Active Microrobots for Dual Removal of Biofilms via Chemical and Physical Mechanisms
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39745814
PubMed Central
PMC11744513
DOI
10.1021/acsami.4c18360
Knihovny.cz E-zdroje
- Klíčová slova
- biofilm, collective motion, magnetically driven, micromotors, microrobots, photocatalysis,
- MeSH
- antibakteriální látky * chemie farmakologie MeSH
- biofilmy * účinky záření MeSH
- Escherichia coli * fyziologie MeSH
- fotolýza účinky záření MeSH
- mikrosféry MeSH
- platina chemie MeSH
- reaktivní formy kyslíku metabolismus MeSH
- robotika přístrojové vybavení MeSH
- ultrafialové záření MeSH
- železité sloučeniny chemie MeSH
- zinek chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky * MeSH
- platina MeSH
- reaktivní formy kyslíku MeSH
- železité sloučeniny MeSH
- zinek MeSH
Bacterial biofilms are complex multicellular communities that adhere firmly to solid surfaces. They are widely recognized as major threats to human health, contributing to issues such as persistent infections on medical implants and severe contamination in drinking water systems. As a potential treatment for biofilms, this work proposes two strategies: (i) light-driven ZnFe2O4 (ZFO)/Pt microrobots for photodegradation of biofilms and (ii) magnetically driven ZFO microrobots for mechanical removal of biofilms from surfaces. Magnetically driven ZFO microrobots were realized by synthesizing ZFO microspheres through a low-cost and large-scale hydrothermal synthesis, followed by a calcination process. Then, a Pt layer was deposited on the surface of the ZFO microspheres to break their symmetry, resulting in self-propelled light-driven Janus ZFO/Pt microrobots. Light-driven ZFO/Pt microrobots exhibited active locomotion under UV light irradiation and controllable motion in terms of "stop and go" features. Magnetically driven ZFO microrobots were capable of maneuvering precisely when subjected to an external rotating magnetic field. These microrobots could eliminate Gram-negative Escherichia coli (E. coli) biofilms through photogenerated reactive oxygen species (ROS)-related antibacterial properties in combination with their light-powered active locomotion, accelerating the mass transfer to remove biofilms more effectively in water. Moreover, the actuation of magnetically driven ZFO microrobots allowed for the physical disruption of biofilms, which represents a reliable alternative to photocatalysis for the removal of strongly anchored biofilms in confined spaces. With their versatile characteristics, the envisioned microrobots highlight a significant potential for biofilm removal with high efficacy in both open and confined spaces, such as the pipelines of industrial plants.
Zobrazit více v PubMed
