Biohybrid Micro- and Nanorobots for Intelligent Drug Delivery
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
36285309
PubMed Central
PMC9494704
DOI
10.34133/2022/9824057
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Biohybrid micro- and nanorobots are integrated tiny machines from biological components and artificial components. They can possess the advantages of onboard actuation, sensing, control, and implementation of multiple medical tasks such as targeted drug delivery, single-cell manipulation, and cell microsurgery. This review paper is to give an overview of biohybrid micro- and nanorobots for smart drug delivery applications. First, a wide range of biohybrid micro- and nanorobots comprising different biological components are reviewed in detail. Subsequently, the applications of biohybrid micro- and nanorobots for active drug delivery are introduced to demonstrate how such biohybrid micro- and nanorobots are being exploited in the field of medicine and healthcare. Lastly, key challenges to be overcome are discussed to pave the way for the clinical translation and application of the biohybrid micro- and nanorobots.
Zobrazit více v PubMed
Feynman R. P. There's plenty of room at the bottom. Engineering and Science . 1960;23:22–36.
Sitti M. Voyage of the microrobots. Nature . 2009;458:1121–1122. PubMed
Erkoc P., Yasa I. C., Ceylan H., Yasa O., Alapan Y., Sitti M. Mobile microrobots for active therapeutic delivery. Advanced Therapeutics . 2019;2, article 1800064 doi: 10.1002/adtp.201800064. DOI
Ceylan H., Yasa I. C., Kilic U., Hu W., Sitti M. Translational prospects of untethered medical microrobots. Progress in Biomedical Engineering . 2019;1, article 012002
Jager E. W. H., Inganäs O., Lundström I. Microrobots for micrometer-size objects in aqueous media: potential tools for single-cell manipulation. Science . 2000;288:p. 2335. doi: 10.1126/science.288.5475.2335. PubMed DOI
Shen Y., Fukuda T. State of the art: micro-nanorobotic manipulation in single cell analysis. Robotics and Biomimetics . 2014;1:p. 21.
Hu C., Pané S., Nelson B. J. Soft micro- and nanorobotics. Annual Review of Control, Robotics, and Autonomous Systems . 2018;1:53–75. doi: 10.1146/annurev-control-060117-104947. DOI
Sitti M. Miniature soft robots — road to the clinic. Nature Reviews Materials . 2018;3:74–75.
Schuerle S., Pané S., Pellicer E., Sort J., Baró M. D., Nelson B. J. Helical and tubular lipid microstructures that are electroless-coated with CoNiReP for wireless magnetic manipulation. Small . 2012;8:1498–1502. PubMed
Gao W., Sattayasamitsathit S., Orozco J., Wang J. Highly efficient catalytic microengines: template electrosynthesis of polyaniline/platinum microtubes. Journal of the American Chemical Society . 2011;133:11862–11864. doi: 10.1002/smll.201101821. PubMed DOI
Alapan Y., Bozuyuk U., Erkoc P., Karacakol A. C., Sitti M. Multifunctional surface microrollers for targeted cargo delivery in physiological blood flow. Science Robotics . 2020;5(42, article eaba5726) doi: 10.1126/scirobotics.aba5726. PubMed DOI
Mei Y., Solovev A. A., Sanchez S., Schmidt O. G. Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines. Chemical Society Reviews . 2011;40:2109–2119. doi: 10.1039/C0CS00078G. PubMed DOI
Wallin T. J., Pikul J., Shepherd R. F. 3D printing of soft robotic systems. Nature Reviews Materials . 2018;3:84–100.
