• This record comes from PubMed

Active Quantum Biomaterials-Enhanced Microrobots for Food Safety

. 2024 Dec ; 20 (52) : e2404248. [epub] 20241024

Language English Country Germany Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
CM/JIN/2021-012 Community of Madrid
UAH EPU-INV-UAH/2022/003 Universidad de Alcalá
NU21-08-00407 Ministry of Health of Czech Republic
CZ.02.01.01/00/22_008/0004587 ERDF/ESF project TECHSCALE
CZ.10.03.01/00/22_003/0000048 European Union under the REFRESH -Research Excellence For REgion Sustainability and High-tech Industries
GrantPID2020-118154GB-I00fundedbyMCIN/AEI/10.13039/501100011033 Ministerio de Ciencia, Innovación y Universidades
grantCNS2023-144653fundedbyMCIN/AEI/10.13039/501100011033andtheEuropeanUnion"NextGenerationEU"/PRTR Ministerio de Ciencia, Innovación y Universidades
TED2021-132720B-I00,fundedbyMCIN/AEI/10.13039/501100011033andtheEuropeanUnion"NextGenerationEU"/PRTR Ministerio de Ciencia, Innovación y Universidades
SBPLY/23/180225/000058 Junta de Comunidades de Castilla la Mancha

Timely disruptive tools for the detection of pathogens in foods are needed to face global health and economic challenges. Herein, the utilization of quantum biomaterials-enhanced microrobots (QBEMRs) as autonomous mobile sensors designed for the precise detection of endotoxins originating from Salmonella enterica (S. enterica) as an indicator species for food-borne contamination globally is presented. A fluorescent molecule-labeled affinity peptide functions as a specific probe, is quenched upon binding to the surface of QBEMRs. Owing to its selective affinity for endotoxin, in the presence of S. enterica the fluorescence is restored and easy to observe and quantifies optical color change to indicate the presence of Salmonella. The devised approach is designed to achieve highly sensitive detection of the S. enterica serovar Typhimurium endotoxin with exquisite selectivity through the utilization of QBEMRs. Notably, no fluorescence signal is observed in the presence of endotoxins bearing similar structural characteristics, highlighting the selectivity of the approach during food sample analysis. Technically, the strategy is implemented in microplate readers to extend microrobots-based approaches to the routine laboratory. This new platform can provide fast and anticipated results in food safety.

See more in PubMed

Pashazadeh P., Mokhtarzadeh A., Hasanzadeh M., Hejazi M., Hashemi M., de la Guardia M., Biosens. Bioelectron. 2017, 87, 1050. PubMed

Stephen Inbaraj B., Chen B. H., J. Food Drug Anal. 2016, 24, 15. PubMed PMC

Guo J., Chan E. W. C., Chen S., Zeng Z., Front. Microbiol. 2017, 8, 8. PubMed PMC

Yang T, Wu S., Li K., Shuai J. B., Ye Z. H., X. Z., Chinase J. Prevent. Vet. Med. 2020, 42, 584.

Multi‐Country Outbreak of Salmonella Typhimurium Linked to Chocolate Products – Europe and the United States of America, World Health Organization, 2022.

Johnson R., Mylona E., Frankel G., Cell. Microbiol. 2018, 20, e12939. PubMed

A Commission Regulation EC No 2160/2003 of 17 2003 on the Control of Salmonella and Other Specified Food‐Borne Zoonotic Agents, Regulation, 2003.

Union European (EU) , COMMISSION REGULATION (EC) No 2073/2005 of 15 November 2005 on Microbiological Criteria for Foodstuffs, Official Journal of the European Union 2005.

Kumar R., Surendran P. K., Thampuran N., Lett. Appl. Microbiol. 2008, 46, 221. PubMed

Kasturi K. N., Drgon T., Appl. Environ. Microbiol. 2017, 83, 14. PubMed PMC

Sousa M., Rocha R., Araújo D., Castro J., Barbosa A., Nuno F, Azevedo L., Cerqueira C. A., Foodborne Pathog. Dis. 2024, 21, 298. PubMed

Croci L., Delibato E., Volpe G., De Medici D., Palleschi G., Appl. Environ. Microbiol. 2004, 70, 3. PubMed PMC

Brigmon R. L., Zam S. G., Wilson H. R., Poultry Sci. 1995, 74, 1232. PubMed

Saikia K., Deb P., Kalita E., Phys. Scr. 2013, 87, 065802.

