Magnetically Driven Living Microrobot Swarms for Aquatic Micro- and Nanoplastic Cleanup
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
40704981
PubMed Central
PMC12333422
DOI
10.1021/acsnano.5c04045
Knihovny.cz E-resources
- Keywords
- biohybrid microrobots, magnetically driven, magnetotactic bacteria, microplastics, nanoplastics, swarming behavior, water purification,
- MeSH
- Water Pollutants, Chemical * isolation & purification chemistry MeSH
- Water Purification * methods MeSH
- Magnetic Fields MeSH
- Microplastics * isolation & purification chemistry MeSH
- Robotics * MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Water Pollutants, Chemical * MeSH
- Microplastics * MeSH
Micro- and nanoplastic pollution is pervasive worldwide, infiltrating drinking water and food chains, accumulating in the human body, and posing serious threats to public health and ecosystems. Despite these urgent challenges, effective strategies to curb the widespread presence of micro- and nanoplastics have not yet been sufficiently developed. Here, we present magnetically driven living bacterial microrobots that exhibit a nature-inspired three-dimensional (3D) swarming motion, allowing the dynamic capture and retrieval of aquatic micro- and nanoplastics originating from various commercial products. By combining autonomous propulsion with magnetically guided navigation, we enabled the multimodal swarming manipulation of magnetotactic bacteria-based living microrobots (MTB biobots). The actuation of a rotating magnetic field induces a fish schooling-like 3D swarming navigation, allowing the active capture of micro- and nanoplastics, which are then retrieved from the contaminated water by magnetic separation. Our results show that the 3D magnetic swarming of MTB biobots synergistically enhances the removal efficiencies of both model and real-world microplastics, demonstrating their practical potential in water treatment technologies. Overall, plastic-seeking living bacterial microrobots and their swarm manipulation offer a straightforward and environmentally friendly approach to micro- and nanoplastic treatment, providing a biomachinery-based solution to mitigate the pressing microplastic pollution crisis.
See more in PubMed
Nature. Microplastics are everywhere we need to understand how they affect human health. Nat. Med. 2024;30:913. doi: 10.1038/s41591-024-02968-x. PubMed DOI
MacLeod M., Arp H. P. H., Tekman M. B., Jahnke A.. The global threat from plastic pollution. Science. 2021;373(6550):61–65. doi: 10.1126/science.abg5433. PubMed DOI
Rochman C. M.. Microplastics researchfrom sink to source. Science. 2018;360(6384):28–29. doi: 10.1126/science.aar7734. PubMed DOI
Thompson R. C., Courtene-Jones W., Boucher J., Pahl S., Raubenheimer K., Koelmans A. A.. Twenty years of microplastics pollution researchwhat have we learned? Science. 2024;386:eadl2746. doi: 10.1126/science.adl2746. PubMed DOI
Ahmed S.. Three ways to solve the plastics pollution crisis. Nature. 2023;616(7956):234–237. doi: 10.1038/d41586-023-00975-5. PubMed DOI
Gigault J., El Hadri H., Nguyen B., Grassl B., Rowenczyk L., Tufenkji N., Feng S., Wiesner M.. Nanoplastics are neither microplastics nor engineered nanoparticles. Nat. Nanotechnol. 2021;16(5):501–507. doi: 10.1038/s41565-021-00886-4. PubMed DOI
