Magneto-Fluorescent Microrobots with Selective Detection Intelligence for High-Energy Explosives and Antibiotics in Aqueous Environments
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40145509
PubMed Central
PMC11986900
DOI
10.1021/acsami.5c02259
Knihovny.cz E-zdroje
- Klíčová slova
- charge transfer complexes, environmental monitoring, fluorescence sensing, magnetic microrobots, organic pollutants,
- MeSH
- antibakteriální látky * analýza MeSH
- fluorescenční barviva * chemie MeSH
- magnetické nanočástice * chemie MeSH
- pikráty MeSH
- tetracyklin * analýza MeSH
- voda chemie MeSH
- výbušné látky * analýza MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky * MeSH
- fluorescenční barviva * MeSH
- magnetické nanočástice * MeSH
- picric acid MeSH Prohlížeč
- pikráty MeSH
- tetracyklin * MeSH
- voda MeSH
- výbušné látky * MeSH
Fluorescence-based sensing is a straightforward and powerful technique with high sensitivity for the detection of a wide range of chemical and biological analytes. Integrating the high sensing capabilities of fluorescent probes with wireless navigation systems can enable the extension of their operational range, even in challenging scenarios with limited accessibility or involving hazardous substances. This study presents the development of molecularly engineered magneto-fluorescent microrobots based on the push-pull quinonoids by incorporating magnetic nanoparticles using a reprecipitation approach with the aim of detecting high-energy explosives and antibiotics in aqueous environments. The magnetic components in the microrobots offer remotely controlled navigability toward the intended target areas under the guidance of external magnetic fields. Upon interactions with either explosives (picric acid) or antibiotics (tetracycline), the microrobots' intrinsic fluorescence switches to a "fluorescence off" state, enabling material-based intelligence for sensing applications. The molecular-level interactions that underlie "on-off" fluorescence state switching upon engagement with target molecules are elucidated through extensive spectroscopy, microscopy, and X-ray diffraction analyses. The microrobots' selectivity toward target molecules is achieved by designing microrobots with amine functionalities capable of intermolecular hydrogen bonding with the acidic hydroxyl group of picric acid, leading to the formation of water-soluble charge transfer picrate complexes through proton transfer. Similarly, proton transfer interactions play a key role in tetracycline detection. The selective fluorescence switching performance of microrobots in fluidic channel experiments illustrates their selective sensing intelligence for target molecules in an externally controlled manner, highlighting their promising characteristics for sensing applications in real-world scenarios.
Zobrazit více v PubMed
Gad S. E.Picric Acid. In Encyclopedia of Toxicology, 3rd ed.; Wexler P., Ed.; Academic Press, 2014; Vol. 3, pp 952–954.
Akhavan J.The Chemistry of Explosives, 2nd ed.; The Royal Society of Chemistry: London, UK, 2022.
Agrawal J. P.Status of Explosives. In High Energy Materials: Propellants, Explosives and Pyrotechnics; Agrawal J. P., Ed.; Wiley-VCH, 2010; pp 69–161.
Zhao Q. J.Provisional Peer-Reviewed Toxicity Values for Picric Acid (2,4,6-Trinitrophenol) (CASRN 88–89–1) and Ammonium Picrate (CASRN 131–74–8). 2020.
