Self-Propelled Multifunctional Microrobots Harboring Chiral Supramolecular Selectors for "Enantiorecognition-on-the-Fly"
Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
35138049
PubMed Central
PMC9304198
DOI
10.1002/anie.202116090
Knihovny.cz E-resources
- Keywords
- Chiral Analysis, Cyclodextrin, Magnetic Micromotors, Nickel Microrockets, Quantum Dots,
- MeSH
- Amino Acids * MeSH
- Stereoisomerism MeSH
- Tryptophan * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Amino Acids * MeSH
- Tryptophan * MeSH
Herein, a general procedure for the synthesis of multifunctional MRs, which simultaneously exhibit i) chiral, ii) magnetic, and iii) fluorescent properties in combination with iv) self-propulsion, is reported. Self-propelled Ni@Pt superparamagnetic microrockets have been functionalized with fluorescent CdS quantum dots carrying a chiral host biomolecule as β-cyclodextrin (β-CD). The "on-the-fly" chiral recognition potential of MRs has been interrogated by taking advantage of the β-CD affinity to supramolecularly accommodate different chiral biomolecules (i.e., amino acids). As a proof-of-concept, tryptophan enantiomers have been discriminated with a dual-mode (optical and electrochemical) readout. This approach paves the way to devise intelligent cargo micromachines with "built-in" chiral supramolecular recognition capabilities to elucidate the concept of "enantiorecognition-on-the-fly", which might be facilely customized by tailoring the supramolecular host-guest encapsulation.
See more in PubMed
Lin X., Wu Z., Wu Y., Xuan M., He Q., Adv. Mater. 2016, 28, 1060–1072. PubMed
Zarei M., Zarei M., Small 2018, 14, 1800912. PubMed
Santiago I., Nano Today 2018, 19, 11–15;
Li J., Pumera M., Chem. Soc. Rev. 2021, 50, 2794–2838; PubMed
Karshalev E., Esteban-Fernández de Ávila B., Wang J., J. Am. Chem. Soc. 2018, 140, 3810–3820; PubMed
Soto F., Karshalev E., Zhang F., Esteban-Fernandez de Avila B., Nourhani A., Wang J., Chem. Rev. 2021, doi: 10.1021/acs.chemrev.0c00999; PubMed
Parmar J., Vilela D., Villa K., Wang J., Sánchez S., J. Am. Chem. Soc. 2018, 140, 9317–9331; PubMed
Ussia M., Pumera M., Chem. Soc. Rev. 2022, doi: 10.1039/D1CS00587A.
Jurado-Sánchez B., Pacheco M., Rojo J., Escarpa A., Angew. Chem. Int. Ed. 2017, 56, 6957–6961; PubMed
Angew. Chem. 2017, 129, 7061–7065.
Wang J., Biosens. Bioelectron. 2016, 76, 234–242. PubMed
Zhang F., Li Z., Yin L., Zhang Q., Askarinam N., Mundaca-Uribe R., Tehrani F., Karshalev E., Gao W., Zhang L., Wang J., J. Am. Chem. Soc. 2021, 143, 12194–12201; PubMed
Mayorga-Martinez C. C., Vyskocil J., Novotny F., Bednar P., Ruzek D., Alduhaish O., Pumera M., Appl. Mater. Today. 2022, 26, 101337. PubMed PMC
Park C. W., Kim T., Yang H.-M., Lee Y., Kim H.-J., J. Hazard. Mater. 2021, 416, 126226. PubMed
Molinero-Fernández Á., Arruza L., López M. Á., Escarpa A., Biosens. Bioelectron. 2020, 158, 112156. PubMed
Zhou H., Mayorga-Martinez C. C., Pané S., Zhang L., Pumera M., Chem. Rev. 2021, 121, 4999–5041. PubMed PMC
Jurado-Sánchez B., Escarpa A., Wang J., Chem. Commun. 2015, 51, 14088–14091. PubMed
María Hormigos R., Jurado Sánchez B., Escarpa A., Angew. Chem. Int. Ed. 2019, 58, 3128–3132; PubMed
Angew. Chem. 2019, 131, 3160–3164.
Yuan K., De La Asunción-Nadal V., Jurado-Sánchez B., Escarpa A., Chem. Mater. 2020, 32, 1983–1992.
Pena-Francesch A., Giltinan J., Sitti M., Nat. Commun. 2019, 10, 3188. PubMed PMC
Muñoz J., Redondo E., Pumera M., Adv. Funct. Mater. 2021, 31, 2010608.
Meng C., Sheng Y., Chen Q., Tan H., Liu H., J. Membr. Sci. 2017, 526, 25–31.
Miao T., Cheng X., Ma H., He Z., Zhang Z., Zhou N., Zhang W., Zhu X., Angew. Chem. Int. Ed. 2021, 60, 18566–18571; PubMed
Angew. Chem. 2021, 133, 18714–18719.
Zor E., Morales-Narváez E., Alpaydin S., Bingol H., Ersoz M., Merkoçi A., Biosens. Bioelectron. 2017, 87, 410–416. PubMed
Scriba G. K. E., TrAC Trends Anal. Chem. 2019, 120, 115639.
Muñoz J., González-Campo A., Riba-Moliner M., Baeza M., Mas-Torrent M., Biosens. Bioelectron. 2018, 105, 95–102. PubMed
Han C., Li H., Small 2008, 4, 1344–1350. PubMed
Bastos-Arrieta J., Muñoz J., Stenbock-Fermor A., Muñoz M., Muraviev D. N., Céspedes F., Tsarkova L. A., Baeza M., Appl. Surf. Sci. 2016, 368, 417–426.
Muñoz J., Bastos-Arrieta J., Muñoz M., Muraviev D., Céspedes F., Baeza M., J. Mater. Sci. 2016, 51, 1610–1619.
Medway S. L., Lucas C. A., Kowal A., Nichols R. J., Johnson D., J. Electroanal. Chem. 2006, 587, 172–181.
Thangadurai P., Balaji S., Manoharan P. T., Nanotechnology 2008, 19, 435708. PubMed
Wang C., Dong R., Wang Q., Zhang C., She X., Wang J., Cai Y., Chem. Asian J. 2019, 14, 2485–2490. PubMed
Lin Z., Fan X., Sun M., Gao C., He Q., Xie H., ACS Nano 2018, 12, 2539–2545. PubMed
Vyskočil J., Mayorga-Martinez C. C., Jablonská E., Novotný F., Ruml T., Pumera M., ACS Nano 2020, 14, 8247–8256. PubMed
Urso M., Iffelsberger C., Mayorga-Martinez C. C., Pumera M., Small Methods 2021, 5, 2100511. PubMed
Li J., Rozen I., Wang J., ACS Nano 2016, 10, 5619–5634. PubMed
Olofsson M., Kalinin S., Zdunek J., Oliveberg M., Johansson L. B., Phys. Chem. Chem. Phys. 2006, 8, 3130–3140. PubMed
Wei Y., Li H., Hao H., Chen Y., Dong C., Wang G., Polym. Chem. 2015, 6, 591–598.
Tao Y., Dai J., Kong Y., Sha Y., Anal. Chem. 2014, 86, 2633–2639. PubMed
Quantum Material-Based Self-Propelled Microrobots for the Optical "On-the-Fly" Monitoring of DNA
Precisely Navigated Biobot Swarms of Bacteria Magnetospirillum magneticum for Water Decontamination
Smart micro- and nanorobots for water purification