• This record comes from PubMed

Magnetically Driven Living Microrobot Swarms for Aquatic Micro- and Nanoplastic Cleanup

. 2025 Aug 05 ; 19 (30) : 27259-27269. [epub] 20250724

Language English Country United States Media print-electronic

Document type Journal Article

Micro- and nanoplastic pollution is pervasive worldwide, infiltrating drinking water and food chains, accumulating in the human body, and posing serious threats to public health and ecosystems. Despite these urgent challenges, effective strategies to curb the widespread presence of micro- and nanoplastics have not yet been sufficiently developed. Here, we present magnetically driven living bacterial microrobots that exhibit a nature-inspired three-dimensional (3D) swarming motion, allowing the dynamic capture and retrieval of aquatic micro- and nanoplastics originating from various commercial products. By combining autonomous propulsion with magnetically guided navigation, we enabled the multimodal swarming manipulation of magnetotactic bacteria-based living microrobots (MTB biobots). The actuation of a rotating magnetic field induces a fish schooling-like 3D swarming navigation, allowing the active capture of micro- and nanoplastics, which are then retrieved from the contaminated water by magnetic separation. Our results show that the 3D magnetic swarming of MTB biobots synergistically enhances the removal efficiencies of both model and real-world microplastics, demonstrating their practical potential in water treatment technologies. Overall, plastic-seeking living bacterial microrobots and their swarm manipulation offer a straightforward and environmentally friendly approach to micro- and nanoplastic treatment, providing a biomachinery-based solution to mitigate the pressing microplastic pollution crisis.

See more in PubMed

Nature. Microplastics are everywhere  we need to understand how they affect human health. Nat. Med. 2024;30:913. doi: 10.1038/s41591-024-02968-x. PubMed DOI

MacLeod M., Arp H. P. H., Tekman M. B., Jahnke A.. The global threat from plastic pollution. Science. 2021;373(6550):61–65. doi: 10.1126/science.abg5433. PubMed DOI

Rochman C. M.. Microplastics researchfrom sink to source. Science. 2018;360(6384):28–29. doi: 10.1126/science.aar7734. PubMed DOI

Thompson R. C., Courtene-Jones W., Boucher J., Pahl S., Raubenheimer K., Koelmans A. A.. Twenty years of microplastics pollution researchwhat have we learned? Science. 2024;386:eadl2746. doi: 10.1126/science.adl2746. PubMed DOI

Ahmed S.. Three ways to solve the plastics pollution crisis. Nature. 2023;616(7956):234–237. doi: 10.1038/d41586-023-00975-5. PubMed DOI

Gigault J., El Hadri H., Nguyen B., Grassl B., Rowenczyk L., Tufenkji N., Feng S., Wiesner M.. Nanoplastics are neither microplastics nor engineered nanoparticles. Nat. Nanotechnol. 2021;16(5):501–507. doi: 10.1038/s41565-021-00886-4. PubMed DOI

Kim J., Mayorga-Martinez C. C., Pumera M.. Magnetically boosted 1D photoactive microswarm for COVID-19 face mask disruption. Nat. Commun. 2023;14(1):935. doi: 10.1038/s41467-023-36650-6. PubMed DOI PMC

Leslie H. A., Van Velzen M. J., Brandsma S. H., Vethaak A. D., Garcia-Vallejo J. J., Lamoree M. H.. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 2022;163:107199. doi: 10.1016/j.envint.2022.107199. PubMed DOI

Horvatits T., Tamminga M., Liu B., Sebode M., Carambia A., Fischer L., Püschel K., Huber S., Fischer E. K.. Microplastics detected in cirrhotic liver tissue. EBioMedicine. 2022;82:104147. doi: 10.1016/j.ebiom.2022.104147. PubMed DOI PMC

Amato-Lourenço L. F., Carvalho-Oliveira R., Júnior G. R., dos Santos Galvão L., Ando R. A., Mauad T.. Presence of airborne microplastics in human lung tissue. J. Hazard. Mater. 2021;416:126124. doi: 10.1016/j.jhazmat.2021.126124. PubMed DOI