Blair K. M.; Turner L.; Winkelman J. T.; Berg H. C.; Kearns D. B. A Molecular Clutch Disables Flagella in the Bacillus Subtilis Biofilm. Science 2008, 320, 1636–1638. 10.1126/science.1157877. PubMed DOI
Mah T. F.; Pitts B.; Pellock B.; Walker G. C.; Stewart P. S.; O’Toole G. A. A Genetic Basis for Pseudomonas Aeruginosa Biofilm Antibiotic Resistance. Nature 2003, 426, 306–310. 10.1038/nature02122. PubMed DOI
Arnaouteli S.; Bamford N. C.; Stanley-Wall N. R.; Kovács Á. T. Bacillus Subtilis Biofilm Formation and Social Interactions. Nat. Rev. Microbiol. 2021, 19, 600–614. 10.1038/s41579-021-00540-9. PubMed DOI
Liu Y.; Shi L.; Su L.; Van der Mei H. C.; Jutte P. C.; Ren Y.; Busscher H. J. Nanotechnology-Based Antimicrobials and Delivery Systems for Biofilm-Infection Control. Chem. Soc. Rev. 2019, 48, 428–446. 10.1039/C7CS00807D. PubMed DOI
Peterson B. W.; He Y.; Ren Y.; Zerdoum A.; Libera M. R.; Sharma P. K.; van Winkelhoff A. J.; Neut D.; Stoodley P.; van der Mei H. C.; Busscher H. J. Viscoelasticity of Biofilms and Their Recalcitrance to Mechanical and Chemical Challenges. FEMS Microbiol. Rev. 2015, 39, 234–245. 10.1093/femsre/fuu008. PubMed DOI PMC
Dieltjens L.; Appermans K.; Lissens M.; Lories B.; Kim W.; Van der Eycken E. V.; Foster K. R.; Steenackers H. P. Inhibiting Bacterial Cooperation Is an Evolutionarily Robust Anti-Biofilm Strategy. Nat. Commun. 2020, 11, 10710.1038/s41467-019-13660-x. PubMed DOI PMC
Chauhan A.; Ghigo J. M.; Beloin C. Study of in Vivo Catheter Biofilm Infections Using Pediatric Central Venous Catheter Implanted in Rat. Nat. Protoc. 2016, 11, 525–541. 10.1038/nprot.2016.033. PubMed DOI
Arciola C. R.; Campoccia D.; Montanaro L. Implant Infections: Adhesion, Biofilm Formation and Immune Evasion. Nat. Rev. Microbiol. 2018, 16, 397–409. 10.1038/s41579-018-0019-y. PubMed DOI
Sun M.; Chan K. F.; Zhang Z.; Wang L.; Wang Q.; Yang S.; Chan S. M.; Chiu P. W. Y.; Sung J. J. Y.; Zhang L. Magnetic Microswarm and Fluoroscopy-Guided Platform for Biofilm Eradication in Biliary Stents. Adv. Mater. 2022, 34, 220188810.1002/adma.202201888. PubMed DOI
Ussia M.; Urso M.; Dolezelikova K.; Michalkova H.; Adam V.; Pumera M. Active Light-Powered Antibiofilm ZnO Micromotors with Chemically Programmable Properties. Adv. Funct. Mater. 2021, 31, 210117810.1002/adfm.202101178. DOI
Chan S.; Pullerits K.; Keucken A.; Persson K. M.; Paul C. J.; Rådström P. Bacterial Release from Pipe Biofilm in a Full-Scale Drinking Water Distribution System. npj Biofilms Microbiomes 2019, 5, 910.1038/s41522-019-0082-9. PubMed DOI PMC
Farh H. M. H.; El Amine Ben Seghier M.; Taiwo R.; Zayed T. Analysis and Ranking of Corrosion Causes for Water Pipelines: A Critical Review. npj Clean Water 2023, 6, 6510.1038/s41545-023-00275-5. DOI
Gomes I. B.; Simões M.; Simões L. C. An Overview on the Reactors to Study Drinking Water Biofilms. Water Res. 2014, 62, 63–87. 10.1016/j.watres.2014.05.039. PubMed DOI