Kim J., Mayorga-Martinez C. C., Pumera M.. Magnetically boosted 1D photoactive microswarm for COVID-19 face mask disruption. Nat. Commun. 2023;14(1):935. doi: 10.1038/s41467-023-36650-6. PubMed DOI PMC
Leslie H. A., Van Velzen M. J., Brandsma S. H., Vethaak A. D., Garcia-Vallejo J. J., Lamoree M. H.. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 2022;163:107199. doi: 10.1016/j.envint.2022.107199. PubMed DOI
Horvatits T., Tamminga M., Liu B., Sebode M., Carambia A., Fischer L., Püschel K., Huber S., Fischer E. K.. Microplastics detected in cirrhotic liver tissue. EBioMedicine. 2022;82:104147. doi: 10.1016/j.ebiom.2022.104147. PubMed DOI PMC
Amato-Lourenço L. F., Carvalho-Oliveira R., Júnior G. R., dos Santos Galvão L., Ando R. A., Mauad T.. Presence of airborne microplastics in human lung tissue. J. Hazard. Mater. 2021;416:126124. doi: 10.1016/j.jhazmat.2021.126124. PubMed DOI
Ragusa A., Svelato A., Santacroce C., Catalano P., Notarstefano V., Carnevali O., Papa F., Rongioletti M. C. A., Baiocco F., Draghi S.. Plasticenta: First evidence of microplastics in human placenta. Environ. Int. 2021;146:106274. doi: 10.1016/j.envint.2020.106274. PubMed DOI
Zhu L., Zhu J., Zuo R., Xu Q., Qian Y., Lihui A.. Identification of microplastics in human placenta using laser direct infrared spectroscopy. Sci. Total Environ. 2023;856:159060. doi: 10.1016/j.scitotenv.2022.159060. PubMed DOI
Ragusa A., Notarstefano V., Svelato A., Belloni A., Gioacchini G., Blondeel C., Zucchelli E., De Luca C., D’Avino S., Gulotta A.. Raman microspectroscopy detection and characterisation of microplastics in human breastmilk. Polymers. 2022;14(13):2700. doi: 10.3390/polym14132700. PubMed DOI PMC
Liu S., Guo J., Liu X., Yang R., Wang H., Sun Y., Chen B., Dong R.. Detection of various microplastics in placentas, meconium, infant feces, breastmilk and infant formula: A pilot prospective study. Sci. Total Environ. 2023;854:158699. doi: 10.1016/j.scitotenv.2022.158699. PubMed DOI
Chen C., Ding S., Wang J.. Materials consideration for the design, fabrication and operation of microscale robots. Nat. Rev. Mater. 2024;9(3):159–172. doi: 10.1038/s41578-023-00641-2. DOI
Kim J., Mayorga-Burrezo P., Song S.-J., Mayorga-Martinez C. C., Medina-Sánchez M., Pané S., Pumera M.. Advanced materials for micro/nanorobotics. Chem. Soc. Rev. 2024;53:9190–9253. doi: 10.1039/D3CS00777D. PubMed DOI
Simó C., Serra-Casablancas M., Hortelao A. C., Di Carlo V., Guallar-Garrido S., Plaza-García S., Rabanal R. M., Ramos-Cabrer P., Yagüe B., Aguado L.. Urease-powered nanobots for radionuclide bladder cancer therapy. Nat. Nanotechnol. 2024;19(4):554–564. doi: 10.1038/s41565-023-01577-y. PubMed DOI PMC
Landers F. C., Gantenbein V., Hertle L., Veciana A., Llacer-Wintle J., Chen X. Z., Ye H., Franco C., Puigmartí-Luis J., Kim M.. On-Command Disassembly of Microrobotic Superstructures for Transport and Delivery of Magnetic Micromachines. Adv. Mater. 2024;36(18):2310084. doi: 10.1002/adma.202310084. PubMed DOI
Chen Z., Sánchez M. M.. Microrobots in gynaecological care and reproductive medicine. Nat. Rev. Electr. Eng. 2024;1(12):759–761. doi: 10.1038/s44287-024-00102-0. DOI
Nauber R., Goudu S. R., Goeckenjan M., Bornhäuser M., Ribeiro C., Medina-Sánchez M.. Medical microrobots in reproductive medicine from the bench to the clinic. Nat. Commun. 2023;14(1):728. doi: 10.1038/s41467-023-36215-7. PubMed DOI PMC
