Magnetically Driven Micro and Nanorobots
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33787235
PubMed Central
PMC8154323
DOI
10.1021/acs.chemrev.0c01234
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Manipulation and navigation of micro and nanoswimmers in different fluid environments can be achieved by chemicals, external fields, or even motile cells. Many researchers have selected magnetic fields as the active external actuation source based on the advantageous features of this actuation strategy such as remote and spatiotemporal control, fuel-free, high degree of reconfigurability, programmability, recyclability, and versatility. This review introduces fundamental concepts and advantages of magnetic micro/nanorobots (termed here as "MagRobots") as well as basic knowledge of magnetic fields and magnetic materials, setups for magnetic manipulation, magnetic field configurations, and symmetry-breaking strategies for effective movement. These concepts are discussed to describe the interactions between micro/nanorobots and magnetic fields. Actuation mechanisms of flagella-inspired MagRobots (i.e., corkscrew-like motion and traveling-wave locomotion/ciliary stroke motion) and surface walkers (i.e., surface-assisted motion), applications of magnetic fields in other propulsion approaches, and magnetic stimulation of micro/nanorobots beyond motion are provided followed by fabrication techniques for (quasi-)spherical, helical, flexible, wire-like, and biohybrid MagRobots. Applications of MagRobots in targeted drug/gene delivery, cell manipulation, minimally invasive surgery, biopsy, biofilm disruption/eradication, imaging-guided delivery/therapy/surgery, pollution removal for environmental remediation, and (bio)sensing are also reviewed. Finally, current challenges and future perspectives for the development of magnetically powered miniaturized motors are discussed.
Zobrazit více v PubMed
Terzopoulou A.; Nicholas J. D.; Chen X.-Z.; Nelson B. J.; Pané S.; Puigmartí-Luis J. Metal-Organic Frameworks in Motion. Chem. Rev. 2020, 120, 11175–11193. 10.1021/acs.chemrev.0c00535. PubMed DOI
Li J.; Esteban-Fernández de Ávila B.; Gao W.; Zhang L.; Wang J. Micro/Nanorobots for Biomedicine: Delivery, Surgery, Sensing, and Detoxification. Sci. Robot. 2017, 2, eaam643110.1126/scirobotics.aam6431. PubMed DOI PMC
Li T.; Li J.; Morozov K. I.; Wu Z.; Xu T.; Rozen I.; Leshansky A. M.; Li L.; Wang J. Highly Efficient Freestyle Magnetic Nanoswimmer. Nano Lett. 2017, 17, 5092–5098. 10.1021/acs.nanolett.7b02383. PubMed DOI
Yan X.; Zhou Q.; Yu J.; Xu T.; Deng Y.; Tang T.; Feng Q.; Bian L.; Zhang Y.; Ferreira A.; et al. Magnetite Nanostructured Porous Hollow Helical Microswimmers for Targeted Delivery. Adv. Funct. Mater. 2015, 25, 5333–5342. 10.1002/adfm.201502248. DOI
Ying Y.; Pourrahimi A. M.; Sofer Z.; Matejková S.; Pumera M. Radioactive Uranium Preconcentration via Self-Propelled Autonomous Microrobots Based on Metal-Organic Frameworks. ACS Nano 2019, 13, 11477–11487. 10.1021/acsnano.9b04960. PubMed DOI
Mou F.; Chen C.; Ma H.; Yin Y.; Wu Q.; Guan J. Self-Propelled Micromotors Driven by the Magnesium-Water Reaction and Their Hemolytic Properties. Angew. Chem., Int. Ed. 2013, 52, 7208–7212. 10.1002/anie.201300913. PubMed DOI
Orozco J.; Jurado-Sánchez B.; Wagner G.; Gao W.; Vazquez-Duhalt R.; Sattayasamitsathit S.; Galarnyk M.; Cortés A.; Saintillan D.; Wang J. Bubble-Propelled Micromotors for Enhanced Transport of Passive Tracers. Langmuir 2014, 30, 5082–5087. 10.1021/la500819r. PubMed DOI
Wang H.; Zhao G.; Pumera M. Beyond Platinum: Bubble-Propelled Micromotors Based on Ag and MnO2 Catalysts. J. Am. Chem. Soc. 2014, 136, 2719–2722. 10.1021/ja411705d. PubMed DOI
Patiño T.; Arqué X.; Mestre R.; Palacios L.; Sánchez S. Fundamental Aspects of Enzyme-Powered Micro- and Nanoswimmers. Acc. Chem. Res. 2018, 51, 2662–2671. 10.1021/acs.accounts.8b00288. PubMed DOI
Kong L.; Rosli N. F.; Chia H. L.; Guan J.; Pumera M. Self-Propelled Autonomous Mg/Pt Janus Micromotor Interaction with Human Cells. Bull. Chem. Soc. Jpn. 2019, 92, 1754–1758. 10.1246/bcsj.20190104. DOI
Wang B.; Ji F.; Yu J.; Yang L.; Wang Q.; Zhang L. Bubble-Assisted Three-Dimensional Ensemble of Nanomotors for Improved Catalytic Performance. iScience 2019, 19, 760–771. 10.1016/j.isci.2019.08.026. PubMed DOI PMC
Ma W.; Wang H. Magnetically Driven Motile Superhydrophobic Sponges for Efficient Oil Removal. Appl. Mater. Today 2019, 15, 263–266. 10.1016/j.apmt.2019.02.004. DOI
Dong M.; Wang X.; Chen X.-Z.; Mushtaq F.; Deng S.; Zhu C.; Torlakcik H.; Terzopoulou A.; Qin X.-H.; Xiao X.; et al. 3D-Printed Soft Magnetoelectric Microswimmers for Delivery and Differentiation of Neuron-Like Cells. Adv. Funct. Mater. 2020, 30, 1910323.10.1002/adfm.201910323. DOI
Zeeshan M. A.; Pané S.; Youn S. K.; Pellicer E.; Schuerle S.; Sort J.; Fusco S.; Lindo A. M.; Park H. G.; Nelson B. J. Graphite Coating of Iron Nanowires for Nanorobotic Applications: Synthesis, Characterization and Magnetic Wireless Manipulation. Adv. Funct. Mater. 2013, 23, 823–831. 10.1002/adfm.201202046. DOI
Ying Y.; Pourrahimi A. M.; Manzanares-Palenzuela C. L.; Novotny F.; Sofer Z.; Pumera M. Light-Driven ZnO Brush-Shaped Self-Propelled Micromachines for Nitroaromatic Explosives Decomposition. Small 2020, 16, 1902944.10.1002/smll.201902944. PubMed DOI
Pourrahimi A. M.; Villa K.; Ying Y.; Sofer Z.; Pumera M. ZnO/ZnO2/Pt Janus Micromotors Propulsion Mode Changes with Size and Interface Structure: Enhanced Nitroaromatic Explosives Degradation under Visible Light. ACS Appl. Mater. Interfaces 2018, 10, 42688–42697. 10.1021/acsami.8b16217. PubMed DOI
Wang J.; Xiong Z.; Zheng J.; Zhan X.; Tang J. Light-Driven Micro/Nanomotor for Promising Biomedical Tools: Principle, Challenge, and Prospect. Acc. Chem. Res. 2018, 51, 1957–1965. 10.1021/acs.accounts.8b00254. PubMed DOI
Pourrahimi A. M.; Villa K.; Manzanares Palenzuela C. L.; Ying Y.; Sofer Z.; Pumera M. Catalytic and Light-Driven ZnO/Pt Janus Nano/Micromotors: Switching of Motion Mechanism via Interface Roughness and Defect Tailoring at the Nanoscale. Adv. Funct. Mater. 2019, 29, 1808678.10.1002/adfm.201808678. DOI
Nocentini S.; Parmeggiani C.; Martella D.; Wiersma D. S. Optically Driven Soft Micro Robotics. Adv. Opt. Mater. 2018, 6, 1800207.10.1002/adom.201800207. DOI
Palagi S.; Singh D. P.; Fischer P. Light-Controlled Micromotors and Soft Microrobots. Adv. Opt. Mater. 2019, 7, 1900370.10.1002/adom.201900370. DOI
Sridhar V.; Podjaski F.; Kröger J.; Jiménez-Solano A.; Park B.-W.; Lotsch B. V.; Sitti M. Carbon Nitride-Based Light-Driven Microswimmers with Intrinsic Photocharging Ability. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 24748.10.1073/pnas.2007362117. PubMed DOI PMC
Aghakhani A.; Yasa O.; Wrede P.; Sitti M. Acoustically Powered Surface-Slipping Mobile Microrobots. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 3469.10.1073/pnas.1920099117. PubMed DOI PMC
Ren L.; Nama N.; McNeill J. M.; Soto F.; Yan Z.; Liu W.; Wang W.; Wang J.; Mallouk T. E. 3D Steerable, Acoustically Powered Microswimmers for Single-Particle Manipulation. Sci. Adv. 2019, 5, eaax308410.1126/sciadv.aax3084. PubMed DOI PMC
Esteban-Fernández de Ávila B.; Angsantikul P.; Ramírez-Herrera D. E.; Soto F.; Teymourian H.; Dehaini D.; Chen Y.; Zhang L.; Wang J. Hybrid Biomembrane-Functionalized Nanorobots for Concurrent Removal of Pathogenic Bacteria and Toxins. Sci. Robot. 2018, 3, eaat048510.1126/scirobotics.aat0485. PubMed DOI
Xu T.; Xu L.-P.; Zhang X. Ultrasound Propulsion of Micro-/Nanomotors. Appl. Mater. Today 2017, 9, 493–503. 10.1016/j.apmt.2017.07.011. DOI
Loget G.; Kuhn A. Electric Field-Induced Chemical Locomotion of Conducting Objects. Nat. Commun. 2011, 2, 535.10.1038/ncomms1550. PubMed DOI
Chang S. T.; Paunov V. N.; Petsev D. N.; Velev O. D. Remotely Powered Self-Propelling Particles and Micropumps Based on Miniature Diodes. Nat. Mater. 2007, 6, 235–240. 10.1038/nmat1843. PubMed DOI
Calvo-Marzal P.; Sattayasamitsathit S.; Balasubramanian S.; Windmiller J. R.; Dao C.; Wang J. Propulsion of Nanowire Diodes. Chem. Commun. 2010, 46, 1623–1624. 10.1039/b925568k. PubMed DOI
Erkoc P.; Yasa I. C.; Ceylan H.; Yasa O.; Alapan Y.; Sitti M. Mobile Microrobots for Active Therapeutic Delivery. Adv. Ther. 2019, 2, 1800064.10.1002/adtp.201800064. DOI
Singh A. V.; Ansari M. H.; Mahajan M.; Srivastava S.; Kashyap S.; Dwivedi P.; Pandit V.; Katha U. Sperm Cell Driven Microrobots - Emerging Opportunities and Challenges for Biologically Inspired Robotic Design. Micromachines 2020, 11, 448.10.3390/mi11040448. PubMed DOI PMC
Xu H.; Medina-Sánchez M.; Magdanz V.; Schwarz L.; Hebenstreit F.; Schmidt O. G. Sperm-Hybrid Micromotor for Targeted Drug Delivery. ACS Nano 2018, 12, 327–337. 10.1021/acsnano.7b06398. PubMed DOI
Vizsnyiczai G.; Frangipane G.; Maggi C.; Saglimbeni F.; Bianchi S.; Di Leonardo R. Light Controlled 3D Micromotors Powered by Bacteria. Nat. Commun. 2017, 8, 15974.10.1038/ncomms15974. PubMed DOI PMC
Alapan Y.; Yasa O.; Yigit B.; Yasa I. C.; Erkoc P.; Sitti M. Microrobotics and Microorganisms: Biohybrid Autonomous Cellular Robots. Annu. Rev. Control, Robot. and Autonom. Syst. 2019, 2, 205–230. 10.1146/annurev-control-053018-023803. DOI
Zhuang J.; Park B.-W.; Sitti M. Propulsion and Chemotaxis in Bacteria-Driven Microswimmers. Adv. Sci. 2017, 4, 1700109.10.1002/advs.201700109. PubMed DOI PMC
Mostaghaci B.; Yasa O.; Zhuang J.; Sitti M. Bioadhesive Bacterial Microswimmers for Targeted Drug Delivery in the Urinary and Gastrointestinal Tracts. Adv. Sci. 2017, 4, 1700058.10.1002/advs.201700058. PubMed DOI PMC
Singh A. V.; Sitti M. Patterned and Specific Attachment of Bacteria on Biohybrid Bacteria-Driven Microswimmers. Adv. Healthcare Mater. 2016, 5, 2325–2331. 10.1002/adhm.201600155. PubMed DOI
Zhuang J.; Wright Carlsen R.; Sitti M. pH-Taxis of Biohybrid Microsystems. Sci. Rep. 2015, 5, 11403.10.1038/srep11403. PubMed DOI PMC
Jia H.; Mailand E.; Zhou J.; Huang Z.; Dietler G.; Kolinski J. M.; Wang X.; Sakar M. S. Universal Soft Robotic Microgripper. Small 2019, 15, 1803870.10.1002/smll.201803870. PubMed DOI
Breger J. C.; Yoon C.; Xiao R.; Kwag H. R.; Wang M. O.; Fisher J. P.; Nguyen T. D.; Gracias D. H. Self-Folding Thermo-Magnetically Responsive Soft Microgrippers. ACS Appl. Mater. Interfaces 2015, 7, 3398–3405. 10.1021/am508621s. PubMed DOI PMC
Leong T. G.; Randall C. L.; Benson B. R.; Bassik N.; Stern G. M.; Gracias D. H. Tetherless Thermobiochemically Actuated Microgrippers. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 703.10.1073/pnas.0807698106. PubMed DOI PMC
Xi W.; Solovev A. A.; Ananth A. N.; Gracias D. H.; Sanchez S.; Schmidt O. G. Rolled-up Magnetic Microdrillers: Towards Remotely Controlled Minimally Invasive Surgery. Nanoscale 2013, 5, 1294–1297. 10.1039/C2NR32798H. PubMed DOI PMC
Parmar J.; Vilela D.; Pellicer E.; Esqué-De los Ojos D.; Sort J.; Sánchez S. Reusable and Long-Lasting Active Microcleaners for Heterogeneous Water Remediation. Adv. Funct. Mater. 2016, 26, 4152–4161. 10.1002/adfm.201600381. DOI
Mushtaq F.; Chen X.; Staufert S.; Torlakcik H.; Wang X.; Hoop M.; Gerber A.; Li X.; Cai J.; Nelson B. J.; et al. On-the-Fly Catalytic Degradation of Organic Pollutants Using Magneto-Photoresponsive Bacteria-Templated Microcleaners. J. Mater. Chem. A 2019, 7, 24847–24856. 10.1039/C9TA06290D. DOI
Srivastava S. K.; Medina-Sánchez M.; Schmidt O. G. Autonomously Propelled Microscavengers for Precious Metal Recovery. Chem. Commun. 2017, 53, 8140–8143. 10.1039/C7CC02605F. PubMed DOI
Li J.; Pumera M. 3D Printing of Functional Microrobots. Chem. Soc. Rev. 2021, 50, 2794.10.1039/D0CS01062F. PubMed DOI
Mirkovic T.; Zacharia N. S.; Scholes G. D.; Ozin G. A. Fuel for Thought: Chemically Powered Nanomotors Out-Swim Nature’s Flagellated Bacteria. ACS Nano 2010, 4, 1782–1789. 10.1021/nn100669h. PubMed DOI
Sánchez S.; Soler L.; Katuri J. Chemically Powered Micro- and Nanomotors. Angew. Chem., Int. Ed. 2015, 54, 1414–1444. 10.1002/anie.201406096. PubMed DOI
Sitti M.; Wiersma D. S. Pros and Cons: Magnetic versus Optical Microrobots. Adv. Mater. 2020, 32, 1906766.10.1002/adma.201906766. PubMed DOI
Villa K.; Pumera M. Fuel-Free Light-Driven Micro/Nanomachines: Artificial Active Matter Mimicking Nature. Chem. Soc. Rev. 2019, 48, 4966–4978. 10.1039/C9CS00090A. PubMed DOI
Chen X.-Z.; Jang B.; Ahmed D.; Hu C.; De Marco C.; Hoop M.; Mushtaq F.; Nelson B. J.; Pané S. Small-Scale Machines Driven by External Power Sources. Adv. Mater. 2018, 30, 1705061.10.1002/adma.201705061. PubMed DOI
Xu T.; Gao W.; Xu L.-P.; Zhang X.; Wang S. Fuel-Free Synthetic Micro-/Nanomachines. Adv. Mater. 2017, 29, 1603250.10.1002/adma.201603250. PubMed DOI
Rao K. J.; Li F.; Meng L.; Zheng H.; Cai F.; Wang W. A Force to Be Reckoned With: A Review of Synthetic Microswimmers Powered by Ultrasound. Small 2015, 11, 2836–2846. 10.1002/smll.201403621. PubMed DOI
Erin O.; Boyvat M.; Tiryaki M. E.; Phelan M.; Sitti M. Magnetic Resonance Imaging System-Driven Medical Robotics. Adv. Intell. Syst. 2020, 2, 1900110.10.1002/aisy.201900110. DOI
Martel S. Beyond imaging: Macro- and microscale medical robots actuated by clinical MRI scanners. Sci. Robot. 2017, 2, eaam811910.1126/scirobotics.aam8119. PubMed DOI
Wang Q.; Yang L.; Wang B.; Yu E.; Yu J.; Zhang L. Collective Behavior of Reconfigurable Magnetic Droplets via Dynamic Self-Assembly. ACS Appl. Mater. Interfaces 2019, 11, 1630–1637. 10.1021/acsami.8b17402. PubMed DOI
Xie H.; Sun M.; Fan X.; Lin Z.; Chen W.; Wang L.; Dong L.; He Q. Reconfigurable Magnetic Microrobot Swarm: Multimode Transformation, Locomotion, and Manipulation. Sci. Robot. 2019, 4, eaav800610.1126/scirobotics.aav8006. PubMed DOI
Wang H.; Pumera M. Coordinated Behaviors of Artificial Micro/Nanomachines: from Mutual Interactions to Interactions with the Environment. Chem. Soc. Rev. 2020, 49, 3211–3230. 10.1039/C9CS00877B. PubMed DOI
Liu J. A. C.; Gillen J. H.; Mishra S. R.; Evans B. A.; Tracy J. B. Photothermally and Magnetically Controlled Reconfiguration of Polymer Composites for Soft Robotics. Sci. Adv. 2019, 5, eaaw289710.1126/sciadv.aaw2897. PubMed DOI PMC
Hen-Wei H.; Sakar M. S.; Riederer K.; Shamsudhin N.; Petruska A.; Pané S.; Nelson B. J.. 2016 IEEE Int. Conference on Robot. Autom.; ICRA, 2016; pp 1719–1724.
