Nanostructured Hybrid BioBots for Beer Brewing
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37043825
PubMed Central
PMC10134490
DOI
10.1021/acsnano.2c12677
Knihovny.cz E-zdroje
- Klíčová slova
- beer, biohybrid, brewing, driven, fermentation, hydrogel, magnetic, robots,
- MeSH
- fermentace MeSH
- pivo * analýza MeSH
- Saccharomyces cerevisiae * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The brewing industry will amass a revenue above 500 billion euros in 2022, and the market is expected to grow annually. This industrial process is based on a slow sugar fermentation by yeast (commonly Saccharomyces cerevisiae). Herein, we encapsulate yeast cells into a biocompatible alginate (ALG) polymer along Fe3O4 nanoparticles to produce magneto/catalytic nanostructured ALG@yeast-Fe3O4 BioBots. Yeast encapsulated in these biocompatible BioBots keeps their biological activity (growth, reproduction, and catalytic fermentation) essential for brewing. Catalytic fermentation of sugars into CO2 gas caused a continuous oscillatory motion of the BioBots in the solution. This BioBot motion is employed to enhance the beer fermentation process compared to static-free yeast cells. When the process is finished, magnetic actuation of BioBots is employed for their retrieval from the beer samples, which avoids the need of additional filtration steps. All in all, we demonstrate how an industrial process such as beer production can be benefited by miniaturized autonomous magneto/catalytic BioBots.
Zobrazit více v PubMed
Statista.com; Hamburg, Germany, https://www.statista.com/outlook/cmo/alcoholic-drinks/beer/worldwide?currency=eur (accessed 2022–06–14).
Boulton C.; Quain D.. Brewing Yeast and Fermentation; Wiley-Blackwell: Hoboken, 2008.
Bamforth C. W. Progress in Brewing Science and Beer Production. Annu. Rev. Chem. Biomol. Eng. 2017, 8, 1–16. 10.1146/annurev-chembioeng-060816-101450. PubMed DOI
Bamforth C. W.Beer: Tap into the Art and Science of Brewing; Oxford University Press: New York, 2009.
Pascari X.; Ramos A. J.; Marín S.; Sanchís V. Mycotoxins and Beer. Impact of Beer Production Process on Mycotoxin Contamination. A review. Food Res. Int. 2018, 103, 121–129. 10.1016/j.foodres.2017.07.038. PubMed DOI
Hernández A.; Pérez-Nevado F.; Ruiz-Moyano S.; Serradilla M. J.; Villalobos M. C.; Martín A.; Córdoba M. G. Spoilage yeasts: What Are the Sources of Contamination of Foods and Beverages?. Int. J. Food Microbiol. 2018, 286, 98–110. 10.1016/j.ijfoodmicro.2018.07.031. PubMed DOI
Suiker I. M.; Wosten H. A. B. Spoilage Yeasts in Beer and Beer Products. Curr. Opin. Food Sci. 2022, 44, 100815.10.1016/j.cofs.2022.100815. DOI
Bezbradica D.; Obradovic B.; Leskosek-Cukalovic I.; Bugarski B.; Nedovic V. Immobilization of Yeast Cells in PVA Particles for Beer Fermentation. Process Biochem. 2007, 42, 1348–1351. 10.1016/j.procbio.2007.04.009. DOI
Kyselová L.; Brányik T.. Quality Improvement and Fermentation Control in Beer. In Advances in Fermented Foods and Beverages; Holzapfel W., Ed.; Elsevier: Amsterdam, 2015; pp 477–500.
