Quantum Material-Based Self-Propelled Microrobots for the Optical "On-the-Fly" Monitoring of DNA
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38078399
PubMed Central
PMC10750807
DOI
10.1021/acsami.3c09920
Knihovny.cz E-zdroje
- Klíčová slova
- DNA biosensor, FRET, fluorescence, microrockets, self-propelled micromotors,
- MeSH
- biologické markery MeSH
- biosenzitivní techniky * metody MeSH
- DNA chemie MeSH
- grafit * chemie MeSH
- hybridizace nukleových kyselin MeSH
- kvantové tečky * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
- DNA MeSH
- grafit * MeSH
Quantum dot-based materials have been found to be excellent platforms for biosensing and bioimaging applications. Herein, self-propelled microrobots made of graphene quantum dots (GQD-MRs) have been synthesized and explored as unconventional dynamic biocarriers toward the optical "on-the-fly" monitoring of DNA. As a first demonstration of applicability, GQD-MRs have been first biofunctionalized with a DNA biomarker (i.e., fluorescein amidite-labeled, FAM-L) via hydrophobic π-stacking interactions and subsequently exposed toward different concentrations of a DNA target. The biomarker-target hybridization process leads to a biomarker release from the GQD-MR surface, resulting in a linear alteration in the fluorescence intensity of the dynamic biocarrier at the nM range (1-100 nM, R2 = 0.99), also demonstrating excellent selectivity and sensitivity, with a detection limit as low as 0.05 nM. Consequently, the developed dynamic biocarriers, which combine the appealing features of GQDs (e.g., water solubility, fluorescent activity, and supramolecular π-stacking interactions) with the autonomous mobility of MRs, present themselves as potential autonomous micromachines to be exploited as highly efficient and sensitive "on-the-fly" biosensing systems. This method is general and can be simply customized by tailoring the biomarker anchored to the GQD-MR's surface.
Zobrazit více v PubMed
Soler L.; Magdanz V.; Fomin V. M.; Sanchez S.; Schmidt O. G. Self-Propelled Micromotors for Cleaning Polluted Water. ACS Nano 2013, 7, 9611.10.1021/nn405075d. PubMed DOI PMC
Maria-Hormigos R.; Jurado-Sánchez B.; Escarpa A. Labs-on-a-Chip Meet Self-Propelled Micromotors. Lab Chip 2016, 16, 2397.10.1039/C6LC00467A. PubMed DOI
Karshalev E.; Esteban-Fernández De Ávila B.; Wang J. Micromotors for “Chemistry-on-the-Fly. J. Am. Chem. Soc. 2018, 140, 3810.10.1021/jacs.8b00088. PubMed DOI
Muñoz J.; Urso M.; Pumera M. Self-Propelled Multifunctional Microrobots Harboring Chiral Supramolecular Selectors for “Enantiorecognition-on-the-Fly. Angew. Chem. - Int. Ed. 2022, e202116090.10.1002/anie.202116090. PubMed DOI PMC
Liu W.; Ge H.; Gu Z.; Lu X.; Li J.; Wang J. Electrochemical Deposition Tailors the Catalytic Performance of MnO2-Based Micromotors. Small 2018, 1802771.10.1002/smll.201802771. PubMed DOI
Yuan K.; Jiang Z.; Jurado-Sánchez B.; Escarpa A. Nano/Micromotors for Diagnosis and Therapy of Cancer and Infectious Diseases. Chem.—Eur. J. 2020, 26, 2309.10.1002/chem.201903475. PubMed DOI
Mayorga-Martinez C. C.; Pumera M. Self-Propelled Tags for Protein Detection. Adv. Funct. Mater. 2020, 30, 1906449.10.1002/adfm.201906449. DOI
Mayorga-Burrezo P.; Mayorga-Martinez C. C.; Pumera M. Light-Driven Micromotors to Dissociate Protein Aggregates That Cause Neurodegenerative Diseases. Adv. Funct. Mater. 2022, 32, 2106699.10.1002/adfm.202106699. DOI
