Plasmonic-magnetic nanorobots for SARS-CoV-2 RNA detection through electronic readout

. 2022 Jun ; 27 () : 101402. [epub] 20220207

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35155738
Odkazy

PubMed 35155738
PubMed Central PMC8818338
DOI 10.1016/j.apmt.2022.101402
PII: S2352-9407(22)00041-5
Knihovny.cz E-zdroje

The coronavirus disease 2019 (COVID-19) has prompted an urgent demand for nanotechnological solutions towards the global healthcare crisis, particularly in the field of diagnostics, vaccines, and therapeutics. As an emerging tool for nanoscience and technology, micro/nanorobots have demonstrated advanced performances, such as self-propelling, precise maneuverability, and remote actuation, thus hold great potential to provide breakthroughs in the COVID-19 pandemic. Here we show a plasmonic-magnetic nanorobot-based simple and efficient COVID-19 detection assay through an electronic readout signal. The nanorobots consist of Fe3O4 backbone and the outer surface of Ag, that rationally designed to perform magnetic-powered propulsion and navigation, concomitantly the probe nucleic acids transport and release upon the hybridization which can be quantified with the differential pulse voltammetry (DPV) technique. The magnetically actuated nanorobots swarming enables enhanced micromixing and active targeting, thereby promoting binding kinetics. Experimental results verified the enhanced sensing efficiency, with nanomolar detection limit and high selectivity. Further testing with extracted SARS-CoV-2 viral RNA samples validated the clinical applicability of the proposed assay. This strategy is versatile to extend targeting various nucleic acids, thus it could be a promising detection tool for other emerging pathogens, environmental toxins, and forensic analytes.

Zobrazit více v PubMed

Zhou H., Mayorga-Martinez C.C., Pané S., Zhang L., Pumera M. Magnetically driven micro and nanorobots. Chem. Rev. 2021;121:4999–5041. doi: 10.1021/acs.chemrev.0c01234. PubMed DOI PMC

Li J., de Ávila B.E.F., Gao W., Zhang L., Wang J. Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Sci. Robot. 2017;2:eaam6431. doi: 10.1126/scirobotics.aam6431. PubMed DOI PMC

Palagi S., Fischer P. Bioinspired microrobots. Nat. Rev. Mater. 2018;3:113–124. doi: 10.1038/s41578-018-0016-9. DOI

Wang B., Kostarelos K., Nelson B.J., Zhang L. Trends in micro-/nanorobotics: materials development, actuation, localization, and system integration for biomedical applications. Adv. Mater. 2020 doi: 10.1002/adma.202002047. PubMed DOI

Schmidt C.K., Medina-Sánchez M., Edmondson R.J., Schmidt O.G. Engineering microrobots for targeted cancer therapies from a medical perspective. Nat. Commun. 2020;11(1):5618. doi: 10.1038/s41467-020-19322-7. PubMed DOI PMC

Wang J. Self-propelled affinity biosensors: moving the receptor around the sample. Biosens. Bioelectron. 2016;76:234–242. doi: 10.1016/j.bios.2015.04.095. PubMed DOI

Kong J.Guan, Pumera M. Micro- and nanorobots based sensing and biosensing. Curr. Opin. Electrochem. 2018;10:174–182. doi: 10.1016/j.coelec.2018.06.004. DOI

Mayorga-Martinez C.C., Pumera M. Self-propelled tags for protein detection. Adv. Funct. Mater. 2020;30 doi: 10.1002/adfm.201906449. DOI

Vyskocil J., Mayorga-Martinez C.C., Jablonska E., Novotny F., Ruml T., Pumera M. Cancer cells microsurgery via asymmetric bent surface Au/Ag/Ni microrobotic scalpels through a transversal rotating magnetic field. ACS Nano. 2020;14:8247–8256. doi: 10.1021/acsnano.0c01705. PubMed DOI

Soto F., Wang J., Ahmed R., Demirci U. Medical micro/nanorobots in precision medicine. Adv. Sci. 2020;7 doi: 10.1002/advs.202002203. PubMed DOI PMC

Villa K., Viktorova J., Plutnar J., Ruml T., Hoang L., Pumera M. Chemical microrobots as self-propelled microbrushes against dental biofilm. Cell Rep. Phys. Sci. 2020;1(9) doi: 10.1016/j.xcrp.2020.100181. DOI

Ussia M., Urso M., Dolezelikova K., Michalkova H., Adam V., Pumera M. Active light-powered antibiofilm ZnO micromotors with chemically programmable properties. Adv. Funct. Mater. 2021 doi: 10.1002/adfm.202101178. DOI

Dekanovsky L., Khezri B., Rottnerova Z., Novotny F., Plutnar J., Pumera M. Chemically programmable micromotorss weaving a web from hormones. Nat. Mach. Intell. 2020;2(11):711–718. doi: 10.1038/s42256-020-00248-0. DOI