Ragusa A., Svelato A., Santacroce C., Catalano P., Notarstefano V., Carnevali O., Papa F., Rongioletti M. C. A., Baiocco F., Draghi S.. Plasticenta: First evidence of microplastics in human placenta. Environ. Int. 2021;146:106274. doi: 10.1016/j.envint.2020.106274. PubMed DOI

Zhu L., Zhu J., Zuo R., Xu Q., Qian Y., Lihui A.. Identification of microplastics in human placenta using laser direct infrared spectroscopy. Sci. Total Environ. 2023;856:159060. doi: 10.1016/j.scitotenv.2022.159060. PubMed DOI

Ragusa A., Notarstefano V., Svelato A., Belloni A., Gioacchini G., Blondeel C., Zucchelli E., De Luca C., D’Avino S., Gulotta A.. Raman microspectroscopy detection and characterisation of microplastics in human breastmilk. Polymers. 2022;14(13):2700. doi: 10.3390/polym14132700. PubMed DOI PMC

Liu S., Guo J., Liu X., Yang R., Wang H., Sun Y., Chen B., Dong R.. Detection of various microplastics in placentas, meconium, infant feces, breastmilk and infant formula: A pilot prospective study. Sci. Total Environ. 2023;854:158699. doi: 10.1016/j.scitotenv.2022.158699. PubMed DOI

Chen C., Ding S., Wang J.. Materials consideration for the design, fabrication and operation of microscale robots. Nat. Rev. Mater. 2024;9(3):159–172. doi: 10.1038/s41578-023-00641-2. DOI

Kim J., Mayorga-Burrezo P., Song S.-J., Mayorga-Martinez C. C., Medina-Sánchez M., Pané S., Pumera M.. Advanced materials for micro/nanorobotics. Chem. Soc. Rev. 2024;53:9190–9253. doi: 10.1039/D3CS00777D. PubMed DOI

Simó C., Serra-Casablancas M., Hortelao A. C., Di Carlo V., Guallar-Garrido S., Plaza-García S., Rabanal R. M., Ramos-Cabrer P., Yagüe B., Aguado L.. Urease-powered nanobots for radionuclide bladder cancer therapy. Nat. Nanotechnol. 2024;19(4):554–564. doi: 10.1038/s41565-023-01577-y. PubMed DOI PMC

Landers F. C., Gantenbein V., Hertle L., Veciana A., Llacer-Wintle J., Chen X. Z., Ye H., Franco C., Puigmartí-Luis J., Kim M.. On-Command Disassembly of Microrobotic Superstructures for Transport and Delivery of Magnetic Micromachines. Adv. Mater. 2024;36(18):2310084. doi: 10.1002/adma.202310084. PubMed DOI

Chen Z., Sánchez M. M.. Microrobots in gynaecological care and reproductive medicine. Nat. Rev. Electr. Eng. 2024;1(12):759–761. doi: 10.1038/s44287-024-00102-0. DOI

Nauber R., Goudu S. R., Goeckenjan M., Bornhäuser M., Ribeiro C., Medina-Sánchez M.. Medical microrobots in reproductive medicine from the bench to the clinic. Nat. Commun. 2023;14(1):728. doi: 10.1038/s41467-023-36215-7. PubMed DOI PMC

Mundaca-Uribe R., Askarinam N., Fang R. H., Zhang L., Wang J.. Towards multifunctional robotic pills. Nat. Biomed. Eng. 2024;8:1334. doi: 10.1038/s41551-023-01090-6. PubMed DOI

Wang T., Wu Y., Yildiz E., Kanyas S., Sitti M.. Clinical translation of wireless soft robotic medical devices. Nat. Rev. Bioeng. 2024;2(6):470–485. doi: 10.1038/s44222-024-00156-7. DOI

Gervasoni S., Pedrini N., Rifai T., Fischer C., Landers F. C., Mattmann M., Dreyfus R., Viviani S., Veciana A., Masina E.. A Human-Scale Clinically Ready Electromagnetic Navigation System for Magnetically Responsive Biomaterials and Medical Devices. Adv. Mater. 2024;36(31):2310701. doi: 10.1002/adma.202310701. PubMed DOI