Zhou H.; Mayorga-Martinez C. C.; Pané S.; Zhang L.; Pumera M. Magnetically Driven Micro and Nanorobots. Chem. Rev. 2021, 121, 4999.10.1021/acs.chemrev.0c01234. PubMed DOI PMC
Wang H.; Pumera M. Coordinated Behaviors of Artificial Micro/Nanomachines: From Mutual Interactions to Interactions with the Environment. Chem. Soc. Rev. 2020, 49, 3211.10.1039/C9CS00877B. PubMed DOI
la Asunción-Nadal V. d.; Pacheco M.; Jurado-Sánchez B.; Escarpa A. Chalcogenides-Based Tubular Micromotors in Fluorescent Assays. Anal. Chem. 2020, 92, 9188.10.1021/acs.analchem.0c01541. PubMed DOI
Yuan K.; de la Asunción-Nadal V.; Li Y.; Jurado-Sánchez B.; Escarpa A. Graphdiyne Micromotors in Living Biomedia. Chem.—Eur. J. 2020, 26, 8471.10.1002/chem.202001754. PubMed DOI
Jurado-Sánchez B.; Escarpa A. Milli, Micro and Nanomotors: Novel Analytical Tools for Real-World Applications. TrAC - Trends Analy. Chem. 2016, 84, 48.10.1016/j.trac.2016.03.009. DOI
Esteban-Fernández de Ávila B.; Martín A.; Soto F.; Lopez-Ramirez M. A.; Campuzano S.; Vásquez-Machado G. M.; Gao W.; Zhang L.; Wang J. Single Cell Real-Time MiRNAs Sensing Based on Nanomotors. ACS Nano 2015, 9, 6756.10.1021/acsnano.5b02807. PubMed DOI
Li J.; Pumera M. 3D Printing of Functional Microrobots. Chem. Soc. Rev. 2021, 50, 2794.10.1039/D0CS01062F. PubMed DOI
Li M.; Chen T.; Gooding J. J.; Liu J. Review of Carbon and Graphene Quantum Dots for Sensing. ACS Sens. 2019, 4, 1732.10.1021/acssensors.9b00514. PubMed DOI
Ananthanarayanan A.; Wang X.; Routh P.; Sana B.; Lim S.; Kim D. H.; Lim K. H.; Li J.; Chen P. Facile Synthesis of Graphene Quantum Dots from 3D Graphene and Their Application for Fe3+ Sensing. Adv. Funct. Mater. 2014, 24, 3021.10.1002/adfm.201303441. DOI
Xie R.; Wang Z.; Zhou W.; Liu Y.; Fan L.; Li Y.; Li X. Graphene Quantum Dots as Smart Probes for Biosensing. Anal. Methods 2016, 8, 4001.10.1039/C6AY00289G. DOI
Li L.; Wu G.; Hong T.; Yin Z.; Sun D.; Abdel-Halim E. S.; Zhu J. J. Graphene Quantum Dots as Fluorescence Probes for Turn-off Sensing of Melamine in the Presence of Hg2+. ACS Appl. Mater. Interfaces 2014, 6, 2858.10.1021/am405305r. PubMed DOI
Zhao J.; Zhao L.; Lan C.; Zhao S. Graphene Quantum Dots as Effective Probes for Label-Free Fluorescence Detection of Dopamine. Sens. Actuators, B 2016, 223, 246.10.1016/j.snb.2015.09.105. DOI
Peng B.; Chen L.; Que C.; Yang K.; Deng F.; Deng X.; Shi G.; Xu G.; Wu M. Adsorption of Antibiotics on Graphene and Biochar in Aqueous Solutions Induced by π-π Interactions. Sci. Rep. 2016, 6, 3192010.1038/srep31920. PubMed DOI PMC
McGaughey G. B.; Gagné M.; Rappé A. K. π-Stacking Interactions. Alive and Well in Proteins. J. Biol. Chem. 1998, 273, 15458.10.1074/jbc.273.25.15458. PubMed DOI
He S.; Song B.; Li D.; Zhu C.; Qi W.; Wen Y.; Wang L.; Song S.; Fang H.; Fan C. A Craphene Nanoprobe for Rapid, Sensitive, and Multicolor Fluorescent DNA Analysis. Adv. Funct. Mater. 2010, 20, 453.10.1002/adfm.200901639. DOI
Maria-Hormigos R.; Jurado-Sánchez B.; Escarpa A. Graphene Quantum Dot Based Micromotors: A Size Matter. Chem. Commun. 2019, 55, 6795.10.1039/C9CC02959A. PubMed DOI
Jurado-Sánchez B.; Pacheco M.; Rojo J.; Escarpa A. Magnetocatalytic Graphene Quantum Dots Janus Micromotors for Bacterial Endotoxin Detection. Angew. Chem. - Int. Ed. 2017, 56, 6957.10.1002/anie.201701396. PubMed DOI