Villa K.; Sopha H.; Zelenka J.; Motola M.; Dekanovsky L.; Beketova D. C.; Macak J. M.; Ruml T.; Pumera M. Enzyme-Photocatalyst Tandem Microrobot Powered by Urea for Escherichia coli Biofilm Eradication. Small 2022, 18, 210661210.1002/smll.202106612. PubMed DOI
Urso M.; Ussia M.; Pumera M. Smart Micro- and Nanorobots for Water Purification. Nat. Rev. Bioeng. 2023, 1, 236–251. 10.1038/s44222-023-00025-9. PubMed DOI PMC
Liu Y.; Naha P. C.; Hwang G.; Kim D.; Huang Y.; Simon-Soro A.; Jung H. I.; Ren Z.; Li Y.; Gubara S.; Alawi F.; Zero D.; Hara A. T.; Cormode D. P.; Koo H. Topical Ferumoxytol Nanoparticles Disrupt Biofilms and Prevent Tooth Decay in Vivo via Intrinsic Catalytic Activity. Nat. Commun. 2018, 9, 292010.1038/s41467-018-05342-x. PubMed DOI PMC
Chen Z.; Wang Z.; Ren J.; Qu X. Enzyme Mimicry for Combating Bacteria and Biofilms. Acc. Chem. Res. 2018, 51, 789–799. 10.1021/acs.accounts.8b00011. PubMed DOI
Benoit D. S. W.; Sims K. R.; Fraser D. Nanoparticles for Oral Biofilm Treatments. ACS Nano 2019, 13, 4869–4875. 10.1021/acsnano.9b02816. PubMed DOI PMC
Hu Y.; Ruan X.; Lv X.; Xu Y.; Wang W.; Cai Y.; Ding M.; Dong H.; Shao J.; Yang D.; Dong X. Biofilm Microenvironment-Responsive Nanoparticles for the Treatment of Bacterial Infection. Nano Today 2022, 46, 10160210.1016/j.nantod.2022.101602. DOI
Wang Z.; Klingner A.; Magdanz V.; Misra S.; Khalil I. S. M. Soft Bio-Microrobots: Toward Biomedical Applications. Adv. Intell. Syst. 2023, 6, 230009310.1002/aisy.202300093. DOI
Soto F.; Wang J.; Ahmed R.; Demirci U. Medical Micro/Nanorobots in Precision Medicine. Adv. Sci. 2020, 7, 200220310.1002/advs.202002203. PubMed DOI PMC
Zhang Z.; Wang L.; Chan T. K. F.; Chen Z.; Ip M.; Chan P. K. S.; Sung J. J. Y.; Zhang L. Micro-/Nanorobots in Antimicrobial Applications: Recent Progress, Challenges, and Opportunities. Adv. Healthcare Mater. 2022, 11, 210199110.1002/adhm.202101991. PubMed DOI
Wu R.; Zhu Y.; Cai X.; Wu S.; Xu L.; Yu T. Recent Process in Microrobots: From Propulsion to Swarming for Biomedical Applications. Micromachines 2022, 13, 147310.3390/mi13091473. PubMed DOI PMC
Zhang F.; Zhuang J.; Li Z.; Gong H.; de Ávila B. E. F.; Duan Y.; Zhang Q.; Zhou J.; Yin L.; Karshalev E.; Gao W.; Nizet V.; Fang R. H.; Zhang L.; Wang J. Nanoparticle-Modified Microrobots for in Vivo Antibiotic Delivery to Treat Acute Bacterial Pneumonia. Nat. Mater. 2022, 21, 1324–1332. 10.1038/s41563-022-01360-9. PubMed DOI PMC
Liu D.; Wang T.; Lu Y. Untethered Microrobots for Active Drug Delivery: From Rational Design to Clinical Settings. Adv. Healthcare Mater. 2022, 11, 210225310.1002/adhm.202102253. PubMed DOI
Rojas D.; Kuthanova M.; Dolezelikova K.; Pumera M. Facet Nanoarchitectonics of Visible-Light Driven Ag3PO4 Photocatalytic Micromotors: Tuning Motion for Biofilm Eradication. NPG Asia Mater. 2022, 14, 6310.1038/s41427-022-00409-0. DOI