Cuntín-Abal C., Bujalance-Fernández J., Yuan K., Arribi A., Jurado-Sánchez B., Escarpa A.. Magnetic Bacteriophage-Engineered Janus Micromotors for Selective Bacteria Capture and Detection. Adv. Funct. Mater. 2024;34(16):2312257. doi: 10.1002/adfm.202312257. DOI

Jyoti, Castillo A. R., Jurado-Sánchez B., Pumera M., Escarpa A.. Active Quantum Biomaterials-Enhanced Microrobots for Food Safety. Small. 2024;20(52):2404248. doi: 10.1002/smll.202404248. PubMed DOI PMC

Kim J., Mayorga-Martinez C. C., Vyskočil J., Ruzek D., Pumera M.. Plasmonic-magnetic nanorobots for SARS-CoV-2 RNA detection through electronic readout. Appl. Mater. Today. 2022;27:101402. doi: 10.1016/j.apmt.2022.101402. PubMed DOI PMC

Sun B., Kjelleberg S., Sung J. J., Zhang L.. Micro-and nanorobots for biofilm eradication. Nat. Rev. Bioeng. 2024;2(5):367–369. doi: 10.1038/s44222-024-00176-3. DOI

Mayorga-Martinez C. C., Zhang L., Pumera M.. Chemical multiscale robotics for bacterial biofilm treatment. Chem. Soc. Rev. 2024;53:2284–2299. doi: 10.1039/D3CS00564J. PubMed DOI

Urso M., Ussia M., Pumera M.. Smart micro-and nanorobots for water purification. Nat. Rev. Bioeng. 2023;1(4):236–251. doi: 10.1038/s44222-023-00025-9. PubMed DOI PMC

Peng X., Urso M., Kolackova M., Huska D., Pumera M.. Biohybrid Magnetically Driven Microrobots for Sustainable Removal of Micro/Nanoplastics from the Aquatic Environment. Adv. Funct. Mater. 2024;34(3):2307477. doi: 10.1002/adfm.202307477. DOI

Kim J., Mayorga-Martinez C. C., Pumera M.. Microrobotic photocatalyst on-the-fly: 1D/2D nanoarchitectonic hybrid-based layered metal thiophosphate magnetic micromachines for enhanced photodegradation of nerve agent. Chem. Eng. J. 2022;446:137342. doi: 10.1016/j.cej.2022.137342. DOI

Mayorga-Burrezo P., Mayorga-Martinez C. C., Kim J., Pumera M.. Hybrid magneto-photocatalytic microrobots for sunscreens pollutants decontamination. Chem. Eng. J. 2022;446:137139. doi: 10.1016/j.cej.2022.137139. DOI

Song S.-J., Mayorga-Martinez C. C., Huska D., Pumera M.. Engineered magnetic plant biobots for nerve agent removal. NPG Asia Mater. 2022;14(1):79. doi: 10.1038/s41427-022-00425-0. DOI

Mallick A., Kim J., Pumera M.. Magnetically Propelled Microrobots toward Photosynthesis of Green Ammonia from Nitrates. Small. 2024;21(14):2407050. doi: 10.1002/smll.202407050. PubMed DOI PMC

Zhang F., Li Z., Chen C., Luan H., Fang R. H., Zhang L., Wang J.. Biohybrid microalgae robots: design, fabrication, materials, and applications. Adv. Mater. 2024;36(3):2303714. doi: 10.1002/adma.202303714. PubMed DOI PMC

Gwisai T., Mirkhani N., Christiansen M. G., Nguyen T. T., Ling V., Schuerle S.. Magnetic torque–driven living microrobots for increased tumor infiltration. Sci. Robot. 2022;7(71):eabo0665. doi: 10.1126/scirobotics.abo0665. PubMed DOI

Gwisai T., Günther S., Mirkhani N., Vizovisek M., Menghini S., Jacobs M., Christiansen M. G., Oberhuber I., Poc P., Schuerle S.. Engineering living immunotherapeutic agents for improved cancer treatment. Adv. Ther. 2024;7(4):2300302. doi: 10.1002/adtp.202300302. DOI