Huang H.-W.; Huang T.-Y.; Charilaou M.; Lyttle S.; Zhang Q.; Pané S.; Nelson B. J. Investigation of Magnetotaxis of Reconfigurable Micro-Origami Swimmers with Competitive and Cooperative Anisotropy. Adv. Funct. Mater. 2018, 28, 1802110.10.1002/adfm.201802110. DOI
Kim J.; Chung S. E.; Choi S.-E.; Lee H.; Kim J.; Kwon S. Programming Magnetic Anisotropy in Polymeric Microactuators. Nat. Mater. 2011, 10, 747–752. 10.1038/nmat3090. PubMed DOI
Yigit B.; Alapan Y.; Sitti M. Programmable Collective Behavior in Dynamically Self-Assembled Mobile Microrobotic Swarms. Adv. Sci. 2019, 6, 1801837.10.1002/advs.201801837. PubMed DOI PMC
Huang H.-W.; Sakar M. S.; Petruska A. J.; Pané S.; Nelson B. J. Soft Micromachines with Programmable Motility and Morphology. Nat. Commun. 2016, 7, 12263.10.1038/ncomms12263. PubMed DOI PMC
Cui J.; Huang T.-Y.; Luo Z.; Testa P.; Gu H.; Chen X.-Z.; Nelson B. J.; Heyderman L. J. Nanomagnetic Encoding of Shape-Morphing Micromachines. Nature 2019, 575, 164–168. 10.1038/s41586-019-1713-2. PubMed DOI
Ren L.; Wang W.; Mallouk T. E. Two Forces Are Better than One: Combining Chemical and Acoustic Propulsion for Enhanced Micromotor Functionality. Acc. Chem. Res. 2018, 51, 1948–1956. 10.1021/acs.accounts.8b00248. PubMed DOI
Ahmed D.; Baasch T.; Blondel N.; Läubli N.; Dual J.; Nelson B. J. Neutrophil-Inspired Propulsion in a Combined Acoustic and Magnetic Field. Nat. Commun. 2017, 8, 770.10.1038/s41467-017-00845-5. PubMed DOI PMC
Bozuyuk U.; Yasa O.; Yasa I. C.; Ceylan H.; Kizilel S.; Sitti M. Light-Triggered Drug Release from 3D-Printed Magnetic Chitosan Microswimmers. ACS Nano 2018, 12, 9617–9625. 10.1021/acsnano.8b05997. PubMed DOI
Park B.-W.; Zhuang J.; Yasa O.; Sitti M. Multifunctional Bacteria-Driven Microswimmers for Targeted Active Drug Delivery. ACS Nano 2017, 11, 8910–8923. 10.1021/acsnano.7b03207. PubMed DOI
Stoddart J. F. Molecular Machines. Acc. Chem. Res. 2001, 34, 410–411. 10.1021/ar010084w. PubMed DOI
Feringa B. L. In Control of Motion: From Molecular Switches to Molecular Motors. Acc. Chem. Res. 2001, 34, 504–513. 10.1021/ar0001721. PubMed DOI
Collin J.-P.; Dietrich-Buchecker C.; Gaviña P.; Jimenez-Molero M. C.; Sauvage J.-P. Shuttles and Muscles: Linear Molecular Machines Based on Transition Metals. Acc. Chem. Res. 2001, 34, 477–487. 10.1021/ar0001766. PubMed DOI
Erbas-Cakmak S.; Leigh D. A.; McTernan C. T.; Nussbaumer A. L. Artificial Molecular Machines. Chem. Rev. 2015, 115, 10081–10206. 10.1021/acs.chemrev.5b00146. PubMed DOI PMC
Ballardini R.; Balzani V.; Credi A.; Gandolfi M. T.; Venturi M. Artificial Molecular-Level Machines: Which Energy To Make Them Work?. Acc. Chem. Res. 2001, 34, 445–455. 10.1021/ar000170g. PubMed DOI
Liang X.; Li L.; Tang J.; Komiyama M.; Ariga K. Dynamism of Supramolecular DNA/RNA Nanoarchitectonics: From Interlocked Structures to Molecular Machines. Bull. Chem. Soc. Jpn. 2020, 93, 581–603. 10.1246/bcsj.20200012. DOI
Ariga K. Molecular Tuning Nanoarchitectonics for Molecular Recognition and Molecular Manipulation. ChemNanoMat 2020, 6, 870–880. 10.1002/cnma.202000137. DOI
Ariga K.; Li J.; Fei J.; Ji Q.; Hill J. P. Nanoarchitectonics for Dynamic Functional Materials from Atomic-/Molecular-Level Manipulation to Macroscopic Action. Adv. Mater. 2016, 28, 1251–1286. 10.1002/adma.201502545. PubMed DOI
Nawa-Okita E.; Nakao Y.; Yamamoto D.; Shioi A. A Molecular Assembly Machine Working under a Quasi-Steady State pH Gradient. Bull. Chem. Soc. Jpn. 2020, 93, 604–610. 10.1246/bcsj.20190348. DOI
Lancia F.; Ryabchun A.; Katsonis N. Life-like motion driven by artificial molecular machines. Nat. Rev. Chem. 2019, 3, 536–551. 10.1038/s41570-019-0122-2. DOI
Pezzato C.; Cheng C.; Stoddart J. F.; Astumian R. D. Mastering the non-equilibrium assembly and operation of molecular machines. Chem. Soc. Rev. 2017, 46, 5491–5507. 10.1039/C7CS00068E. PubMed DOI
Ellis E.; Moorthy S.; Chio W.-I. K.; Lee T.-C. Artificial molecular and nanostructures for advanced nanomachinery. Chem. Commun. 2018, 54, 4075–4090. 10.1039/C7CC09133H. PubMed DOI
Ricotti L.; Trimmer B.; Feinberg A. W.; Raman R.; Parker K. K.; Bashir R.; Sitti M.; Martel S.; Dario P.; Menciassi A. Biohybrid Actuators for Robotics: A Review of Devices Actuated by Living Cells. Sci. Robot. 2017, 2, eaaq049510.1126/scirobotics.aaq0495. PubMed DOI
Novotný F.; Wang H.; Pumera M. Nanorobots: Machines Squeezed between Molecular Motors and Micromotors. Chem. 2020, 6, 867–884. 10.1016/j.chempr.2019.12.028. DOI
Wu Z.; Li L.; Yang Y.; Hu P.; Li Y.; Yang S.-Y.; Wang L. V.; Gao W. A Microrobotic System Guided by Photoacoustic Computed Tomography for Targeted Navigation in Intestines in Vivo. Sci. Robot. 2019, 4, eaax061310.1126/scirobotics.aax0613. PubMed DOI PMC
Wu Z.; Chen Y.; Mukasa D.; Pak O. S.; Gao W. Medical micro/nanorobots in complex media. Chem. Soc. Rev. 2020, 49, 8088–8112. 10.1039/D0CS00309C. PubMed DOI
Soto F.; Wang J.; Ahmed R.; Demirci U. Medical Micro/Nanorobots in Precision Medicine. Adv. Sci. 2020, 7, 2002203.10.1002/advs.202002203. PubMed DOI PMC
Peng F.; Tu Y.; Wilson D. A. Micro/nanomotors towards in vivo application: cell, tissue and biofluid. Chem. Soc. Rev. 2017, 46, 5289–5310. 10.1039/C6CS00885B. PubMed DOI
Yigit B.; Alapan Y.; Sitti M. Cohesive Self-Organization of Mobile Microrobotic Swarms. Soft Matter 2020, 16, 1996–2004. 10.1039/C9SM01284B. PubMed DOI
Wang Q.; Zhang L. External Power-Driven Microrobotic Swarm: From Fundamental Understanding to Imaging-Guided Delivery. ACS Nano 2021, 15, 149–174. 10.1021/acsnano.0c07753. PubMed DOI
Wang Q.; Zhang L. Ultrasound Imaging and Tracking of Micro/Nanorobots: From Individual to Collectives. IEEE Open J. Nanotechnol. 2020, 1, 6–17. 10.1109/OJNANO.2020.2981824. DOI
Shields C. W.; Velev O. D. The Evolution of Active Particles: Toward Externally Powered Self-Propelling and Self-Reconfiguring Particle Systems. Chem. 2017, 3, 539–559. 10.1016/j.chempr.2017.09.006. DOI
Yánez-Sedeño P.; Campuzano S.; Pingarrón J. M. Janus Particles for (Bio)Sensing. Appl. Mater. Today 2017, 9, 276–288. 10.1016/j.apmt.2017.08.004. DOI
Xu B.; Zhang B.; Wang L.; Huang G.; Mei Y. Tubular Micro/Nanomachines: From the Basics to Recent Advances. Adv. Funct. Mater. 2018, 28, 1705872.10.1002/adfm.201705872. DOI
Bente K.; Codutti A.; Bachmann F.; Faivre D. Biohybrid and Bioinspired Magnetic Microswimmers. Small 2018, 14, 1704374.10.1002/smll.201704374. PubMed DOI
Chen X.-Z.; Hoop M.; Mushtaq F.; Siringil E.; Hu C.; Nelson B. J.; Pané S. Recent Developments in Magnetically Driven Micro- and Nanorobots. Appl. Mater. Today 2017, 9, 37–48. 10.1016/j.apmt.2017.04.006. DOI
Reinišová L.; Hermanová S.; Pumera M. Micro/Nanomachines: What is Needed for them to Become a Real Force in Cancer Therapy?. Nanoscale 2019, 11, 6519–6532. 10.1039/C8NR08022D. PubMed DOI
Yu J.; Xu T.; Lu Z.; Vong C. I.; Zhang L. On-Demand Disassembly of Paramagnetic Nanoparticle Chains for Microrobotic Cargo Delivery. IEEE Trans. Robot. 2017, 33, 1213–1225. 10.1109/TRO.2017.2693999. DOI
Jang B.; Gutman E.; Stucki N.; Seitz B. F.; Wendel-García P. D.; Newton T.; Pokki J.; Ergeneman O.; Pané S.; Or Y.; et al. Undulatory Locomotion of Magnetic Multilink Nanoswimmers. Nano Lett. 2015, 15, 4829–4833. 10.1021/acs.nanolett.5b01981. PubMed DOI
Jiles D.Introduction to Magnetism and Magnetic Materials; CRC Press, 2015.
Spaldin N. A.Magnetic Materials: Fundamentals and Applications; Cambridge University Press, 2010.
Rikken R. S. M.; Nolte R. J. M.; Maan J. C.; van Hest J. C. M.; Wilson D. A.; Christianen P. C. M. Manipulation of Micro- and Nanostructure Motion with Magnetic Fields. Soft Matter 2014, 10, 1295–1308. 10.1039/C3SM52294F. PubMed DOI
Khalil I. S. M.; Alfar A.; Tabak A. F.; Klingner A.; Stramigioli S.; Sitti M.. 2017 IEEE Int. Conference on Adv. Intell. Mechatronics; AIM, 2017; pp 1117–1122.
Mahoney A. W.; Abbott J. J. Generating Rotating Magnetic Fields With a Single Permanent Magnet for Propulsion of Untethered Magnetic Devices in a Lumen. IEEE Trans. Robot. 2014, 30, 411–420. 10.1109/TRO.2013.2289019. DOI
Schürle S.; Kratochvil B. E.; Pané S.; Zeeshan M. A.; Nelson B. J. In Nanorobotics; Springer, 2013.
