Active Quantum Biomaterials-Enhanced Microrobots for Food Safety
Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
CM/JIN/2021-012
Community of Madrid
UAH EPU-INV-UAH/2022/003
Universidad de Alcalá
NU21-08-00407
Ministry of Health of Czech Republic
CZ.02.01.01/00/22_008/0004587
ERDF/ESF project TECHSCALE
CZ.10.03.01/00/22_003/0000048
European Union under the REFRESH -Research Excellence For REgion Sustainability and High-tech Industries
GrantPID2020-118154GB-I00fundedbyMCIN/AEI/10.13039/501100011033
Ministerio de Ciencia, Innovación y Universidades
grantCNS2023-144653fundedbyMCIN/AEI/10.13039/501100011033andtheEuropeanUnion"NextGenerationEU"/PRTR
Ministerio de Ciencia, Innovación y Universidades
TED2021-132720B-I00,fundedbyMCIN/AEI/10.13039/501100011033andtheEuropeanUnion"NextGenerationEU"/PRTR
Ministerio de Ciencia, Innovación y Universidades
SBPLY/23/180225/000058
Junta de Comunidades de Castilla la Mancha
PubMed
39449211
PubMed Central
PMC11673522
DOI
10.1002/smll.202404248
Knihovny.cz E-resources
- Keywords
- affinity peptide, endotoxins, fluorescence, microrobots, quantum materials,
- MeSH
- Food Analysis * instrumentation methods MeSH
- Endotoxins * analysis MeSH
- Food Microbiology * instrumentation methods MeSH
- Robotics * instrumentation methods MeSH
- Salmonella typhimurium * isolation & purification MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Endotoxins * MeSH
- salmonella toxin MeSH Browser
Timely disruptive tools for the detection of pathogens in foods are needed to face global health and economic challenges. Herein, the utilization of quantum biomaterials-enhanced microrobots (QBEMRs) as autonomous mobile sensors designed for the precise detection of endotoxins originating from Salmonella enterica (S. enterica) as an indicator species for food-borne contamination globally is presented. A fluorescent molecule-labeled affinity peptide functions as a specific probe, is quenched upon binding to the surface of QBEMRs. Owing to its selective affinity for endotoxin, in the presence of S. enterica the fluorescence is restored and easy to observe and quantifies optical color change to indicate the presence of Salmonella. The devised approach is designed to achieve highly sensitive detection of the S. enterica serovar Typhimurium endotoxin with exquisite selectivity through the utilization of QBEMRs. Notably, no fluorescence signal is observed in the presence of endotoxins bearing similar structural characteristics, highlighting the selectivity of the approach during food sample analysis. Technically, the strategy is implemented in microplate readers to extend microrobots-based approaches to the routine laboratory. This new platform can provide fast and anticipated results in food safety.
See more in PubMed
Pashazadeh P., Mokhtarzadeh A., Hasanzadeh M., Hejazi M., Hashemi M., de la Guardia M., Biosens. Bioelectron. 2017, 87, 1050. PubMed
Stephen Inbaraj B., Chen B. H., J. Food Drug Anal. 2016, 24, 15. PubMed PMC
Guo J., Chan E. W. C., Chen S., Zeng Z., Front. Microbiol. 2017, 8, 8. PubMed PMC
Yang T, Wu S., Li K., Shuai J. B., Ye Z. H., X. Z., Chinase J. Prevent. Vet. Med. 2020, 42, 584.
Multi‐Country Outbreak of Salmonella Typhimurium Linked to Chocolate Products – Europe and the United States of America, World Health Organization, 2022.
Johnson R., Mylona E., Frankel G., Cell. Microbiol. 2018, 20, e12939. PubMed
A Commission Regulation EC No 2160/2003 of 17 2003 on the Control of Salmonella and Other Specified Food‐Borne Zoonotic Agents, Regulation, 2003.
Union European (EU) , COMMISSION REGULATION (EC) No 2073/2005 of 15 November 2005 on Microbiological Criteria for Foodstuffs, Official Journal of the European Union 2005.