Raman R., Cvetkovic C., Uzel S. G., et al. Optogenetic skeletal muscle-powered adaptive biological machines. Proceedings of the National Academy of Sciences . 2016;113:3497–3502. doi: 10.1073/pnas.1516139113. PubMed DOI PMC
Williams B. J., Anand S. V., Rajagopalan J., Saif M. T. A. A self-propelled biohybrid swimmer at low Reynolds number. Nature Communications . 2014;5:p. 3081. PubMed
Wu Y., Wu Z., Lin X., He Q., Li J. Autonomous movement of controllable assembled Janus capsule motors. ACS Nano . 2012;6:10910–10916. doi: 10.1021/nn304335x. PubMed DOI
Palagi S., Fischer P. Bioinspired microrobots. Nature Reviews Materials . 2018;3(6):113–124. doi: 10.1038/s41578-018-0016-9. DOI
Nawroth J. C., Lee H., Feinberg A. W., et al. A tissue-engineered jellyfish with biomimetic propulsion. Nature Biotechnology . 2012;30:792–797. PubMed PMC
Park S.-J., Gazzola M., Park K. S., et al. Phototactic guidance of a tissue-engineered soft-robotic ray. Science . 2016;353:158–162. doi: 10.1126/science.aaf4292. PubMed DOI PMC
Alapan Y., Yasa O., Yigit B., Yasa I. C., Erkoc P., Sitti M. Microrobotics and microorganisms: biohybrid autonomous cellular robots. Annual Review of Control, Robotics, and Autonomous Systems . 2019;2:205–230. doi: 10.1146/annurev-control-053018-023803. DOI
Sun L., Yu Y., Chen Z., et al. Biohybrid robotics with living cell actuation. Chemical Society Reviews . 2020;49:4043–4069. doi: 10.1039/D0CS00120A. PubMed DOI
Hosseinidoust Z., Mostaghaci B., Yasa O., Park B. W., Singh A. V., Sitti M. Bioengineered and biohybrid bacteria-based systems for drug delivery. Advanced Drug Delivery Reviews . 2016;106:27–44. doi: 10.1016/j.addr.2016.09.007. PubMed DOI
Schwarz L., Medina-Sánchez M., Schmidt O. G. Hybrid biomicromotors. Applied Physics Reviews . 2017;4(3, article 031301) doi: 10.1063/1.4993441. DOI
Ricotti L., Trimmer B., Feinberg A. W., et al. Biohybrid actuators for robotics: a review of devices actuated by living cells. Science Robotics . 2017;2(12):p. eaaq0495. doi: 10.1126/scirobotics.aaq0495. PubMed DOI
Carlsen R. W., Sitti M. Bio-hybrid cell-based actuators for microsystems. Small . 2014;10:3831–3851. doi: 10.1002/smll.201400384. PubMed DOI
Goodman R. P., Schaap I. A., Tardin C. F., et al. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science . 2005;310:p. 1661. doi: 10.1126/science.1120367. PubMed DOI
Shih W. M., Quispe J. D., Joyce G. F. A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature . 2004;427(6975):618–621. doi: 10.1038/nature02307. PubMed DOI
Maier A. M., Weig C., Oswald P., Frey E., Fischer P., Liedl T. Magnetic propulsion of microswimmers with DNA-based flagellar bundles. Nano Letters . 2016;16:906–910. doi: 10.1021/acs.nanolett.5b03716. PubMed DOI PMC
Li S., Jiang Q., Liu S., et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nature Biotechnology . 2018;36:258–264. PubMed
Liu S., Jiang Q., Zhao X., et al. A DNA nanodevice-based vaccine for cancer immunotherapy. Nature Materials . 2021;20:421–430. PubMed
Hu Y. Self-assembly of DNA molecules: towards DNA nanorobots for biomedical applications. Cyborg and Bionic Systems . 2021;2021, article 9807520:13. doi: 10.34133/2021/9807520. PubMed DOI PMC