Jeong S.; Choi H.; Choi J.; Yu C.; Park J.-o.; Park S. Novel Electromagnetic Actuation (EMA) Method for 3-Dimensional Locomotion of Intravascular Microrobot. Sens. Actuators, A 2010, 157, 118–125. 10.1016/j.sna.2009.11.011. DOI
Choi H.; Cha K.; Choi J.; Jeong S.; Jeon S.; Jang G.; Park J.-o.; Park S. EMA System with Gradient and Uniform Saddle Coils for 3D Locomotion of Microrobot. Sens. Actuators, A 2010, 163, 410–417. 10.1016/j.sna.2010.08.014. DOI
Kratochvil B. E.; Kummer M. P.; Erni S.; Borer R.; Frutiger D. R.; Schürle S.; Nelson B. J. Exp. Robot. 2014, 79, 317–329. 10.1007/978-3-642-28572-1_22. DOI
Yang Z.; Yang L.; Zhang L. Autonomous Navigation of Magnetic Microrobots in A Large Workspace Using Mobile-Coil System. IEEE/ASME Trans. Mechatron. 2021, 1–1. 10.1109/TMECH.2021.3054927. DOI
Yang L.; Yu E.; Vong C.; Zhang L. Discrete-Time Optimal Control of Electromagnetic Coil Systems for Generation of Dynamic Magnetic Fields With High Accuracy. IEEE/ASME Trans. Mechatron. 2019, 24, 1208–1219. 10.1109/TMECH.2019.2907656. DOI
Du X.; Zhang M.; Yu J.; Yang L.; Chiu W. Y. P.; Zhang L. Design and Real-time Optimization for a Magnetic Actuation System with Enhanced Flexibility. IEEE/ASME Trans. Mechatron. 2020, 1–1. 10.1109/TMECH.2020.3023003. DOI
Yang L.; Zhang L. 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE) 2020, 876–881. 10.1109/CASE48305.2020.9216900. DOI
Yang Z.; Zhang L. Magnetic Actuation Systems for Miniature Robots: A Review. Adv. Intell. Syst. 2020, 2, 2000082.10.1002/aisy.202000082. DOI
Xu T.; Yu J.; Yan X.; Choi H.; Zhang L. Magnetic Actuation Based Motion Control for Microrobots: An Overview. Micromachines 2015, 6, 1346–1364. 10.3390/mi6091346. DOI
Abbott J. J.; Diller E.; Petruska A. J. Magnetic Methods in Robotics. Annu. Rev. Control, Robot. Auton. Syst. 2020, 3, 57–90. 10.1146/annurev-control-081219-082713. DOI
Jiang J.; Yang L.; Zhang L. Closed-Loop Control of a Helmholtz Coil System for Accurate Actuation of Magnetic Microrobot Swarms. IEEE Robot. Autom. Lett. 2021, 6, 827.10.1109/LRA.2021.3052394. DOI
Yang Z.; Yang L.; Zhang M.; Wang Q.; Yu S.; Zhang L. Magnetic Control of a Steerable Guidewire Under Ultrasound Guidance Using Mobile Electromagnets. IEEE Robot. Autom. Lett. 2021, 6, 1280.10.1109/LRA.2021.3057295. DOI
Yang Z.; Yang L.; Zhang M.; Wang Q.; Yu S.; Zhang L. Magnetic Control of a Steerable Guidewire Under Ultrasound Guidance Using Mobile Electromagnets. IEEE Robot. Autom. Lett. 2021, 6, 1280.10.1109/LRA.2021.3052394. DOI
Folio D.; Ferreira A. Two-Dimensional Robust Magnetic Resonance Navigation of a Ferromagnetic Microrobot Using Pareto Optimality. IEEE Trans. Robot. 2017, 33, 583–593. 10.1109/TRO.2016.2638446. DOI
Kummer M. P.; Abbott J. J.; Kratochvil B. E.; Borer R.; Sengul A.; Nelson B. J. OctoMag: An Electromagnetic System for 5-DOF Wireless Micromanipulation. IEEE Trans. Robot. 2010, 26, 1006–1017. 10.1109/TRO.2010.2073030. DOI
Lee S.; Kim J.-y.; Kim J.; Hoshiar A. K.; Park J.; Lee S.; Kim J.; Pané S.; Nelson B. J.; Choi H. A Needle-Type Microrobot for Targeted Drug Delivery by Affixing to a Microtissue. Adv. Healthcare Mater. 2020, 9, 1901697.10.1002/adhm.201901697. PubMed DOI
Ullrich F.; Bergeles C.; Pokki J.; Ergeneman O.; Erni S.; Chatzipirpiridis G.; Pané S.; Framme C.; Nelson B. J. Mobility Experiments With Microrobots for Minimally Invasive Intraocular Surgery. Invest. Ophthalmol. Visual Sci. 2013, 54, 2853–2863. 10.1167/iovs.13-11825. PubMed DOI
Jeon S.; Kim S.; Ha S.; Lee S.; Kim E.; Kim S. Y.; Park S. H.; Jeon J. H.; Kim S. W.; Moon C.; et al. Magnetically Actuated Microrobots as a Platform for Stem Cell Transplantation. Sci. Robot. 2019, 4, eaav431710.1126/scirobotics.aav4317. PubMed DOI
Han K.; Shields C. W.; Diwakar N. M.; Bharti B.; López G. P.; Velev O. D. Sequence-Encoded Colloidal Origami and Microbot Assemblies from Patchy Magnetic Cubes. Sci. Adv. 2017, 3, e170110810.1126/sciadv.1701108. PubMed DOI PMC
Baraban L.; Streubel R.; Makarov D.; Han L.; Karnaushenko D.; Schmidt O. G.; Cuniberti G. Fuel-Free Locomotion of Janus Motors: Magnetically Induced Thermophoresis. ACS Nano 2013, 7, 1360–1367. 10.1021/nn305726m. PubMed DOI
Yu J.; Jin D.; Chan K.-F.; Wang Q.; Yuan K.; Zhang L. Active Generation and Magnetic Actuation of Microrobotic Swarms in Bio-Fluids. Nat. Commun. 2019, 10, 5631.10.1038/s41467-019-13576-6. PubMed DOI PMC
Yang L.; Chen X.; Wang L.; Hu Z.; Xin C.; Hippler M.; Zhu W.; Hu Y.; Li J.; Wang Y.; et al. Targeted Single-Cell Therapeutics with Magnetic Tubular Micromotor by One-Step Exposure of Structured Femtosecond Optical Vortices. Adv. Funct. Mater. 2019, 29, 1905745.10.1002/adfm.201905745. DOI
Wu Z.; Troll J.; Jeong H.-H.; Wei Q.; Stang M.; Ziemssen F.; Wang Z.; Dong M.; Schnichels S.; Qiu T.; et al. A Swarm of Slippery Micropropellers Penetrates the Vitreous Body of the Eye. Sci. Adv. 2018, 4, eaat438810.1126/sciadv.aat4388. PubMed DOI PMC
Ceylan H.; Yasa I. C.; Yasa O.; Tabak A. F.; Giltinan J.; Sitti M. 3D-Printed Biodegradable Microswimmer for Theranostic Cargo Delivery and Release. ACS Nano 2019, 13, 3353–3362. 10.1021/acsnano.8b09233. PubMed DOI PMC
Li T.; Li J.; Zhang H.; Chang X.; Song W.; Hu Y.; Shao G.; Sandraz E.; Zhang G.; Li L.; et al. Magnetically Propelled Fish-Like Nanoswimmers. Small 2016, 12, 6098–6105. 10.1002/smll.201601846. PubMed DOI
Liu Y.; Ge D.; Cong J.; Piao H.-G.; Huang X.; Xu Y.; Lu G.; Pan L.; Liu M. Magnetically Powered Annelid-Worm-Like Microswimmers. Small 2018, 14, 1704546.10.1002/smll.201704546. PubMed DOI
Liu L.; Liu M.; Su Y.; Dong Y.; Zhou W.; Zhang L.; Zhang H.; Dong B.; Chi L. Tadpole-like Artificial Micromotor. Nanoscale 2015, 7, 2276–2280. 10.1039/C4NR06621A. PubMed DOI
Hu N.; Wang L.; Zhai W.; Sun M.; Xie H.; Wu Z.; He Q. Magnetically Actuated Rolling of Star-Shaped Hydrogel Microswimmer. Macromol. Chem. Phys. 2018, 219, 1700540.10.1002/macp.201700540. DOI
Vach P. J.; Fratzl P.; Klumpp S.; Faivre D. Fast Magnetic Micropropellers with Random Shapes. Nano Lett. 2015, 15, 7064–7070. 10.1021/acs.nanolett.5b03131. PubMed DOI PMC
Morozov K. I.; Mirzae Y.; Kenneth O.; Leshansky A. M. Dynamics of Arbitrary Shaped Propellers Driven by a Rotating Magnetic Field. Phys. Rev. Fluids 2017, 2, 044202.10.1103/PhysRevFluids.2.044202. DOI
Martinez-Pedrero F.; Tierno P. Magnetic Propulsion of Self-Assembled Colloidal Carpets: Efficient Cargo Transport via a Conveyor-Belt Effect. Phys. Rev. Appl. 2015, 3, 051003.10.1103/PhysRevApplied.3.051003. DOI
Esteban-Fernández de Ávila B.; Gao W.; Karshalev E.; Zhang L.; Wang J. Cell-like Micromotors. Acc. Chem. Res. 2018, 51, 1901–1910. 10.1021/acs.accounts.8b00202. PubMed DOI
Brumley D. R.; Wan K. Y.; Polin M.; Goldstein R. E. Flagellar Synchronization through Direct Hydrodynamic Interactions. eLife 2014, 3, e0275010.7554/eLife.02750. PubMed DOI PMC
Liao P.; Xing L.; Zhang S.; Sun D. Magnetically Driven Undulatory Microswimmers Integrating Multiple Rigid Segments. Small 2019, 15, 1901197.10.1002/smll.201901197. PubMed DOI
Kim S.; Lee S.; Lee J.; Nelson B. J.; Zhang L.; Choi H. Fabrication and Manipulation of Ciliary Microrobots with Non-reciprocal Magnetic Actuation. Sci. Rep. 2016, 6, 30713.10.1038/srep30713. PubMed DOI PMC
Qiu T.; Lee T.-C.; Mark A. G.; Morozov K. I.; Münster R.; Mierka O.; Turek S.; Leshansky A. M.; Fischer P. Swimming by Reciprocal Motion at Low Reynolds Number. Nat. Commun. 2014, 5, 5119.10.1038/ncomms6119. PubMed DOI PMC
Purcell E. M. Life at Low Reynolds Number. Am. J. Phys. 1977, 45, 3–11. 10.1119/1.10903. DOI
Vach P. J.; Faivre D. The Triathlon of Magnetic Actuation: Rolling, Propelling, Swimming with a Single Magnetic Material. Sci. Rep. 2015, 5, 9364.10.1038/srep09364. PubMed DOI PMC
Zhang L.; Abbott J. J.; Dong L.; Kratochvil B. E.; Bell D.; Nelson B. J. Artificial Bacterial Flagella: Fabrication and Magnetic Control. Appl. Phys. Lett. 2009, 94, 064107.10.1063/1.3079655. DOI
Sitti M. Voyage of the Microrobots. Nature 2009, 458, 1121–1122. 10.1038/4581121a. PubMed DOI
Zhang L.; Peyer K. E.; Nelson B. J. Artificial Bacterial Flagella for Micromanipulation. Lab Chip 2010, 10, 2203–2215. 10.1039/c004450b. PubMed DOI
Abbott J. J.; Peyer K. E.; Lagomarsino M. C.; Zhang L.; Dong L.; Kaliakatsos I. K.; Nelson B. J. How Should Microrobots Swim?. Int. J. Robot. Res. 2009, 28, 1434–1447. 10.1177/0278364909341658. DOI
Peyer K. E.; Zhang L.; Nelson B. J. Bio-Inspired Magnetic Swimming Microrobots for Biomedical Applications. Nanoscale 2013, 5, 1259–1272. 10.1039/C2NR32554C. PubMed DOI
Peyer K. E.; Tottori S.; Qiu F.; Zhang L.; Nelson B. J. Magnetic Helical Micromachines. Chem. - Eur. J. 2013, 19, 28–38. 10.1002/chem.201203364. PubMed DOI
Chatzipirpiridis G.; de Marco C.; Pellicer E.; Ergeneman O.; Sort J.; Nelson B. J.; Pané S. Template-Assisted Electroforming of Fully Semi-Hard-Magnetic Helical Microactuators. Adv. Eng. Mater. 2018, 20, 1800179.10.1002/adem.201800179. DOI
Ye C.; Liu J.; Wu X.; Wang B.; Zhang L.; Zheng Y.; Xu T. Hydrophobicity Influence on Swimming Performance of Magnetically Driven Miniature Helical Swimmers. Micromachines 2019, 10, 175.10.3390/mi10030175. PubMed DOI PMC
Xu T.; Vong C.; Wang B.; Liu L.; Wu X.; Zhang L. 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob) 2016, 502–507. 10.1109/BIOROB.2016.7523676. DOI
Xu T.; Yu J.; Vong C.-I.; Wang B.; Wu X.; Zhang L. Dynamic Morphology and Swimming Properties of Rotating Miniature Swimmers with Soft Tails. IEEE/ASME Trans. Mechatron. 2019, 24, 924–934. 10.1109/TMECH.2019.2912404. DOI
Man Y.; Lauga E. The Wobbling-to-Swimming Transition of Rotated Helices. Phys. Fluids 2013, 25, 071904.10.1063/1.4812637. DOI
Ghosh A.; Paria D.; Singh H. J.; Venugopalan P. L.; Ghosh A. Dynamical Configurations and Bistability of Helical Nanostructures under External Torque. Phys. Rev. E 2012, 86, 031401.10.1103/PhysRevE.86.031401. PubMed DOI
Wang X.; Chen X.-Z.; Alcântara C. C. J.; Sevim S.; Hoop M.; Terzopoulou A.; de Marco C.; Hu C.; de Mello A. J.; Falcaro P.; et al. MOFBOTS: Metal-Organic-Framework-Based Biomedical Microrobots. Adv. Mater. 2019, 31, 1901592.10.1002/adma.201901592. PubMed DOI
Wang X.; Hu C.; Schurz L.; De Marco C.; Chen X.; Pané S.; Nelson B. J. Surface-Chemistry-Mediated Control of Individual Magnetic Helical Microswimmers in a Swarm. ACS Nano 2018, 12, 6210–6217. 10.1021/acsnano.8b02907. PubMed DOI
Mandal P.; Patil G.; Kakoty H.; Ghosh A. Magnetic Active Matter Based on Helical Propulsion. Acc. Chem. Res. 2018, 51, 2689–2698. 10.1021/acs.accounts.8b00315. PubMed DOI
Ghosh A.; Dasgupta D.; Pal M.; Morozov K. I.; Leshansky A. M.; Ghosh A. Helical Nanomachines as Mobile Viscometers. Adv. Funct. Mater. 2018, 28, 1705687.10.1002/adfm.201705687. DOI
Dreyfus R.; Baudry J.; Roper M. L.; Fermigier M.; Stone H. A.; Bibette J. Microscopic Artificial Swimmers. Nature 2005, 437, 862–865. 10.1038/nature04090. PubMed DOI
Gu H.; Boehler Q.; Cui H.; Secchi E.; Savorana G.; De Marco C.; Gervasoni S.; Peyron Q.; Huang T.-Y.; Pane S.; et al. Magnetic Cilia Carpets with Programmable Metachronal Waves. Nat. Commun. 2020, 11, 2637.10.1038/s41467-020-16458-4. PubMed DOI PMC
Wang Q.; Yang L.; Yu J.; Zhang L. Characterizing Dynamic Behaviors of Three-Particle Paramagnetic Microswimmer Near a Solid Surface. Robot. Biomimetics 2017, 4, 20.10.1186/s40638-017-0076-0. PubMed DOI PMC
Youssefi O.; Diller E. In Advances in Motion Sensing and Control for Robotic Applications; Springer, 2019.
