Nickel Sulfide Microrockets as Self-Propelled Energy Storage Devices to Power Electronic Circuits "On-Demand"
Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
Ministry of Education
Youth and Sports
LL2002
Czech Republic
ERC CZ
Czech Republic
888797
European Union's Horizon 2020
- Keywords
- electronics, energy devices, micromotors, microrobots, supercapacitors,
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Miniaturized energy storage devices are essential to power the growing number and variety of microelectronic technologies. Here, a concept of self-propelled microscale energy storage elements that can move, reach, and power electronic circuits is reported. Microrockets consisting of a nickel sulfide (NiS) outer layer and a Pt inner layer are prepared by template-assisted electrodeposition, and designed to store energy through NiS-mediated redox reactions and propel via the Pt-catalyzed decomposition of H2 O2 fuel. Scanning electrochemical microscopy allows visualizing and studying the energy storage ability of a single microrocket, revealing its pseudocapacitive nature. This proves the great potential of such technique in the field of micro/nanomotors. On-demand delivery of energy storage units to electronic circuits has been demonstrated by releasing microrockets on an interdigitated array electrode as an example of electronic circuit. Owing to their self-propulsion ability, they reach the active area of the electrode and, in principle, power its functions. These autonomously moving energy storage devices will be employed for next-generation electronics to store and deliver energy in previously inaccessible locations.
See more in PubMed
M. Fernández-Medina, M. A. Ramos-Docampo, O. Hovorka, V. Salgueiriño, B. Städler, Adv. Funct. Mater. 2020, 30, 1908283.
F. Novotný, H. Wang, M. Pumera, Chem 2020, 6, 867.
L. Soler, S. Sánchez, Nanoscale 2014, 6, 7175.
S. Hermanová, M. Pumera, N. Biocatalytic Micro- and, Chem. - Eur. J. 2020, 26, 11085.
L. Kong, C. C. Mayorga-Martinez, J. Guan, M. Pumera, Small 2020, 16, 1903179.
H. Zhou, C. C. Mayorga-Martinez, S. Pan, L. Zhang, M. Pumera, Chem. Rev. 2020, 121, 49999.
W. Wang, L. A. Castro, M. Hoyos, T. E. Mallouk, ACS Nano 2012, 6, 6122.
E. Karshalev, B. Esteban-Fernández De Ávila, J. Wang, J. Am. Chem. Soc. 2018, 140, 3810.
W. Liu, X. Chen, X. Lu, J. Wang, Y. Zhang, Z. Gu, Adv. Funct. Mater. 2020, 30, 2003195.
Y. Ying, M. Pumera, Chem. - Eur. J. 2019, 25, 106.
J. Parmar, D. Vilela, K. Villa, J. Wang, S. Sánchez, J. Am. Chem. Soc. 2018, 140, 9317.
M. Urso, M. Ussia, M. Pumera, Adv. Funct. Mater. 2021, 31, 2101510.
M. Ussia, M. Urso, K. Dolezelikova, H. Michalkova, V. Adam, M. Pumera, Adv. Funct. Mater. 2021, 31, 2101178.
M. Zarei, M. Zarei, Small 2018, 14, 1800912.
L. Kong, J. Guan, M. Pumera, Curr. Opin. Electrochem. 2018, 10, 174.
M. Pacheco, M. Á. López, B. Jurado-Sánchez, A. Escarpa, Anal. Bioanal. Chem. 2019, 411, 6561.
P. L. Venugopalan, B. Esteban-Fernández De Ávila, M. Pal, A. Ghosh, J. Wang, ACS Nano 2020, 14, 9423.
Z. Wu, Y. Chen, D. Mukasa, O. S. Pak, W. Gao, Chem. Soc. Rev. 2020, 49, 8088.
B. Wang, K. Kostarelos, B. J. Nelson, L. Zhang, Adv. Mater. 2021, 33, 2002047.
J. Li, O. E. Shklyaev, T. Li, W. Liu, H. Shum, I. Rozen, A. C. Balazs, J. Wang, Nano Lett. 2015, 15, 7077.
D. Jin, J. Yu, K. Yuan, L. Zhang, ACS Nano 2019, 13, 5999.
V. V. Singh, F. Soto, K. Kaufmann, J. Wang, Angew. Chem. 2015, 127, 7000.
J. Guo, J. J. Gallegos, A. R. Tom, D. Fan, ACS Nano 2018, 12, 1179.
N. A. Kyeremateng, T. Brousse, D. Pech, Nat. Nanotechnol. 2017, 12, 7.
M. Yu, X. Feng, Joule 2019, 3, 338.
J. F. M. Oudenhoven, L. Baggetto, P. H. L. Notten, Adv. Energy Mater. 2011, 1, 10.
Z. Zhu, R. Kan, S. Hu, L. He, X. Hong, H. Tang, W. Luo, Small 2020, 16, e2003251.
M. Nasreldin, S. de Mulatier, R. Delattre, M. Ramuz, T. Djenizian, Adv. Mater. Technol. 2020, 5, 2000412.
J. Wang, F. Li, F. Zhu, O. G. Schmidt, Small Methods 2019, 3, 1800367.
C. Lethien, J. Le Bideau, T. Brousse, Energy Environ. Sci. 2019, 12, 96.
J. Zhang, G. Zhang, T. Zhou, S. Sun, Adv. Funct. Mater. 2020, 30, 1910000.
S. M. Beladi-Mousavi, B. Khezri, S. Matějková, Z. Sofer, M. Pumera, Angew. Chem. 2019, 131, 13340.
C. C. Mayorga-Martinez, J. G. S. Moo, B. Khezri, P. Song, A. C. Fisher, Z. Sofer, M. Pumera, Adv. Funct. Mater. 2016, 26, 6662.