Ringe D., Petsko G. A. How enzymes work. Science . 2008;320(5882):1428–1429. doi: 10.1126/science.1159747. PubMed DOI
Linderstrom-Lang K. Enzymes. Annual Review of Biochemistry . 1937;6:43–72. doi: 10.1146/annurev.bi.06.070137.000355. DOI
Sengupta S., Dey K. K., Muddana H. S., et al. Enzyme molecules as nanomotors. Journal of the American Chemical Society . 2013;135:1406–1414. doi: 10.1021/ja3091615. PubMed DOI
Zhao X., Palacci H., Yadav V., et al. Substrate-driven chemotactic assembly in an enzyme cascade. Nature Chemistry . 2018;10:311–317. PubMed
Guo Z., Wang T., Rawal A., et al. Biocatalytic self-propelled submarine-like metal-organic framework microparticles with pH-triggered buoyancy control for directional vertical motion. Materials Today . 2019;28:10–16. doi: 10.1016/j.mattod.2019.04.022. DOI
Somasundar A., Ghosh S., Mohajerani F., et al. Positive and negative chemotaxis of enzyme-coated liposome motors. Nature Nanotechnology . 2019;14:1129–1134. PubMed
Hortelao A. C., Simó C., Guix M., et al. Swarming behavior and in vivo monitoring of enzymatic nanomotors within the bladder. Science Robotics . 2021;6(52, article eabd2823) doi: 10.1126/scirobotics.abd2823. PubMed DOI
Xuan M., Shao J., Li J. Cell membrane-covered nanoparticles as biomaterials. National Science Review . 2019;6:551–561. doi: 10.1093/nsr/nwz037. PubMed DOI PMC
Fang R. H., Kroll A. V., Gao W., Zhang L. Cell membrane coating nanotechnology. Advanced Materials . 2018;30:p. 1706759. doi: 10.1002/adma.201706759. PubMed DOI PMC
Gao C., Lin Z., Lin X., He Q. Cell membrane–camouflaged colloid motors for biomedical applications. Advanced Therapeutics . 2018;1(5, article 1800056) doi: 10.1002/adtp.201800056. DOI
Wu Z., Li T., Gao W., et al. Cell-membrane-coated synthetic nanomotors for effective biodetoxification. Advanced Functional Materials . 2015;25:3881–3887. doi: 10.1002/adfm.201501050. DOI
Li J., Angsantikul P., Liu W., et al. Biomimetic platelet-camouflaged nanorobots for binding and isolation of biological threats. Advanced Materials . 2018;30, article 1704800 doi: 10.1002/adma.201704800. PubMed DOI
Esteban-Fernández de Ávila B., Angsantikul P., Ramírez-Herrera D. E., et al. Hybrid biomembrane–functionalized nanorobots for concurrent removal of pathogenic bacteria and toxins. Science Robotics . 2018;3(18, article eaat0485) doi: 10.1126/scirobotics.aat0485. PubMed DOI
Delves P. J., Roitt I. M. The immune system. New England Journal of Medicine . 2000;343:37–49. doi: 10.1056/nejm200007063430107. PubMed DOI
Wynn T. A., Chawla A., Pollard J. W. Macrophage biology in development, homeostasis and disease. Nature . 2013;496:445–455. PubMed PMC
Gordon S., Taylor P. R. Monocyte and macrophage heterogeneity. Nature Reviews Immunology . 2005;5:953–964. PubMed
Li J., Jiang X., Li H., Gelinsky M., Gu Z. Tailoring materials for modulation of macrophage fate. Advanced Materials . 2021;33(2004172) doi: 10.1002/adma.202004172. PubMed DOI PMC
Yasa I. C., Ceylan H., Bozuyuk U., Wild A.-M., Sitti M. Elucidating the interaction dynamics between microswimmer body and immune system for medical microrobots. Science Robotics . 2020;5(43, article eaaz3867) doi: 10.1126/scirobotics.aaz3867. PubMed DOI
