Quantum Material-Based Self-Propelled Microrobots for the Optical "On-the-Fly" Monitoring of DNA

. 2023 Dec 20 ; 15 (50) : 58548-58555. [epub] 20231211

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38078399

Quantum dot-based materials have been found to be excellent platforms for biosensing and bioimaging applications. Herein, self-propelled microrobots made of graphene quantum dots (GQD-MRs) have been synthesized and explored as unconventional dynamic biocarriers toward the optical "on-the-fly" monitoring of DNA. As a first demonstration of applicability, GQD-MRs have been first biofunctionalized with a DNA biomarker (i.e., fluorescein amidite-labeled, FAM-L) via hydrophobic π-stacking interactions and subsequently exposed toward different concentrations of a DNA target. The biomarker-target hybridization process leads to a biomarker release from the GQD-MR surface, resulting in a linear alteration in the fluorescence intensity of the dynamic biocarrier at the nM range (1-100 nM, R2 = 0.99), also demonstrating excellent selectivity and sensitivity, with a detection limit as low as 0.05 nM. Consequently, the developed dynamic biocarriers, which combine the appealing features of GQDs (e.g., water solubility, fluorescent activity, and supramolecular π-stacking interactions) with the autonomous mobility of MRs, present themselves as potential autonomous micromachines to be exploited as highly efficient and sensitive "on-the-fly" biosensing systems. This method is general and can be simply customized by tailoring the biomarker anchored to the GQD-MR's surface.

Zobrazit více v PubMed

Soler L.; Magdanz V.; Fomin V. M.; Sanchez S.; Schmidt O. G. Self-Propelled Micromotors for Cleaning Polluted Water. ACS Nano 2013, 7, 9611.10.1021/nn405075d. PubMed DOI PMC

Maria-Hormigos R.; Jurado-Sánchez B.; Escarpa A. Labs-on-a-Chip Meet Self-Propelled Micromotors. Lab Chip 2016, 16, 2397.10.1039/C6LC00467A. PubMed DOI

Karshalev E.; Esteban-Fernández De Ávila B.; Wang J. Micromotors for “Chemistry-on-the-Fly. J. Am. Chem. Soc. 2018, 140, 3810.10.1021/jacs.8b00088. PubMed DOI

Muñoz J.; Urso M.; Pumera M. Self-Propelled Multifunctional Microrobots Harboring Chiral Supramolecular Selectors for “Enantiorecognition-on-the-Fly. Angew. Chem. - Int. Ed. 2022, e202116090.10.1002/anie.202116090. PubMed DOI PMC

Liu W.; Ge H.; Gu Z.; Lu X.; Li J.; Wang J. Electrochemical Deposition Tailors the Catalytic Performance of MnO2-Based Micromotors. Small 2018, 1802771.10.1002/smll.201802771. PubMed DOI

Yuan K.; Jiang Z.; Jurado-Sánchez B.; Escarpa A. Nano/Micromotors for Diagnosis and Therapy of Cancer and Infectious Diseases. Chem.—Eur. J. 2020, 26, 2309.10.1002/chem.201903475. PubMed DOI

Mayorga-Martinez C. C.; Pumera M. Self-Propelled Tags for Protein Detection. Adv. Funct. Mater. 2020, 30, 1906449.10.1002/adfm.201906449. DOI

Mayorga-Burrezo P.; Mayorga-Martinez C. C.; Pumera M. Light-Driven Micromotors to Dissociate Protein Aggregates That Cause Neurodegenerative Diseases. Adv. Funct. Mater. 2022, 32, 2106699.10.1002/adfm.202106699. DOI

Zhou H.; Mayorga-Martinez C. C.; Pané S.; Zhang L.; Pumera M. Magnetically Driven Micro and Nanorobots. Chem. Rev. 2021, 121, 4999.10.1021/acs.chemrev.0c01234. PubMed DOI PMC

Wang H.; Pumera M. Coordinated Behaviors of Artificial Micro/Nanomachines: From Mutual Interactions to Interactions with the Environment. Chem. Soc. Rev. 2020, 49, 3211.10.1039/C9CS00877B. PubMed DOI

la Asunción-Nadal V. d.; Pacheco M.; Jurado-Sánchez B.; Escarpa A. Chalcogenides-Based Tubular Micromotors in Fluorescent Assays. Anal. Chem. 2020, 92, 9188.10.1021/acs.analchem.0c01541. PubMed DOI

Yuan K.; de la Asunción-Nadal V.; Li Y.; Jurado-Sánchez B.; Escarpa A. Graphdiyne Micromotors in Living Biomedia. Chem.—Eur. J. 2020, 26, 8471.10.1002/chem.202001754. PubMed DOI