Kumar R., Surendran P. K., Thampuran N., Lett. Appl. Microbiol. 2008, 46, 221. PubMed
Kasturi K. N., Drgon T., Appl. Environ. Microbiol. 2017, 83, 14. PubMed PMC
Sousa M., Rocha R., Araújo D., Castro J., Barbosa A., Nuno F, Azevedo L., Cerqueira C. A., Foodborne Pathog. Dis. 2024, 21, 298. PubMed
Croci L., Delibato E., Volpe G., De Medici D., Palleschi G., Appl. Environ. Microbiol. 2004, 70, 3. PubMed PMC
Brigmon R. L., Zam S. G., Wilson H. R., Poultry Sci. 1995, 74, 1232. PubMed
Saikia K., Deb P., Kalita E., Phys. Scr. 2013, 87, 065802.
Jana D., Matti C., He J., Sagle L., Anal. Chem. 2015, 87, 3964. PubMed
Unser S., Bruzas I., He J., Sagle L., Sensors 2015, 15, 15684. PubMed PMC
Zheng X. T., Ananthanarayanan A., Luo K. Q., Chen P., Small 2015, 11, 1620. PubMed
Alocilja E. C., Radke S. M., Biosens. Bioelectron. 2003, 18, 841. PubMed
Liu G., Mao X., Phillips J. A., Xu H., Tan W., Zeng L., Anal. Chem. 2009, 81, 10013. PubMed PMC
Chen H., Wang Z., Zong S., Chen P., Zhu D., Wu L., Cui Y., Nanoscale 2015, 7, 15477. PubMed
Shi J., Chan C., Pang Y., Ye W., Tian F., Lyu J., Zhang Y., Yang M., Biosens. Bioelectron. 2015, 67, 595. PubMed
Agarwal K., Rai H., Mondal S., Mater. Res. Express 2023, 10, 062001.
Chen Y., Cao Y., Ma C., Zhu J. J., Mater. Chem. Front. 2020, 4, 369.
Ananthanarayanan A., Wang X., Routh P., Sana B., Lim S., Kim D. H., Lim K. H., Li J., Chen P., Adv. Funct. Mater. 2014, 24, 3021.
Xie R., Wang Z., Zhou W., Liu Y., Fan L., Li Y., Li X., Analyt. Methods 2016, 8, 4001.
Li L., Wu G., Hong T., Yin Z., Sun D., Abdel‐Halim E. S., Zhu J. J., ACS Appl. Mater. Interfaces 2014, 6, 2858. PubMed
Zhao J., Zhao L., Lan C., Zhao S., Sensors Act., B: Chem. 2016, 223, 246.
Zhang X., Chen C., Wu J., Ju H., ACS Appl. Mater. Interfaces 2019, 11, 13581. PubMed
Li Z., Bai L., Zhou C., Yan X., Mair L., Zhang A., Zhang L., Part. Part. Syst. Charact. 2017, 34, 1600277.
Fu S., Zhang X., Xie Y., Wu J., Ju H., Nanoscale 2017, 9, 9026. PubMed
Morales‐Narváez E., Guix M., Medina‐Sánchez M., Mayorga‐Martinez C. C., Merkoçi A., Small 2014, 10, 2542. PubMed
Beltrán‐Gastélum M., Esteban‐Fernández de Ávila B., Gong H., Venugopalan P. L., Hianik T., Wang J., Subjakova V., ChemPhysChem 2019, 20, 3177. PubMed
Jurado‐Sánchez B., Pacheco M., Rojo J., Escarpa A., Angew. Chem. Int. Ed. 2017, 56, 6957. PubMed
Pacheco M., Jurado‐Sánchez B., Escarpa A., Anal. Chem. 2018, 90, 2912. PubMed
Pacheco M., Jurado‐Sánchez B., Escarpa A., Microchim. Acta 2022, 189, 194. PubMed PMC
Pacheco M., de la Asunción‐Nadal V., Jurado‐Sánchez B., Escarpa A., Biosens. Bioelectron. 2020, 165, 112286. PubMed
Maria‐Hormigos R., Jurado‐Sánchez B., Escarpa A., Chem. Commun. 2019, 55, 6795. PubMed
Jyoti J., Munoz J., Pumera M., ACS Appl. Mater. Interfaces 2023, 15, 58548. PubMed PMC
Mansuriya B. D., Altintas Z., Sensors 2020, 20, 1072. PubMed PMC
Kumar Y. R., Deshmukh K., Sadasivuni K. K., Pasha S. K. K., RSC Adv. 2020, 10, 23861. PubMed PMC
Chattopadhyay S., Choudhary M., Singh H., Anal. Biochem. 2022, 654, 114801. PubMed
Mujtaba J., Liu J., Dey K. K., Li T., Chakraborty R., Xu K., Makarov D., Barmin R. A., Gorin D. A., Tolstoy V. P., Huang G., Solovev A. A., Mei Y., Adv. Mater. 2021, 33, 2007465. PubMed
Jurado‐Sánchez B., Biosensors 2018, 8, 66. PubMed
Zha F., Wang T., Luo M., Guan J., Micromachines 2018, 9, 78. PubMed PMC
Xu B., Zhang B., Wang L., Huang G., Mei Y., Adv. Funct. Mater. 2018, 28, 1705872.