Benucci I.; Cecchi T.; Lombardelli C.; Maresca D.; Mauriello G.; Esti M. Novel Microencapsulated Yeast for the Primary Fermentation of Green Beer: Kinetic Behavior, Volatiles and Sensory Profile. Food Chem. 2021, 340, 127900.10.1016/j.foodchem.2020.127900. PubMed DOI
Esteban-Fernández de Ávila B.; Gao W.; Karshalev E.; Zhang L.; Wang J. Cell-Like Micromotors. Acc. Chem. Res. 2018, 51, 1901–1910. 10.1021/acs.accounts.8b00202. PubMed DOI
Stanton M. M.; Simmchen J.; Ma X.; Miguel-López A.; Sánchez S. Biohybrid Janus Motors Driven by Escherichia coli. Adv. Mater. Interfaces 2016, 3, 1500505.10.1002/admi.201500505. DOI
Stanton M. M.; Park B.-W.; Miguel-López A.; Ma X.; Sitti M.; Sánchez S. Biohybrid Microtube Swimmers Driven by Single Captured Bacteria. Small 2017, 13, 1603679.10.1002/smll.201603679. PubMed DOI
Sun M.; Fan X.; Meng X.; Song J.; Chen W.; Sun L.; Xie H. Magnetic Biohybrid Micromotors with High Maneuverability for Efficient Drug Loading and Targeted Drug Delivery. Nanoscale 2019, 11, 18382.10.1039/C9NR06221A. PubMed DOI
Striggow F.; Medina-Sánchez M.; Auernhammer G. K.; Magdanz V.; Friedrich B. M.; Schmidt O. G. Sperm-Driven Micromotors Moving in Oviduct Fluid and Viscoelastic Media. Small 2020, 16, 2000213.10.1002/smll.202000213. PubMed DOI
Karshalev E.; Esteban-Fernández de Ávila B.; Wang J. Micromotors for “Chemistry-on-the-Fly. J. Am. Chem. Soc. 2018, 140, 3810–3820. 10.1021/jacs.8b00088. PubMed DOI
Hu Y.; Liu W.; Sun Y. Self-Propelled Micro-/Nanomotors as “On-the-Move” Platforms: Cleaners, Sensors, and Reactors. Adv. Funct. Mater. 2022, 32, 2109181.10.1002/adfm.202109181. DOI
Gao J.; Yuan K.; Zhang L.. In Vitro Biosensing Using Micro-/Nanomachines. In Field-Driven Micro and Nanorobots for Biology and Medicine; Sun Y., Wang X., Yu J., Eds.; Springer: Berlin, 2022; pp 243–268.
Zhou H.; Mayorga-Martinez C. C.; Pané S.; Zhang L.; Pumera M. Magnetically Driven Micro and Nanorobots. Chem. Rev. 2021, 121, 4999–5041. 10.1021/acs.chemrev.0c01234. PubMed DOI PMC
Zhou H.; Mayorga-Martinez C. C.; Pumera M. Microplastic Removal and Degradation by Mussel-Inspired Adhesive Magnetic/Enzymatic Microrobots. Small methods 2021, 5, 2100230.10.1002/smtd.202100230. PubMed DOI
Wang J.; Dong R.; Yang Q.; Wu H.; Bi Z.; Liang Q.; Wang Q.; Wang C.; Mei Y.; Cai Y. One Body, Two Hands: Photocatalytic Function- and Fenton Effect-Integrated Light-Driven Micromotors for Pollutant Degradation. Nanoscale 2019, 11, 16592–16598. 10.1039/C9NR04295D. PubMed DOI
Liang C.; Zhan C.; Zeng F.; Xu D.; Wang Y.; Zhao W.; Zhang J.; Guo J.; Feng H.; Ma X. Bilayer Tubular Micromotors for Simultaneous Environmental Monitoring and Remediation. ACS Appl. Mater. Interfaces 2018, 10, 35099–35107. 10.1021/acsami.8b10921. PubMed DOI
Villa K.; Parmar J.; Vilela D.; Sánchez S. Metal-Oxide-Based Microjets for the Simultaneous Removal of Organic Pollutants and Heavy Metals. ACS Appl. Mater. Interfaces 2018, 10, 20478–20486. 10.1021/acsami.8b04353. PubMed DOI
Maria-Hormigos R.; Pacheco M.; Jurado-Sánchez B.; Escarpa A. Carbon Nanotubes-Ferrite-Manganese Dioxide Micromotors for Advanced Oxidation Processes in Water Treatment. Environ. Sci. Nano 2018, 5, 2993–3003. 10.1039/C8EN00824H. DOI