Jurado-Sánchez B.; Escarpa A. Milli, Micro and Nanomotors: Novel Analytical Tools for Real-World Applications. TrAC - Trends Analy. Chem. 2016, 84, 48.10.1016/j.trac.2016.03.009. DOI

Esteban-Fernández de Ávila B.; Martín A.; Soto F.; Lopez-Ramirez M. A.; Campuzano S.; Vásquez-Machado G. M.; Gao W.; Zhang L.; Wang J. Single Cell Real-Time MiRNAs Sensing Based on Nanomotors. ACS Nano 2015, 9, 6756.10.1021/acsnano.5b02807. PubMed DOI

Li J.; Pumera M. 3D Printing of Functional Microrobots. Chem. Soc. Rev. 2021, 50, 2794.10.1039/D0CS01062F. PubMed DOI

Li M.; Chen T.; Gooding J. J.; Liu J. Review of Carbon and Graphene Quantum Dots for Sensing. ACS Sens. 2019, 4, 1732.10.1021/acssensors.9b00514. PubMed DOI

Ananthanarayanan A.; Wang X.; Routh P.; Sana B.; Lim S.; Kim D. H.; Lim K. H.; Li J.; Chen P. Facile Synthesis of Graphene Quantum Dots from 3D Graphene and Their Application for Fe3+ Sensing. Adv. Funct. Mater. 2014, 24, 3021.10.1002/adfm.201303441. DOI

Xie R.; Wang Z.; Zhou W.; Liu Y.; Fan L.; Li Y.; Li X. Graphene Quantum Dots as Smart Probes for Biosensing. Anal. Methods 2016, 8, 4001.10.1039/C6AY00289G. DOI

Li L.; Wu G.; Hong T.; Yin Z.; Sun D.; Abdel-Halim E. S.; Zhu J. J. Graphene Quantum Dots as Fluorescence Probes for Turn-off Sensing of Melamine in the Presence of Hg2+. ACS Appl. Mater. Interfaces 2014, 6, 2858.10.1021/am405305r. PubMed DOI

Zhao J.; Zhao L.; Lan C.; Zhao S. Graphene Quantum Dots as Effective Probes for Label-Free Fluorescence Detection of Dopamine. Sens. Actuators, B 2016, 223, 246.10.1016/j.snb.2015.09.105. DOI

Peng B.; Chen L.; Que C.; Yang K.; Deng F.; Deng X.; Shi G.; Xu G.; Wu M. Adsorption of Antibiotics on Graphene and Biochar in Aqueous Solutions Induced by π-π Interactions. Sci. Rep. 2016, 6, 3192010.1038/srep31920. PubMed DOI PMC

McGaughey G. B.; Gagné M.; Rappé A. K. π-Stacking Interactions. Alive and Well in Proteins. J. Biol. Chem. 1998, 273, 15458.10.1074/jbc.273.25.15458. PubMed DOI

He S.; Song B.; Li D.; Zhu C.; Qi W.; Wen Y.; Wang L.; Song S.; Fang H.; Fan C. A Craphene Nanoprobe for Rapid, Sensitive, and Multicolor Fluorescent DNA Analysis. Adv. Funct. Mater. 2010, 20, 453.10.1002/adfm.200901639. DOI

Maria-Hormigos R.; Jurado-Sánchez B.; Escarpa A. Graphene Quantum Dot Based Micromotors: A Size Matter. Chem. Commun. 2019, 55, 6795.10.1039/C9CC02959A. PubMed DOI

Jurado-Sánchez B.; Pacheco M.; Rojo J.; Escarpa A. Magnetocatalytic Graphene Quantum Dots Janus Micromotors for Bacterial Endotoxin Detection. Angew. Chem. - Int. Ed. 2017, 56, 6957.10.1002/anie.201701396. PubMed DOI

Peter C.; Meusel M.; Grawe F.; Katerkamp A.; Cammann K.; Börchers T. Optical DNA-Sensor Chip for Real-Time Detection of Hybridization Events. Fresenius’ J. Anal. Chem. 2001, 371, 120.10.1007/s002160101006. PubMed DOI

Indrawattana N.; Promptmas C.; Wat-Aksorn K.; Soontornchai S. Real-Time Monitoring of DNA Hybridization for Rapid Detection of Vibrio Cholerae O1. Anal. Methods 2014, 6, 7634.10.1039/C4AY01162G. DOI