Ali I., Peng C., Khan Z. M., Naz I., Sultan M.. An overview of heavy metal removal from wastewater using magnetotactic bacteria. J. Chem. Technol. Biotechnol. 2018;93(10):2817–2832. doi: 10.1002/jctb.5648. DOI

Xing J., Yin T., Li S., Xu T., Ma A., Chen Z., Luo Y., Lai Z., Lv Y., Pan H.. Sequential magneto-actuated and optics-triggered biomicrorobots for targeted cancer therapy. Adv. Funct. Mater. 2021;31(11):2008262. doi: 10.1002/adfm.202008262. DOI

Felfoul O., Mohammadi M., Taherkhani S., De Lanauze D., Zhong Xu Y., Loghin D., Essa S., Jancik S., Houle D., Lafleur M.. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat. Nanotechnol. 2016;11(11):941–947. doi: 10.1038/nnano.2016.137. PubMed DOI PMC

Stanton M. M., Park B.-W., Vilela D., Bente K., Faivre D., Sitti M., Sánchez S.. Magnetotactic bacteria powered biohybrids target E. coli biofilms. ACS Nano. 2017;11(10):9968–9978. doi: 10.1021/acsnano.7b04128. PubMed DOI

Song S.-J., Mayorga-Martinez C. C., Vyskocil J., Castoralova M., Ruml T., Pumera M.. Precisely navigated biobot swarms of bacteria magnetospirillum magneticum for water decontamination. ACS Appl. Mater. Interfaces. 2023;15(5):7023–7029. doi: 10.1021/acsami.2c16592. PubMed DOI PMC

Heyen U., Schüler D.. Growth and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermentor. Appl. Microbiol. Biotechnol. 2003;61:536–544. doi: 10.1007/s00253-002-1219-x. PubMed DOI

Amor M., Busigny V., Louvat P., Tharaud M., Gélabert A., Cartigny P., Carlut J., Isambert A., Durand-Dubief M., Ona-Nguema G.. Iron uptake and magnetite biomineralization in the magnetotactic bacterium Magnetospirillum magneticum strain AMB-1: an iron isotope study. Geochim. Cosmochim. Acta. 2018;232:225–243. doi: 10.1016/j.gca.2018.04.020. DOI

Schuerle S., Soleimany A. P., Yeh T., Anand G., Häberli M., Fleming H., Mirkhani N., Qiu F., Hauert S., Wang X.. Synthetic and living micropropellers for convection-enhanced nanoparticle transport. Sci. Adv. 2019;5(4):eaav4803. doi: 10.1126/sciadv.aav4803. PubMed DOI PMC

Jefremovas E. M., Gandarias L., Marcano L., Gacía-Prieto A., Orue I., Muela A., Fdez-Gubieda M., Barquín L. F., Alonso J.. Modifying the magnetic response of magnetotactic bacteria: incorporation of Gd and Tb ions into the magnetosome structure. Nanoscale Adv. 2022;4(12):2649–2659. doi: 10.1039/D2NA00094F. PubMed DOI PMC

Kim J., Tran V. T., Oh S., Jang M., Lee D. K., Hong J. C., Park T. J., Kim H.-J., Lee J.. Clinical trial: Magnetoplasmonic ELISA for urine-based active tuberculosis detection and anti-tuberculosis therapy monitoring. ACS Cent. Sci. 2021;7(11):1898–1907. doi: 10.1021/acscentsci.1c00948. PubMed DOI PMC

Alphandéry E., Guyot F., Chebbi I.. Preparation of chains of magnetosomes, isolated from Magnetospirillum magneticum strain AMB-1 magnetotactic bacteria, yielding efficient treatment of tumors using magnetic hyperthermia. Int. J. Pharm. 2012;434(1–2):444–452. doi: 10.1016/j.ijpharm.2012.06.015. PubMed DOI

Alphandery E., Faure S., Seksek O., Guyot F., Chebbi I.. Chains of magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy. ACS Nano. 2011;5(8):6279–6296. doi: 10.1021/nn201290k. PubMed DOI