Ussia M.; Urso M.; Kment S.; Fialova T.; Klima K.; Dolezelikova K.; Pumera M. Light-Propelled Nanorobots for Facial Titanium Implants Biofilms Removal. Small 2022, 18, 220070810.1002/smll.202200708. PubMed DOI
Guix M.; Mayorga-martinez C. C.; Merkoc A. Nano/Micromotors in (Bio) Chemical Science Applications. Chem. Rev. 2014, 114, 6285–6322. 10.1021/cr400273r. PubMed DOI
Hu D.; Li H.; Wang B.; Ye Z.; Lei W.; Jia F.; Jin Q.; Ren K. F.; Ji J. Surface-Adaptive Gold Nanoparticles with Effective Adherence and Enhanced Photothermal Ablation of Methicillin-Resistant Staphylococcus Aureus Biofilm. ACS Nano 2017, 11, 9330–9339. 10.1021/acsnano.7b04731. PubMed DOI
Villa K.; Viktorova J.; Plutnar J.; Ruml T.; Hoang L.; Pumera M. Chemical Microrobots as Self-Propelled Microbrushes against Dental Biofilm. Cell Rep. Phys. Sci. 2020, 1, 10018110.1016/j.xcrp.2020.100181. DOI
Yuan K.; Jurado-Sánchez B.; Escarpa A. Dual-Propelled Lanbiotic Based Janus Micromotors for Selective Inactivation of Bacterial Biofilms. Angew. Chem., Int. Ed. 2021, 60, 4915–4924. 10.1002/anie.202011617. PubMed DOI
Mayorga-Martinez C. C.; Zelenka J.; Klima K.; Mayorga-Burrezo P.; Hoang L.; Ruml T.; Pumera M. Swarming Magnetic Photoactive Microrobots for Dental Implant Biofilm Eradication. ACS Nano 2022, 16, 8694–8703. 10.1021/acsnano.2c02516. PubMed DOI
Dong Y.; Wang L.; Zhang Z.; Ji F.; Chan T. K. F.; Yang H.; Chan C. P. L.; Yang Z.; Chen Z.; Chang W. T.; Chan J. Y. K.; Sung J. J. Y.; Zhang L. Endoscope-Assisted Magnetic Helical Micromachine Delivery for Biofilm Eradication in Tympanostomy Tube. Sci. Adv. 2022, 8, eabq857310.1126/sciadv.abq8573. PubMed DOI PMC
Zhou H.; Mayorga-Martinez C. C.; Pané S.; Zhang L.; Pumera M. Magnetically Driven Micro and Nanorobots. Chem. Rev. 2021, 121, 4999–5041. 10.1021/acs.chemrev.0c01234. PubMed DOI PMC
Wang L.; Meng Z.; Chen Y.; Zheng Y. Engineering Magnetic Micro/Nanorobots for Versatile Biomedical Applications. Adv. Intell. Syst. 2021, 3, 200026710.1002/aisy.202000267. DOI
Hwang G.; Paula A. J.; Hunter E. E.; Liu Y.; Babeer A.; Karabucak B.; Stebe K.; Kumar V.; Steager E.; Koo H. Catalytic Antimicrobial Robots for Biofilm Eradication. Sci. Robot. 2019, 4, eaaw238810.1126/scirobotics.aaw2388. PubMed DOI PMC
Dong Y.; Wang L.; Yuan K.; Ji F.; Gao J.; Zhang Z.; Du X.; Tian Y.; Wang Q.; Zhang L. Magnetic Microswarm Composed of Porous Nanocatalysts for Targeted Elimination of Biofilm Occlusion. ACS Nano 2021, 15, 5056–5067. 10.1021/acsnano.0c10010. PubMed DOI
Sun B.; Sun M.; Zhang Z.; Jiang Y.; Hao B.; Wang X.; Cao Y.; Chan T. K. F.; Zhang L. Magnetic Hydrogel Micromachines with Active Release of Antibacterial Agent for Biofilm Eradication. Adv. Intell. Syst. 2023, 6, 230009210.1002/aisy.202300092. DOI
Huang S.; Gao Y.; Lv Y.; Wang Y.; Cao Y.; Zhao W.; Zuo D.; Mu H.; Hua Y. Applications of Nano/Micromotors for Treatment and Diagnosis in Biological Lumens. Micromachines 2022, 13, 178010.3390/mi13101780. PubMed DOI PMC