Peter C.; Meusel M.; Grawe F.; Katerkamp A.; Cammann K.; Börchers T. Optical DNA-Sensor Chip for Real-Time Detection of Hybridization Events. Fresenius’ J. Anal. Chem. 2001, 371, 120.10.1007/s002160101006. PubMed DOI
Indrawattana N.; Promptmas C.; Wat-Aksorn K.; Soontornchai S. Real-Time Monitoring of DNA Hybridization for Rapid Detection of Vibrio Cholerae O1. Anal. Methods 2014, 6, 7634.10.1039/C4AY01162G. DOI
Loo A. H.; Sofer Z.; Bouša D.; Ulbrich P.; Bonanni A.; Pumera M. Carboxylic Carbon Quantum Dots as a Fluorescent Sensing Platform for DNA Detection. ACS Appl. Mater. Interfaces 2016, 8, 1951.10.1021/acsami.5b10160. PubMed DOI
Feng F.; Chen W.; Chen D.; Lin W.; Chen S. C. In-Situ Ultrasensitive Label-Free DNA Hybridization Detection Using Optical Fiber Specklegram. Sens. Actuators, B 2018, 272, 160.10.1016/j.snb.2018.05.099. DOI
Jares-Erijman E. A.; Jovin T. M. FRET Imaging. Nat. Biotechnol. 2003, 21, 1387.10.1038/nbt896. PubMed DOI
Ray P. C.; Darbha G. K.; Ray A.; Walker J.; Hardy W. Gold Nanoparticle Based FRET for DNA Detection. Plasmonics 2007, 2, 173.10.1007/s11468-007-9036-9. DOI
Zhou S.; Xu H.; Gan W.; Yuan Q. Graphene Quantum Dots: Recent Progress in Preparation and Fluorescence Sensing Applications. RSC Adv. 2016, 6, 110775.10.1039/C6RA24349E. DOI
Benítez-Martínez S.; Valcárcel M. Graphene Quantum Dots in Analytical Science. TrAC - Trends Anal. Chem. 2015, 72, 93.10.1016/j.trac.2015.03.020. DOI
Zhang Z.; Zhang J.; Chen N.; Qu L. Graphene Quantum Dots: An Emerging Material for Energy-Related Applications and Beyond. Energy Environ. Sci. 2012, 5, 8869.10.1039/c2ee22982j. DOI
Wong K. L.; Liu J. Factors and Methods to Modulate DNA Hybridization Kinetics. Biotechnology J. 2021, 16, 2000338.10.1002/biot.202000338. PubMed DOI
Esteban-Fernández de Ávila B.; Lopez-Ramirez M. A.; Báez D. F.; Jodra A.; Singh V. V.; Kaufmann K.; Wang J. Aptamer-Modified Graphene-Based Catalytic Micromotors: Off-On Fluorescent Detection of Ricin. ACS Sens. 2016, 1, 217.10.1021/acssensors.5b00300. DOI
Shi J.; Chan C.; Pang Y.; Ye W.; Tian F.; Lyu J.; Zhang Y.; Yang M. A Fluorescence Resonance Energy Transfer (FRET) Biosensor Based on Graphene Quantum Dots (GQDs) and Gold Nanoparticles (AuNPs) for the Detection of MecA Gene Sequence of Staphylococcus Aureus. Biosens. Bioelectron. 2015, 67, 595.10.1016/j.bios.2014.09.059. PubMed DOI
Bharathi G.; Lin F.; Liu L.; Ohulchanskyy T. Y.; Hu R.; Qu J. An All-Graphene Quantum Dot Förster Resonance Energy Transfer (FRET) Probe for Ratiometric Detection of HE4 Ovarian Cancer Biomarker. Colloids Surf., B 2021, 198, 111458.10.1016/j.colsurfb.2020.111458. PubMed DOI
Fu S.; Zhang X.; Xie Y.; Wu J.; Ju H. An Efficient Enzyme-Powered Micromotor Device Fabricated by Cyclic Alternate Hybridization Assembly for DNA Detection. Nanoscale 2017, 9, 9026.10.1039/C7NR01168G. PubMed DOI
Wu J.; Balasubramanian S.; Kagan D.; Manesh K. M.; Campuzano S.; Wang J. Motion-Based DNA Detection Using Catalytic Nanomotors. Nat. Commun. 2010, 1, 3610.1038/ncomms1035. PubMed DOI
Zhang X.; Chen C.; Wu J.; Ju H. Bubble-Propelled Jellyfish-like Micromotors for DNA Sensing. ACS Appl. Mater. Interfaces 2019, 11, 13581.10.1021/acsami.9b00605. PubMed DOI