Wyman J. F.; Serve M. P.; Hobson D. W.; Lee L. H.; Uddin D. E. Acute Toxicity, Distribution, and Metabolism of 2, 4, 6-Trinitrophenol (Picric Acid) in Fischer 344 Rats. J. Toxicol. Environ. Health 1992, 37 (2), 313–327. 10.1080/15287399209531672. PubMed DOI
Volwiler E. H. Medicináis and Dyes. Ind. Eng. Chem. 1926, 18 (12), 1336–1337. 10.1021/ie50204a051. DOI
Meredith D. T.; Lee C. O. A Study of Antiseptic Compounds for the Treatment of Burns. J. Am. Pharm. Assoc. 1939, 28 (6), 369–373. 10.1002/jps.3080280606. DOI
Tulley F. E. Picric Acid as First Aid in Treatment of Burns. JAMA, J. Am. Med. Assoc. 1898, 31 (3), 138.10.1001/jama.1898.02450030040015. DOI
Chongdar S.; Mondal U.; Chakraborty T.; Banerjee P.; Bhaumik A. A Ni-MOF as Fluorescent/Electrochemical Dual Probe for Ultrasensitive Detection of Picric Acid from Aqueous Media. ACS Appl. Mater. Interfaces 2023, 15, 14575–14586. 10.1021/acsami.3c00604. PubMed DOI
Toal S. J.; Trogler W. C. Polymer Sensors for Nitroaromatic Explosives Detection. J. Mater. Chem. 2006, 16 (28), 2871–2883. 10.1039/b517953j. DOI
Mahto M. K.; Samanta D.; Shaw M.; Shaik M. A. S.; Basu R.; Mondal I.; Bhattacharya A.; Pathak A. Blue-Emissive Nitrogen-Doped Carbon Dots for Picric Acid Detection: Molecular Fluorescence Quenching Mechanism. ACS Appl. Nano Mater. 2023, 6 (9), 8059–8070. 10.1021/acsanm.3c01523. DOI
Keerthana P.; Cherian A. R.; Sirimahachai U.; Thadathil D. A.; Varghese A.; Hegde G. Detection of Picric Acid in Industrial Effluents Using Multifunctional Green Fluorescent B/N-Carbon Quantum Dots. J. Environ. Chem. Eng. 2022, 10 (2), 10720910.1016/j.jece.2022.107209. DOI
Wang T.; Zhang N.; Bai R.; Bao Y. Aggregation-Enhanced FRET-Active Conjugated Polymer Nanoparticles for Picric Acid Sensing in Aqueous Solution. J. Mater. Chem. C 2018, 6 (2), 266–270. 10.1039/C7TC05015A. DOI
Ahmed R.; Ali F. Review: Fluorophores for Detecting Nitroaromatic Compounds, Picric Acid. Int. J. Multidiscip. Res. Anal. 2023, 06 (3), 1119–1131. 10.47191/ijmra/v6-i3-33. DOI
Mazumdar P.; Maity S.; Shyamal M.; Das D.; Sahoo G. P.; Misra A. Proton Triggered Emission and Selective Sensing of Picric Acid by the Fluorescent Aggregates of 6,7-Dimethyl-2,3-Bis-(2-Pyridyl)-Quinoxaline. Phys. Chem. Chem. Phys. 2016, 18 (10), 7055–7067. 10.1039/C5CP05827A. PubMed DOI
Fabin M.; Łapkowski M.; Jarosz T. Methods for Detecting Picric Acid-A Review of Recent Progress. Appl. Sci. 2023, 13 (6), 17–19. 10.3390/app13063991. DOI
Grossman T. H. Tetracycline Antibiotics and Resistance. Cold Spring Harbor Perspect. Med. 2016, 6 (4), a02538710.1101/cshperspect.a025387. PubMed DOI PMC
Dürckheimer W. Tetracyclines: Chemistry, Biochemistry, and Structure-Activity Relations. Angew. Chem., Int. Ed. 1975, 14 (11), 721–734. 10.1002/anie.197507211. PubMed DOI
MacKie R. I.; Koike S.; Krapac I.; Chee-Sanford J.; Maxwell S.; Aminov R. I. Tetracycline Residues and Tetracycline Resistance Genes in Groundwater Impacted by Swine Production Facilities. Anim. Biotechnol. 2006, 17 (2), 157–176. 10.1080/10495390600956953. PubMed DOI
Xu L.; Zhang H.; Xiong P.; Zhu Q.; Liao C.; Jiang G. Occurrence, Fate, and Risk Assessment of Typical Tetracycline Antibiotics in the Aquatic Environment: A Review. Sci. Total Environ. 2021, 753, 14197510.1016/j.scitotenv.2020.141975. PubMed DOI
Getahun M.; Abebe R. B.; Sendekie A. K.; Woldeyohanis A. E.; Kasahun A. E. Evaluation of Antibiotics Residues in Milk and Meat Using Different Analytical Methods. Int. J. Anal. Chem. 2023, 2023, 438026110.1155/2023/4380261. PubMed DOI PMC