Mundaca-Uribe R., Askarinam N., Fang R. H., Zhang L., Wang J.. Towards multifunctional robotic pills. Nat. Biomed. Eng. 2024;8:1334. doi: 10.1038/s41551-023-01090-6. PubMed DOI
Wang T., Wu Y., Yildiz E., Kanyas S., Sitti M.. Clinical translation of wireless soft robotic medical devices. Nat. Rev. Bioeng. 2024;2(6):470–485. doi: 10.1038/s44222-024-00156-7. DOI
Gervasoni S., Pedrini N., Rifai T., Fischer C., Landers F. C., Mattmann M., Dreyfus R., Viviani S., Veciana A., Masina E.. A Human-Scale Clinically Ready Electromagnetic Navigation System for Magnetically Responsive Biomaterials and Medical Devices. Adv. Mater. 2024;36(31):2310701. doi: 10.1002/adma.202310701. PubMed DOI
Cuntín-Abal C., Bujalance-Fernández J., Yuan K., Arribi A., Jurado-Sánchez B., Escarpa A.. Magnetic Bacteriophage-Engineered Janus Micromotors for Selective Bacteria Capture and Detection. Adv. Funct. Mater. 2024;34(16):2312257. doi: 10.1002/adfm.202312257. DOI
Jyoti, Castillo A. R., Jurado-Sánchez B., Pumera M., Escarpa A.. Active Quantum Biomaterials-Enhanced Microrobots for Food Safety. Small. 2024;20(52):2404248. doi: 10.1002/smll.202404248. PubMed DOI PMC
Kim J., Mayorga-Martinez C. C., Vyskočil J., Ruzek D., Pumera M.. Plasmonic-magnetic nanorobots for SARS-CoV-2 RNA detection through electronic readout. Appl. Mater. Today. 2022;27:101402. doi: 10.1016/j.apmt.2022.101402. PubMed DOI PMC
Sun B., Kjelleberg S., Sung J. J., Zhang L.. Micro-and nanorobots for biofilm eradication. Nat. Rev. Bioeng. 2024;2(5):367–369. doi: 10.1038/s44222-024-00176-3. DOI
Mayorga-Martinez C. C., Zhang L., Pumera M.. Chemical multiscale robotics for bacterial biofilm treatment. Chem. Soc. Rev. 2024;53:2284–2299. doi: 10.1039/D3CS00564J. PubMed DOI
Urso M., Ussia M., Pumera M.. Smart micro-and nanorobots for water purification. Nat. Rev. Bioeng. 2023;1(4):236–251. doi: 10.1038/s44222-023-00025-9. PubMed DOI PMC
Peng X., Urso M., Kolackova M., Huska D., Pumera M.. Biohybrid Magnetically Driven Microrobots for Sustainable Removal of Micro/Nanoplastics from the Aquatic Environment. Adv. Funct. Mater. 2024;34(3):2307477. doi: 10.1002/adfm.202307477. DOI
Kim J., Mayorga-Martinez C. C., Pumera M.. Microrobotic photocatalyst on-the-fly: 1D/2D nanoarchitectonic hybrid-based layered metal thiophosphate magnetic micromachines for enhanced photodegradation of nerve agent. Chem. Eng. J. 2022;446:137342. doi: 10.1016/j.cej.2022.137342. DOI
Mayorga-Burrezo P., Mayorga-Martinez C. C., Kim J., Pumera M.. Hybrid magneto-photocatalytic microrobots for sunscreens pollutants decontamination. Chem. Eng. J. 2022;446:137139. doi: 10.1016/j.cej.2022.137139. DOI
Song S.-J., Mayorga-Martinez C. C., Huska D., Pumera M.. Engineered magnetic plant biobots for nerve agent removal. NPG Asia Mater. 2022;14(1):79. doi: 10.1038/s41427-022-00425-0. DOI
Mallick A., Kim J., Pumera M.. Magnetically Propelled Microrobots toward Photosynthesis of Green Ammonia from Nitrates. Small. 2024;21(14):2407050. doi: 10.1002/smll.202407050. PubMed DOI PMC
Zhang F., Li Z., Chen C., Luan H., Fang R. H., Zhang L., Wang J.. Biohybrid microalgae robots: design, fabrication, materials, and applications. Adv. Mater. 2024;36(3):2303714. doi: 10.1002/adma.202303714. PubMed DOI PMC
Gwisai T., Mirkhani N., Christiansen M. G., Nguyen T. T., Ling V., Schuerle S.. Magnetic torque–driven living microrobots for increased tumor infiltration. Sci. Robot. 2022;7(71):eabo0665. doi: 10.1126/scirobotics.abo0665. PubMed DOI