Fang W.-Z.; Ham S.; Qiao R.; Tao W.-Q. Magnetic Actuation of Surface Walkers: The Effects of Confinement and Inertia. Langmuir 2020, 36, 7046–7055. 10.1021/acs.langmuir.9b03487. PubMed DOI
Martinez-Pedrero F.; Navarro-Argemí E.; Ortiz-Ambriz A.; Pagonabarraga I.; Tierno P. Emergent Hydrodynamic Bound States between Magnetically Powered Micropropellers. Sci. Adv. 2018, 4, eaap937910.1126/sciadv.aap9379. PubMed DOI PMC
Driscoll M.; Delmotte B.; Youssef M.; Sacanna S.; Donev A.; Chaikin P. Unstable Fronts and Motile Structures Formed by Microrollers. Nat. Phys. 2017, 13, 375–379. 10.1038/nphys3970. DOI
Jang B.; Hong A.; Alcantara C.; Chatzipirpiridis G.; Martí X.; Pellicer E.; Sort J.; Harduf Y.; Or Y.; Nelson B. J.; et al. Programmable Locomotion Mechanisms of Nanowires with Semihard Magnetic Properties Near a Surface Boundary. ACS Appl. Mater. Interfaces 2019, 11, 3214–3223. 10.1021/acsami.8b16907. PubMed DOI
Yu J.; Wang B.; Du X.; Wang Q.; Zhang L. Ultra-Extensible Ribbon-like Magnetic Microswarm. Nat. Commun. 2018, 9, 3260.10.1038/s41467-018-05749-6. PubMed DOI PMC
Mair L. O.; Evans B. A.; Nacev A.; Stepanov P. Y.; Hilaman R.; Chowdhury S.; Jafari S.; Wang W.; Shapiro B.; Weinberg I. N. Magnetic Microkayaks: Propulsion of Microrods Precessing near a Surface by Kilohertz Frequency, Rotating Magnetic Fields. Nanoscale 2017, 9, 3375–3381. 10.1039/C6NR09459G. PubMed DOI
Yang T.; Tomaka A.; Tasci T. O.; Neeves K. B.; Wu N.; Marr D. W. M. Microwheels on Microroads: Enhanced Translation on Topographic Surfaces. Sci. Robot. 2019, 4, eaaw952510.1126/scirobotics.aaw9525. PubMed DOI PMC
Lin Z.; Fan X.; Sun M.; Gao C.; He Q.; Xie H. Magnetically Actuated Peanut Colloid Motors for Cell Manipulation and Patterning. ACS Nano 2018, 12, 2539–2545. 10.1021/acsnano.7b08344. PubMed DOI
Wang Q.; Yu J.; Yuan K.; Yang L.; Jin D.; Zhang L. Disassembly and Spreading of Magnetic Nanoparticle Clusters on Uneven Surfaces. Appl. Mater. Today 2020, 18, 100489.10.1016/j.apmt.2019.100489. DOI
Li T.; Zhang A.; Shao G.; Wei M.; Guo B.; Zhang G.; Li L.; Wang W. Janus Microdimer Surface Walkers Propelled by Oscillating Magnetic Fields. Adv. Funct. Mater. 2018, 28, 1706066.10.1002/adfm.201706066. DOI
Vyskočil J.; Mayorga-Martinez C. C.; Jablonská E.; Novotný F.; Ruml T.; Pumera M. Cancer Cells Microsurgery via Asymmetric Bent Surface Au/Ag/Ni Microrobotic Scalpels Through a Transversal Rotating Magnetic Field. ACS Nano 2020, 14, 8247–8256. 10.1021/acsnano.0c01705. PubMed DOI
Mushtaq F.; Asani A.; Hoop M.; Chen X.-Z.; Ahmed D.; Nelson B. J.; Pané S. Highly Efficient Coaxial TiO2-PtPd Tubular Nanomachines for Photocatalytic Water Purification with Multiple Locomotion Strategies. Adv. Funct. Mater. 2016, 26, 6995–7002. 10.1002/adfm.201602315. DOI
Sridhar V.; Park B.-W.; Guo S.; van Aken P. A.; Sitti M. Multiwavelength-Steerable Visible-Light-Driven Magnetic CoO-TiO2 Microswimmers. ACS Appl. Mater. Interfaces 2020, 12, 24149–24155. 10.1021/acsami.0c06100. PubMed DOI PMC
Luo M.; Li S.; Wan J.; Yang C.; Chen B.; Guan J.. Enhanced Propulsion of Urease-Powered Micromotors by Multilayered Assembly of Ureases on Janus Magnetic Microparticles. Langmuir 2020.10.1021/acs.langmuir.9b03315 PubMed DOI
Xu H.; Medina-Sánchez M.; Maitz M. F.; Werner C.; Schmidt O. G. Sperm Micromotors for Cargo Delivery through Flowing Blood. ACS Nano 2020, 14, 2982–2993. 10.1021/acsnano.9b07851. PubMed DOI
Li J.; Li T.; Xu T.; Kiristi M.; Liu W.; Wu Z.; Wang J. Magneto-Acoustic Hybrid Nanomotor. Nano Lett. 2015, 15, 4814–4821. 10.1021/acs.nanolett.5b01945. PubMed DOI
Chen C.; Soto F.; Karshalev E.; Li J.; Wang J. Hybrid Nanovehicles: One Machine, Two Engines. Adv. Funct. Mater. 2019, 29, 1806290.10.1002/adfm.201806290. DOI
Yuan K.; de la Asunción-Nadal V.; Jurado-Sánchez B.; Escarpa A. 2D Nanomaterials Wrapped Janus Micromotors with Built-in Multiengines for Bubble, Magnetic, and Light Driven Propulsion. Chem. Mater. 2020, 32, 1983–1992. 10.1021/acs.chemmater.9b04873. DOI
Valdez-Garduño M.; Leal-Estrada M.; Oliveros-Mata E. S.; Sandoval-Bojorquez D. I.; Soto F.; Wang J.; Garcia-Gradilla V. Density Asymmetry Driven Propulsion of Ultrasound-Powered Janus Micromotors. Adv. Funct. Mater. 2020, 30, 2004043.10.1002/adfm.202004043. DOI
Wang B.; Chan K. F.; Yu J.; Wang Q.; Yang L.; Chiu P. W. Y.; Zhang L. Reconfigurable Swarms of Ferromagnetic Colloids for Enhanced Local Hyperthermia. Adv. Funct. Mater. 2018, 28, 1705701.10.1002/adfm.201705701. DOI
Januszewski A.; Stebbing J. Hyperthermia in Cancer: Is It Coming of Age?. Lancet Oncol. 2014, 15, 565–566. 10.1016/S1470-2045(14)70207-4. PubMed DOI
Wang Q.; Wang B.; Yu J.; Schweizer K.; Nelson B. J.; Zhang L. 2020 IEEE International Conference on Robotics and Automation (ICRA) 2020, 10285–10291. 10.1109/ICRA40945.2020.9197432. DOI
Tay Z. W.; Chandrasekharan P.; Chiu-Lam A.; Hensley D. W.; Dhavalikar R.; Zhou X. Y.; Yu E. Y.; Goodwill P. W.; Zheng B.; Rinaldi C.; et al. Magnetic Particle Imaging-Guided Heating in Vivo Using Gradient Fields for Arbitrary Localization of Magnetic Hyperthermia Therapy. ACS Nano 2018, 12, 3699–3713. 10.1021/acsnano.8b00893. PubMed DOI PMC
Dhar P.; Narendren S.; Gaur S. S.; Sharma S.; Kumar A.; Katiyar V. Self-Propelled Cellulose Nanocrystal Based Catalytic Nanomotors for Targeted Hyperthermia and Pollutant Remediation Applications. Int. J. Biol. Macromol. 2020, 158, 1020–1036. 10.1016/j.ijbiomac.2020.04.204. PubMed DOI
Meffre A.; Mehdaoui B.; Connord V.; Carrey J.; Fazzini P. F.; Lachaize S.; Respaud M.; Chaudret B. Complex Nano-objects Displaying Both Magnetic and Catalytic Properties: A Proof of Concept for Magnetically Induced Heterogeneous Catalysis. Nano Lett. 2015, 15, 3241–3248. 10.1021/acs.nanolett.5b00446. PubMed DOI
Eerenstein W.; Mathur N. D.; Scott J. F. Multiferroic and Magnetoelectric Materials. Nature 2006, 442, 759–765. 10.1038/nature05023. PubMed DOI
Spaldin N. A.; Ramesh R. Advances in Magnetoelectric Multiferroics. Nat. Mater. 2019, 18, 203–212. 10.1038/s41563-018-0275-2. PubMed DOI
Martins P.; Lanceros-Méndez S. Polymer-Based Magnetoelectric Materials. Adv. Funct. Mater. 2013, 23, 3371–3385. 10.1002/adfm.201202780. DOI
Wang Y.; Hu J.; Lin Y.; Nan C.-W. Multiferroic Magnetoelectric Composite Nanostructures. NPG Asia Mater. 2010, 2, 61–68. 10.1038/asiamat.2010.32. DOI
Guo W.; Zhang X.; Yu X.; Wang S.; Qiu J.; Tang W.; Li L.; Liu H.; Wang Z. L. Self-Powered Electrical Stimulation for Enhancing Neural Differentiation of Mesenchymal Stem Cells on Graphene-Poly(3,4-ethylenedioxythiophene) Hybrid Microfibers. ACS Nano 2016, 10, 5086–5095. 10.1021/acsnano.6b00200. PubMed DOI
Hasan M.; Khatun A.; Fukuta T.; Kogure K. Noninvasive Transdermal Delivery of Liposomes by Weak Electric Current. Adv. Drug Delivery Rev. 2020, 154–155, 227–235. 10.1016/j.addr.2020.06.016. PubMed DOI
Davalos R. V.; Mir L. M.; Rubinsky B. Tissue Ablation with Irreversible Electroporation. Ann. Biomed. Eng. 2005, 33, 223.10.1007/s10439-005-8981-8. PubMed DOI
Thrivikraman G.; Boda S. K.; Basu B. Unraveling the Mechanistic Effects of Electric Field Stimulation towards Directing Stem Cell Fate and Function: A Tissue Engineering Perspective. Biomaterials 2018, 150, 60–86. 10.1016/j.biomaterials.2017.10.003. PubMed DOI
Kirson E. D.; Gurvich Z.; Schneiderman R.; Dekel E.; Itzhaki A.; Wasserman Y.; Schatzberger R.; Palti Y. Disruption of Cancer Cell Replication by Alternating Electric Fields. Cancer Res. 2004, 64, 3288.10.1158/0008-5472.CAN-04-0083. PubMed DOI
Sheng J.; Vannela R.; Rittmann B. E. Evaluation of Cell-Disruption Effects of Pulsed-Electric-Field Treatment of Synechocystis PCC 6803. Environ. Sci. Technol. 2011, 45, 3795–3802. 10.1021/es103339x. PubMed DOI
Betal S.; Saha A. K.; Ortega E.; Dutta M.; Ramasubramanian A. K.; Bhalla A. S.; Guo R. Core-Shell Magnetoelectric Nanorobot - A Remotely Controlled Probe for Targeted Cell Manipulation. Sci. Rep. 2018, 8, 1755.10.1038/s41598-018-20191-w. PubMed DOI PMC
Chen X. Z.; Hoop M.; Shamsudhin N.; Huang T.; Özkale B.; Li Q.; Siringil E.; Mushtaq F.; Di Tizio L.; Nelson B. J.; et al. Hybrid Magnetoelectric Nanowires for Nanorobotic Applications: Fabrication, Magnetoelectric Coupling, and Magnetically Assisted in Vitro Targeted Drug Delivery. Adv. Mater. 2017, 29, 1605458.10.1002/adma.201605458. PubMed DOI
Kaushik A.; Jayant R. D.; Sagar V.; Nair M. The Potential of Magneto-Electric Nanocarriers for Drug Delivery. Expert Opin. Drug Delivery 2014, 11, 1635–1646. 10.1517/17425247.2014.933803. PubMed DOI PMC
Nair M.; Guduru R.; Liang P.; Hong J.; Sagar V.; Khizroev S. Externally Controlled on-Demand Release of Anti-HIV Drug using Magneto-Electric Nanoparticles as Carriers. Nat. Commun. 2013, 4, 1707.10.1038/ncomms2717. PubMed DOI
Nair M.; Guduru R.; Liang P.; Hong J.; Sagar V.; Khizroev S. Externally Controlled on-Demand Release of Anti-HIV Drug using Magneto-Electric Nanoparticles as Carriers. Nat. Commun. 2013, 4, 1707.10.1021/acsnano.0c07753. PubMed DOI
Ji F.; Jin D.; Wang B.; Zhang L. Light-Driven Hovering of a Magnetic Microswarm in Fluid. ACS Nano 2020, 14, 6990–6998. 10.1021/acsnano.0c01464. PubMed DOI
Yang L.; Yu J.; Zhang L. Statistics-Based Automated Control for a Swarm of Paramagnetic Nanoparticles in 2-D Space. IEEE Trans. Robot. 2020, 36, 254–270. 10.1109/TRO.2019.2946724. DOI
Nair M.; Guduru R.; Liang P.; Hong J.; Sagar V.; Khizroev S. Externally Controlled on-Demand Release of Anti-HIV Drug using Magneto-Electric Nanoparticles as Carriers. Nat. Commun. 2013, 4, 1707.10.1146/annurev-control-032720-104318. PubMed DOI
Yu J.; Yang L.; Zhang L. Pattern Generation and Motion Control of a Vortex-like Paramagnetic Nanoparticle Swarm. Int. J. Robot. Res. 2018, 37, 912–930. 10.1177/0278364918784366. DOI
Yu J.; Jin D.; Zhang L. 2017 IEEE International Conference on Robotics and Automation (ICRA) 2017, 6594–6599. 10.1109/ICRA.2017.7989779. DOI
Yu J.; Zhang L. 2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO) 2017, 293–296. 10.1109/NANO.2017.8117390. DOI
Yu J.; Zhang L. Reversible Swelling and Shrinking of Paramagnetic Nanoparticle Swarms in Biofluids With High Ionic Strength. IEEE/ASME Trans. Mechatron. 2019, 24, 154–163. 10.1109/TMECH.2018.2876617. DOI
Villa K.; Krejčová L.; Novotný F.; Heger Z.; Sofer Z.; Pumera M. Cooperative Multifunctional Self-Propelled Paramagnetic Microrobots with Chemical Handles for Cell Manipulation and Drug Delivery. Adv. Funct. Mater. 2018, 28, 1804343.10.1002/adfm.201804343. DOI
Yang T.; Tasci T. O.; Neeves K. B.; Wu N.; Marr D. W. M. Magnetic Microlassos for Reversible Cargo Capture, Transport, and Release. Langmuir 2017, 33, 5932–5937. 10.1021/acs.langmuir.7b00357. PubMed DOI PMC
Jin D.; Yu J.; Yuan K.; Zhang L. Mimicking the Structure and Function of Ant Bridges in a Reconfigurable Microswarm for Electronic Applications. ACS Nano 2019, 13, 5999–6007. 10.1021/acsnano.9b02139. PubMed DOI
Nair M.; Guduru R.; Liang P.; Hong J.; Sagar V.; Khizroev S. Externally Controlled on-Demand Release of Anti-HIV Drug using Magneto-Electric Nanoparticles as Carriers. Nat. Commun. 2013, 4, 1707.10.1021/acsnano.0c08284. PubMed DOI