Loo A. H.; Sofer Z.; Bouša D.; Ulbrich P.; Bonanni A.; Pumera M. Carboxylic Carbon Quantum Dots as a Fluorescent Sensing Platform for DNA Detection. ACS Appl. Mater. Interfaces 2016, 8, 1951.10.1021/acsami.5b10160. PubMed DOI

Feng F.; Chen W.; Chen D.; Lin W.; Chen S. C. In-Situ Ultrasensitive Label-Free DNA Hybridization Detection Using Optical Fiber Specklegram. Sens. Actuators, B 2018, 272, 160.10.1016/j.snb.2018.05.099. DOI

Jares-Erijman E. A.; Jovin T. M. FRET Imaging. Nat. Biotechnol. 2003, 21, 1387.10.1038/nbt896. PubMed DOI

Ray P. C.; Darbha G. K.; Ray A.; Walker J.; Hardy W. Gold Nanoparticle Based FRET for DNA Detection. Plasmonics 2007, 2, 173.10.1007/s11468-007-9036-9. DOI

Zhou S.; Xu H.; Gan W.; Yuan Q. Graphene Quantum Dots: Recent Progress in Preparation and Fluorescence Sensing Applications. RSC Adv. 2016, 6, 110775.10.1039/C6RA24349E. DOI

Benítez-Martínez S.; Valcárcel M. Graphene Quantum Dots in Analytical Science. TrAC - Trends Anal. Chem. 2015, 72, 93.10.1016/j.trac.2015.03.020. DOI

Zhang Z.; Zhang J.; Chen N.; Qu L. Graphene Quantum Dots: An Emerging Material for Energy-Related Applications and Beyond. Energy Environ. Sci. 2012, 5, 8869.10.1039/c2ee22982j. DOI

Wong K. L.; Liu J. Factors and Methods to Modulate DNA Hybridization Kinetics. Biotechnology J. 2021, 16, 2000338.10.1002/biot.202000338. PubMed DOI

Esteban-Fernández de Ávila B.; Lopez-Ramirez M. A.; Báez D. F.; Jodra A.; Singh V. V.; Kaufmann K.; Wang J. Aptamer-Modified Graphene-Based Catalytic Micromotors: Off-On Fluorescent Detection of Ricin. ACS Sens. 2016, 1, 217.10.1021/acssensors.5b00300. DOI

Shi J.; Chan C.; Pang Y.; Ye W.; Tian F.; Lyu J.; Zhang Y.; Yang M. A Fluorescence Resonance Energy Transfer (FRET) Biosensor Based on Graphene Quantum Dots (GQDs) and Gold Nanoparticles (AuNPs) for the Detection of MecA Gene Sequence of Staphylococcus Aureus. Biosens. Bioelectron. 2015, 67, 595.10.1016/j.bios.2014.09.059. PubMed DOI

Bharathi G.; Lin F.; Liu L.; Ohulchanskyy T. Y.; Hu R.; Qu J. An All-Graphene Quantum Dot Förster Resonance Energy Transfer (FRET) Probe for Ratiometric Detection of HE4 Ovarian Cancer Biomarker. Colloids Surf., B 2021, 198, 111458.10.1016/j.colsurfb.2020.111458. PubMed DOI

Fu S.; Zhang X.; Xie Y.; Wu J.; Ju H. An Efficient Enzyme-Powered Micromotor Device Fabricated by Cyclic Alternate Hybridization Assembly for DNA Detection. Nanoscale 2017, 9, 9026.10.1039/C7NR01168G. PubMed DOI

Wu J.; Balasubramanian S.; Kagan D.; Manesh K. M.; Campuzano S.; Wang J. Motion-Based DNA Detection Using Catalytic Nanomotors. Nat. Commun. 2010, 1, 3610.1038/ncomms1035. PubMed DOI

Zhang X.; Chen C.; Wu J.; Ju H. Bubble-Propelled Jellyfish-like Micromotors for DNA Sensing. ACS Appl. Mater. Interfaces 2019, 11, 13581.10.1021/acsami.9b00605. PubMed DOI

Báez D. F.; Ramos G.; Corvalán A.; Cordero M. L.; Bollo S.; Kogan M. J. Effects of Preparation on Catalytic, Magnetic and Hybrid Micromotors on Their Functional Features and Application in Gastric Cancer Biomarker Detection. Sens. Actuators, B 2020, 310, 127843.10.1016/j.snb.2020.127843. DOI