Jana D., Matti C., He J., Sagle L., Anal. Chem. 2015, 87, 3964. PubMed

Unser S., Bruzas I., He J., Sagle L., Sensors 2015, 15, 15684. PubMed PMC

Zheng X. T., Ananthanarayanan A., Luo K. Q., Chen P., Small 2015, 11, 1620. PubMed

Alocilja E. C., Radke S. M., Biosens. Bioelectron. 2003, 18, 841. PubMed

Liu G., Mao X., Phillips J. A., Xu H., Tan W., Zeng L., Anal. Chem. 2009, 81, 10013. PubMed PMC

Chen H., Wang Z., Zong S., Chen P., Zhu D., Wu L., Cui Y., Nanoscale 2015, 7, 15477. PubMed

Shi J., Chan C., Pang Y., Ye W., Tian F., Lyu J., Zhang Y., Yang M., Biosens. Bioelectron. 2015, 67, 595. PubMed

Agarwal K., Rai H., Mondal S., Mater. Res. Express 2023, 10, 062001.

Chen Y., Cao Y., Ma C., Zhu J. J., Mater. Chem. Front. 2020, 4, 369.

Ananthanarayanan A., Wang X., Routh P., Sana B., Lim S., Kim D. H., Lim K. H., Li J., Chen P., Adv. Funct. Mater. 2014, 24, 3021.

Xie R., Wang Z., Zhou W., Liu Y., Fan L., Li Y., Li X., Analyt. Methods 2016, 8, 4001.

Li L., Wu G., Hong T., Yin Z., Sun D., Abdel‐Halim E. S., Zhu J. J., ACS Appl. Mater. Interfaces 2014, 6, 2858. PubMed

Zhao J., Zhao L., Lan C., Zhao S., Sensors Act., B: Chem. 2016, 223, 246.

Zhang X., Chen C., Wu J., Ju H., ACS Appl. Mater. Interfaces 2019, 11, 13581. PubMed

Li Z., Bai L., Zhou C., Yan X., Mair L., Zhang A., Zhang L., Part. Part. Syst. Charact. 2017, 34, 1600277.

Fu S., Zhang X., Xie Y., Wu J., Ju H., Nanoscale 2017, 9, 9026. PubMed

Morales‐Narváez E., Guix M., Medina‐Sánchez M., Mayorga‐Martinez C. C., Merkoçi A., Small 2014, 10, 2542. PubMed

Beltrán‐Gastélum M., Esteban‐Fernández de Ávila B., Gong H., Venugopalan P. L., Hianik T., Wang J., Subjakova V., ChemPhysChem 2019, 20, 3177. PubMed

Jurado‐Sánchez B., Pacheco M., Rojo J., Escarpa A., Angew. Chem. Int. Ed. 2017, 56, 6957. PubMed

Pacheco M., Jurado‐Sánchez B., Escarpa A., Anal. Chem. 2018, 90, 2912. PubMed

Pacheco M., Jurado‐Sánchez B., Escarpa A., Microchim. Acta 2022, 189, 194. PubMed PMC

Pacheco M., de la Asunción‐Nadal V., Jurado‐Sánchez B., Escarpa A., Biosens. Bioelectron. 2020, 165, 112286. PubMed

Maria‐Hormigos R., Jurado‐Sánchez B., Escarpa A., Chem. Commun. 2019, 55, 6795. PubMed

Jyoti J., Munoz J., Pumera M., ACS Appl. Mater. Interfaces 2023, 15, 58548. PubMed PMC

Mansuriya B. D., Altintas Z., Sensors 2020, 20, 1072. PubMed PMC

Kumar Y. R., Deshmukh K., Sadasivuni K. K., Pasha S. K. K., RSC Adv. 2020, 10, 23861. PubMed PMC

Chattopadhyay S., Choudhary M., Singh H., Anal. Biochem. 2022, 654, 114801. PubMed

Mujtaba J., Liu J., Dey K. K., Li T., Chakraborty R., Xu K., Makarov D., Barmin R. A., Gorin D. A., Tolstoy V. P., Huang G., Solovev A. A., Mei Y., Adv. Mater. 2021, 33, 2007465. PubMed

Jurado‐Sánchez B., Biosensors 2018, 8, 66. PubMed

Zha F., Wang T., Luo M., Guan J., Micromachines 2018, 9, 78. PubMed PMC

Xu B., Zhang B., Wang L., Huang G., Mei Y., Adv. Funct. Mater. 2018, 28, 1705872.