W. Wei, L. Mi, Y. Gao, Z. Zheng, W. Chen, X. Guan, Chem. Mater. 2014, 26, 3418.
X. Y. Yu, L. Yu, H. Wu, Bin, X. W. Lou, Angew. Chem., Int. Ed. 2015, 54, 5331.
A. M. Patil, V. C. Lokhande, A. C. Lokhande, N. R. Chodankar, T. Ji, J. H. Kim, C. D. Lokhande, RSC Adv. 2016, 6, 68388.
P. Gaikar, S. P. Pawar, R. S. Mane, M. Nuashad, D. V. Shinde, RSC Adv. 2016, 6, 112589.
X. Liu, B. You, X. Y. Yu, J. Chipman, Y. Sun, J. Mater. Chem. A 2016, 4, 11611.
N. Sonai Muthu, M. Gopalan, Appl. Surf. Sci. 2019, 480, 186.
A. Meng, X. Yuan, T. Shen, J. Zhao, G. Song, Y. Lin, Z. Li, Nanoscale 2020, 12, 4655.
X. Li, Q. Li, Y. Wu, M. Rui, H. Zeng, ACS Appl. Mater. Interfaces 2015, 7, 19316.
J. Li, I. Rozen, J. Wang, ACS Nano 2016, 10, 5619.
N. Karikalan, R. Karthik, S. M. Chen, C. Karuppiah, A. Elangovan, Sci. Rep. 2017, 7, 2494.
T. Berestok, P. Guardia, S. Estradé, J. Llorca, F. Peiró, A. Cabot, S. L. Brock, Nanomaterials 2018, 8, 220.
Y. Pan, Y. Chen, X. Li, Y. Liu, C. Liu, RSC Adv. 2015, 5, 104740.
S. Zhang, N. Pan, Adv. Energy Mater. 2015, 5, 1401401.
D. Polcari, P. Dauphin-Ducharme, J. Mauzeroll, Chem. Rev. 2016, 116, 13234.
A. Kumatani, T. Matsue, Curr. Opin. Electrochem. 2020, 22, 228.
A. J. Bard, M. V. Mirkin, Scanning Electrochemical Microscopy, 2nd Editiom, CRC Press, Boca Raton, FL 2012.
R. D. Martin, P. R. Unwin, Anal. Chem. 1998, 70, 276.
S. Bergner, P. Palatzky, J. Wegener, F. M. Matysik, Electroanalysis 2011, 23, 196.
N. L. Ritzert, V. A. Szalai, T. P. Moffat, Langmuir 2018, 34, 13864.
T. Sun, H. Zhang, X. Wang, J. Liu, C. Xiao, S. U. Nanayakkara, J. L. Blackburn, M. V. Mirkin, E. M. Miller, Nanoscale Horiz. 2019, 4, 619.
C. Iffelsberger, S. Ng, M. Pumera, Appl. Mater. Today 2020, 20, 100654.
C. Heubner, U. Langklotz, C. Lämmel, M. Schneider, A. Michaelis, Electrochim. Acta 2020, 330, 135160.
K. Ando, Y. Yamada, K. Nishikawa, T. Matsuda, D. Imamura, K. Kanamura, ACS Appl. Energy Mater. 2018, 1, 4536.
T. Sun, Y. Yu, B. J. Zacher, M. V. Mirkin, Angew. Chem., Int. Ed. 2014, 53, 14120.
A. Djire, X. Wang, C. Xiao, O. C. Nwamba, M. V. Mirkin, N. R. Neale, Adv. Funct. Mater. 2020, 30, 2001136.
B. Tao, L. C. Yule, E. Daviddi, C. L. Bentley, P. R. Unwin, Angew. Chem., Int. Ed. 2019, 58, 4606.
S. Cosentino, M. Urso, G. Torrisi, S. Battiato, F. Priolo, A. Terrasi, S. Mirabella, Mater. Adv. 2020, 1, 1971.
P. Simon, Y. Gogotsi, B. Dunn, Science 2014, 343, 1210.
T. Brousse, D. Bélanger, J. W. Long, J. Electrochem. Soc. 2015, 162, A5185.
A. L. Brisse, P. Stevens, G. Toussaint, O. Crosnier, T. Brousse, Materials 2018, 11, 1178.
M. Urso, G. Torrisi, S. Boninelli, C. Bongiorno, F. Priolo, S. Mirabella, Sci. Rep. 2019, 9, 7736.
M. Urso, F. Priolo, S. Mirabella, Appl. Surf. Sci. 2020, 534, 147585.
A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed., John Wiley & Sons, New York 2001.
K. Ghosh, S. Ng, C. Iffelsberger, M. Pumera, ACS Appl. Energy Mater. 2020, 3, 10261.
A. Serrà, J. García-Torres, Appl. Mater. Today 2021, 22, 100939.
N. Jiang, L. Bogoev, M. Popova, S. Gul, J. Yano, Y. Sun, J. Mater. Chem. A 2014, 2, 19407.
Smart micro- and nanorobots for water purification
Trapping and detecting nanoplastics by MXene-derived oxide microrobots