Photo-Fenton Degradation of Nitroaromatic Explosives by Light-Powered Hematite Microrobots: When Higher Speed Is Not What We Go For
Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
LL2002
Ministry of Education
LM2018110
Ministry of Education
Nano Research Infrastructure
202008320382
China Scholarship Council
- Keywords
- micromotors, microrobots, photocatalysis, pollutants,
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Self-powered micromachines are considered a ground-breaking technology for environmental remediation. Light-powered Janus microrobots based on photocatalytic semiconductors asymmetrically covered with metals have recently received great interest as they can exploit light to move and contemporarily degrade pollutants in water. Although various metals have been explored and compared to design Janus microrobots, the influence of the metal layer thickness on motion behavior and photocatalytic properties of microrobots have not been investigated yet. Here, light-driven hematite/Pt Janus microrobots are reported and fabricated by depositing Pt layers with different thickness on hematite microspheres produced by hydrothermal synthesis. It has been demonstrated that the thicker the metal layer the higher the microrobots speed. However, when employed for the degradation of nitroaromatic explosives pollutants through the photo-Fenton mechanism, higher rate of H2 O2 consumption leads to higher propulsion speed of microrobots and lower pollutants degradation efficiencies owing to less H2 O2 involved in the photo-Fenton reaction. This work presents new insights into the motion behavior of light-powered Janus micromotors and demonstrates that high speed is not what really matters for water purification via photo-Fenton reaction, which is important for the future environmental applications of micromachines.
Department of Chemical and Biomolecular Engineering Yonsei University Seodaemun gu Seoul 03722 Korea
See more in PubMed
F. Novotný, H. Wang, M. Pumera, Chem 2020, 6, 867.
W. Gao, J. Wang, ACS Nano 2014, 8, 3170.
J. Wang, W. Gao, ACS Nano 2012, 6, 5745.
B. E. Ávila, P. Angsantikul, J. Li, M. A. Lopez-Ramirez, D. E. Ramírez-Herrera, S. Thamphiwatana, C. Chen, J. Delezuk, R. Samakapiruk, V. Ramez, M. Obonyo, L. Zhang, J. Wang, Nat. Commun. 2017, 8, 272.
A. C. Hortelao, R. N. Carrascosa, M. T. Patino, S. Sánchez, ACS Nano 2019, 13, 429.
L. Wang, A. Kaeppler, D. Fischer, J. Simmchen, ACS Appl. Mater. Interfaces 2019, 11, 32937.
L. Kong, C. C. Mayorga-Martinez, J. Guan, M. Pumera, ACS Appl. Mater. Interfaces 2018, 10, 22427.
Y. Zhang, K. Yuan, L. Zhang, Adv. Mater. Technol. 2019, 4, 1800636.
R. Dong, Q. Zhang, W. Gao, A. Pei, B. Ren, ACS Nano 2016, 10, 839.
K. Villa, F. Novotný, J. Zelenka, M. P. Browne, T. Ruml, M. Pumera, ACS Nano 2019, 13, 8135.
H. Zhou, C. C. Mayorga-Martinez, S. Pané, L. Zhang, M. Pumera, Chem. Rev. 2021, 121, 4999.
G. Zhao, S. Sanchez, O. G. Schmidt, M. Pumera, Nanoscale 2013, 5, 2909.
W. Gao, A. Pei, R. Dong, J. Wang, J. Am. Chem. Soc. 2014, 136, 2276.
X. Ma, X. Wang, K. Hahn, S. Sánchez, ACS Nano 2016, 10, 3597.
B. E. Ávila, C. Angell, F. Soto, M. A. Lopez-Ramirez, D. F. Báez, S. Xie, J. Wang, Y. Chen, ACS Nano 2016, 10, 4997.
B. E. Avila, A. Martin, F. Soto, M. A. Lopez-Ramirez, S. Campuzano, G. M. Va´squez-Machado, W. Gao, L. Zhang, J. Wang, ACS Nano 2015, 9, 6756.
