 234–242. PubMed

Zhang F., Li Z., Yin L., Zhang Q., Askarinam N., Mundaca-Uribe R., Tehrani F., Karshalev E., Gao W., Zhang L., Wang J., J. Am. Chem. Soc. 2021, 143, 12194–12201; PubMed

Mayorga-Martinez C. C., Vyskocil J., Novotny F., Bednar P., Ruzek D., Alduhaish O., Pumera M., Appl. Mater. Today. 2022, 26, 101337. PubMed PMC

Park C. W., Kim T., Yang H.-M., Lee Y., Kim H.-J., J. Hazard. Mater. 2021, 416, 126226. PubMed

Molinero-Fernández Á., Arruza L., López M. Á., Escarpa A., Biosens. Bioelectron. 2020, 158, 112156. PubMed

Zhou H., Mayorga-Martinez C. C., Pané S., Zhang L., Pumera M., Chem. Rev. 2021, 121, 4999–5041. PubMed PMC

Jurado-Sánchez B., Escarpa A., Wang J., Chem. Commun. 2015, 51, 14088–14091. PubMed

María Hormigos R., Jurado Sánchez B., Escarpa A., Angew. Chem. Int. Ed. 2019, 58, 3128–3132; PubMed

Angew. Chem. 2019, 131, 3160–3164.

Yuan K., De La Asunción-Nadal V., Jurado-Sánchez B., Escarpa A., Chem. Mater. 2020, 32, 1983–1992.

Pena-Francesch A., Giltinan J., Sitti M., Nat. Commun. 2019, 10, 3188. PubMed PMC

Muñoz J., Redondo E., Pumera M., Adv. Funct. Mater. 2021, 31, 2010608.

Meng C., Sheng Y., Chen Q., Tan H., Liu H., J. Membr. Sci. 2017, 526, 25–31.

Miao T., Cheng X., Ma H., He Z., Zhang Z., Zhou N., Zhang W., Zhu X., Angew. Chem. Int. Ed. 2021, 60, 18566–18571; PubMed

Angew. Chem. 2021, 133, 18714–18719.

Zor E., Morales-Narváez E., Alpaydin S., Bingol H., Ersoz M., Merkoçi A., Biosens. Bioelectron. 2017, 87, 410–416. PubMed

Scriba G. K. E., TrAC Trends Anal. Chem. 2019, 120, 115639.

Muñoz J., González-Campo A., Riba-Moliner M., Baeza M., Mas-Torrent M., Biosens. Bioelectron. 2018, 105, 95–102. PubMed

Han C., Li H., Small 2008, 4, 1344–1350. PubMed

Bastos-Arrieta J., Muñoz J., Stenbock-Fermor A., Muñoz M., Muraviev D. N., Céspedes F., Tsarkova L. A., Baeza M., Appl. Surf. Sci. 2016, 368, 417–426.

Muñoz J., Bastos-Arrieta J., Muñoz M., Muraviev D., Céspedes F., Baeza M., J. Mater. Sci. 2016, 51, 1610–1619.

Medway S. L., Lucas C. A., Kowal A., Nichols R. J., Johnson D., J. Electroanal. Chem. 2006, 587, 172–181.

Thangadurai P., Balaji S., Manoharan P. T., Nanotechnology 2008, 19, 435708. PubMed

Wang C., Dong R., Wang Q., Zhang C., She X., Wang J., Cai Y., Chem. Asian J. 2019, 14, 2485–2490. PubMed

Lin Z., Fan X., Sun M., Gao C., He Q., Xie H., ACS Nano 2018, 12, 2539–2545. PubMed

Vyskočil J., Mayorga-Martinez C. C., Jablonská E., Novotný F., Ruml T., Pumera M., ACS Nano 2020, 14, 8247–8256. PubMed

Urso M., Iffelsberger C., Mayorga-Martinez C. C., Pumera M., Small Methods 2021, 5, 2100511. PubMed

Li J., Rozen I., Wang J., ACS Nano 2016, 10, 5619–5634. PubMed

Olofsson M., Kalinin S., Zdunek J., Oliveberg M., Johansson L. B., Phys. Chem. Chem. Phys. 2006, 8, 3130–3140. PubMed

Wei Y., Li H., Hao H., Chen Y., Dong C., Wang G., Polym. Chem. 2015, 6, 591–598.

Tao Y., Dai J., Kong Y., Sha Y., Anal. Chem. 2014, 86, 2633–2639. PubMed

Find record

Citation metrics

Logged in users only

Archiving options

Loading data ...