Han J., Zhen J., du Nguyen V., et al. Hybrid-actuating macrophage-based microrobots for active cancer therapy. Scientific Reports . 2016;6(1):p. 28717. doi: 10.1038/srep28717. PubMed DOI PMC
Nguyen V. D., Min H. K., Kim H. Y., et al. Primary macrophage-based microrobots: an effective tumor TherapyIn Vivoby dual-targeting function and near-infrared-triggered drug release. ACS Nano . 2021;15(5):8492–8506. doi: 10.1021/acsnano.1c00114. PubMed DOI
Park S. J., Lee Y., Choi Y. J., et al. Monocyte-based microrobot with chemotactic motility for tumor theragnosis. Biotechnology and Bioengineering . 2014;111:2132–2138. doi: 10.1002/bit.25270. PubMed DOI
Ley K., Hoffman H. M., Kubes P., et al. Neutrophils: new insights and open questions. Science Immunology . 2018;3(30):p. eaat4579. doi: 10.1126/sciimmunol.aat4579. PubMed DOI
Mantovani A., Cassatella M. A., Costantini C., Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nature Reviews. Immunology . 2011;11:519–531. PubMed
Shao J., Xuan M., Zhang H., Lin X., Wu Z., He Q. Chemotaxis-guided hybrid neutrophil micromotors for targeted drug transport. Angewandte Chemie International Edition . 2017;56:12935–12939. doi: 10.1002/ange.201706570. PubMed DOI
Zhang H., Li Z., Gao C., et al. Dual-responsive biohybrid neutrobots for active target delivery. Science Robotics . 2021;6(52, article eaaz9519) doi: 10.1126/scirobotics.aaz9519. PubMed DOI
Yan J., Yu J., Wang C., Gu Z. Red blood cells for drug delivery. Small Methods . 2017;1:p. 1700270. doi: 10.1002/smtd.201700270. DOI
Wu Z., Li T., Li J., et al. Turning erythrocytes into functional micromotors. ACS Nano . 2014;8:12041–12048. doi: 10.1021/nn506200x. PubMed DOI PMC
Lu Y., Hu Q., Jiang C., Gu Z. Platelet for drug delivery. Current Opinion in Biotechnology . 2019;58:81–91. doi: 10.1016/j.copbio.2018.11.010. PubMed DOI
Tang S., Zhang F., Gong H., et al. Enzyme-powered Janus platelet cell robots for active and targeted drug delivery. Science Robotics . 2020;5(43, article eaba6137) doi: 10.1126/scirobotics.aba6137. PubMed DOI
Friedrich B. M., Jülicher F. Chemotaxis of sperm cells. Proceedings of the National Academy of Sciences . 2007;104:p. 13256. doi: 10.1073/pnas.0703530104. PubMed DOI PMC
Magdanz V., Medina‐Sánchez M., Schwarz L., Xu H., Elgeti J., Schmidt O. G. Spermatozoa as functional components of robotic microswimmers. Advanced Materials . 2017;29:p. 1606301. doi: 10.1002/adma.201606301. PubMed DOI
Chen C., Chang X., Angsantikul P., et al. Chemotactic guidance of synthetic organic/inorganic payloads functionalized sperm micromotors. Advanced Biosystems . 2018;2, article 1700160 doi: 10.1002/adbi.201700160. DOI
Magdanz V., Sanchez S., Schmidt O. G. Development of a sperm-flagella driven micro-bio-robot. Advanced Materials . 2013;25:6581–6588. doi: 10.1002/adma.201302544. PubMed DOI
Magdanz V., Medina-Sánchez M., Chen Y., Guix M., Schmidt O. G. How to improve spermbot performance. Advanced Functional Materials . 2015;25:2763–2770. doi: 10.1002/adfm.201500015. DOI
Li Z., Wang Y., Liu J., et al. Chemically and biologically engineered bacteria-based delivery systems for emerging diagnosis and advanced therapy. Advanced Materials . 2021;33, article 2102580 doi: 10.1002/adma.202102580. PubMed DOI
