Plasmonic-magnetic nanorobots for SARS-CoV-2 RNA detection through electronic readout
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35155738
PubMed Central
PMC8818338
DOI
10.1016/j.apmt.2022.101402
PII: S2352-9407(22)00041-5
Knihovny.cz E-zdroje
- Klíčová slova
- Biosensing, COVID-19, Iron oxides, Micromotors, Transversal rotating magnetic field,
- Publikační typ
- časopisecké články MeSH
The coronavirus disease 2019 (COVID-19) has prompted an urgent demand for nanotechnological solutions towards the global healthcare crisis, particularly in the field of diagnostics, vaccines, and therapeutics. As an emerging tool for nanoscience and technology, micro/nanorobots have demonstrated advanced performances, such as self-propelling, precise maneuverability, and remote actuation, thus hold great potential to provide breakthroughs in the COVID-19 pandemic. Here we show a plasmonic-magnetic nanorobot-based simple and efficient COVID-19 detection assay through an electronic readout signal. The nanorobots consist of Fe3O4 backbone and the outer surface of Ag, that rationally designed to perform magnetic-powered propulsion and navigation, concomitantly the probe nucleic acids transport and release upon the hybridization which can be quantified with the differential pulse voltammetry (DPV) technique. The magnetically actuated nanorobots swarming enables enhanced micromixing and active targeting, thereby promoting binding kinetics. Experimental results verified the enhanced sensing efficiency, with nanomolar detection limit and high selectivity. Further testing with extracted SARS-CoV-2 viral RNA samples validated the clinical applicability of the proposed assay. This strategy is versatile to extend targeting various nucleic acids, thus it could be a promising detection tool for other emerging pathogens, environmental toxins, and forensic analytes.
Zobrazit více v PubMed
Zhou H., Mayorga-Martinez C.C., Pané S., Zhang L., Pumera M. Magnetically driven micro and nanorobots. Chem. Rev. 2021;121:4999–5041. doi: 10.1021/acs.chemrev.0c01234. PubMed DOI PMC
Li J., de Ávila B.E.F., Gao W., Zhang L., Wang J. Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Sci. Robot. 2017;2:eaam6431. doi: 10.1126/scirobotics.aam6431. PubMed DOI PMC
Palagi S., Fischer P. Bioinspired microrobots. Nat. Rev. Mater. 2018;3:113–124. doi: 10.1038/s41578-018-0016-9. DOI
Wang B., Kostarelos K., Nelson B.J., Zhang L. Trends in micro-/nanorobotics: materials development, actuation, localization, and system integration for biomedical applications. Adv. Mater. 2020 doi: 10.1002/adma.202002047. PubMed DOI
Schmidt C.K., Medina-Sánchez M., Edmondson R.J., Schmidt O.G. Engineering microrobots for targeted cancer therapies from a medical perspective. Nat. Commun. 2020;11(1):5618. doi: 10.1038/s41467-020-19322-7. PubMed DOI PMC
Wang J. Self-propelled affinity biosensors: moving the receptor around the sample. Biosens. Bioelectron. 2016;76:234–242. doi: 10.1016/j.bios.2015.04.095. PubMed DOI
Kong J.Guan, Pumera M. Micro- and nanorobots based sensing and biosensing. Curr. Opin. Electrochem. 2018;10:174–182. doi: 10.1016/j.coelec.2018.06.004. DOI
Mayorga-Martinez C.C., Pumera M. Self-propelled tags for protein detection. Adv. Funct. Mater. 2020;30 doi: 10.1002/adfm.201906449. DOI
Vyskocil J., Mayorga-Martinez C.C., Jablonska E., Novotny F., Ruml T., Pumera M. Cancer cells microsurgery via asymmetric bent surface Au/Ag/Ni microrobotic scalpels through a transversal rotating magnetic field. ACS Nano. 2020;14:8247–8256. doi: 10.1021/acsnano.0c01705. PubMed DOI
Soto F., Wang J., Ahmed R., Demirci U. Medical micro/nanorobots in precision medicine. Adv. Sci. 2020;7 doi: 10.1002/advs.202002203. PubMed DOI PMC
Villa K., Viktorova J., Plutnar J., Ruml T., Hoang L., Pumera M. Chemical microrobots as self-propelled microbrushes against dental biofilm. Cell Rep. Phys. Sci. 2020;1(9) doi: 10.1016/j.xcrp.2020.100181. DOI
Ussia M., Urso M., Dolezelikova K., Michalkova H., Adam V., Pumera M. Active light-powered antibiofilm ZnO micromotors with chemically programmable properties. Adv. Funct. Mater. 2021 doi: 10.1002/adfm.202101178. DOI
Dekanovsky L., Khezri B., Rottnerova Z., Novotny F., Plutnar J., Pumera M. Chemically programmable micromotorss weaving a web from hormones. Nat. Mach. Intell. 2020;2(11):711–718. doi: 10.1038/s42256-020-00248-0. DOI
Ying Y., Pourrahimi A.M., Sofer Z.k., Matějková S., Pumera M. Radioactive uranium preconcentration via self-propelled autonomous microrobots based on metal–organic frameworks. ACS Nano. 2019;13:11477–11487. doi: 10.1021/acsnano.9b04960. PubMed DOI
Morales-Narváez E., Guix M., Medina-Sánchez M., Mayorga-Martinez C.C., Merkoçi A. Micromotor enhanced microarray technology for protein detection. Small. 2014;10:2542–2548. doi: 10.1002/smll.201303068. PubMed DOI
Kagan D., Campuzano S., Balasubramanian S., Kuralay F., Flechsig G.U., Wang J. Functionalized micromachines for selective and rapid isolation of nucleic acid targets from complex samples. Nano Lett. 2011;11:2083–2087. doi: 10.1021/nl2005687. PubMed DOI
Medina-Sánchez M., Schwarz L., Meyer A.K., Hebenstreit F., Schmidt O.G. Cellular cargo delivery: toward assisted fertilization by sperm-carrying micromotors. Nano Lett. 2016;16:555–561. doi: 10.1021/acs.nanolett.5b04221. PubMed DOI
Wang H., Pumera M. Micro/nanomachines and living biosystems: from simple interactions to microcyborgs. Adv. Funct. Mater. 2018;28 doi: 10.1002/adfm.201705421. DOI
World Health Organization, COVID-19 weekly epidemiological update, edition 43, 8 June 2021, https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---8-june-2021 (accessed: June 26, 2021).