Villa K.; Vyskočil J.; Ying Y.; Zelenka J.; Pumera M. Microrobots in Brewery: Dual Magnetic/Light-Powered Hybrid Microrobots for Preventing Microbial Contamination in Beer. Chem.—Eur. J. 2020, 26, 3039–3043. 10.1002/chem.202000162. PubMed DOI
Maria-Hormigos R.; Jurado-Sánchez B.; Escarpa A. Surfactant-Free β-Galactosidase Micromotors for “On-The-Move” Lactose Hydrolysis. Adv. Funct. Mater. 2018, 28, 1704256.10.1002/adfm.201704256. DOI
Rashidzadeh B.; Shokri E.; Reza Mahdavinia G.; Moradi R.; Mohamadi-Aghdam S.; Abdi S. Preparation and Characterization of Antibacterial Magnetic-/pH-Sensitive Alginate/Ag/Fe3O4 Hydrogel Beads for Controlled Drug Release. Int. J. Biol. Macromol. 2020, 154, 134–141. 10.1016/j.ijbiomac.2020.03.028. PubMed DOI
Nagashima R.; Hirose H.; Matsuyama H. Immobilization of Microorganisms within Porous Polymeric Capsules. J. Appl. Polym. Sci. 2011, 121, 321–326. 10.1002/app.33579. DOI
Lopez-Menchero J. R.; Ogawa M.; Mauricio J. C.; Moreno J.; Moreno-García J. Effect of Calcium Alginate Coating on the Cell Retention and Fermentation of a Fungus-Yeast Immobilization System. LWT 2021, 144, 111250.10.1016/j.lwt.2021.111250. DOI
Ivanova V.; Petrova P.; Hristov J. Application in the Ethanol Fermentation of Immobilized Yeast Cells in Matrix of Alginate/Magnetic Nanoparticles, on Chitosan-Magnetite Microparticles and Cellulose-Coated Magnetic Nanoparticles. Int. Rev. Chem. Eng. 2011, 3, 289–299.
María-Hormigos R.; Escarpa A.; Goudeau B.; Ravaine V.; Perro A.; Kuhn A. Oscillatory Light-Emitting Biopolymer Based Janus Microswimmers. Adv. Mater. Interfaces 2020, 7, 1902094.10.1002/admi.201902094. DOI
Kuczajowska-Zadrożna M.; Filipkowsk U.; Jóźwiak T. Adsorption of Cu (II) and Cd (II) from Aqueous Solutions by Chitosan Immobilized in Alginate Beads. J. Environ. Chem. Eng. 2020, 8, 103878.10.1016/j.jece.2020.103878. DOI
Li Y.; Shuai X.-X.; Zhang M.; Ma F.-Y.; Chen J.; Qiao J.; Chen T.-H.; Du L.-Q. Preparation of Ethylenediamine-Modified Pectin/Alginate/Fe3O4 Microsphere and Its Efficient Pb2+ Adsorption Properties. Int. J. Biol. Macromol. 2022, 223, 173–183. 10.1016/j.ijbiomac.2022.10.160. PubMed DOI
Germanos G.; Youssef S.; Farah W.; Lescop B.; Rioual S.; Abboud M. The Impact of Magnetite Nanoparticles on the Physicochemical and Adsorption Properties of Magnetic Alginate Beads. J. Environ. Chem. Eng. 2020, 8, 104223.10.1016/j.jece.2020.104223. DOI
Wu M.; Koizumi Y.; Nishiyama H.; Tomita I.; Inagi S. Buoyant Force-Induced Continuous Floating and Sinking of Janus Micromotors. RSC Adv. 2018, 8, 33331.10.1039/C8RA05844J. PubMed DOI PMC
Pires E.; Brányik T.. Biochemistry of Beer Fermentation. Springer, Switzerland, 2015;.
Jaywant S. A.; Singh H.; Arif K. M. Sensors and Instruments for Brix Measurement: A Review. Sensors 2022, 22, 2290.10.3390/s22062290. PubMed DOI PMC
Blesa M. A.; Matijević E. Phase Transformations of Iron Oxides, Oxohydroxides, and Hydrous Oxides in Aqueous Media. Adv. Colloid Interface Sci. 1989, 29, 173–221. 10.1016/0001-8686(89)80009-0. DOI
Aston R.; Sewell K.; Klein T.; Lawrie G.; Grøndahl L. Evaluation of the Impact of Freezing Preparation Techniques on the Characterisation of Alginate Hydrogels by Cryo-SEM. Eur. Polym. J. 2016, 82, 1–15. 10.1016/j.eurpolymj.2016.06.025. DOI