Pratiwi R.; Azizah P. N.; Hasanah A. N.; Asman S. B. Analytical Method for Monitoring Tetracycline Residues in Various Samples: A Focus on Environmental and Health Implications. Microchem. J. 2024, 206, 11140810.1016/j.microc.2024.111408. DOI
Xie B.; Peng H.; Zhang R.; Wang C.; He Y. Label-Free Electrochemical Aptasensor Based on Stone-like Gold Nanoparticles for Ultrasensitive Detection of Tetracycline. J. Phys. Chem. C 2021, 125 (10), 5678–5683. 10.1021/acs.jpcc.0c10809. DOI
Wang Y.; Sun Y.; Dai H.; Ni P.; Jiang S.; Lu W.; Li Z.; Li Z. A Colorimetric Biosensor Using Fe3O4 Nanoparticles for Highly Sensitive and Selective Detection of Tetracyclines. Sens. Actuators, B. 2016, 236, 621–626. 10.1016/j.snb.2016.06.029. DOI
Basak M.; Das G. Fluorescent Sensors for Tetracycline Detection in Aqueous Medium: A Mini-Review. Chem. - Asian J. 2024, 19 (15), e20240040610.1002/asia.202400406. PubMed DOI
Feng M. X.; Wang G. N.; Yang K.; Liu H. Z.; Wang J. P. Molecularly Imprinted Polymer-High Performance Liquid Chromatography for the Determination of Tetracycline Drugs in Animal Derived Foods. Food Control 2016, 69, 171–176. 10.1016/j.foodcont.2016.04.050. DOI
Hu Z.; Lustig W. P.; Zhang J.; Zheng C.; Wang H.; Teat S. J.; Gong Q.; Rudd N. D.; Li J. Effective Detection of Mycotoxins by a Highly Luminescent Metal-Organic Framework. J. Am. Chem. Soc. 2015, 137 (51), 16209–16215. 10.1021/jacs.5b10308. PubMed DOI
Li G.; Liu S.; Bian Y.; Chen R.; Li S.; Kang W.; Gao Z. In Situ Fabrication of Photoluminescent Hydrogen-Bonded Organic Framework-Functionalized Ca (II) Hydrogel Film for the Tetracyclines Visual Sensor and Information Security. ACS Appl. Mater. Interfaces 2024, 16 (8), 10522–10531. 10.1021/acsami.3c17697. PubMed DOI
Guo M.; Wang R.; Jin Z.; Zhang X.; Jokerst J. V.; Sun Y.; Sun L. Hyperbranched Molecularly Imprinted Photoactive Polymers and Its Detection of Tetracycline Antibiotics. ACS Appl. Polym. Mater. 2022, 4 (2), 1234–1242. 10.1021/acsapm.1c01633. DOI
Jurado-Sánchez B.; Wang J. Micromotors for Environmental Applications: A Review. Environ. Sci. Nano 2018, 5 (7), 1530–1544. 10.1039/C8EN00299A. DOI
Oral C. M.; Pumera M. In Vivo Applications of Micro/Nanorobots. Nanoscale 2023, 15 (19), 8491–8507. 10.1039/D3NR00502J. PubMed DOI
Parmar J.; Vilela D.; Villa K.; Wang J.; Sánchez S. Micro- and Nanomotors as Active Environmental Microcleaners and Sensors. J. Am. Chem. Soc. 2018, 140 (30), 9317–9331. 10.1021/jacs.8b05762. PubMed DOI
Ullattil S. G.; Pumera M. Light-Powered Self-Adaptive Mesostructured Microrobots for Simultaneous Microplastics Trapping and Fragmentation via in Situ Surface Morphing. Small 2023, 19 (38), 230146710.1002/smll.202301467. PubMed DOI
Eskandarloo H.; Kierulf A.; Abbaspourrad A. Light-Harvesting Synthetic Nano- and Micromotors: A Review. Nanoscale 2017, 9 (34), 12218–12230. 10.1039/C7NR05166B. PubMed DOI
Xu L.; Mou F.; Gong H.; Luo M.; Guan J. Light-Driven Micro/Nanomotors: From Fundamentals to Applications. Chem. Soc. Rev. 2017, 46 (22), 6905–6926. 10.1039/C7CS00516D. PubMed DOI
Ussia M.; Urso M.; Oral C. M.; Peng X.; Pumera M. Magnetic Microrobot Swarms with Polymeric Hands Catching Bacteria and Microplastics in Water. ACS Nano 2024, 18 (20), 13171–13183. 10.1021/acsnano.4c02115. PubMed DOI PMC