Simmchen J., Magdanz V., Sanchez S., Chokmaviroj S., Ruiz‐Molina D., Baeza A., Schmidt O. G., RSC Adv. 2014, 4, 20334. PubMed PMC

Wang H., Zhao G., Pumera M., J. Phys. Chem. C 2014, 118, 5268.

Kreissl P., Holm C., De Graaf J., J. Chem. Phys. 2016, 144, 204902. PubMed

Naeem S., Naeem F., Zhang J., Mujtaba J., Xu K., Huang G., Solovev A. A., Mei Y., Micromachines 2020, 11, 643. PubMed PMC

Cao F., Li Y., Wu J., Liu W., Ngai T., Soft Matter 2022, 18, 236. PubMed

Kim J. K., Kim S. J., Park M. J., Bae S., Cho S. P., Du Q. G., Wang D. H., Park J. H., Hong B. H., Sci. Rep. 2015, 5, 14274. PubMed PMC

Suryawanshi A., Biswal M., Mhamane D., Gokhale R., Patil S., Guin D., Ogale S., Nanoscale 2014, 6, 11664. PubMed

Saad S. M., Abdullah J., Rashid S. A., Fen Y. W., Salam F., Yih L. H., Microchim. Acta 2019, 186, 804. PubMed

Choi D., Tsang R. S. W., Ng M. H., J. Appl. Bacteriol. 1992, 72, 134. PubMed

Sannigrahi S., Arumugasamy S. K., Mathiyarasu J. K., Suthindhiran K., Mater. Sci. Engin. C 2020, 114, 111071. PubMed

Wang X., Zhu P., Pi F., Jiang H., Shao J., Zhang Y., Sun X., Biosens. Bioelectron. 2016, 81, 349. PubMed

Wu S., Hulme J. P., Int. J. Mol. Sci. 2021, 22, 3499. PubMed

Wang M., Zhang Y., Tian F., Liu X., Du S., Ren G., Foods 2021, 10, 2402. PubMed PMC

Lee K. M., Runyon M., Herrman T. J., Phillips R., Hsieh J., Food Control 2015, 47, 264.

Shen Y., Xu L., Li Y., Compr. Rev. Food Sci. Food Saf. 2021, 20, 149. PubMed

Du J., Adv. Engin. Technol. Res. 2023, 6, 2023.

de la Asunción‐Nadal V., Maria‐Hormigos R., Jurado‐Sánchez B., Escarpa A., Appl. Mater. Today 2022, 29, 101664.

Presutti D., Agarwal T., Zarepour A., Celikkin N., Hooshmand S., Nayak C., Ghomi M., Zarrabi A., Costantini M., Behera B., Maiti T. K., Materials 2022, 15, 337. PubMed PMC

Yuan K., Jiang Z., Jurado‐Sánchez B., Escarpa A., Chem.–Eur. J. 2020, 26, 2309. PubMed

Cai L., Xu D., Zhang Z., Li N., Zhao Y., Research 2023, 6, 0044. PubMed PMC

Dong Y., Shao J., Chen C., Li H., Wang R., Chi Y., Lin X., Chen G., Carbon 2012, 50, 4738.

Wang Y., Mayorga‐Martinez C. C., Moo J. G. S., Pumera M., ACS Appl. Energy Mater. 2018, 1, 3443.

Manesh K. M., Cardona M., Yuan R., Clark M., Kagan D., Balasubramanian S., Wang J., ACS Nano 2010, 4, 1799. PubMed

Martín A., Jurado‐Sánchez B., Escarpa A., Wang J., Small 2015, 11, 3568. PubMed

Newest 20 citations...

See more in
Medvik | PubMed

Magnetically Driven Living Microrobot Swarms for Aquatic Micro- and Nanoplastic Cleanup

. 2025 Aug 05 ; 19 (30) : 27259-27269. [epub] 20250724

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...