Kumar K.P.A., Pumera M. 3D-Printing to mitigate COVID-19 pandemic. Adv. Funct. Mater. 2021;31 doi: 10.1002/adfm.202100450. PubMed DOI PMC
Wouters O.J., Shadlen K.C., Salcher-Konrad M., Pollard A.J., Larson H.J., Teerawattananon Y., Jit M., et al. Challenges in ensuring global access to COVID-19 vaccines: production, affordability, allocation, and deployment. The Lancet. 2021;397:1023–1034. doi: 10.1016/S0140-6736(21)00306-8. PubMed DOI PMC
Long Q.X., Tang X.J., Shi Q.L., Li Q., Deng H.J., Yuan J., Hu J.L., Xu W., Zhang Y., Lv F.J. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat. Med. 2020;26:1200–1204. doi: 10.1038/s41591-020-0965-6. PubMed DOI
Fontanet A., Autran B., Lina B., Kieny M.P., Karim S.S.A., Sridhar D. SARS-CoV-2 variants and ending the COVID-19 pandemic. The Lancet. 2021;397:952–954. doi: 10.1016/S0140-6736(21)00370-6. PubMed DOI PMC
Carter L.J., Garner L.V., Smoot J.W., Li Y., Zhou Q., Saveson C.J., Sasso J.M., Gregg A.C., Soares D.J., Beskid T.R. Assay techniques and test development for COVID-19 diagnosis. ACS Cent. Sci. 2020;6:591–605. doi: 10.1021/acscentsci.0c00501. PubMed DOI PMC
Talebian S., Wallace G.G., Schroeder A., Stellacci F., Conde J. Nanotechnology-based disinfectants and sensors for SARS-CoV-2. Nat. Nanotechnol. 2020;15:618–621. doi: 10.1038/s41565-020-0751-0. PubMed DOI
Kevadiya B.D., Machhi J., Herskovitz J., Oleynikov M.D., Blomberg W.R., Bajwa N., Soni D., Das S., Hasan M., Patel M. Diagnostics for SARS-CoV-2 infections. Nat. Mater. 2021;20:593–605. doi: 10.1038/s41563-020-00906-z. PubMed DOI PMC
Mina M.J., Andersen K.G. COVID-19 testing: one size does not fit all. Science. 2021;371:126–127. doi: 10.1126/science.abe9187. PubMed DOI
Cheong J., Yu H., Lee C.Y., Lee J.U., Choi H.J., Lee J.H., Lee H., Cheon J. Fast detection of SARS-CoV-2 RNA via the integration of plasmonic thermocycling and fluorescence detection in a portable device. Nat. Biomed. Eng. 2020;4:1159–1167. doi: 10.1038/s41551-020-00654-0. PubMed DOI PMC
Udugama B., Kadhiresan P., Kozlowski H.N., Malekjahani A., Osborne M., Li V.Y., Chen H., Mubareka S., Gubbay J.B., Chan W.C. Diagnosing COVID-19: the disease and tools for detection. ACS Nano. 2020;14:3822–3835. doi: 10.1021/acsnano.0c02624. PubMed DOI
Whitman J.D., Hiatt J., Mowery C.T., Shy B.R., Yu R., Yamamoto T.N., Rathore U., Goldgof G.M., Whitty C., Woo J.M. Evaluation of SARS-CoV-2 serology assays reveals a range of test performance. Nat. Biotechnol. 2020;38:1174–1183. doi: 10.1038/s41587-020-0659-0. PubMed DOI PMC
Qin Z., Peng R., Baravik I.K., Liu X. Fighting COVID-19: integrated micro-and nanosystems for viral infection diagnostics. Matter. 2020;3:628–651. doi: 10.1016/j.matt.2020.06.015. PubMed DOI PMC
Alafeef M., Dighe K., Moitra P., Pan D. Rapid, ultrasensitive, and quantitative detection of SARS-CoV-2 using antisense oligonucleotides directed electrochemical biosensor chip. ACS Nano. 2020;14:17028–17045. doi: 10.1021/acsnano.0c06392. PubMed DOI PMC
Li H., Rothberg L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc. Natl. Acad. Sci. U.S.A. 2004;101:14036–14039. doi: 10.1073/pnas.0406115101. PubMed DOI PMC
He Q., Wu Q., Feng X., Liao Z., Peng W., Liu Y., Peng D., Liu Z., Mo M. Interfacing DNA with nanoparticles: surface science and its applications in biosensing. Int. J. Biol. Macromol. 2020;151:757–780. doi: 10.1016/j.ijbiomac.2020.02.217. PubMed DOI