Tasci T. O.; Herson P. S.; Neeves K. B.; Marr D. W. M. Surface-Enabled Propulsion and Control of Colloidal Microwheels. Nat. Commun. 2016, 7, 10225.10.1038/ncomms10225. PubMed DOI PMC
Li J.; Li X.; Luo T.; Wang R.; Liu C.; Chen S.; Li D.; Yue J.; Cheng S.-h.; Sun D. Development of a Magnetic Microrobot for Carrying and Delivering Targeted Cells. Sci. Robot. 2018, 3, eaat882910.1126/scirobotics.aat8829. PubMed DOI
Li J.; Angsantikul P.; Liu W.; Esteban-Fernández de Ávila B.; Chang X.; Sandraz E.; Liang Y.; Zhu S.; Zhang Y.; Chen C.; et al. Biomimetic Platelet-Camouflaged Nanorobots for Binding and Isolation of Biological Threats. Adv. Mater. 2018, 30, 1704800.10.1002/adma.201704800. PubMed DOI
Chen X.-Z.; Liu J.-H.; Dong M.; Müller L.; Chatzipirpiridis G.; Hu C.; Terzopoulou A.; Torlakcik H.; Wang X.; Mushtaq F.; et al. Magnetically Driven Piezoelectric Soft Microswimmers for Neuron-Like Cell Delivery and Neuronal Differentiation. Mater. Horiz. 2019, 6, 1512–1516. 10.1039/C9MH00279K. DOI
Dong M.; Wang X.; Chen X.-Z.; Mushtaq F.; Deng S.; Zhu C.; Torlakcik H.; Terzopoulou A.; Qin X.-H.; Xiao X.; et al. 3D-Printed Soft Magnetoelectric Microswimmers for Delivery and Differentiation of Neuron-Like Cells. Adv. Funct. Mater. 2020, 30, 1910323.10.1002/adfm.201910323. DOI
Qiu F.; Fujita S.; Mhanna R.; Zhang L.; Simona B. R.; Nelson B. J. Magnetic Helical Microswimmers Functionalized with Lipoplexes for Targeted Gene Delivery. Adv. Funct. Mater. 2015, 25, 1666–1671. 10.1002/adfm.201403891. DOI
Tottori S.; Zhang L.; Qiu F.; Krawczyk K. K.; Franco-Obregón A.; Nelson B. J. Magnetic Helical Micromachines: Fabrication, Controlled Swimming, and Cargo Transport. Adv. Mater. 2012, 24, 811–816. 10.1002/adma.201103818. PubMed DOI
Tottori S.; Zhang L.; Peyer K. E.; Nelson B. J. Assembly, Disassembly, and Anomalous Propulsion of Microscopic Helices. Nano Lett. 2013, 13, 4263–4268. 10.1021/nl402031t. PubMed DOI
Walker D.; Käsdorf B. T.; Jeong H.-H.; Lieleg O.; Fischer P. Enzymatically Active Biomimetic Micropropellers for the Penetration of Mucin Gels. Sci. Adv. 2015, 1, e150050110.1126/sciadv.1500501. PubMed DOI PMC
Tang M.-J.; Wang W.; Li Z.-L.; Liu Z.-M.; Guo Z.-Y.; Tian H.-Y.; Liu Z.; Ju X.-J.; Xie R.; Chu L.-Y. Controllable Microfluidic Fabrication of Magnetic Hybrid Microswimmers with Hollow Helical Structures. Ind. Eng. Chem. Res. 2018, 57, 9430–9438. 10.1021/acs.iecr.8b01755. DOI
Dong Y.; Wang L.; Wang J.; Wang S.; Wang Y.; Jin D.; Chen P.; Du W.; Zhang L.; Liu B.-F. Graphene-Based Helical Micromotors Constructed by “Microscale Liquid Rope-Coil Effect” with Microfluidics. ACS Nano 2020, 14, 16600–16613. 10.1021/acsnano.0c07067. PubMed DOI
Gao W.; Feng X.; Pei A.; Kane C. R.; Tam R.; Hennessy C.; Wang J. Bioinspired Helical Microswimmers Based on Vascular Plants. Nano Lett. 2014, 14, 305–310. 10.1021/nl404044d. PubMed DOI
Xie L.; Pang X.; Yan X.; Dai Q.; Lin H.; Ye J.; Cheng Y.; Zhao Q.; Ma X.; Zhang X.; et al. Photoacoustic Imaging-Trackable Magnetic Microswimmers for Pathogenic Bacterial Infection Treatment. ACS Nano 2020, 14, 2880–2893. 10.1021/acsnano.9b06731. PubMed DOI
Zhang L.; Abbott J. J.; Dong L.; Peyer K. E.; Kratochvil B. E.; Zhang H.; Bergeles C.; Nelson B. J. Characterizing the Swimming Properties of Artificial Bacterial Flagella. Nano Lett. 2009, 9, 3663–3667. 10.1021/nl901869j. PubMed DOI
de Marco C.; Alcântara C. C. J.; Kim S.; Briatico F.; Kadioglu A.; de Bernardis G.; Chen X.; Marano C.; Nelson B. J.; Pané S. Indirect 3D and 4D Printing of Soft Robotic Microstructures. Adv. Mater. Technol. 2019, 4, 1900332.10.1002/admt.201900332. DOI
Li J.; Wu C.; Chu P. K.; Gelinsky M. 3D Printing of Hydrogels: Rational Design Strategies and Emerging Biomedical applications. Mater. Sci. Eng., R 2020, 140, 100543.10.1016/j.mser.2020.100543. DOI
Yasa I. C.; Tabak A. F.; Yasa O.; Ceylan H.; Sitti M. 3D-Printed Microrobotic Transporters with Recapitulated Stem Cell Niche for Programmable and Active Cell Delivery. Adv. Funct. Mater. 2019, 29, 1808992.10.1002/adfm.201808992. DOI
Suter M.; Zhang L.; Siringil E. C.; Peters C.; Luehmann T.; Ergeneman O.; Peyer K. E.; Nelson B. J.; Hierold C. Superparamagnetic Microrobots: Fabrication by Two-Photon Polymerization and Biocompatibility. Biomed. Microdevices 2013, 15, 997–1003. 10.1007/s10544-013-9791-7. PubMed DOI
Zhu W.; Li J.; Leong Y. J.; Rozen I.; Qu X.; Dong R.; Wu Z.; Gao W.; Chung P. H.; Wang J.; et al. 3D-Printed Artificial Microfish. Adv. Mater. 2015, 27, 4411–4417. 10.1002/adma.201501372. PubMed DOI PMC
Ceylan H.; Yasa I. C.; Sitti M. 3D Chemical Patterning of Micromaterials for Encoded Functionality. Adv. Mater. 2017, 29, 1605072.10.1002/adma.201605072. PubMed DOI
Kim S.; Qiu F.; Kim S.; Ghanbari A.; Moon C.; Zhang L.; Nelson B. J.; Choi H. Fabrication and Characterization of Magnetic Microrobots for Three-Dimensional Cell Culture and Targeted Transportation. Adv. Mater. 2013, 25, 5863–5868. 10.1002/adma.201301484. PubMed DOI PMC
Dong M.; Wang X.; Chen X.-Z.; Mushtaq F.; Deng S.; Zhu C.; Torlakcik H.; Terzopoulou A.; Qin X.-H.; Xiao X. 3D-Printed Soft Magnetoelectric Microswimmers for Delivery and Differentiation of Neuron-Like Cells. Adv. Funct. Mater. 2020, 30, 1910323.10.1021/acsami.0c18221. DOI
Giltinan J.; Sridhar V.; Bozuyuk U.; Sheehan D.; Sitti M. 3D Microprinting of Iron Platinum Nanoparticle-Based Magnetic Mobile Microrobots. Adv. Intell. Syst. 2021, 3, 2000204.10.1002/aisy.202000204. PubMed DOI PMC
Hann S. Y.; Cui H.; Nowicki M.; Zhang L. G. 4D Printing Soft Robotics for Biomedical Applications. Addit. Manuf. 2020, 36, 101567.10.1016/j.addma.2020.101567. DOI
Wang X.; Qin X.-H.; Hu C.; Terzopoulou A.; Chen X.-Z.; Huang T.-Y.; Maniura-Weber K.; Pané S.; Nelson B. J. 3D Printed Enzymatically Biodegradable Soft Helical Microswimmers. Adv. Funct. Mater. 2018, 28, 1804107.10.1002/adfm.201804107. DOI
Li J.; Sattayasamitsathit S.; Dong R.; Gao W.; Tam R.; Feng X.; Ai S.; Wang J. Template Electrosynthesis of Tailored-Made Helical Nanoswimmers. Nanoscale 2014, 6, 9415–9420. 10.1039/C3NR04760A. PubMed DOI
Alcântara C. C. J.; Kim S.; Lee S.; Jang B.; Thakolkaran P.; Kim J.-Y.; Choi H.; Nelson B. J.; Pané S. 3D Fabrication of Fully Iron Magnetic Microrobots. Small 2019, 15, 1805006.10.1002/smll.201805006. PubMed DOI
Mushtaq F.; Guerrero M.; Sakar M. S.; Hoop M.; Lindo A. M.; Sort J.; Chen X.; Nelson B. J.; Pellicer E.; Pané S. Magnetically Driven Bi2O3/BiOCl-Based Hybrid Microrobots for Photocatalytic Water Remediation. J. Mater. Chem. A 2015, 3, 23670–23676. 10.1039/C5TA05825B. DOI
Pal M.; Dasgupta D.; Somalwar N.; Vr R.; Tiwari M.; Teja D.; Narayana S. M.; Katke A.; Rs J.; Bhat R.; et al. Helical Nanobots as Mechanical Probes of Intra- and Extracellular Environments. J. Phys.: Condens. Matter 2020, 32, 224001.10.1088/1361-648X/ab6f89. PubMed DOI
Ghosh A.; Fischer P. Controlled Propulsion of Artificial Magnetic Nanostructured Propellers. Nano Lett. 2009, 9, 2243–2245. 10.1021/nl900186w. PubMed DOI
Schamel D.; Mark A. G.; Gibbs J. G.; Miksch C.; Morozov K. I.; Leshansky A. M.; Fischer P. Nanopropellers and Their Actuation in Complex Viscoelastic Media. ACS Nano 2014, 8, 8794–8801. 10.1021/nn502360t. PubMed DOI
Huang H. W.; Uslu F. E.; Katsamba P.; Lauga E.; Sakar M. S.; Nelson B. J. Adaptive Locomotion of Artificial Microswimmers. Sci. Adv. 2019, 5, eaau153210.1126/sciadv.aau1532. PubMed DOI PMC
Yoshida K.; Onoe H. Functionalized Core-Shell Hydrogel Microsprings by Anisotropic Gelation with Bevel-Tip Capillary. Sci. Rep. 2017, 7, 45987.10.1038/srep45987. PubMed DOI PMC
Yan X.; Xu J.; Zhou Q.; Jin D.; Vong C. I.; Feng Q.; Ng D. H. L.; Bian L.; Zhang L. Molecular Cargo Delivery using Multicellular Magnetic Microswimmers. Appl. Mater. Today 2019, 15, 242–251. 10.1016/j.apmt.2019.02.006. DOI
Medina-Sánchez M.; Schwarz L.; Meyer A. K.; Hebenstreit F.; Schmidt O. G. Cellular Cargo Delivery: Toward Assisted Fertilization by Sperm-Carrying Micromotors. Nano Lett. 2016, 16, 555–561. 10.1021/acs.nanolett.5b04221. PubMed DOI
Yan X.; Zhou Q.; Vincent M.; Deng Y.; Yu J.; Xu J.; Xu T.; Tang T.; Bian L.; Wang Y.-X. J.; et al. Multifunctional Biohybrid Magnetite Microrobots for Imaging-Guided Therapy. Sci. Robot. 2017, 2, eaaq115510.1126/scirobotics.aaq1155. PubMed DOI
Dong L.; Zhang L.; Bell D. J.; Nelson B. J.; Grutzmacher D. Hybrid nanorobotic approaches for fabricating NEMS from 3D helical nanostructures. Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006. 2006, 1396–1401. 10.1109/ROBOT.2006.1641904. DOI
Venugopalan P. L.; Sai R.; Chandorkar Y.; Basu B.; Shivashankar S.; Ghosh A. Conformal Cytocompatible Ferrite Coatings Facilitate the Realization of a Nanovoyager in Human Blood. Nano Lett. 2014, 14, 1968–1975. 10.1021/nl404815q. PubMed DOI
Peyer K. E.; Zhang L.; Nelson B. J. Localized Non-Contact Manipulation using Artificial Bacterial Flagella. Appl. Phys. Lett. 2011, 99, 174101.10.1063/1.3655904. DOI
Qiu F.; Zhang L.; Peyer K. E.; Casarosa M.; Franco-Obregón A.; Choi H.; Nelson B. J. Noncytotoxic Artificial Bacterial Flagella Fabricated from Biocompatible ORMOCOMP and Iron Coating. J. Mater. Chem. B 2014, 2, 357–362. 10.1039/C3TB20840K. PubMed DOI
Peyer K. E.; Siringil E.; Zhang L.; Nelson B. J. Magnetic Polymer Composite Artificial Bacterial Flagella. Bioinspir. Biomim. 2014, 9, 046014.10.1088/1748-3182/9/4/046014. PubMed DOI
Cabanach P.; Pena-Francesch A.; Sheehan D.; Bozuyuk U.; Yasa O.; Borros S.; Sitti M. Zwitterionic 3D-Printed Non-Immunogenic Stealth Microrobots. Adv. Mater. 2020, 32, 2003013.10.1002/adma.202003013. PubMed DOI PMC
Giltinan J.; Katsamba P.; Wang W.; Lauga E.; Sitti M. Selectively Controlled Magnetic Microrobots with Opposing Helices. Appl. Phys. Lett. 2020, 116, 134101.10.1063/1.5143007. DOI
Hu C.; Pané S.; Nelson B. J. Soft Micro- and Nanorobotics. Annu. Rev. Cont., Robot. Auton. Syst. 2018, 1, 53–75. 10.1146/annurev-control-060117-104947. DOI
Field R. D.; Anandakumaran P. N.; Sia S. K. Soft Medical Microrobots: Design Components and System Integration. Appl. Phys. Rev. 2019, 6, 041305.10.1063/1.5124007. DOI
Qiu T.; Palagi S.; Fischer P. 3D-Printed soft microrobot for swimming in biological fluids. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2015, 4922–4925. 10.1109/EMBC.2015.7319496. PubMed DOI
Sun H. C.; Liao P.; Wei T.; Zhang L.; Sun D. Magnetically Powered Biodegradable Microswimmers. Micromachines 2020, 11, 404.10.3390/mi11040404. PubMed DOI PMC
Yang L.; Wang Q.; Vong C.; Zhang L. A Miniature Flexible-Link Magnetic Swimming Robot With Two Vibration Modes: Design, Modeling and Characterization. IEEE Robot. Autom. Lett. 2017, 2, 2024–2031. 10.1109/LRA.2017.2718104. DOI
Harduf Y.; Jin D.; Or Y.; Zhang L. Nonlinear Parametric Excitation Effect Induces Stability Transitions in Swimming Direction of Flexible Superparamagnetic Microswimmers. Soft Robot. 2018, 5, 389–398. 10.1089/soro.2017.0093. PubMed DOI