Ji H.; Hu H.; Tang Q.; Kang X.; Liu X.; Zhao L.; Jing R.; Wu M.; Li G.; Zhou X.; Liu J.; Wang Q.; Cong H.; Wu L.; Qin Y. Precisely Controlled and Deeply Penetrated Micro-Nano Hybrid Multifunctional Motors with Enhanced Antibacterial Activity against Refractory Biofilm Infections. J. Hazard. Mater. 2022, 436, 12921010.1016/j.jhazmat.2022.129210. PubMed DOI
Urso M.; Ussia M.; Pumera M. Breaking Polymer Chains with Self-Propelled Light-Controlled Navigable Hematite Microrobots. Adv. Funct. Mater. 2021, 91, 210151010.1002/adfm.202101510. DOI
Urso M.; Ussia M.; Novotný F.; Pumera M. Trapping and detecting nanoplastics by MXene-derived oxide microrobots. Nat. Commun. 2022, 13, 357310.1038/s41467-022-31161-2. PubMed DOI PMC
Manjura Hoque S.; Sazzad Hossain Md.; Choudhury S.; Akhter S.; Hyder F. Synthesis and Characterization of ZnFe2O4 Nanoparticles and its Biomedical Applications. Mater. Lett. 2016, 162, 60–63. 10.1016/j.matlet.2015.09.066. PubMed DOI PMC
Huang Y.; Liang Y.; Rao Y.; Zhu D.; Cao J.; Shen Z.; Ho W.; Lee S. C. Environment-Friendly Carbon Quantum Dots/ZnFe2O4 Photocatalysts: Characterization, Biocompatibility, and Mechanisms for NO Removal. Environ. Sci. Technol. 2017, 51, 2924–2933. 10.1021/acs.est.6b04460. PubMed DOI
F Fang Z.; Zhang L.; Qi H.; Yue H.; Zhang T.; Zhao X.; Chen G.; Wei Y.; Wang C.; Zhang D. Nanosheet Assembled Hollow ZnFe2O4 Microsphere as Anode for Lithium-Ion Batteries. J. Alloys Compd. 2018, 762, 480–487. 10.1016/j.jallcom.2018.05.259. DOI
Köseoğlu Y.; Baykal A.; Toprak M. S.; Gözüak F.; Başaran A. C.; Aktaş B. Synthesis and Characterization of ZnFe2O4 Magnetic Nanoparticles via a PEG-Assisted Route. J. Alloys Compd. 2008, 462, 209–213. 10.1016/j.jallcom.2007.07.121. DOI
Manohar A.; Vijayakanth V.; Kim K. H. Influence of Ca Doping on ZnFe2O4 Nanoparticles Magnetic Hyperthermia and Cytotoxicity Study. J. Alloys Compd. 2021, 886, 16127610.1016/j.jallcom.2021.161276. DOI
Sundararajan M.; Sukumar M.; Dash C. S.; Sutha A.; Suresh S.; Ubaidullah M.; Al-Enizi A. M.; Raza M. K.; Kumar D. A Comparative Study on NiFe2O4 and ZnFe2O4 Spinel Nanoparticles: Structural, Surface Chemistry, Optical, Morphology and Magnetic Studies. Phys. B 2022, 644, 41423210.1016/j.physb.2022.414232. DOI
Khezri B.; Villa K. Hybrid Photoresponsive/Biocatalytic Micro- and Nanoswimmers. Chem. - Asian J. 2022, 17, e20220059610.1002/asia.202200596. PubMed DOI
Villa K.; Novotný F.; Zelenka J.; Browne M. P.; Ruml T.; Pumera M. Visible-Light-Driven Single-Component BiVO4 Micromotors with the Autonomous Ability for Capturing Microorganisms. ACS Nano 2019, 13, 8135–8145. 10.1021/acsnano.9b03184. PubMed DOI
Peng X.; Urso M.; Pumera M. Photo-Fenton Degradation of Nitroaromatic Explosives by Light-Powered Hematite Microrobots: When Higher Speed Is Not What We Go For. Small Methods 2021, 5, 210061710.1002/smtd.202100617. PubMed DOI