Bastos-Arrieta J., Revilla-Guarinos A., Uspal W. E., Simmchen J. Bacterial biohybrid microswimmers. Frontiers in Robotics and AI . 2018;5:p. 97. doi: 10.3389/frobt.2018.00097. PubMed DOI PMC
Mostaghaci B., Yasa O., Zhuang J., Sitti M. Bioadhesive bacterial microswimmers for targeted drug delivery in the urinary and gastrointestinal tracts. Advanced Science . 2017;4, article 1700058 doi: 10.1002/advs.201700058. PubMed DOI PMC
Wadhams G. H., Armitage J. P. Making sense of it all: bacterial chemotaxis. Nature Reviews Molecular Cell Biology . 2004;5:1024–1037. PubMed
Zhuang J., Park B.-W., Sitti M. Propulsion and chemotaxis in bacteria-driven microswimmers. Advanced Science . 2017;4:p. 1700109. doi: 10.1002/advs.201700109. PubMed DOI PMC
Park B.-W., Zhuang J., Yasa O., Sitti M. Multifunctional bacteria-driven microswimmers for targeted active drug delivery. ACS Nano . 2017;11:8910–8923. doi: 10.1021/acsnano.7b03207. PubMed DOI
Alapan Y., Yasa O., Schauer O., et al. Soft erythrocyte-based bacterial microswimmers for cargo delivery. Science Robotics . 2018;3, article eaar4423 doi: 10.1126/scirobotics.aar4423. PubMed DOI
Zhang Y., Yan K., Ji F., Zhang L. Enhanced removal of toxic heavy metals using swarming biohybrid adsorbents. Advanced Functional Materials . 2018;28, article 1806340 doi: 10.1002/adfm.201806340. DOI
Lu D., Tang S., Li Y., Cong Z., Zhang X., Wu S. Magnetic-propelled Janus yeast cell robots functionalized with metal-organic frameworks for mycotoxin decontamination. Micromachines . 2021;12:p. 797. doi: 10.3390/mi12070797. PubMed DOI PMC
Yasa O., Erkoc P., Alapan Y., Sitti M. Microalga-powered microswimmers toward active cargo delivery. Advanced Materials . 2018;30, article 1804130 doi: 10.1002/adma.201804130. PubMed DOI
Akolpoglu M. B., Dogan N. O., Bozuyuk U., Ceylan H., Kizilel S., Sitti M. High-yield production of biohybrid microalgae for on-demand cargo delivery. Advanced Science . 2020;7, article 2001256 doi: 10.1002/advs.202001256. PubMed DOI PMC
Santomauro G., Singh A. V., Park B. W., et al. Incorporation of terbium into a microalga leads to magnetotactic swimmers. Advanced Biosystems . 2018;2, article 1800039 doi: 10.1002/adbi.201800039. DOI
Yan X., Zhou Q., Vincent M., et al. Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Science Robotics . 2017;2, article eaaq1155 doi: 10.1126/scirobotics.aaq1155. PubMed DOI
Xu H., Medina-Sánchez M., Magdanz V., Schwarz L., Hebenstreit F., Schmidt O. G. Sperm-hybrid micromotor for targeted drug delivery. ACS Nano . 2018;12:327–337. doi: 10.1021/acsnano.7b06398. PubMed DOI
Xu H., Medina-Sánchez M., Maitz M. F., Werner C., Schmidt O. G. Sperm-micromotors for cargo-delivery through flowing blood. ACS Nano . 2020;14:2982–2993. doi: 10.1021/acsnano.9b07851. PubMed DOI
Nelson B. J., Kaliakatsos I. K., Abbott J. J. Microrobots for minimally invasive medicine. Annual Review of Biomedical Engineering . 2010;12:55–85. PubMed
Srivastava S. K., Medina-Sánchez M., Koch B., Schmidt O. G. Medibots: dual-action biogenic microdaggers for single-cell surgery and drug release. Advanced Materials . 2016;28:832–837. PubMed