Zhang J.; Onaizah O.; Middleton K.; You L.; Diller E. Reliable Grasping of Three-Dimensional Untethered Mobile Magnetic Microgripper for Autonomous Pick-and-Place. IEEE Robot. Autom. Lett. 2017, 2, 835–840. 10.1109/LRA.2017.2657879. DOI
Zhang J.; Diller E. Tetherless Mobile Micrograsping using a Magnetic Elastic Composite Material. Smart Mater. Struct. 2016, 25, 11LT03.10.1088/0964-1726/25/11/11LT03. DOI
Sun H. C.; Liao P.; Wei T.; Zhang L.; Sun D. Magnetically Powered Biodegradable Microswimmers. Micromachines 2020, 11, 404.10.1021/acsnano.0c00381. PubMed DOI PMC
Li H.; Go G.; Ko S. Y.; Park J.-O.; Park S. Magnetic Actuated pH-Responsive Hydrogel-Based Soft Micro-Robot for Targeted Drug Delivery. Smart Mater. Struct. 2016, 25, 027001.10.1088/0964-1726/25/2/027001. DOI
Kobayashi K.; Yoon C.; Oh S. H.; Pagaduan J. V.; Gracias D. H. Biodegradable Thermomagnetically Responsive Soft Untethered Grippers. ACS Appl. Mater. Interfaces 2019, 11, 151–159. 10.1021/acsami.8b15646. PubMed DOI
Singh A. V.; Dad Ansari M. H.; Dayan C. B.; Giltinan J.; Wang S.; Yu Y.; Kishore V.; Laux P.; Luch A.; Sitti M. Multifunctional Magnetic Hairbot for Untethered Osteogenesis, Ultrasound Contrast Imaging and Drug Delivery. Biomaterials 2019, 219, 119394.10.1016/j.biomaterials.2019.119394. PubMed DOI
Liu M.; Wang Y.; Kuai Y.; Cong J.; Xu Y.; Piao H.-G.; Pan L.; Liu Y. Magnetically Powered Shape-Transformable Liquid Metal Micromotors. Small 2019, 15, 1905446.10.1002/smll.201905446. PubMed DOI
Maier A. M.; Weig C.; Oswald P.; Frey E.; Fischer P.; Liedl T. Magnetic Propulsion of Microswimmers with DNA-Based Flagellar Bundles. Nano Lett. 2016, 16, 906–910. 10.1021/acs.nanolett.5b03716. PubMed DOI PMC
Hawkes E.; An B.; Benbernou N. M.; Tanaka H.; Kim S.; Demaine E. D.; Rus D.; Wood R. J. Programmable Matter by Folding. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 12441.10.1073/pnas.0914069107. PubMed DOI PMC
Wood R. J. The First Takeoff of a Biologically Inspired At-Scale Robotic Insect. IEEE Trans. Robot. 2008, 24, 341–347. 10.1109/TRO.2008.916997. DOI
Ma K. Y.; Chirarattananon P.; Fuller S. B.; Wood R. J. Controlled Flight of a Biologically Inspired, Insect-Scale Robot. Science 2013, 340, 603.10.1126/science.1231806. PubMed DOI
Novelino L. S.; Ze Q.; Wu S.; Paulino G. H.; Zhao R. Untethered Control of Functional Origami Microrobots with Distributed Actuation. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 24096.10.1073/pnas.2013292117. PubMed DOI PMC
Rus D.; Tolley M. T. Design, Fabrication and Control of Origami Robots. Nature Reviews Materials 2018, 3, 101–112. 10.1038/s41578-018-0009-8. DOI
Gao W.; Sattayasamitsathit S.; Manesh K. M.; Weihs D.; Wang J. Magnetically Powered Flexible Metal Nanowire Motors. J. Am. Chem. Soc. 2010, 132, 14403–14405. 10.1021/ja1072349. PubMed DOI
Gao W.; Manesh K. M.; Hua J.; Sattayasamitsathit S.; Wang J. Hybrid Nanomotor: A Catalytically/Magnetically Powered Adaptive Nanowire Swimmer. Small 2011, 7, 2047–2051. 10.1002/smll.201100213. PubMed DOI
Puigmartí-Luis J.; Pellicer E.; Jang B.; Chatzipirpiridis G.; Sevim S.; Chen X.-Z.; Nelson B. J.; Pané S. In Magn. Nano-and Microwires; Elsevier, 2020.
Petit T.; Zhang L.; Peyer K. E.; Kratochvil B. E.; Nelson B. J. Selective Trapping and Manipulation of Microscale Objects Using Mobile Microvortices. Nano Lett. 2012, 12, 156–160. 10.1021/nl2032487. PubMed DOI
Li Z.; Bai L.; Zhou C.; Yan X.; Mair L.; Zhang A.; Zhang L.; Wang W. Highly Acid-Resistant, Magnetically Steerable Acoustic Micromotors Prepared by Coating Gold Microrods with Fe3O4 Nanoparticles via pH Adjustment. Part. Part. Syst. Charact. 2017, 34, 1600277.10.1002/ppsc.201600277. DOI
Losic D.; Lillo M.; Losic D. Jr. Porous Alumina with Shaped Pore Geometries and Complex Pore Architectures Fabricated by Cyclic Anodization. Small 2009, 5, 1392–1397. 10.1002/smll.200801645. PubMed DOI
Bai A.; Hu C.-C.; Yang Y.-F.; Lin C.-C. Pore Diameter Control of Anodic Aluminum Oxide with Ordered Array of Nanopores. Electrochim. Acta 2008, 53, 2258–2264. 10.1016/j.electacta.2007.09.039. DOI
Zhang J.; Pané S.; Sort J.; Pellicer E. Toward Robust Segmented Nanowires: Understanding the Impact of Crystallographic Texture on the Quality of Segment Interfaces in Magnetic Metallic Nanowires. Adv. Mater. Interfaces 2016, 3, 1600336.10.1002/admi.201600336. DOI
Jang B.; Pellicer E.; Guerrero M.; Chen X.; Choi H.; Nelson B. J.; Sort J.; Pané S. Fabrication of Segmented Au/Co/Au Nanowires: Insights in the Quality of Co/Au Junctions. ACS Appl. Mater. Interfaces 2014, 6, 14583–14589. 10.1021/am5038998. PubMed DOI
Zhang L.; Petit T.; Lu Y.; Kratochvil B. E.; Peyer K. E.; Pei R.; Lou J.; Nelson B. J. Controlled Propulsion and Cargo Transport of Rotating Nickel Nanowires near a Patterned Solid Surface. ACS Nano 2010, 4, 6228–6234. 10.1021/nn101861n. PubMed DOI
Zhou Q.; Petit T.; Choi H.; Nelson B. J.; Zhang L. Dumbbell Fluidic Tweezers for Dynamical Trapping and Selective Transport of Microobjects. Adv. Funct. Mater. 2017, 27, 1604571.10.1002/adfm.201604571. DOI
Mushtaq F.; Torlakcik H.; Hoop M.; Jang B.; Carlson F.; Grunow T.; Läubli N.; Ferreira A.; Chen X.-Z.; Nelson B. J.; et al. Motile Piezoelectric Nanoeels for Targeted Drug Delivery. Adv. Funct. Mater. 2019, 29, 1808135.10.1002/adfm.201808135. DOI
Palagi S.; Fischer P. Bioinspired Microrobots. Nat. Rev. Mater. 2018, 3, 113–124. 10.1038/s41578-018-0016-9. DOI
Sun M.; Fan X.; Meng X.; Song J.; Chen W.; Sun L.; Xie H. Magnetic Biohybrid Micromotors with High Maneuverability for Efficient Drug Loading and Targeted Drug Delivery. Nanoscale 2019, 11, 18382–18392. 10.1039/C9NR06221A. PubMed DOI
Li J.; Ji F.; Ng D. H. L.; Liu J.; Bing X.; Wang P. Bioinspired Pt-free Molecularly Imprinted Hydrogel-Based Magnetic Janus Micromotors for Temperature-Responsive Recognition and Adsorption of Erythromycin in Water. Chem. Eng. J. 2019, 369, 611–620. 10.1016/j.cej.2019.03.101. DOI
Maric T.; Nasir M. Z. M.; Rosli N. F.; Budanović M.; Webster R. D.; Cho N.-J.; Pumera M. Microrobots Derived from Variety Plant Pollen Grains for Efficient Environmental Clean Up and as an Anti-Cancer Drug Carrier. Adv. Funct. Mater. 2020, 30, 2000112.10.1002/adfm.202000112. DOI
Zhang Y.; Yan K.; Ji F.; Zhang L. Enhanced Removal of Toxic Heavy Metals Using Swarming Biohybrid Adsorbents. Adv. Funct. Mater. 2018, 28, 1806340.10.1002/adfm.201806340. DOI
Wang X.; Cai J.; Sun L.; Zhang S.; Gong D.; Li X.; Yue S.; Feng L.; Zhang D. Facile Fabrication of Magnetic Microrobots Based on Spirulina Templates for Targeted Delivery and Synergistic Chemo-Photothermal Therapy. ACS Appl. Mater. Interfaces 2019, 11, 4745–4756. 10.1021/acsami.8b15586. PubMed DOI
Yasa O.; Erkoc P.; Alapan Y.; Sitti M. Microalga-Powered Microswimmers toward Active Cargo Delivery. Adv. Mater. 2018, 30, 1804130.10.1002/adma.201804130. PubMed DOI
Magdanz V.; Khalil I. S. M.; Simmchen J.; Furtado G. P.; Mohanty S.; Gebauer J.; Xu H.; Klingner A.; Aziz A.; Medina-Sánchez M.; et al. IRONSperm: Sperm-templated soft magnetic microrobots. Sci. Adv. 2020, 6, eaba585510.1126/sciadv.aba5855. PubMed DOI PMC
Zhang Y.; Zhang L.; Yang L.; Vong C. I.; Chan K. F.; Wu W. K. K.; Kwong T. N. Y.; Lo N. W. S.; Ip M.; Wong S. H.; et al. Real-Time Tracking of Fluorescent Magnetic Spore-Based Microrobots for Remote Detection of C. diff Toxins. Sci. Adv. 2019, 5, eaau965010.1126/sciadv.aau9650. PubMed DOI PMC
Wu Z.; Li J.; de Ávila B. E.-F.; Li T.; Gao W.; He Q.; Zhang L.; Wang J. Water-Powered Cell-Mimicking Janus Micromotor. Adv. Funct. Mater. 2015, 25, 7497–7501. 10.1002/adfm.201503441. DOI
Wu Z.; Li T.; Gao W.; Xu T.; Jurado-Sánchez B.; Li J.; Gao W.; He Q.; Zhang L.; Wang J. Cell-Membrane-Coated Synthetic Nanomotors for Effective Biodetoxification. Adv. Funct. Mater. 2015, 25, 3881–3887. 10.1002/adfm.201501050. DOI
Striggow F.; Medina-Sánchez M.; Auernhammer G. K.; Magdanz V.; Friedrich B. M.; Schmidt O. G. Sperm-Driven Micromotors Moving in Oviduct Fluid and Viscoelastic Media. Small 2020, 16, 2000213.10.1002/smll.202000213. PubMed DOI
Magdanz V.; Sanchez S.; Schmidt O. G. Development of a Sperm-Flagella Driven Micro-Bio-Robot. Adv. Mater. 2013, 25, 6581–6588. 10.1002/adma.201302544. PubMed DOI
Singh A. V.; Hosseinidoust Z.; Park B.-W.; Yasa O.; Sitti M. Microemulsion-Based Soft Bacteria-Driven Microswimmers for Active Cargo Delivery. ACS Nano 2017, 11, 9759–9769. 10.1021/acsnano.7b02082. PubMed DOI
Stanton M. M.; Park B.-W.; Miguel-López A.; Ma X.; Sitti M.; Sánchez S. Biohybrid Microtube Swimmers Driven by Single Captured Bacteria. Small 2017, 13, 1603679.10.1002/smll.201603679. PubMed DOI
Magdanz V.; Medina-Sánchez M.; Schwarz L.; Xu H.; Elgeti J.; Schmidt O. G. Spermatozoa as Functional Components of Robotic Microswimmers. Adv. Mater. 2017, 29, 1606301.10.1002/adma.201606301. PubMed DOI
Sun H. C.; Liao P.; Wei T.; Zhang L.; Sun D. Magnetically Powered Biodegradable Microswimmers. Micromachines 2020, 11, 404.10.1002/adma.202004172. PubMed DOI PMC
Yasa I. C.; Ceylan H.; Bozuyuk U.; Wild A.-M.; Sitti M. Elucidating the Interaction Dynamics between Microswimmer Body and Immune System for Medical Microrobots. Sci. Robot. 2020, 5, eaaz386710.1126/scirobotics.aaz3867. PubMed DOI
Alapan Y.; Yasa O.; Schauer O.; Giltinan J.; Tabak A. F.; Sourjik V.; Sitti M. Soft Erythrocyte-Based Bacterial Microswimmers for Cargo Delivery. Sci. Robot. 2018, 3, eaar442310.1126/scirobotics.aar4423. PubMed DOI
Iacovacci V.; Ricotti L.; Signore G.; Vistoli F.; Sinibaldi E.; Menciassi A. 2019 International Conference on Robotics and Automation (ICRA) 2019, 2495–2501. 10.1109/ICRA.2019.8794322. DOI
Iacovacci V.; Ricotti L.; Sinibaldi E.; Signore G.; Vistoli F.; Menciassi A. An Intravascular Magnetic Catheter Enables the Retrieval of Nanoagents from the Bloodstream. Adv. Sci. 2018, 5, 1800807.10.1002/advs.201800807. PubMed DOI PMC
Luo M.; Feng Y.; Wang T.; Guan J. Micro-/Nanorobots at Work in Active Drug Delivery. Adv. Funct. Mater. 2018, 28, 1706100.10.1002/adfm.201706100. DOI
Mhanna R.; Qiu F.; Zhang L.; Ding Y.; Sugihara K.; Zenobi-Wong M.; Nelson B. J. Artificial Bacterial Flagella for Remote-Controlled Targeted Single-Cell Drug Delivery. Small 2014, 10, 1953–1957. 10.1002/smll.201303538. PubMed DOI
Xu X.; Hou S.; Wattanatorn N.; Wang F.; Yang Q.; Zhao C.; Yu X.; Tseng H.-R.; Jonas S. J.; Weiss P. S. Precision-Guided Nanospears for Targeted and High-Throughput Intracellular Gene Delivery. ACS Nano 2018, 12, 4503–4511. 10.1021/acsnano.8b00763. PubMed DOI
Alapan Y.; Bozuyuk U.; Erkoc P.; Karacakol A. C.; Sitti M. Multifunctional Surface Microrollers for Targeted Cargo Delivery in Physiological Blood Flow. Sci. Robot. 2020, 5, eaba572610.1126/scirobotics.aba5726. PubMed DOI
Felfoul O.; Mohammadi M.; Taherkhani S.; de Lanauze D.; Zhong Xu Y.; Loghin D.; Essa S.; Jancik S.; Houle D.; Lafleur M.; et al. Magneto-Aerotactic Bacteria Deliver Drug-Containing Nanoliposomes to Tumour Hypoxic Regions. Nat. Nanotechnol. 2016, 11, 941–947. 10.1038/nnano.2016.137. PubMed DOI PMC