Gwisai T., Günther S., Mirkhani N., Vizovisek M., Menghini S., Jacobs M., Christiansen M. G., Oberhuber I., Poc P., Schuerle S.. Engineering living immunotherapeutic agents for improved cancer treatment. Adv. Ther. 2024;7(4):2300302. doi: 10.1002/adtp.202300302. DOI
Ali I., Peng C., Khan Z. M., Naz I., Sultan M.. An overview of heavy metal removal from wastewater using magnetotactic bacteria. J. Chem. Technol. Biotechnol. 2018;93(10):2817–2832. doi: 10.1002/jctb.5648. DOI
Xing J., Yin T., Li S., Xu T., Ma A., Chen Z., Luo Y., Lai Z., Lv Y., Pan H.. Sequential magneto-actuated and optics-triggered biomicrorobots for targeted cancer therapy. Adv. Funct. Mater. 2021;31(11):2008262. doi: 10.1002/adfm.202008262. DOI
Felfoul O., Mohammadi M., Taherkhani S., De Lanauze D., Zhong Xu Y., Loghin D., Essa S., Jancik S., Houle D., Lafleur M.. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat. Nanotechnol. 2016;11(11):941–947. doi: 10.1038/nnano.2016.137. PubMed DOI PMC
Stanton M. M., Park B.-W., Vilela D., Bente K., Faivre D., Sitti M., Sánchez S.. Magnetotactic bacteria powered biohybrids target E. coli biofilms. ACS Nano. 2017;11(10):9968–9978. doi: 10.1021/acsnano.7b04128. PubMed DOI
Song S.-J., Mayorga-Martinez C. C., Vyskocil J., Castoralova M., Ruml T., Pumera M.. Precisely navigated biobot swarms of bacteria magnetospirillum magneticum for water decontamination. ACS Appl. Mater. Interfaces. 2023;15(5):7023–7029. doi: 10.1021/acsami.2c16592. PubMed DOI PMC
Heyen U., Schüler D.. Growth and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermentor. Appl. Microbiol. Biotechnol. 2003;61:536–544. doi: 10.1007/s00253-002-1219-x. PubMed DOI
Amor M., Busigny V., Louvat P., Tharaud M., Gélabert A., Cartigny P., Carlut J., Isambert A., Durand-Dubief M., Ona-Nguema G.. Iron uptake and magnetite biomineralization in the magnetotactic bacterium Magnetospirillum magneticum strain AMB-1: an iron isotope study. Geochim. Cosmochim. Acta. 2018;232:225–243. doi: 10.1016/j.gca.2018.04.020. DOI
Schuerle S., Soleimany A. P., Yeh T., Anand G., Häberli M., Fleming H., Mirkhani N., Qiu F., Hauert S., Wang X.. Synthetic and living micropropellers for convection-enhanced nanoparticle transport. Sci. Adv. 2019;5(4):eaav4803. doi: 10.1126/sciadv.aav4803. PubMed DOI PMC
Jefremovas E. M., Gandarias L., Marcano L., Gacía-Prieto A., Orue I., Muela A., Fdez-Gubieda M., Barquín L. F., Alonso J.. Modifying the magnetic response of magnetotactic bacteria: incorporation of Gd and Tb ions into the magnetosome structure. Nanoscale Adv. 2022;4(12):2649–2659. doi: 10.1039/D2NA00094F. PubMed DOI PMC
Kim J., Tran V. T., Oh S., Jang M., Lee D. K., Hong J. C., Park T. J., Kim H.-J., Lee J.. Clinical trial: Magnetoplasmonic ELISA for urine-based active tuberculosis detection and anti-tuberculosis therapy monitoring. ACS Cent. Sci. 2021;7(11):1898–1907. doi: 10.1021/acscentsci.1c00948. PubMed DOI PMC
Alphandéry E., Guyot F., Chebbi I.. Preparation of chains of magnetosomes, isolated from Magnetospirillum magneticum strain AMB-1 magnetotactic bacteria, yielding efficient treatment of tumors using magnetic hyperthermia. Int. J. Pharm. 2012;434(1–2):444–452. doi: 10.1016/j.ijpharm.2012.06.015. PubMed DOI