de la Asunción-Nadal V.; Franco C.; Veciana A.; Ning S.; Terzopoulou A.; Sevim S.; Chen X. Z.; Gong D.; Cai J.; Wendel-Garcia P. D.; Jurado-Sánchez B.; Escarpa A.; Puigmartí-Luis J.; Pané S. MoSBOTs: Magnetically Driven Biotemplated MoS2-Based Microrobots for Biomedical Applications. Small 2022, 18 (33), 220382110.1002/smll.202203821. PubMed DOI
Zhou H.; Mayorga-Martinez C. C.; Pané S.; Zhang L.; Pumera M. Magnetically Driven Micro and Nanorobots. Chem. Rev. 2021, 121 (8), 4999–5041. 10.1021/acs.chemrev.0c01234. PubMed DOI PMC
Katzmeier F.; Simmel F. C. Microrobots Powered by Concentration Polarization Electrophoresis (CPEP). Nat. Commun. 2023, 14 (1), 624710.1038/s41467-023-41923-1. PubMed DOI PMC
Máthé M. T.; Nishikawa H.; Araoka F.; Jákli A.; Salamon P. Electrically Activated Ferroelectric Nematic Microrobots. Nat. Commun. 2024, 15 (1), 692810.1038/s41467-024-50226-y. PubMed DOI PMC
Zhou Y.; Wang H.; Ma Z.; Yang J. K. W.; Ai Y. Acoustic Vibration-Induced Actuation of Multiple Microrotors in Microfluidics. Adv. Mater. Technol. 2020, 5 (9), 200032310.1002/admt.202000323. DOI
Xu Z.; Sun H.; Chen Y.; Yu H. H.; Deng C. X.; Xu Q. Bubble-Inspired Multifunctional Magnetic Microrobots for Integrated Multidimensional Targeted Biosensing. Nano Lett. 2024, 24, 13945–13954. 10.1021/acs.nanolett.4c03089. PubMed DOI PMC
Shivalkar S.; Gautam P. K.; Verma A.; Maurya K.; Sk M. P.; Samanta S. K.; Sahoo A. K. Autonomous Magnetic Microbots for Environmental Remediation Developed by Organic Waste Derived Carbon Dots. J. Environ. Manage. 2021, 297, 11332210.1016/j.jenvman.2021.113322. PubMed DOI
Ussia M.; Urso M.; Kratochvilova M.; Navratil J.; Balvan J.; Mayorga-Martinez C. C.; Vyskocil J.; Masarik M.; Pumera M. Magnetically Driven Self-Degrading Zinc-Containing Cystine Microrobots for Treatment of Prostate Cancer. Small 2023, 19 (17), 220825910.1002/smll.202208259. PubMed DOI
Ussia M.; Urso M.; Kment S.; Fialova T.; Klima K.; Dolezelikova K.; Pumera M. Light-Propelled Nanorobots for Facial Titanium Implants Biofilms Removal. Small 2022, 18 (22), 220070810.1002/smll.202200708. PubMed DOI
Urso M.; Ussia M.; Pumera M. Smart Micro- and Nanorobots for Water Purification. Nat. Rev. Bioeng. 2023, 1 (4), 236–251. 10.1038/s44222-023-00025-9. PubMed DOI PMC
Urso M.; Ussia M.; Novotný F.; Pumera M. Trapping and Detecting Nanoplastics by MXene-Derived Oxide Microrobots. Nat. Commun. 2022, 13 (1), 357310.1038/s41467-022-31161-2. PubMed DOI PMC
Liu Y.; Guo H.; Wu N.; Peng L.; Wang M.; Tian J.; Xu J.; Yang W. Eu3+-Functionalized Nanoporous Covalent Organic Frameworks for Fluorescence Detection and Removal of Tetracycline. ACS Appl. Nano Mater. 2023, 6 (8), 6627–6636. 10.1021/acsanm.3c00323. DOI
Zhao Y.; Lin J.; Wu Q.; Ying Y.; Puigmartí-Luis J.; Pané S.; Wang S. Revolutionizing Tetracycline Hydrochloride Remediation: 3D Motile Light-Driven MOFs Based Micromotors in Harsh Saline Environments. Adv. Sci. 2024, 11, 240638110.1002/advs.202406381. PubMed DOI PMC
Peng X.; Urso M.; Pumera M. Metal Oxide Single-Component Light-Powered Micromotors for Photocatalytic Degradation of Nitroaromatic Pollutants. npj Clean Water 2023, 6, 2110.1038/s41545-023-00235-z. DOI
Oral C. M.; Ussia M.; Pumera M. Self-Propelled Activated Carbon Micromotors for “on-the-Fly” Capture of Nitroaromatic Explosives. J. Phys. Chem. C 2021, 125 (32), 18040–18045. 10.1021/acs.jpcc.1c05136. DOI