Wu Z.; Esteban-Fernández de Ávila B.; Martín A.; Christianson C.; Gao W.; Thamphiwatana S. K.; Escarpa A.; He Q.; Zhang L.; Wang J. RBC Micromotors Carrying Multiple Cargos towards Potential Theranostic Applications. Nanoscale 2015, 7, 13680–13686. 10.1039/C5NR03730A. PubMed DOI
Srivastava S. K.; Medina-Sánchez M.; Koch B.; Schmidt O. G. Medibots: Dual-Action Biogenic Microdaggers for Single-Cell Surgery and Drug Release. Adv. Mater. 2016, 28, 832–837. 10.1002/adma.201504327. PubMed DOI
Kadiri V. M.; Bussi C.; Holle A. W.; Son K.; Kwon H.; Schütz G.; Gutierrez M. G.; Fischer P. Biocompatible Magnetic Micro- and Nanodevices: Fabrication of FePt Nanopropellers and Cell Transfection. Adv. Mater. 2020, 32, 2001114.10.1002/adma.202001114. PubMed DOI
Zong Z.; Zhou X.; Zhang L.; Tan Q.; Xiong J.; Zhang W. Magnetically Propelled Soft Micromachines with Multipatterned Fabrications. J. Micromech. Microeng. 2020, 30, 085001.10.1088/1361-6439/ab8ebd. DOI
Zhang L.; Petit T.; Peyer K. E.; Nelson B. J. Targeted Cargo Delivery using a Rotating Nickel Nanowire. Nanomedicine 2012, 8, 1074–1080. 10.1016/j.nano.2012.03.002. PubMed DOI
Huang J.; Zhang H.; Yan X.; Zhang L. Cell Encapsulation and Magnetic Manipulation for Targeted Delivery. Nanomedicine 2016, 2, 488–489. 10.1016/j.nano.2015.12.122. DOI
Xu H.; Medina-Sánchez M.; Schmidt O. G. Magnetic Micromotors for Multiple Motile Sperm Cells Capture, Transport, and Enzymatic Release. Angew. Chem., Int. Ed. 2020, 59, 15029–15037. 10.1002/anie.202005657. PubMed DOI PMC
Schwarz L.; Karnaushenko D. D.; Hebenstreit F.; Naumann R.; Schmidt O. G.; Medina-Sánchez M. A Rotating Spiral Micromotor for Noninvasive Zygote Transfer. Adv. Sci. 2020, 7, 2000843.10.1002/advs.202000843. PubMed DOI PMC
Kim E.; Jeon S.; An H.-K.; Kianpour M.; Yu S.-W.; Kim J.-y.; Rah J.-C.; Choi H. A Magnetically Actuated Microrobot for Targeted Neural Cell Delivery and Selective Connection of Neural Networks. Sci. Adv. 2020, 6, eabb569610.1126/sciadv.abb5696. PubMed DOI PMC
Wang W.; Wu Z.; He Q. Swimming Nanorobots for Opening a Cell Membrane Mechanically. View 2020, 1, 20200005.10.1002/VIW.20200005. DOI
Venugopalan P. L.; Esteban-Fernández de Ávila B.; Pal M.; Ghosh A.; Wang J. Fantastic Voyage of Nanomotors into the Cell. ACS Nano 2020, 14, 9423–9439. 10.1021/acsnano.0c05217. PubMed DOI
Lee S.; Lee S.; Kim S.; Yoon C.-H.; Park H.-J.; Kim J.-y.; Choi H. Fabrication and Characterization of a Magnetic Drilling Actuator for Navigation in a Three-dimensional Phantom Vascular Network. Sci. Rep. 2018, 8, 3691.10.1038/s41598-018-22110-5. PubMed DOI PMC
Martel S.; Felfoul O.; Mathieu J.-B.; Chanu A.; Tamaz S.; Mohammadi M.; Mankiewicz M.; Tabatabaei N. MRI-based Medical Nanorobotic Platform for the Control of Magnetic Nanoparticles and Flagellated Bacteria for Target Interventions in Human Capillaries. Int. J. Robot. Res. 2009, 28, 1169–1182. 10.1177/0278364908104855. PubMed DOI PMC
Kikuchi K.; Yamazaki A.; Sendoh M.; Ishiyama K.; Arai K. I. Fabrication of a Spiral Type Magnetic Micromachine for Trailing a Wire. IEEE Trans. Magn. 2005, 41, 4012–4014. 10.1109/TMAG.2005.855155. DOI
Martel S. 2007 29th Annual International Conference of the IEEE Eng. Med. Bio. Soci. 2007, 1475–1478. 10.1109/IEMBS.2007.4352579. PubMed DOI
Garcia-Gradilla V.; Orozco J.; Sattayasamitsathit S.; Soto F.; Kuralay F.; Pourazary A.; Katzenberg A.; Gao W.; Shen Y.; Wang J. Functionalized Ultrasound-Propelled Magnetically Guided Nanomotors: Toward Practical Biomedical Applications. ACS Nano 2013, 7, 9232–9240. 10.1021/nn403851v. PubMed DOI
Magdanz V.; Koch B.; Sanchez S.; Schmidt O. G. Sperm Dynamics in Tubular Confinement. Small 2015, 11, 781–785. 10.1002/smll.201401881. PubMed DOI
Qiu T.; Schamel D.; Mark A. G.; Fischer P. 2014 IEEE International Conference on Robotics and Automation (ICRA) 2014, 3801–3806. 10.1109/ICRA.2014.6907410. DOI
Pokki J.; Ergeneman O.; Chatzipirpiridis G.; Lühmann T.; Sort J.; Pellicer E.; Pot S. A.; Spiess B. M.; Pané S.; Nelson B. J. Protective Coatings for Intraocular Wirelessly Controlled Microrobots for Implantation: Corrosion, Cell Culture, and in Vivo Animal Tests. J. Biomed. Mater. Res., Part B 2017, 105, 836–845. 10.1002/jbm.b.33618. PubMed DOI
Jeong M.; Choi E.; Li D.; Palagi S.; Fischer P.; Qiu T. Soft Continuous Surface for Micromanipulation driven by Light-controlled Hydrogels. 2019 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS) 2019, 1–6. 10.1109/MARSS.2019.8860936. DOI
Chen J.; Wang Y. Personalized Dynamic Transport of Magnetic Nanorobots inside the Brain Vasculature. Nanotechnology 2020, 31, 495706.10.1088/1361-6528/abb392. PubMed DOI
Li J.; Thamphiwatana S.; Liu W.; Esteban-Fernández de Ávila B.; Angsantikul P.; Sandraz E.; Wang J.; Xu T.; Soto F.; Ramez V.; et al. Enteric Micromotor Can Selectively Position and Spontaneously Propel in the Gastrointestinal Tract. ACS Nano 2016, 10, 9536–9542. 10.1021/acsnano.6b04795. PubMed DOI PMC
Gao W.; Dong R.; Thamphiwatana S.; Li J.; Gao W.; Zhang L.; Wang J. Artificial Micromotors in the Mouse’s Stomach: A Step toward in Vivo Use of Synthetic Motors. ACS Nano 2015, 9, 117–123. 10.1021/nn507097k. PubMed DOI PMC
Hamdi M.; Ferreira A. Guidelines for the Design of Magnetic Nanorobots to Cross the Blood-Brain Barrier. IEEE Trans. Robot. 2014, 30, 81–92. 10.1109/TRO.2013.2291616. DOI
Wu Z.; Chen Y.; Mukasa D.; Pak O. S.; Gao W. Medical Micro/Nanorobots in Complex Media. Chem. Soc. Rev. 2020, 49, 8088–8112. 10.1039/D0CS00309C. PubMed DOI
Nelson B. J.; Peyer K. E. Micro- and Nanorobots Swimming in Heterogeneous Liquids. ACS Nano 2014, 8, 8718–8724. 10.1021/nn504295z. PubMed DOI
Palagi S.; Walker D.; Qiu T.; Fischer P. In Microbiorobotics, 2nd ed.; Kim M., Julius A. A., Cheang U. K., Eds.; Elsevier: Boston, 2017. 10.1016/B978-0-32-342993-1.00015-X. DOI
Qiu F.; Zhang L.; Tottori S.; Marquardt K.; Krawczyk K.; Franco-Obregón A.; Nelson B. J. Bio-Inspired Microrobots. Mater. Today 2012, 15, 463.10.1016/S1369-7021(12)70201-8. DOI
Jin Q.; Yang Y.; Jackson J. A.; Yoon C.; Gracias D. H. Untethered Single Cell Grippers for Active Biopsy. Nano Lett. 2020, 20, 5383–5390. 10.1021/acs.nanolett.0c01729. PubMed DOI PMC
Yim S.; Gultepe E.; Gracias D. H.; Sitti M. Biopsy using a Magnetic Capsule Endoscope Carrying, Releasing, and Retrieving Untethered Microgrippers. IEEE Trans. Biomed. Eng. 2014, 61, 513–521. 10.1109/TBME.2013.2283369. PubMed DOI PMC
Son D.; Gilbert H.; Sitti M. Magnetically Actuated Soft Capsule Endoscope for Fine-Needle Biopsy. Soft Robot. 2020, 7, 10–21. 10.1089/soro.2018.0171. PubMed DOI
Ongaro F.; Scheggi S.; Yoon C.; den Brink F. v.; Oh S. H.; Gracias D. H.; Misra S. Autonomous Planning and Control of Soft Untethered Grippers in Unstructured Environments. J. Micro-Bio Robot. 2017, 12, 45–52. 10.1007/s12213-016-0091-1. PubMed DOI PMC
Ghosh A.; Yoon C.; Ongaro F.; Scheggi S.; Selaru F. M.; Misra S.; Gracias D. H. Stimuli-Responsive Soft Untethered Grippers for Drug Delivery and Robotic Surgery. Front. Mech. Eng. 2017, 3, 7.10.3389/fmech.2017.00007. PubMed DOI PMC
Malachowski K.; Breger J.; Kwag H. R.; Wang M. O.; Fisher J. P.; Selaru F. M.; Gracias D. H. Stimuli-Responsive Theragrippers for Chemomechanical Controlled Release. Angew. Chem., Int. Ed. 2014, 53, 8045–8049. 10.1002/anie.201311047. PubMed DOI PMC
Gultepe E.; Randhawa J. S.; Kadam S.; Yamanaka S.; Selaru F. M.; Shin E. J.; Kalloo A. N.; Gracias D. H. Biopsy with Thermally-Responsive Untethered Microtools. Adv. Mater. 2013, 25, 514–519. 10.1002/adma.201203348. PubMed DOI PMC
Flemming H.-C.; Wingender J.; Szewzyk U.; Steinberg P.; Rice S. A.; Kjelleberg S. Biofilms: an Emergent Form of Bacterial Life. Nat. Rev. Microbiol. 2016, 14, 563–575. 10.1038/nrmicro.2016.94. PubMed DOI
Lewis K. Riddle of Biofilm Resistance. Antimicrob. Agents Chemother. 2001, 45, 999.10.1128/AAC.45.4.999-1007.2001. PubMed DOI PMC
Stanton M. M.; Park B.-W.; Vilela D.; Bente K.; Faivre D.; Sitti M.; Sánchez S. Magnetotactic Bacteria Powered Biohybrids Target E. coli Biofilms. ACS Nano 2017, 11, 9968–9978. 10.1021/acsnano.7b04128. PubMed DOI
Bhuyan T.; Simon A. T.; Maity S.; Singh A. K.; Ghosh S. S.; Bandyopadhyay D. Magnetotactic T-Budbots to Kill-n-Clean Biofilms. ACS Appl. Mater. Interfaces 2020, 12, 43352–43364. 10.1021/acsami.0c08444. PubMed DOI
Hwang G.; Paula A. J.; Hunter E. E.; Liu Y.; Babeer A.; Karabucak B.; Stebe K.; Kumar V.; Steager E.; Koo H. Catalytic Antimicrobial Robots for Biofilm Eradication. Sci. Robot. 2019, 4, eaaw238810.1126/scirobotics.aaw2388. PubMed DOI PMC
Pané S.; Puigmartí-Luis J.; Bergeles C.; Chen X.-Z.; Pellicer E.; Sort J.; Počepcová V.; Ferreira A.; Nelson B. J. Imaging Technologies for Biomedical Micro- and Nanoswimmers. Adv. Mater. Technol. 2019, 4, 1800575.10.1002/admt.201800575. DOI
Vartholomeos P.; Fruchard M.; Ferreira A.; Mavroidis C. MRI-Guided Nanorobotic Systems for Therapeutic and Diagnostic Applications. Annu. Rev. Biomed. Eng. 2011, 13, 157–184. 10.1146/annurev-bioeng-071910-124724. PubMed DOI
Wang B.; Kostarelos K.; Nelson B. J.; Zhang L. Trends in Micro-/Nanorobotics: Materials Development, Actuation, Localization, and System Integration for Biomedical Applications. Adv. Mater. 2021, 33, 2002047.10.1002/adma.202002047. PubMed DOI
Martel S. Magnetic Nanoparticles in Medical Nanorobotics. J. Nanopart. Res. 2015, 17, 75.10.1007/s11051-014-2734-2. DOI
Wang W.; Zhou C. A Journey of Nanomotors for Targeted Cancer Therapy: Principles, Challenges, and a Critical Review of the State-of-the-Art. Adv. Healthcare Mater. 2021, 10, 2001236.10.1002/adhm.202001236. PubMed DOI
Aziz A.; Pane S.; Iacovacci V.; Koukourakis N.; Czarske J.; Menciassi A.; Medina-Sánchez M.; Schmidt O. G. Medical Imaging of Microrobots: Toward In Vivo Applications. ACS Nano 2020, 14, 10865–10893. 10.1021/acsnano.0c05530. PubMed DOI
Medina-Sánchez M.; Schmidt O. G. Medical Microbots Need Better Imaging and Control. Nature 2017, 545, 406.10.1038/545406a. PubMed DOI
Wang B.; Zhang Y.; Zhang L. Recent Progress on Micro- and Nano-Robots: Towards in Vivo Tracking and Localization. Quant. Imag. Med. Surg. 2018, 8, 461–479. 10.21037/qims.2018.06.07. PubMed DOI PMC
Mutlu S.; Yasa O.; Erin O.; Sitti M. Magnetic Resonance Imaging-Compatible Optically Powered Miniature Wireless Modular Lorentz Force Actuators. Adv. Sci. 2021, 8, 2002948.10.1002/advs.202002948. PubMed DOI PMC
Tiryaki M. E.; Önder E.; Sitti M. A Realistic Simulation Environment for MRI-Based Robust Control of Untethered Magnetic Robots With Intra-Operational Imaging. IEEE Robot. Autom. Lett. 2020, 5, 4501–4508. 10.1109/LRA.2020.3002213. DOI
Martel S.; Mathieu J.-B.; Felfoul O.; Chanu A.; Aboussouan E.; Tamaz S.; Pouponneau P.; Yahia L. H.; Beaudoin G.; Soulez G.; et al. Automatic Navigation of an Untethered Device in the Artery of a Living Animal using a Conventional Clinical Magnetic Resonance Imaging System. Appl. Phys. Lett. 2007, 90, 114105.10.1063/1.2713229. DOI