Kim J., Tran V. T., Oh S., Kim C.-S., Hong J. C., Kim S., Joo Y.-S., Mun S., Kim M.-H., Jung J.-W.. Scalable solvothermal synthesis of superparamagnetic Fe3O4 nanoclusters for bioseparation and theragnostic probes. ACS Appl. Mater. Interfaces. 2018;10(49):41935–41946. doi: 10.1021/acsami.8b14156. PubMed DOI

Tran V. T., Lee D. K., Kim J., Jeong K.-J., Kim C.-S., Lee J.. Magnetic layer-by-layer assembly: from linear plasmonic polymers to oligomers. ACS Appl. Mater. Interfaces. 2020;12(14):16584–16591. doi: 10.1021/acsami.9b22684. PubMed DOI

Popp F., Armitage J. P., Schüler D.. Polarity of bacterial magnetotaxis is controlled by aerotaxis through a common sensory pathway. Nat. Commun. 2014;5(1):5398. doi: 10.1038/ncomms6398. PubMed DOI

Cieśla J., Bieganowski A., Janczarek M., Urbanik-Sypniewska T.. Determination of the electrokinetic potential of Rhizobium leguminosarum bv trifolii Rt24. 2 using Laser Doppler Velocimetrya methodological study. J. Microbiol. Methods. 2011;85(3):199–205. doi: 10.1016/j.mimet.2011.03.004. PubMed DOI

Li W., Wu C., Xiong Z., Liang C., Li Z., Liu B., Cao Q., Wang J., Tang J., Li D.. Self-driven magnetorobots for recyclable and scalable micro/nanoplastic removal from nonmarine waters. Sci. Adv. 2022;8(45):eade1731. doi: 10.1126/sciadv.ade1731. PubMed DOI PMC

Zhou H., Mayorga-Martinez C. C., Pumera M.. Microplastic removal and degradation by mussel-inspired adhesive magnetic/enzymatic microrobots. Small Methods. 2021;5(9):2100230. doi: 10.1002/smtd.202100230. PubMed DOI

Cai L., Wu D., Xia J., Shi H., Kim H.. Influence of physicochemical surface properties on the adhesion of bacteria onto four types of plastics. Sci. Total Environ. 2019;671:1101–1107. doi: 10.1016/j.scitotenv.2019.03.434. DOI

Zhao L., Dou Q., Chen S., Wang Y., Yang Q., Chen W., Zhang H., Du Y., Xie M.. Adsorption abilities and mechanisms of Lactobacillus on various nanoplastics. Chemosphere. 2023;320:138038. doi: 10.1016/j.chemosphere.2023.138038. PubMed DOI

Qin Y., Tu Y., Chen C., Wang F., Yang Y., Hu Y.. Biofilms on microplastic surfaces and their effect on pollutant adsorption in the aquatic environment. J. Mater. Cycles Waste Manag. 2024;26(6):3303–3323. doi: 10.1007/s10163-024-02066-7. DOI

Velikov D. I., Jancik-Prochazkova A., Pumera M.. On-the-Fly Monitoring of the Capture and Removal of Nanoplastics with Nanorobots. ACS Nanosci. Au. 2024;4(4):243–249. doi: 10.1021/acsnanoscienceau.4c00002. PubMed DOI PMC

Shim W. J., Song Y. K., Hong S. H., Jang M.. Identification and quantification of microplastics using Nile Red staining. Mar. Pollut. Bull. 2016;113(1–2):469–476. doi: 10.1016/j.marpolbul.2016.10.049. PubMed DOI

Kotakadi S. M., Borelli D. P. R., Nannepaga J. S.. Therapeutic Applications of Magnetotactic Bacteria and Magneto-somes: A Review Emphasizing on the Cancer Treatment. Front. Bioeng. Biotechnol. 2022;10:789016. doi: 10.3389/fbioe.2022.789016. PubMed DOI PMC

Zuzuarregui A., Souto D., Perez-Lorenzo E., Arizti F., Sanchez-Gomez S., Martinez de Tejada G., Brandenburg K., Arana S., Mujika M.. Novel Integrated and Portable Endotoxin DetectionSystem Based on an Electrochemical Biosensor. Analyst. 2015;140(2):654–660. doi: 10.1039/C4AN01324G. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...