X. Peng, H. Zhu, H. Chen, X. Feng, R. Liu, Z. Huang, Q. Shen, Y. Ma, L. Wang, New J. Chem. 2019, 43, 12594.
K. E. Peyer, S. Tottori, F. Qiu, L. Zhang, B. J. Nelson, Chem. - Eur. J. 2013, 19, 28.
M. Ussia, M. Urso, K. Dolezelikova, H. Michalkova, V. Adam, M. Pumera, Adv. Funct. Mater. 2021, 31, 2101178.
Q. Wang, C. Wang, R. Dong, Q. Pang, Y. Cai, Inorg. Chem. Commun. 2018, 91, 1.
L. Xu, F. Mou, H. Gong, M. Luo, J. Guan, Chem. Soc. Rev. 2017, 46, 6905.
Y. Hong, M. Diaz, U. M. Córdova-Fteueroa, A. Sen, Adv. Funct. Mater. 2010, 20, 1568.
A. M. Pourrahimi, K. Villa, C. L. Palenzuela, Y. Ying, Z. Sofer, M. Pumera, Adv. Funct. Mater. 2019, 29, 1808678.
Q. Zhang, R. Dong, X. Chang, B. Ren, Z. Tong, ACS Appl. Mater. Interfaces 2015, 7, 24585.
K. Yuan, B. Jurado-Sánchez, A. Escarpa, Angew. Chem., Int. Ed. 2021, 60, 4915.
R. María-Hormigos, A. Escarpa, B. Goudeau, V. Ravaine, A. Perro, A. Kuhn, Adv. Mater. Interfaces 2020, 7, 1902094.
H. Wang, M. Pumera, Chem. Soc. Rev. 2020, 49, 3211.
R. Dong, Y. Hu, Y. Wu, W. Gao, B. Ren, Q. Wang, Y. Cai, J. Am. Chem. Soc. 2017, 139, 1722.
T. Maric, M. Z. Nasir, M. R. D. Webster, M. Pumera, Adv. Funct. Mater. 2020, 30, 1908614.
M. Urso, M. Ussia, M. Pumera, Adv. Funct. Mater. 2021, 31, 2101510.
Z. Xiao, J. Chen, S. Duan, X. Lv, J. Wang, X. Ma, J. Tang, W. Wang, Chem. Commun. 2020, 56, 4728.
Y. Kim, D. D. Torres, P. K. Jain, Catalysts 2016, 16, 3399.
S. Balasubramanian, D. Kagan, K. M. Manesh, P. Calvo-Marzal, G. U. Flechsig, J. Wang, Small 2009, 5, 1569.
Y. Nakato, H. Tsubomura, Isr. J. Chem. 1982, 22, 180.
A. M. Brooks, M. Tasinkevych, S. Sabrina, D. Velegol, A. Sen, K. Bishop, Nat. Commun. 2019, 10, 495.
X. Cui, J. Li, D. Ng, J. Liu, Y. Liu, W. Yang, Carbon 2020, 158, 738.
Y. Ying, J. Plutnar, M. Pumera, Small 2021, 17, 2100294.
R. Serra-Maia, J. D. Rimstidt, F. M. Michel, Catal. Lett. 2021, 151, 138.
M. Sundararajan, V. Sailaja, L. Kennedy, J. Vijaya, Ceram. Int. 2017, 43, 540.
B. Zhao, G. Mele, I. Pio, J. Li, L. Palmisano, G. Vasapollo, J. Hazard. Mater. 2010, 176, 569.
Z. Lin, X. Fan, M. Sun, C. Gao, Q. He, H. Xie, ACS Nano 2018, 12, 2539.
Active Microrobots for Dual Removal of Biofilms via Chemical and Physical Mechanisms
Reconfigurable self-assembly of photocatalytic magnetic microrobots for water purification
Smart micro- and nanorobots for water purification
Trapping and detecting nanoplastics by MXene-derived oxide microrobots