Servant A.; Qiu F.; Mazza M.; Kostarelos K.; Nelson B. J. Controlled In Vivo Swimming of a Swarm of Bacteria-Like Microrobotic Flagella. Adv. Mater. 2015, 27, 2981–2988. 10.1002/adma.201404444. PubMed DOI
Deng G.; Peng X.; Sun Z.; Zheng W.; Yu J.; Du L.; Chen H.; Gong P.; Zhang P.; Cai L.; et al. Natural-Killer-Cell-Inspired Nanorobots with Aggregation-Induced Emission Characteristics for Near-Infrared-II Fluorescence-Guided Glioma Theranostics. ACS Nano 2020, 14, 11452–11462. 10.1021/acsnano.0c03824. PubMed DOI
Steager E. B.; Selman Sakar M.; Magee C.; Kennedy M.; Cowley A.; Kumar V. Automated Biomanipulation of Single Cells using Magnetic Microrobots. Int. J. Robot. Res. 2013, 32, 346–359. 10.1177/0278364912472381. DOI
Wang Q.; Yang L.; Yu J.; Chiu P. W. Y.; Zheng Y. P.; Zhang L. Real-Time Magnetic Navigation of a Rotating Colloidal Microswarm Under Ultrasound Guidance. IEEE Trans. Biomed. Eng. 2020, 67, 3403–3412. 10.1109/TBME.2020.2987045. PubMed DOI
Wang Q.; Yang L.; Yu J.; Vong C.; Chiu P. W. Y.; Zhang L. Magnetic Navigation of a Rotating Colloidal Swarm Using Ultrasound Images. 2018 IEEE/RSJ. International Conference on Intelligent Robots and Systems (IROS) 2018, 5380–5385. 10.1109/IROS.2018.8593898. DOI
Wang Q. W.; Chan K. F. C.; Schweizer K.; Du X.; Jin D.; Yu S. C. H.; Nelson B. J.; Zhang L. Ultrasound Doppler-guided real-time navigation of a magnetic microswarm for active endovascular delivery. Sci. Adv. 2021, 7, eabe591410.1126/sciadv.abe5914. PubMed DOI PMC
Sánchez A.; Magdanz V.; Schmidt O. G.; Misra S. 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics 2014, 169–174. 10.1109/BIOROB.2014.6913771. DOI
Yu J.; Wang Q.; Li M.; Liu C.; Wang L.; Xu T.; Zhang L. Characterizing Nanoparticle Swarms With Tuneable Concentrations for Enhanced Imaging Contrast. IEEE Robot. Autom. Lett. 2019, 4, 2942–2949. 10.1109/LRA.2019.2924055. DOI
Li D.; Dong D.; Lam W.; Xing L.; Wei T.; Sun D. Automated In Vivo Navigation of Magnetic-Driven Microrobots Using OCT Imaging Feedback. IEEE Trans. Biomed. Eng. 2020, 67, 2349–2358. 10.1109/TBME.2019.2960530. PubMed DOI
Iacovacci V.; Blanc A.; Huang H.; Ricotti L.; Schibli R.; Menciassi A.; Behe M.; Pané S.; Nelson B. J. High-Resolution SPECT Imaging of Stimuli-Responsive Soft Microrobots. Small 2019, 15, 1900709.10.1002/smll.201900709. PubMed DOI
Hang D.; Li F.; Che W.; Wu X.; Wan Y.; Wang J.; Zheng Y. One-Stage Positron Emission Tomography and Magnetic Resonance Imaging to Assess Mesenchymal Stem Cell Survival in a Canine Model of Intervertebral Disc Degeneration. Stem Cells Dev. 2017, 26, 1334–1343. 10.1089/scd.2017.0103. PubMed DOI
Cai H.; Li K.; Li J.; Wen S.; Chen Q.; Shen M.; Zheng L.; Zhang G.; Shi X. Dendrimer-Assisted Formation of Fe3O4/Au Nanocomposite Particles for Targeted Dual Mode CT/MR Imaging of Tumors. Small 2015, 11, 4584–4593. 10.1002/smll.201500856. PubMed DOI
Wang Q.; Yang L.; Yu J.; Vong C.; Chiu P. W. Y.; Zhang L. Magnetic Navigation of a Rotating Colloidal Swarm Using Ultrasound Images. 2018 IEEE/RSJ. International Conference on Intelligent Robots and Systems (IROS) 2018, 5380–5385. 10.1101/2020.06.22.146282. DOI
Karageorgou M.-A.; Vranješ-Djurić S.; Radović M.; Lyberopoulou A.; Antić B.; Rouchota M.; Gazouli M.; Loudos G.; Xanthopoulos S.; Sideratou Z.; et al. Gallium-68 Labeled Iron Oxide Nanoparticles Coated with 2,3-Dicarboxypropane-1,1-diphosphonic Acid as a Potential PET/MR Imaging Agent: A Proof-of-Concept Study. Contrast Media Mol. Imaging 2017, 2017, 6951240.10.1155/2017/6951240. PubMed DOI PMC
Felfoul O.; Aboussouan E.; Chanu A.; Martel S. 2009 IEEE Inter. Conference Robot. Autom (ICRA). 2009, 2693–2698. 10.1109/ROBOT.2009.5152567. DOI
Gleich B.; Weizenecker J. Tomographic Imaging Using the Nonlinear Response of Magnetic Particles. Nature 2005, 435, 1214–1217. 10.1038/nature03808. PubMed DOI
Nothnagel N.; Rahmer J.; Gleich B.; Halkola A.; Buzug T. M.; Borgert J. Steering of Magnetic Devices With a Magnetic Particle Imaging System. IEEE Trans. Biomed. Eng. 2016, 63, 2286–2293. 10.1109/TBME.2016.2524070. PubMed DOI
Bakenecker A. C.; von Gladiss A.; Friedrich T.; Heinen U.; Lehr H.; Lüdtke-Buzug K.; Buzug T. M. Actuation and Visualization of a Magnetically Coated Swimmer with Magnetic Particle Imaging. J. Magn. Magn. Mater. 2019, 473, 495–500. 10.1016/j.jmmm.2018.10.056. DOI
Graeser M.; Thieben F.; Szwargulski P.; Werner F.; Gdaniec N.; Boberg M.; Griese F.; Möddel M.; Ludewig P.; van de Ven D.; et al. Human-sized Magnetic Particle Imaging for Brain Applications. Nat. Commun. 2019, 10, 1936.10.1038/s41467-019-09704-x. PubMed DOI PMC
Yang L.; Zhang Y.; Wang Q.; Chan K.; Zhang L. Automated Control of Magnetic Spore-Based Microrobot Using Fluorescence Imaging for Targeted Delivery With Cellular Resolution. IEEE Trans. Autom. Sci. Eng. 2020, 17, 490–501. 10.1109/TASE.2019.2937232. DOI
Yang L.; Zhang Y.; Vong C.; Zhang L. Automated Control of Multifunctional Magnetic Spores Using Fluorescence Imaging for Microrobotic Cargo Delivery. 2018 IEEE/RSJ. International Conference on Intelligent Robots and Systems (IROS) 2018, 1–6. 10.1109/IROS.2018.8593790. DOI
Shang L.; Dong S.; Nienhaus G. U. Ultra-Small Fluorescent Metal Nanoclusters: Synthesis and Biological Applications. Nano Today 2011, 6, 401–418. 10.1016/j.nantod.2011.06.004. DOI
Wu X.; Liu H.; Liu J.; Haley K. N.; Treadway J. A.; Larson J. P.; Ge N.; Peale F.; Bruchez M. P. Immunofluorescent Labeling of Cancer Marker Her2 and Other Cellular Targets with Semiconductor Quantum Dots. Nat. Biotechnol. 2003, 21, 41–46. 10.1038/nbt764. PubMed DOI
Karmakar A.; Samanta P.; Dutta S.; Ghosh S. K. Fluorescent “Turn-on” Sensing Based on Metal-Organic Frameworks (MOFs). Chem. - Asian J. 2019, 14, 4506–4519. 10.1002/asia.201901168. PubMed DOI
Ma Y.; Su H.; Kuang X.; Li X.; Zhang T.; Tang B. Heterogeneous Nano Metal-Organic Framework Fluorescence Probe for Highly Selective and Sensitive Detection of Hydrogen Sulfide in Living Cells. Anal. Chem. 2014, 86, 11459–11463. 10.1021/ac503622n. PubMed DOI
Fenster A.; Downey D. B.; Cardinal H. N. Three-Dimensional Ultrasound Imaging. Phys. Med. Biol. 2001, 46, R67–R99. 10.1088/0031-9155/46/5/201. PubMed DOI
Williamson T. H.; Harris A. Color Doppler Ultrasound Imaging of Theeye and Orbit. Surv. Ophthalmol. 1996, 40, 255–267. 10.1016/S0039-6257(96)82001-7. PubMed DOI
Bell A. G. The Production of Sound by Radiant Energy. Science 1881, 2, 242–253. 10.1126/science.os-2.49.242. PubMed DOI
Aziz A.; Medina-Sánchez M.; Claussen J.; Schmidt O. G. Real-Time Optoacoustic Tracking of Single Moving Micro-objects in Deep Phantom and Ex Vivo Tissues. Nano Lett. 2019, 19, 6612–6620. 10.1021/acs.nanolett.9b02869. PubMed DOI
Yang K.; Feng L.; Hong H.; Cai W.; Liu Z. Preparation and Functionalization of Graphene Nanocomposites for Biomedical Applications. Nat. Protoc. 2013, 8, 2392–2403. 10.1038/nprot.2013.146. PubMed DOI PMC
Chen F.; Hong H.; Zhang Y.; Valdovinos H. F.; Shi S.; Kwon G. S.; Theuer C. P.; Barnhart T. E.; Cai W. In Vivo Tumor Targeting and Image-Guided Drug Delivery with Antibody-Conjugated, Radiolabeled Mesoporous Silica Nanoparticles. ACS Nano 2013, 7, 9027–9039. 10.1021/nn403617j. PubMed DOI PMC
Sandhöfer B.; Meckel M.; Delgado-López J. M.; Patrício T.; Tampieri A.; Rösch F.; Iafisco M. Synthesis and Preliminary in Vivo Evaluation of Well-Dispersed Biomimetic Nanocrystalline Apatites Labeled with Positron Emission Tomographic Imaging Agents. ACS Appl. Mater. Interfaces 2015, 7, 10623–10633. 10.1021/acsami.5b02624. PubMed DOI
Vilela D.; Cossío U.; Parmar J.; Martínez-Villacorta A. M.; Gómez-Vallejo V.; Llop J.; Sánchez S. Medical Imaging for the Tracking of Micromotors. ACS Nano 2018, 12, 1220–1227. 10.1021/acsnano.7b07220. PubMed DOI
Dekanovsky L.; Khezri B.; Rottnerova Z.; Novotny F.; Plutnar J.; Pumera M. Chemically Programmable Microrobots Weaving a Web from Hormones. Nat. Mach. Intell. 2020, 2, 711–718. 10.1038/s42256-020-00248-0. DOI
Jin D.; Zhang L. Embodied Intelligence Weaves a Better Future. Nat. Mach. Intell. 2020, 2, 663–664. 10.1038/s42256-020-00250-6. DOI
Ji F.; Wang B.; Zhang L. Light-Triggered Catalytic Performance Enhancement Using Magnetic Nanomotor Ensembles. Research 2020, 2020, 6380794.10.34133/2020/6380794. PubMed DOI PMC
Wang D.; Zhao G.; Chen C.; Zhang H.; Duan R.; Zhang D.; Li M.; Dong B. One-Step Fabrication of Dual Optically/Magnetically Modulated Walnut-like Micromotor. Langmuir 2019, 35, 2801–2807. 10.1021/acs.langmuir.8b02904. PubMed DOI
Sun M.; Chen W.; Fan X.; Tian C.; Sun L.; Xie H. Cooperative Recyclable Magnetic Microsubmarines for Oil and Microplastics Removal from Water. Appl. Mater. Today 2020, 20, 100682.10.1016/j.apmt.2020.100682. DOI
Hoop M.; Shen Y.; Chen X.-Z.; Mushtaq F.; Iuliano L. M.; Sakar M. S.; Petruska A.; Loessner M. J.; Nelson B. J.; Pané S. Magnetically Driven Silver-Coated Nanocoils for Efficient Bacterial Contact Killing. Adv. Funct. Mater. 2016, 26, 1063–1069. 10.1002/adfm.201504463. DOI
Singh A. K.; Bhuyan T.; Maity S.; Mandal T. K.; Bandyopadhyay D. Magnetically Actuated Carbon Soot Nanoparticle-Based Catalytic CARBOts Coated with Ni/Pt Nanofilms for Water Detoxification and Oil-Spill Recovery. ACS Appl. Nano Mater. 2020, 3, 3459–3470. 10.1021/acsanm.0c00199. DOI
Liu J.; Li J.; Wang G.; Yang W.; Yang J.; Liu Y. Bioinspired Zeolitic Imidazolate Framework (ZIF-8) Magnetic Micromotors for Highly Efficient Removal of Organic Pollutants from Water. J. Colloid Interface Sci. 2019, 555, 234–244. 10.1016/j.jcis.2019.07.059. PubMed DOI
Zhang Y.; Yuan K.; Zhang L. Micro/Nanomachines: from Functionalization to Sensing and Removal. Adv. Mater. Technol. 2019, 4, 1800636.10.1002/admt.201800636. DOI
Yang L.; Zhang Y.; Wang Q.; Zhang L. An Automated Microrobotic Platform for Rapid Detection of C. diff Toxins. IEEE Trans. Biomed. Eng. 2020, 67, 1517–1527. 10.1109/TBME.2019.2939419. PubMed DOI
Jurado-Sánchez B.; Pacheco M.; Rojo J.; Escarpa A. Magnetocatalytic Graphene Quantum Dots Janus Micromotors for Bacterial Endotoxin Detection. Angew. Chem., Int. Ed. 2017, 56, 6957–6961. 10.1002/anie.201701396. PubMed DOI
Park S.; Yossifon G. Micromotor-Based Biosensing Using Directed Transport of Functionalized Beads. ACS Sens. 2020, 5, 936–942. 10.1021/acssensors.9b02041. PubMed DOI PMC
Sim S.; Aida T. Swallowing a Surgeon: Toward Clinical Nanorobots. Acc. Chem. Res. 2017, 50, 492–497. 10.1021/acs.accounts.6b00495. PubMed DOI
Active Microrobots for Dual Removal of Biofilms via Chemical and Physical Mechanisms
Quantum Material-Based Self-Propelled Microrobots for the Optical "On-the-Fly" Monitoring of DNA
Nanostructured Hybrid BioBots for Beer Brewing
Magnetically boosted 1D photoactive microswarm for COVID-19 face mask disruption
Precisely Navigated Biobot Swarms of Bacteria Magnetospirillum magneticum for Water Decontamination
Smart micro- and nanorobots for water purification
Plasmonic-magnetic nanorobots for SARS-CoV-2 RNA detection through electronic readout
Biohybrid Micro- and Nanorobots for Intelligent Drug Delivery
Swarming Aqua Sperm Micromotors for Active Bacterial Biofilms Removal in Confined Spaces