LIN28B is over-expressed in specific subtypes of pediatric leukemia and regulates lncRNA H19
Jazyk angličtina Země Itálie Médium print-electronic
Typ dokumentu dopisy, práce podpořená grantem
PubMed
26969084
PubMed Central
PMC5013963
DOI
10.3324/haematol.2016.143818
PII: haematol.2016.143818
Knihovny.cz E-zdroje
- Klíčová slova
- IncRNA H19 regulation, LIN28B overexpression, pediatric leukemia,
- MeSH
- dítě MeSH
- kojenec MeSH
- leukemie genetika metabolismus patologie MeSH
- lidé MeSH
- mladiství MeSH
- nádorové proteiny biosyntéza genetika MeSH
- předškolní dítě MeSH
- proteiny vázající RNA biosyntéza genetika MeSH
- regulace genové exprese u leukemie * MeSH
- RNA dlouhá nekódující genetika metabolismus MeSH
- RNA nádorová genetika metabolismus MeSH
- Check Tag
- dítě MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- dopisy MeSH
- práce podpořená grantem MeSH
- Názvy látek
- H19 long non-coding RNA MeSH Prohlížeč
- LIN28B protein, human MeSH Prohlížeč
- nádorové proteiny MeSH
- proteiny vázající RNA MeSH
- RNA dlouhá nekódující MeSH
- RNA nádorová MeSH
Center for Medical Genetics Ghent University Belgium
Department of Genetics University Hospital of Robert Debré and Paris Diderot University Paris France
Department of Women and Child Health University of Padova Italy
Dutch Childhood Oncology Group the Hague the Netherlands
Pathological Anatomy AZ Sint Jan Bruges Belgium
Pediatric Haemato Oncology University Hospitals Leuven Belgium
Zobrazit více v PubMed
Zhu H, Shyh-Chang N, Segrè AV, et al. The Lin28/let-7 Axis Regulates Glucose Metabolism. Cell. 2011;147(1):81–94. PubMed PMC
Carmel-Gross I, Bollag N, Armon L, Urbach A. LIN28: A Stem Cell Factor with a Key Role in Pediatric Tumor Formation. Stem Cells Dev. 2016;25(5):367–377. PubMed
Helsmoortel HH, Bresolin S, Lammens T, et al. LIN28B overexpression defines a novel fetal-like subgroup of juvenile myelomonocytic leukemia. Blood. 2016;127(9):1163–1172. PubMed
Bresolin S, Trentin L, Zecca M, et al. Gene expression signatures of pediatric myelodysplastic syndromes are associated with risk of evolution into acute myeloid leukemia. Leukemia. 2012;26(7):1717–1719. PubMed
Stam RW, Schneider P, Hagelstein JAP, et al. Gene expression profiling-based dissection of MLL translocated and MLL germline acute lymphoblastic leukemia in infants. Blood. 2010;115(14):2835–2844. PubMed
Nordlund J, Bäcklin CL, Wahlberg P, et al. Genome-wide signatures of differential DNA methylation in pediatric acute lymphoblastic leukemia. Genome Biol. 2013;14(9):r105. PubMed PMC
Loudin MG, Wang J, Leung H-CE, et al. Genomic profiling in Down syndrome acute lymphoblastic leukemia identifies histone gene deletions associated with altered methylation profiles. Leukemia. 2011;25(10):1555–1563. PubMed PMC
Boer Den ML, van Slegtenhorst M, De Menezes RX, et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol. 2009;10(2):125–134. PubMed PMC
Kang H, Chen I-M, Wilson CS, et al. Gene expression classifiers for relapse-free survival and minimal residual disease improve risk classification and outcome prediction in pediatric B-precursor acute lymphoblastic leukemia. Blood. 2010;115(7):1394–1405. PubMed PMC
Spijkers-Hagelstein JAP, Schneider P, Hulleman E, et al. Elevated S100A8/S100A9 expression causes glucocorticoid resistance in MLL-rearranged infant acute lymphoblastic leukemia. Leukemia. 2012; 26(6):1255–1265. PubMed