Guedes A. C., Amaro H. M., Malcata F. X. Microalgae as sources of high added-value compounds—a brief review of recent work. Biotechnology Progress . 2011;27:597–613. PubMed
Trampe E., Koren K., Akkineni A. R., et al. Functionalized bioink with optical sensor nanoparticles for O2 imaging in 3D-bioprinted constructs. Advanced Functional Materials . 2018;28, article 1804411 doi: 10.1002/adfm.201804411. DOI
Llopis-Lorente A., Garcia-Fernandez A., Murillo-Cremaes N., et al. Enzyme-powered gated mesoporous silica nanomotors for on-command intracellular payload delivery. ACS Nano . 2019;13:12171–12183. doi: 10.1021/acsnano.9b06706. PubMed DOI
Guo J., Agola J. O., Serda R., et al. Biomimetic rebuilding of multifunctional red blood cells: modular design using functional components. ACS Nano . 2020;14:7847–7859. doi: 10.1021/acsnano.9b08714. PubMed DOI
Taherkhani S., Mohammadi M., Daoud J., Martel S., Tabrizian M. Covalent binding of nanoliposomes to the surface of magnetotactic bacteria for the synthesis of self-propelled therapeutic agents. ACS Nano . 2014;8:5049–5060. PubMed
Wang X., Cai J., Sun L., et al. Facile fabrication of magnetic microrobots based on spirulina templates for targeted delivery and synergistic chemo-photothermal therapy. ACS Applied Materials & Interfaces . 2019;11:4745–4756. doi: 10.1021/acsami.8b15586. PubMed DOI
Li J., Mayorga-Martinez C. C., Ohl C.-D., Pumera M. Ultrasonically propelled micro- and nanorobots. Advanced Functional Materials . 2021;32(5, article 2102265) doi: 10.1002/adfm.202102265. DOI
Li J., Wu C., Chu P. K., Gelinsky M. 3D printing of hydrogels: rational design strategies and emerging biomedical applications. Materials Science and Engineering: R: Reports . 2020;140, article 100543 doi: 10.1016/j.mser.2020.100543. DOI
MacDonald E., Wicker R. Multiprocess 3D printing for increasing component functionality. Science . 2016;353:p. aaf2093. doi: 10.1126/science.aaf2093. PubMed DOI
Louis F., Piantino M., Liu H., et al. Bioprinted vascularized mature adipose tissue with collagen microfibers for soft tissue regeneration. Cyborg and Bionic Systems . 2021;2021, article 1412542 doi: 10.34133/2021/1412542. PubMed DOI PMC
El Khoury R., Nagiah N., Mudloff J. A., Thakur V., Chattopadhyay M., Joddar B. 3D bioprinted spheroidal droplets for engineering the heterocellular coupling between cardiomyocytes and cardiac fibroblasts. Cyborg and Bionic Systems . 2021;2021, article 9864212:16. doi: 10.34133/2021/9864212. PubMed DOI PMC
Li J., Pumera M. 3D printing of functional microrobots. Chemical Society Reviews . 2021;50:2794–2838. PubMed
Wang H.-X., Li M., Lee C. M., et al. CRISPR/Cas9-based genome editing for disease modeling and therapy: challenges and opportunities for nonviral delivery. Chemical Reviews . 2017;117:9874–9906. doi: 10.1021/acs.chemrev.6b00799. PubMed DOI
Xie M., Fussenegger M. Designing cell function: assembly of synthetic gene circuits for cell biology applications. Nature Reviews Molecular Cell Biology . 2018;19:507–525. PubMed
Zhou H., Mayorga-Martinez C. C., Pané S., Zhang L., Pumera M. Magnetically driven micro and nanorobots. Chemical Reviews . 2021;121:4999–5041. doi: 10.1021/acs.chemrev.0c01234. PubMed DOI PMC