Farkhari N., Abbasian S., Moshaii A., Nikkhah M. Mechanism of adsorption of single and double stranded DNA on gold and silver nanoparticles: investigating some important parameters in bio-sensing applications. Colloids Surf. B. 2016;148:657–664. doi: 10.1016/j.colsurfb.2016.09.022. PubMed DOI
Loo A.H., Bonanni A., Ambrosi A., Pumera M. Molybdenum disulfide (MoS2) nanoflakes as inherently electroactive labels for DNA hybridization detection. Nanoscale. 2014;6:11971–11975. doi: 10.1039/C4NR03795B. PubMed DOI
Zhu C., Zeng Z., Li H., Li F., Fan C., Zhang H. Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J. Am. Chem. Soc. 2013;135:5998–6001. doi: 10.1021/ja4019572. PubMed DOI
Kim J., Lee K.S., Kim E.B., Paik S., Chang C.L., Park T.J., Kim H.J., Lee J. Early detection of the growth of Mycobacterium tuberculosis using magnetophoretic immunoassay in liquid culture. Biosens. Bioelectron. 2017;96:68–76. doi: 10.1016/j.bios.2017.04.025. PubMed DOI
Kim J., Jang M., Lee K.G., Lee K.S., Lee S.J., Ro K.W., Kang I.S., Jeong B.D., Park T.J., Kim H.J., Lee J. Plastic-chip-based magnetophoretic immunoassay for point-of-care diagnosis of tuberculosis. ACS Appl. Mater. Interfaces. 2016;8:23489–23497. doi: 10.1021/acsami.6b06924. PubMed DOI
Tran V.T., Zhou H., Park J.Y., Kim J., Lee J. Silver-enhanced conductivity of magnetoplasmonic nanochains. Curr. Appl. Phys. 2015;15:110–114. doi: 10.1016/j.cap.2014.11.013. DOI
Zhang L., Petit T., Lu Y., Kratochvil B.E., Peyer K.E., Pei R., Lou J., Nelson B.J. Controlled propulsion and cargo transport of rotating nickel nanowires near a patterned solid surface. ACS Nano. 2010;4:6228–6234. doi: 10.1021/nn101861n. PubMed DOI
Vach P.J., Fratzl P., Klumpp S., Faivre D. Fast magnetic micropropellers with random shapes. Nano Lett. 2015;15:7064–7070. doi: 10.1021/acs.nanolett.5b03131. PubMed DOI PMC
Sigolaeva L.V., Bulko T.V., Konyakhina A.Y., Kuzikov A.V., Masamrekh R.A., Max J.B., Köhler M., Schacher F.H., Pergushov D.V., Shumyantseva V.V. Rational design of amphiphilic diblock copolymer/MWCNT surface modifiers and their application for direct electrochemical sensing of DNA. Polymers. 2020;12:1514. doi: 10.3390/polym12071514. (Basel) PubMed DOI PMC
Li H., Wang X., Yu Z. Electrochemical biosensor for sensitively simultaneous determination of dopamine, uric acid, guanine, and adenine based on poly-melamine and nano Ag hybridized film-modified electrode. J. Solid State Electrochem. 2014;18:105–113. doi: 10.1007/s10008-013-2242-9. DOI
Tufa L.T., Oh S., Kim J., Jeong K.J., Park T.J., Kim H.J., Lee J. Electrochemical immunosensor using nanotriplex of graphene quantum dots, Fe3O4, and Ag nanoparticles for tuberculosis. Electrochim. Acta. 2018;290:369–377. doi: 10.1016/j.electacta.2018.09.108. DOI
Shahrokhian S., Rastgar S., Amini M., Adeli M. Fabrication of a modified electrode based on Fe3O4 NPs/MWCNT nanocomposite: application to simultaneous determination of guanine and adenine in DNA. Bioelectrochemistry. 2012;86:78–86. doi: 10.1016/j.bioelechem.2012.02.004. PubMed DOI
Magnetically Propelled Microrobots toward Photosynthesis of Green Ammonia from Nitrates
Magnetically boosted 1D photoactive microswarm for COVID-19 face mask disruption
Precisely Navigated Biobot Swarms of Bacteria Magnetospirillum magneticum for Water Decontamination