Báez D. F.; Ramos G.; Corvalán A.; Cordero M. L.; Bollo S.; Kogan M. J. Effects of Preparation on Catalytic, Magnetic and Hybrid Micromotors on Their Functional Features and Application in Gastric Cancer Biomarker Detection. Sens. Actuators, B 2020, 310, 127843.10.1016/j.snb.2020.127843. DOI
Wang Q.; Wang Y.; Guo B.; Shao S.; Yu Y.; Zhu X.; Wan M.; Zhao B.; Bo C.; Mao C. Novel Heparin-Loaded Mesoporous Tubular Micromotors Formed via Template-Assisted Electrochemical Deposition. J. Mater. Chem. B 2019, 7, 2688.10.1039/C9TB00131J. PubMed DOI
Wang Y.; Mayorga-Martinez C. C.; Moo J. G. S.; Pumera M. Structure-Function Dependence on Template-Based Micromotors. ACS Appl. Energy Mater. 2018, 1, 3443.10.1021/acsaem.8b00605. DOI
Manesh K. M.; Cardona M.; Yuan R.; Clark M.; Kagan D.; Balasubramanian S.; Wang J. Template-Assisted Fabrication of Salt-Independent Catalytic Tubular Microengines. ACS Nano 2010, 4, 1799.10.1021/nn1000468. PubMed DOI
Zha F.; Wang T.; Luo M.; Guan J. Tubular Micro/Nanomotors: Propulsion Mechanisms, Fabrication Techniques and Applications. Micromachines 2018, 9, 78.10.3390/mi9020078. PubMed DOI PMC
Manjare M.; Yang B.; Zhao Y. P. Bubble-Propelled Microjets: Model and Experiment. J. Phys. Chem. C 2013, 117, 4657.10.1021/jp311977d. DOI
Pacheco M.; López M. Á.; Jurado-Sánchez B.; Escarpa A. Self-Propelled Micromachines for Analytical Sensing: A Critical Review. Anal. Bioanal. Chem. 2019, 411, 6561.10.1007/s00216-019-02070-z. PubMed DOI
Liu J.; Li J.; Jiang Y.; Yang S.; Tan W.; Yang R. Combination of π-π Stacking and Electrostatic Repulsion between Carboxylic Carbon Nanoparticles and Fluorescent Oligonucleotides for Rapid and Sensitive Detection of Thrombin. Chem. Commun. 2011, 47, 11321.10.1039/c1cc14445f. PubMed DOI
Martín A.; Jurado-Sánchez B.; Escarpa A.; Wang J. Template Electrosynthesis of High-Performance Graphene Microengines. Small 2015, 11, 3568.10.1002/smll.201500008. PubMed DOI
Didenko V. V. Dna Probes Using Fluorescence Resonance Energy Transfer (Fret): Designs and Applications. BioTechniques 2001, 31, 1106.10.2144/01315rv02. PubMed DOI PMC
Jiang G.; Susha A. S.; Lutich A. A.; Stefani F. D.; Feldmann J.; Rogach A. L. Cascaded FRET in Conjugated Polymer/Quantum Dot/Dye-Labeled DNA Complexes for DNA Hybridization Detection. ACS Nano 2009, 3, 4127.10.1021/nn901324y. PubMed DOI
Zhao G.; Nguyen N. T.; Pumera M. Reynolds Numbers Influence the Directionality of Self-Propelled Microjet Engines in the 10–4 Regime. Nanoscale 2013, 5, 7277.10.1039/c3nr01891a. PubMed DOI
Faridbod F.; Sanati A. L. Graphene Quantum Dots in Electrochemical Sensors/Biosensors. Current Analytical Chemistry 2019, 15, 103.10.2174/1573411014666180319145506. DOI
Yew Y. T.; Loo A. H.; Sofer Z.; Klímová K.; Pumera M. Coke-Derived Graphene Quantum Dots as Fluorescence Nanoquencher in DNA Detection. Appl. Mater. Today 2017, 7, 138.10.1016/j.apmt.2017.01.002. DOI
Magdanz V.; Guix M.; Schmidt O. G. Tubular Micromotors: From Microjets to Spermbots. Rob. Biomimetics 2014, 1, 1110.1186/s40638-014-0011-6. DOI
Zhao G.; Sanchez S.; Schmidt O. G.; Pumera M. Poisoning of Bubble Propelled Catalytic Micromotors: The Chemical Environment Matters. Nanoscale 2013, 5, 2909.10.1039/c3nr34213a. PubMed DOI PMC
Hu L.; Wang N.; Tao K.. Catalytic Micro/Nanomotors: Propulsion Mechanisms, Fabrication, Control, and Applications. In Smart Nanosystems for Biomedicine, Optoelectronics and Catalysis, 2020.