Simmchen J., Magdanz V., Sanchez S., Chokmaviroj S., Ruiz‐Molina D., Baeza A., Schmidt O. G., RSC Adv. 2014, 4, 20334. PubMed PMC
Wang H., Zhao G., Pumera M., J. Phys. Chem. C 2014, 118, 5268.
Kreissl P., Holm C., De Graaf J., J. Chem. Phys. 2016, 144, 204902. PubMed
Naeem S., Naeem F., Zhang J., Mujtaba J., Xu K., Huang G., Solovev A. A., Mei Y., Micromachines 2020, 11, 643. PubMed PMC
Cao F., Li Y., Wu J., Liu W., Ngai T., Soft Matter 2022, 18, 236. PubMed
Kim J. K., Kim S. J., Park M. J., Bae S., Cho S. P., Du Q. G., Wang D. H., Park J. H., Hong B. H., Sci. Rep. 2015, 5, 14274. PubMed PMC
Suryawanshi A., Biswal M., Mhamane D., Gokhale R., Patil S., Guin D., Ogale S., Nanoscale 2014, 6, 11664. PubMed
Saad S. M., Abdullah J., Rashid S. A., Fen Y. W., Salam F., Yih L. H., Microchim. Acta 2019, 186, 804. PubMed
Choi D., Tsang R. S. W., Ng M. H., J. Appl. Bacteriol. 1992, 72, 134. PubMed
Sannigrahi S., Arumugasamy S. K., Mathiyarasu J. K., Suthindhiran K., Mater. Sci. Engin. C 2020, 114, 111071. PubMed
Wang X., Zhu P., Pi F., Jiang H., Shao J., Zhang Y., Sun X., Biosens. Bioelectron. 2016, 81, 349. PubMed
Wu S., Hulme J. P., Int. J. Mol. Sci. 2021, 22, 3499. PubMed
Wang M., Zhang Y., Tian F., Liu X., Du S., Ren G., Foods 2021, 10, 2402. PubMed PMC
Lee K. M., Runyon M., Herrman T. J., Phillips R., Hsieh J., Food Control 2015, 47, 264.
Shen Y., Xu L., Li Y., Compr. Rev. Food Sci. Food Saf. 2021, 20, 149. PubMed
Du J., Adv. Engin. Technol. Res. 2023, 6, 2023.
de la Asunción‐Nadal V., Maria‐Hormigos R., Jurado‐Sánchez B., Escarpa A., Appl. Mater. Today 2022, 29, 101664.
Presutti D., Agarwal T., Zarepour A., Celikkin N., Hooshmand S., Nayak C., Ghomi M., Zarrabi A., Costantini M., Behera B., Maiti T. K., Materials 2022, 15, 337. PubMed PMC
Yuan K., Jiang Z., Jurado‐Sánchez B., Escarpa A., Chem.–Eur. J. 2020, 26, 2309. PubMed
Cai L., Xu D., Zhang Z., Li N., Zhao Y., Research 2023, 6, 0044. PubMed PMC
Dong Y., Shao J., Chen C., Li H., Wang R., Chi Y., Lin X., Chen G., Carbon 2012, 50, 4738.
Wang Y., Mayorga‐Martinez C. C., Moo J. G. S., Pumera M., ACS Appl. Energy Mater. 2018, 1, 3443.
Manesh K. M., Cardona M., Yuan R., Clark M., Kagan D., Balasubramanian S., Wang J., ACS Nano 2010, 4, 1799. PubMed
Martín A., Jurado‐Sánchez B., Escarpa A., Wang J., Small 2015, 11, 3568. PubMed
Magnetically Driven Living Microrobot Swarms for Aquatic Micro- and Nanoplastic Cleanup