Ying Y., Pourrahimi A.M., Sofer Z.k., Matějková S., Pumera M. Radioactive uranium preconcentration via self-propelled autonomous microrobots based on metal–organic frameworks. ACS Nano. 2019;13:11477–11487. doi: 10.1021/acsnano.9b04960. PubMed DOI

Morales-Narváez E., Guix M., Medina-Sánchez M., Mayorga-Martinez C.C., Merkoçi A. Micromotor enhanced microarray technology for protein detection. Small. 2014;10:2542–2548. doi: 10.1002/smll.201303068. PubMed DOI

Kagan D., Campuzano S., Balasubramanian S., Kuralay F., Flechsig G.U., Wang J. Functionalized micromachines for selective and rapid isolation of nucleic acid targets from complex samples. Nano Lett. 2011;11:2083–2087. doi: 10.1021/nl2005687. PubMed DOI

Medina-Sánchez M., Schwarz L., Meyer A.K., Hebenstreit F., Schmidt O.G. Cellular cargo delivery: toward assisted fertilization by sperm-carrying micromotors. Nano Lett. 2016;16:555–561. doi: 10.1021/acs.nanolett.5b04221. PubMed DOI

Wang H., Pumera M. Micro/nanomachines and living biosystems: from simple interactions to microcyborgs. Adv. Funct. Mater. 2018;28 doi: 10.1002/adfm.201705421. DOI

World Health Organization, COVID-19 weekly epidemiological update, edition 43, 8 June 2021, https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---8-june-2021 (accessed: June 26, 2021).

Kumar K.P.A., Pumera M. 3D-Printing to mitigate COVID-19 pandemic. Adv. Funct. Mater. 2021;31 doi: 10.1002/adfm.202100450. PubMed DOI PMC

Wouters O.J., Shadlen K.C., Salcher-Konrad M., Pollard A.J., Larson H.J., Teerawattananon Y., Jit M., et al. Challenges in ensuring global access to COVID-19 vaccines: production, affordability, allocation, and deployment. The Lancet. 2021;397:1023–1034. doi: 10.1016/S0140-6736(21)00306-8. PubMed DOI PMC

Long Q.X., Tang X.J., Shi Q.L., Li Q., Deng H.J., Yuan J., Hu J.L., Xu W., Zhang Y., Lv F.J. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat. Med. 2020;26:1200–1204. doi: 10.1038/s41591-020-0965-6. PubMed DOI

Fontanet A., Autran B., Lina B., Kieny M.P., Karim S.S.A., Sridhar D. SARS-CoV-2 variants and ending the COVID-19 pandemic. The Lancet. 2021;397:952–954. doi: 10.1016/S0140-6736(21)00370-6. PubMed DOI PMC

Carter L.J., Garner L.V., Smoot J.W., Li Y., Zhou Q., Saveson C.J., Sasso J.M., Gregg A.C., Soares D.J., Beskid T.R. Assay techniques and test development for COVID-19 diagnosis. ACS Cent. Sci. 2020;6:591–605. doi: 10.1021/acscentsci.0c00501. PubMed DOI PMC

Talebian S., Wallace G.G., Schroeder A., Stellacci F., Conde J. Nanotechnology-based disinfectants and sensors for SARS-CoV-2. Nat. Nanotechnol. 2020;15:618–621. doi: 10.1038/s41565-020-0751-0. PubMed DOI

Kevadiya B.D., Machhi J., Herskovitz J., Oleynikov M.D., Blomberg W.R., Bajwa N., Soni D., Das S., Hasan M., Patel M. Diagnostics for SARS-CoV-2 infections. Nat. Mater. 2021;20:593–605. doi: 10.1038/s41563-020-00906-z. PubMed DOI PMC

Mina M.J., Andersen K.G. COVID-19 testing: one size does not fit all. Science. 2021;371:126–127. doi: 10.1126/science.abe9187. PubMed DOI

Cheong J., Yu H., Lee C.Y., Lee J.U., Choi H.J., Lee J.H., Lee H., Cheon J. Fast detection of SARS-CoV-2 RNA via the integration of plasmonic thermocycling and fluorescence detection in a portable device. Nat. Biomed. Eng. 2020;4:1159–1167. doi: 10.1038/s41551-020-00654-0. PubMed DOI PMC

Udugama B., Kadhiresan P., Kozlowski H.N., Malekjahani A., Osborne M., Li V.Y., Chen H., Mubareka S., Gubbay J.B., Chan W.C. Diagnosing COVID-19: the disease and tools for detection. ACS Nano. 2020;14:3822–3835. doi: 10.1021/acsnano.0c02624. PubMed DOI

Whitman J.D., Hiatt J., Mowery C.T., Shy B.R., Yu R., Yamamoto T.N., Rathore U., Goldgof G.M., Whitty C., Woo J.M. Evaluation of SARS-CoV-2 serology assays reveals a range of test performance. Nat. Biotechnol. 2020;38:1174–1183. doi: 10.1038/s41587-020-0659-0. PubMed DOI PMC