Alphandery E., Faure S., Seksek O., Guyot F., Chebbi I.. Chains of magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy. ACS Nano. 2011;5(8):6279–6296. doi: 10.1021/nn201290k. PubMed DOI
Kim J., Tran V. T., Oh S., Kim C.-S., Hong J. C., Kim S., Joo Y.-S., Mun S., Kim M.-H., Jung J.-W.. Scalable solvothermal synthesis of superparamagnetic Fe3O4 nanoclusters for bioseparation and theragnostic probes. ACS Appl. Mater. Interfaces. 2018;10(49):41935–41946. doi: 10.1021/acsami.8b14156. PubMed DOI
Tran V. T., Lee D. K., Kim J., Jeong K.-J., Kim C.-S., Lee J.. Magnetic layer-by-layer assembly: from linear plasmonic polymers to oligomers. ACS Appl. Mater. Interfaces. 2020;12(14):16584–16591. doi: 10.1021/acsami.9b22684. PubMed DOI
Popp F., Armitage J. P., Schüler D.. Polarity of bacterial magnetotaxis is controlled by aerotaxis through a common sensory pathway. Nat. Commun. 2014;5(1):5398. doi: 10.1038/ncomms6398. PubMed DOI
Cieśla J., Bieganowski A., Janczarek M., Urbanik-Sypniewska T.. Determination of the electrokinetic potential of Rhizobium leguminosarum bv trifolii Rt24. 2 using Laser Doppler Velocimetrya methodological study. J. Microbiol. Methods. 2011;85(3):199–205. doi: 10.1016/j.mimet.2011.03.004. PubMed DOI
Li W., Wu C., Xiong Z., Liang C., Li Z., Liu B., Cao Q., Wang J., Tang J., Li D.. Self-driven magnetorobots for recyclable and scalable micro/nanoplastic removal from nonmarine waters. Sci. Adv. 2022;8(45):eade1731. doi: 10.1126/sciadv.ade1731. PubMed DOI PMC
Zhou H., Mayorga-Martinez C. C., Pumera M.. Microplastic removal and degradation by mussel-inspired adhesive magnetic/enzymatic microrobots. Small Methods. 2021;5(9):2100230. doi: 10.1002/smtd.202100230. PubMed DOI
Cai L., Wu D., Xia J., Shi H., Kim H.. Influence of physicochemical surface properties on the adhesion of bacteria onto four types of plastics. Sci. Total Environ. 2019;671:1101–1107. doi: 10.1016/j.scitotenv.2019.03.434. DOI
Zhao L., Dou Q., Chen S., Wang Y., Yang Q., Chen W., Zhang H., Du Y., Xie M.. Adsorption abilities and mechanisms of Lactobacillus on various nanoplastics. Chemosphere. 2023;320:138038. doi: 10.1016/j.chemosphere.2023.138038. PubMed DOI
Qin Y., Tu Y., Chen C., Wang F., Yang Y., Hu Y.. Biofilms on microplastic surfaces and their effect on pollutant adsorption in the aquatic environment. J. Mater. Cycles Waste Manag. 2024;26(6):3303–3323. doi: 10.1007/s10163-024-02066-7. DOI
Velikov D. I., Jancik-Prochazkova A., Pumera M.. On-the-Fly Monitoring of the Capture and Removal of Nanoplastics with Nanorobots. ACS Nanosci. Au. 2024;4(4):243–249. doi: 10.1021/acsnanoscienceau.4c00002. PubMed DOI PMC
Shim W. J., Song Y. K., Hong S. H., Jang M.. Identification and quantification of microplastics using Nile Red staining. Mar. Pollut. Bull. 2016;113(1–2):469–476. doi: 10.1016/j.marpolbul.2016.10.049. PubMed DOI
Kotakadi S. M., Borelli D. P. R., Nannepaga J. S.. Therapeutic Applications of Magnetotactic Bacteria and Magneto-somes: A Review Emphasizing on the Cancer Treatment. Front. Bioeng. Biotechnol. 2022;10:789016. doi: 10.3389/fbioe.2022.789016. PubMed DOI PMC
Zuzuarregui A., Souto D., Perez-Lorenzo E., Arizti F., Sanchez-Gomez S., Martinez de Tejada G., Brandenburg K., Arana S., Mujika M.. Novel Integrated and Portable Endotoxin DetectionSystem Based on an Electrochemical Biosensor. Analyst. 2015;140(2):654–660. doi: 10.1039/C4AN01324G. PubMed DOI