Lyu X.; Liu X.; Zhou C.; Duan S.; Xu P.; Dai J.; Chen X.; Peng Y.; Cui D.; Tang J.; Ma X.; Wang W. Active, Yet Little Mobility: Asymmetric Decomposition of H2O2 Is Not Sufficient in Propelling Catalytic Micromotors. J. Am. Chem. Soc. 2021, 143, 12154–12164. 10.1021/jacs.1c04501. PubMed DOI
Brooks A. M.; Tasinkevych M.; Sabrina S.; Velegol D.; Sen A.; Bishop K. J. M. Shape-Directed Rotation of Homogeneous Micromotors via Catalytic Self-Electrophoresis. Nat. Commun. 2019, 10, 49510.1038/s41467-019-08423-7. PubMed DOI PMC
Navidpour A. H.; Fakhrzad M. Photocatalytic and Magnetic Properties of ZnFe2O4 Nanoparticles Synthesised by Mechanical Alloying. Int. J. Environ. Anal. Chem. 2022, 102, 690–706. 10.1080/03067319.2020.1726331. DOI
Lin Z.; Fan X.; Sun M.; Gao C.; He Q.; Xie H. Magnetically Actuated Peanut Colloid Motors for Cell Manipulation and Patterning. ACS Nano 2018, 12, 2539–2545. 10.1021/acsnano.7b08344. PubMed DOI
Oral C. M.; Ussia M.; Urso M.; Salat J.; Novobilsky A.; Stefanik M.; Ruzek D.; Pumera M. Radiopaque Nanorobots as Magnetically Navigable Contrast Agents for Localized In Vivo Imaging of the Gastrointestinal Tract. Adv. Healthcare Mater. 2023, 12, 220268210.1002/adhm.202202682. PubMed DOI
Jurado-Sánchez B.; Wang J. Micromotors for Environmental Applications: A Review. Environ. Sci. Nano 2018, 5, 1530–1544. 10.1039/C8EN00299A. DOI
Shen H.; Cai S.; Wang Z.; Ge Z.; Yang W. Magnetically Driven Microrobots: Recent Progress and Future Development. Mater. Des. 2023, 227, 11173510.1016/j.matdes.2023.111735. DOI
Fu D.; Jiang J.; Fu S.; Xie D.; Gao C.; Feng Y.; Liu S.; Ye Y.; Liu L.; Tu Y.; Peng F. Real-Time Micromotor Probe for Immune Neutrophil Activation State. Adv. Healthcare Mater. 2023, 12, 230073710.1002/adhm.202300737. PubMed DOI
Valdez-Garduño M.; Leal-Estrada M.; Oliveros-Mata E. S.; Sandoval-Bojorquez D. I.; Soto F.; Wang J.; Garcia-Gradilla V. Density Asymmetry Driven Propulsion of Ultrasound-Powered Janus Micromotors. Adv. Funct. Mater. 2020, 30, 200404310.1002/adfm.202004043. DOI
Muhammad M. H.; Idris A. L.; Fan X.; Guo Y.; Yu Y.; Jin X.; Qiu J.; Guan X.; Huang T. Beyond Risk: Bacterial Biofilms and Their Regulating Approaches. Front. Microbiol. 2020, 11, 92810.3389/fmicb.2020.00928. PubMed DOI PMC
Wasiński B. Extra-Intestinal Pathogenic Escherichia Coli – Threat Connected with Food-Borne Infections. Ann. Agric. Environ. Med. 2019, 26, 532–537. 10.26444/aaem/111724. PubMed DOI
Zhang S.; Abbas M.; Rehman M. U.; Wang M.; Jia R.; Chen S.; Liu M.; Zhu D.; Zhao X.; Gao Q.; Tian B.; Cheng A. Updates on the Global Dissemination of Colistin-Resistant Escherichia Coli: An Emerging Threat to Public Health. Sci. Total Environ. 2021, 799, 14928010.1016/j.scitotenv.2021.149280. PubMed DOI