Kang H, Wilson CS, Harvey RC, et al. Gene expression profiles predictive of outcome and age in infant acute lymphoblastic leukemia: a Children’s Oncology Group study. Blood. 2012;119(8):1872–1881. PubMed PMC
Zangrando A, Dell’Orto MC, Kronnie te G, Basso G. MLL rearrangements in pediatric acute lymphoblastic and myeloblastic leukemias: MLL specific and lineage specific signatures. BMC Med Genomics. 2009;2:36. PubMed PMC
Balgobind BV, van den Heuvel-Eibrink MM, De Menezes RX, et al. Evaluation of gene expression signatures predictive of cytogenetic and molecular subtypes of pediatric acute myeloid leukemia. Haematologica. 2011;96(2):221–230. PubMed PMC
Jo A, Mitani S, Shiba N, et al. High expression of EVI1 and MEL1 is a compelling poor prognostic marker of pediatric AML. Leukemia. 2015;29(5):1076–1083. PubMed
Pigazzi M, Masetti R, Bresolin S, et al. MLL partner genes drive distinct gene expression profiles and genomic alterations in pediatric acute myeloid leukemia: an AIEOP study. Leukemia. 2011;25(3):560–563. PubMed
Bachas C, Schuurhuls GJ, Zwaan CM, et al. Gene Expression Profiles Associated with Pediatric Relapsed AML. PLoS ONE. 2015;10(4):e0121730. PubMed PMC
Sidiropoulos N, Sohi SH, Rapin N, Bagger FO. SinaPlot: an enhanced chart for simple and truthful representation of single observations over multiple classes. Available from: http://dx.doi.org/10.1101/028191. DOI
Yuan J, Nguyen CK, Liu X, Kanellopoulou C, Muljo SA. Lin28b reprograms adult bone marrow hematopoietic progenitors to mediate fetal-like lymphopoiesis. Science. 2012;335(6073):1195–1200. PubMed PMC
Viswanathan SR, Powers JT, Einhorn W, et al. Lin28 promotes transformation and is associated with advanced human malignancies. Nat Genet. 2009;41(7):843–848. PubMed PMC
Volders P-J, Helsens K, Wang X, et al. LNCipedia: a database for annotated human lncRNA transcript sequences and structures. Nucleic Acids Res. 2013;41(D1):D246–D251. PubMed PMC
Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP. GenePattern 2.0. Nat Genet. 2006;38(5):500–501. PubMed
Klijn C, Durinck S, Stawiski EW, et al. A comprehensive transcriptional portrait of human cancer cell lines. Nat Biotechnol. 2015; 33(3):306–312. PubMed
Kallen AN, Zhou X-B, Xu J, et al. The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol Cell. 2013;52(1):101–112. PubMed PMC
Gao Y, Wu F, Zhou J, et al. The H19/let-7 double-negative feedback loop contributes to glucose metabolism in muscle cells. Nucleic Acids Res. 2014;42(22):13799–13811. PubMed PMC
Copley MR, Babovic S, Benz C, et al. The Lin28b–let-7–Hmga2 axis determines the higher self-renewal potential of fetal haematopoietic stem cells. Nat Cell Biol. 2013;15(8):916–925. PubMed
Matouk IJ, Raveh E, Abu-lail R, et al. Oncofetal H19 RNA promotes tumor metastasis. Biochim Biophys Acta. 2014;1843(7):1414–1426. PubMed
Zhou Y, Li Y-S, Bandi SR, et al. Lin28b promotes fetal B lymphopoiesis through the transcription factor Arid3a. J Exp Med. 2015; 212(4):569–580. PubMed PMC
Haenebalcke L, Goossens S, Naessens M, et al. Efficient ROSA26-based conditional and/or inducible transgenesis using RMCE-compatible F1 hybrid mouse embryonic stem cells. Stem Cell Rev. 2013;9(6):774–785. PubMed
Wang LD, Rao TN, Rowe RG, et al. The role of Lin28b in myeloid and mast cell differentiation and mast cell malignancy. Leukemia. 2015;29(6):1320–1330. PubMed PMC
Molenaar JJ, Domingo-Fernández R, et al. LIN28B induces neuroblastoma and enhances MYCN levels via let-7 suppression. Nat Genet. 2012;44(11):1199–1206. PubMed