Qin Z., Peng R., Baravik I.K., Liu X. Fighting COVID-19: integrated micro-and nanosystems for viral infection diagnostics. Matter. 2020;3:628–651. doi: 10.1016/j.matt.2020.06.015. PubMed DOI PMC

Alafeef M., Dighe K., Moitra P., Pan D. Rapid, ultrasensitive, and quantitative detection of SARS-CoV-2 using antisense oligonucleotides directed electrochemical biosensor chip. ACS Nano. 2020;14:17028–17045. doi: 10.1021/acsnano.0c06392. PubMed DOI PMC

Li H., Rothberg L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc. Natl. Acad. Sci. U.S.A. 2004;101:14036–14039. doi: 10.1073/pnas.0406115101. PubMed DOI PMC

He Q., Wu Q., Feng X., Liao Z., Peng W., Liu Y., Peng D., Liu Z., Mo M. Interfacing DNA with nanoparticles: surface science and its applications in biosensing. Int. J. Biol. Macromol. 2020;151:757–780. doi: 10.1016/j.ijbiomac.2020.02.217. PubMed DOI

Farkhari N., Abbasian S., Moshaii A., Nikkhah M. Mechanism of adsorption of single and double stranded DNA on gold and silver nanoparticles: investigating some important parameters in bio-sensing applications. Colloids Surf. B. 2016;148:657–664. doi: 10.1016/j.colsurfb.2016.09.022. PubMed DOI

Loo A.H., Bonanni A., Ambrosi A., Pumera M. Molybdenum disulfide (MoS2) nanoflakes as inherently electroactive labels for DNA hybridization detection. Nanoscale. 2014;6:11971–11975. doi: 10.1039/C4NR03795B. PubMed DOI

Zhu C., Zeng Z., Li H., Li F., Fan C., Zhang H. Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J. Am. Chem. Soc. 2013;135:5998–6001. doi: 10.1021/ja4019572. PubMed DOI

Kim J., Lee K.S., Kim E.B., Paik S., Chang C.L., Park T.J., Kim H.J., Lee J. Early detection of the growth of Mycobacterium tuberculosis using magnetophoretic immunoassay in liquid culture. Biosens. Bioelectron. 2017;96:68–76. doi: 10.1016/j.bios.2017.04.025. PubMed DOI

Kim J., Jang M., Lee K.G., Lee K.S., Lee S.J., Ro K.W., Kang I.S., Jeong B.D., Park T.J., Kim H.J., Lee J. Plastic-chip-based magnetophoretic immunoassay for point-of-care diagnosis of tuberculosis. ACS Appl. Mater. Interfaces. 2016;8:23489–23497. doi: 10.1021/acsami.6b06924. PubMed DOI

Tran V.T., Zhou H., Park J.Y., Kim J., Lee J. Silver-enhanced conductivity of magnetoplasmonic nanochains. Curr. Appl. Phys. 2015;15:110–114. doi: 10.1016/j.cap.2014.11.013. DOI

Zhang L., Petit T., Lu Y., Kratochvil B.E., Peyer K.E., Pei R., Lou J., Nelson B.J. Controlled propulsion and cargo transport of rotating nickel nanowires near a patterned solid surface. ACS Nano. 2010;4:6228–6234. doi: 10.1021/nn101861n. PubMed DOI

Vach P.J., Fratzl P., Klumpp S., Faivre D. Fast magnetic micropropellers with random shapes. Nano Lett. 2015;15:7064–7070. doi: 10.1021/acs.nanolett.5b03131. PubMed DOI PMC

Sigolaeva L.V., Bulko T.V., Konyakhina A.Y., Kuzikov A.V., Masamrekh R.A., Max J.B., Köhler M., Schacher F.H., Pergushov D.V., Shumyantseva V.V. Rational design of amphiphilic diblock copolymer/MWCNT surface modifiers and their application for direct electrochemical sensing of DNA. Polymers. 2020;12:1514. doi: 10.3390/polym12071514. (Basel) PubMed DOI PMC

Li H., Wang X., Yu Z. Electrochemical biosensor for sensitively simultaneous determination of dopamine, uric acid, guanine, and adenine based on poly-melamine and nano Ag hybridized film-modified electrode. J. Solid State Electrochem. 2014;18:105–113. doi: 10.1007/s10008-013-2242-9. DOI

Tufa L.T., Oh S., Kim J., Jeong K.J., Park T.J., Kim H.J., Lee J. Electrochemical immunosensor using nanotriplex of graphene quantum dots, Fe3O4, and Ag nanoparticles for tuberculosis. Electrochim. Acta. 2018;290:369–377. doi: 10.1016/j.electacta.2018.09.108. DOI

Shahrokhian S., Rastgar S., Amini M., Adeli M. Fabrication of a modified electrode based on Fe3O4 NPs/MWCNT nanocomposite: application to simultaneous determination of guanine and adenine in DNA. Bioelectrochemistry. 2012;86:78–86. doi: 10.1016/j.bioelechem.2012.02.004. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...