Wang Q.; Wang Y.; Guo B.; Shao S.; Yu Y.; Zhu X.; Wan M.; Zhao B.; Bo C.; Mao C. Novel Heparin-Loaded Mesoporous Tubular Micromotors Formed via Template-Assisted Electrochemical Deposition. J. Mater. Chem. B 2019, 7, 2688.10.1039/C9TB00131J. PubMed DOI

Wang Y.; Mayorga-Martinez C. C.; Moo J. G. S.; Pumera M. Structure-Function Dependence on Template-Based Micromotors. ACS Appl. Energy Mater. 2018, 1, 3443.10.1021/acsaem.8b00605. DOI

Manesh K. M.; Cardona M.; Yuan R.; Clark M.; Kagan D.; Balasubramanian S.; Wang J. Template-Assisted Fabrication of Salt-Independent Catalytic Tubular Microengines. ACS Nano 2010, 4, 1799.10.1021/nn1000468. PubMed DOI

Zha F.; Wang T.; Luo M.; Guan J. Tubular Micro/Nanomotors: Propulsion Mechanisms, Fabrication Techniques and Applications. Micromachines 2018, 9, 78.10.3390/mi9020078. PubMed DOI PMC

Manjare M.; Yang B.; Zhao Y. P. Bubble-Propelled Microjets: Model and Experiment. J. Phys. Chem. C 2013, 117, 4657.10.1021/jp311977d. DOI

Pacheco M.; López M. Á.; Jurado-Sánchez B.; Escarpa A. Self-Propelled Micromachines for Analytical Sensing: A Critical Review. Anal. Bioanal. Chem. 2019, 411, 6561.10.1007/s00216-019-02070-z. PubMed DOI

Liu J.; Li J.; Jiang Y.; Yang S.; Tan W.; Yang R. Combination of π-π Stacking and Electrostatic Repulsion between Carboxylic Carbon Nanoparticles and Fluorescent Oligonucleotides for Rapid and Sensitive Detection of Thrombin. Chem. Commun. 2011, 47, 11321.10.1039/c1cc14445f. PubMed DOI

Martín A.; Jurado-Sánchez B.; Escarpa A.; Wang J. Template Electrosynthesis of High-Performance Graphene Microengines. Small 2015, 11, 3568.10.1002/smll.201500008. PubMed DOI

Didenko V. V. Dna Probes Using Fluorescence Resonance Energy Transfer (Fret): Designs and Applications. BioTechniques 2001, 31, 1106.10.2144/01315rv02. PubMed DOI PMC

Jiang G.; Susha A. S.; Lutich A. A.; Stefani F. D.; Feldmann J.; Rogach A. L. Cascaded FRET in Conjugated Polymer/Quantum Dot/Dye-Labeled DNA Complexes for DNA Hybridization Detection. ACS Nano 2009, 3, 4127.10.1021/nn901324y. PubMed DOI

Zhao G.; Nguyen N. T.; Pumera M. Reynolds Numbers Influence the Directionality of Self-Propelled Microjet Engines in the 10–4 Regime. Nanoscale 2013, 5, 7277.10.1039/c3nr01891a. PubMed DOI

Faridbod F.; Sanati A. L. Graphene Quantum Dots in Electrochemical Sensors/Biosensors. Current Analytical Chemistry 2019, 15, 103.10.2174/1573411014666180319145506. DOI

Yew Y. T.; Loo A. H.; Sofer Z.; Klímová K.; Pumera M. Coke-Derived Graphene Quantum Dots as Fluorescence Nanoquencher in DNA Detection. Appl. Mater. Today 2017, 7, 138.10.1016/j.apmt.2017.01.002. DOI

Magdanz V.; Guix M.; Schmidt O. G. Tubular Micromotors: From Microjets to Spermbots. Rob. Biomimetics 2014, 1, 1110.1186/s40638-014-0011-6. DOI

Zhao G.; Sanchez S.; Schmidt O. G.; Pumera M. Poisoning of Bubble Propelled Catalytic Micromotors: The Chemical Environment Matters. Nanoscale 2013, 5, 2909.10.1039/c3nr34213a. PubMed DOI PMC

Hu L.; Wang N.; Tao K.. Catalytic Micro/Nanomotors: Propulsion Mechanisms, Fabrication, Control, and Applications. In Smart Nanosystems for Biomedicine, Optoelectronics and Catalysis, 2020.