Wu Z.; Lin X.; Zou X.; Sun J.; He Q. Biodegradable Protein-Based Rockets for Drug Transportation and Light-Triggered Release. ACS Appl. Mater. Interfaces 2015, 7, 250.10.1021/am507680u. PubMed DOI
Draz M. S.; Kochehbyoki K. M.; Vasan A.; Battalapalli D.; Sreeram A.; Kanakasabapathy M. K.; Kallakuri S.; Tsibris A.; Kuritzkes D. R.; Shafiee H. DNA Engineered Micromotors Powered by Metal Nanoparticles for Motion Based Cellphone Diagnostics. Nat. Commun. 2018, 9, 428210.1038/s41467-018-06727-8. PubMed DOI PMC
Kim J. K.; Kim S. J.; Park M. J.; Bae S.; Cho S. P.; Du Q. G.; Wang D. H.; Park J. H.; Hong B. H. Surface-Engineered Graphene Quantum Dots Incorporated into Polymer Layers for High Performance Organic Photovoltaics. Sci. Rep. 2015, 5, 1427610.1038/srep14276. PubMed DOI PMC
Suryawanshi A.; Biswal M.; Mhamane D.; Gokhale R.; Patil S.; Guin D.; Ogale S. Large Scale Synthesis of Graphene Quantum Dots (GQDs) from Waste Biomass and Their Use as an Efficient and Selective Photoluminescence on-off-on Probe for Ag+ Ions. Nanoscale 2014, 6, 11664.10.1039/C4NR02494J. PubMed DOI
Saad S. M.; Abdullah J.; Rashid S. A.; Fen Y. W.; Salam F.; Yih L. H. A Fluorescence Quenching Based Gene Assay for Escherichia Coli O157:H7 Using Graphene Quantum Dots and Gold Nanoparticles. Microchimica Acta 2019, 186, 804.10.1007/s00604-019-3913-8. PubMed DOI
Abbas A.; Tabish T. A.; Bull S. J.; Lim T. M.; Phan A. N. High Yield Synthesis of Graphene Quantum Dots from Biomass Waste as a Highly Selective Probe for Fe3+ Sensing. Sci. Rep. 2020, 10, 2126210.1038/s41598-020-78070-2. PubMed DOI PMC
Lu L.; Guo L.; Wang X.; Kang T.; Cheng S. Complexation and Intercalation Modes: A Novel Interaction of DNA and Graphene Quantum Dots. RSC Adv. 2016, 6, 33072.10.1039/C6RA00930A. DOI
Maity N.; Kuila A.; Das S.; Mandal D.; Shit A.; Nandi A. K. Optoelectronic and Photovoltaic Properties of Graphene Quantum Dot-Polyaniline Nanostructures. J. Mater. Chem. A 2015, 3, 20736.10.1039/C5TA06576C. DOI
Lee J.; Kim J.; Kim S.; Min D. H. Biosensors Based on Graphene Oxide and Its Biomedical Application. Adv. Drug Delivery Rev. 2016, 105, 275.10.1016/j.addr.2016.06.001. PubMed DOI PMC
Zhang Y.; Zheng B.; Zhu C.; Zhang X.; Tan C.; Li H.; Chen B.; Yang J.; Chen J.; Huang Y.; Wang L.; Zhang H. Single-Layer Transition Metal Dichalcogenide Nanosheet-Based Nanosensors for Rapid, Sensitive, and Multiplexed Detection of DNA. Adv. Mater. 2015, 27, 935.10.1002/adma.201404568. PubMed DOI
Lu C.; Huang P. J. J.; Liu B.; Ying Y.; Liu J. Comparison of Graphene Oxide and Reduced Graphene Oxide for DNA Adsorption and Sensing. Langmuir 2016, 32, 10776.10.1021/acs.langmuir.6b03032. PubMed DOI
Wu M.; Kempaiah R.; Huang P. J. J.; Maheshwari V.; Liu J. Adsorption and Desorption of DNA on Graphene Oxide Studied by Fluorescently Labeled Oligonucleotides. Langmuir 2011, 27, 2731.10.1021/la1037926. PubMed DOI
Liu B.; Salgado S.; Maheshwari V.; Liu J. DNA Adsorbed on Graphene and Graphene Oxide: Fundamental Interactions, Desorption and Applications. Curr. Opin. Colloid Interface Sci. 2016, 26, 41.10.1016/j.cocis.2016.09.001. DOI
Qin F.; Wu J.; Fu D.; Feng Y.; Gao C.; Xie D.; Fu S.; Liu S.; Wilson D. A.; Peng F. Magnetically Driven Helical Hydrogel Micromotor for Tumor DNA Detection. Appl. Mater. Today 2022, 27, 101456.10.1016/j.apmt.2022.101456. DOI
Active Quantum Biomaterials-Enhanced Microrobots for Food Safety