Wu Z.; Lin X.; Zou X.; Sun J.; He Q. Biodegradable Protein-Based Rockets for Drug Transportation and Light-Triggered Release. ACS Appl. Mater. Interfaces 2015, 7, 250.10.1021/am507680u. PubMed DOI

Draz M. S.; Kochehbyoki K. M.; Vasan A.; Battalapalli D.; Sreeram A.; Kanakasabapathy M. K.; Kallakuri S.; Tsibris A.; Kuritzkes D. R.; Shafiee H. DNA Engineered Micromotors Powered by Metal Nanoparticles for Motion Based Cellphone Diagnostics. Nat. Commun. 2018, 9, 428210.1038/s41467-018-06727-8. PubMed DOI PMC

Kim J. K.; Kim S. J.; Park M. J.; Bae S.; Cho S. P.; Du Q. G.; Wang D. H.; Park J. H.; Hong B. H. Surface-Engineered Graphene Quantum Dots Incorporated into Polymer Layers for High Performance Organic Photovoltaics. Sci. Rep. 2015, 5, 1427610.1038/srep14276. PubMed DOI PMC

Suryawanshi A.; Biswal M.; Mhamane D.; Gokhale R.; Patil S.; Guin D.; Ogale S. Large Scale Synthesis of Graphene Quantum Dots (GQDs) from Waste Biomass and Their Use as an Efficient and Selective Photoluminescence on-off-on Probe for Ag+ Ions. Nanoscale 2014, 6, 11664.10.1039/C4NR02494J. PubMed DOI

Saad S. M.; Abdullah J.; Rashid S. A.; Fen Y. W.; Salam F.; Yih L. H. A Fluorescence Quenching Based Gene Assay for Escherichia Coli O157:H7 Using Graphene Quantum Dots and Gold Nanoparticles. Microchimica Acta 2019, 186, 804.10.1007/s00604-019-3913-8. PubMed DOI

Abbas A.; Tabish T. A.; Bull S. J.; Lim T. M.; Phan A. N. High Yield Synthesis of Graphene Quantum Dots from Biomass Waste as a Highly Selective Probe for Fe3+ Sensing. Sci. Rep. 2020, 10, 2126210.1038/s41598-020-78070-2. PubMed DOI PMC

Lu L.; Guo L.; Wang X.; Kang T.; Cheng S. Complexation and Intercalation Modes: A Novel Interaction of DNA and Graphene Quantum Dots. RSC Adv. 2016, 6, 33072.10.1039/C6RA00930A. DOI

Maity N.; Kuila A.; Das S.; Mandal D.; Shit A.; Nandi A. K. Optoelectronic and Photovoltaic Properties of Graphene Quantum Dot-Polyaniline Nanostructures. J. Mater. Chem. A 2015, 3, 20736.10.1039/C5TA06576C. DOI

Lee J.; Kim J.; Kim S.; Min D. H. Biosensors Based on Graphene Oxide and Its Biomedical Application. Adv. Drug Delivery Rev. 2016, 105, 275.10.1016/j.addr.2016.06.001. PubMed DOI PMC

Zhang Y.; Zheng B.; Zhu C.; Zhang X.; Tan C.; Li H.; Chen B.; Yang J.; Chen J.; Huang Y.; Wang L.; Zhang H. Single-Layer Transition Metal Dichalcogenide Nanosheet-Based Nanosensors for Rapid, Sensitive, and Multiplexed Detection of DNA. Adv. Mater. 2015, 27, 935.10.1002/adma.201404568. PubMed DOI

Lu C.; Huang P. J. J.; Liu B.; Ying Y.; Liu J. Comparison of Graphene Oxide and Reduced Graphene Oxide for DNA Adsorption and Sensing. Langmuir 2016, 32, 10776.10.1021/acs.langmuir.6b03032. PubMed DOI

Wu M.; Kempaiah R.; Huang P. J. J.; Maheshwari V.; Liu J. Adsorption and Desorption of DNA on Graphene Oxide Studied by Fluorescently Labeled Oligonucleotides. Langmuir 2011, 27, 2731.10.1021/la1037926. PubMed DOI

Liu B.; Salgado S.; Maheshwari V.; Liu J. DNA Adsorbed on Graphene and Graphene Oxide: Fundamental Interactions, Desorption and Applications. Curr. Opin. Colloid Interface Sci. 2016, 26, 41.10.1016/j.cocis.2016.09.001. DOI

Qin F.; Wu J.; Fu D.; Feng Y.; Gao C.; Xie D.; Fu S.; Liu S.; Wilson D. A.; Peng F. Magnetically Driven Helical Hydrogel Micromotor for Tumor DNA Detection. Appl. Mater. Today 2022, 27, 101456.10.1016/j.apmt.2022.101456. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Active Quantum Biomaterials-Enhanced Microrobots for Food Safety

. 2024 Dec ; 20 (52) : e2404248. [epub] 20241024

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...