Gao Y.; Li Y.; Zhang L.; Huang H.; Hu J.; Shah S. M.; Su X. Adsorption and Removal of Tetracycline Antibiotics from Aqueous Solution by Graphene Oxide. J. Colloid Interface Sci. 2012, 368 (1), 540–546. 10.1016/j.jcis.2011.11.015. PubMed DOI
Patra A.; Radhakrishnan T. P. Molecular Materials with Contrasting Optical Responses from a Single-Pot Reaction and Fluorescence Switching in a Carbon Acid. Chem. - Eur. J. 2009, 15 (12), 2792–2800. 10.1002/chem.200801878. PubMed DOI
Mahajan N.; Radhakrishnan T. P. Tuning the Fluorescence Emission of DADQ Based Molecular Solids by Dielectric Environment Variation. J. Mater. Chem. C 2024, 12 (34), 13430–13438. 10.1039/D4TC02052A. DOI
Senthilnathan N.; Gaurav K.; Ramana C. V.; Radhakrishnan T. P. Zwitterionic Small Molecule Based Fluorophores for Efficient and Selective Imaging of Bacterial Endospores. J. Mater. Chem. B 2020, 8 (21), 4601–4608. 10.1039/D0TB00470G. PubMed DOI
Senthilnathan N.; Oral C. M.; Novobilsky A.; Pumera M. Intelligent Magnetic Microrobots with Fluorescent Internal Memory for Monitoring Intragastric Acidity. Adv. Funct. Mater. 2024, 34 (29), 240146310.1002/adfm.202401463. DOI
Jayanty S.; Radhakrishnan T. P. Enhanced Fluorescence of Remote Functionalized Diaminodicyanoquinodimethanes in the Solid State and Fluorescence Switching in a Doped Polymer by Solvent Vapors. Chem. - Eur. J. 2004, 10 (3), 791–797. 10.1002/chem.200305123. PubMed DOI
Srujana P.; Radhakrishnan T. P. Establishing the Critical Role of Oriented Aggregation in Molecular Solid State Fluorescence Enhancement. Chem. - Eur. J. 2018, 24 (8), 1784–1788. 10.1002/chem.201705041. PubMed DOI
Hong Y.; Lam J. W. Y.; Tang B. Z. Aggregation-Induced Emission: Phenomenon, Mechanism and Applications. Chem. Commun. 2009, (29), 4332–4353. 10.1039/b904665h. PubMed DOI
Li X.; Yang H.; Zheng P.; Lin D.; Zhang Z.; Kang M.; Wang D.; Tang B. Z. Aggregation-Induced Emission Materials: A Platform for Diverse Energy Transformation and Applications. J. Mater. Chem. A 2023, 11 (10), 4850–4875. 10.1039/D2TA09630G. DOI
Cai X.; Liu B. Aggregation-Induced Emission: Recent Advances in Materials and Biomedical Applications. Angew. Chem., Int. Ed. 2020, 59 (25), 9868–9886. 10.1002/anie.202000845. PubMed DOI
Dhanabal T.; Amirthaganesan G.; Dhandapani M.; Das S. K. Synthesis, Structure, Thermal and NLO Characterization of 4-Hydroxy Tetramethylpiperazinium Picrate Crystals. J. Chem. Sci. 2012, 124 (4), 951–961. 10.1007/s12039-012-0289-2. DOI
Jayanty S.; Radhakrishnan T. P. Solid-State Charge Transfer Promoted by an Anchoring Agent: A Two-Component Analogue of Kofler’s Ternary Complex. Chem. Mater. 2001, 13 (6), 2072–2077. 10.1021/cm000884l. DOI
Gaballa A. S.; Amin A. S. Preparation, Spectroscopic and Antibacterial Studies on Charge-Transfer Complexes of 2-Hydroxypyridine with Picric Acid and 7,7′,8,8′-Tetracyano-p-Quinodimethane. Spectrochim. Acta, Part A 2015, 145, 302–312. 10.1016/j.saa.2015.03.005. PubMed DOI
Senthilnathan N.; Chandaluri C. G.; Radhakrishnan T. P. Efficient Bioimaging with Diaminodicyanoquinodimethanes: Selective Imaging of Epidermal and Stomatal Cells and Insight into the Molecular Level Interactions. Sci. Rep. 2017, 7, 1058310.1038/s41598-017-11293-y. PubMed DOI PMC
Zhang Z.; Ding C.; Li Y.; Ke H.; Cheng G. Efficient Removal of Tetracycline Hydrochloride from Aqueous Solution by Mesoporous Cage MOF-818. SN Appl. Sci. 2020, 2, 66910.1007/s42452-020-2514-9. DOI
Amat A.; Fantacci S.; de Angelis F.; Carlotti B.; Elisei F. DFT/TDDFT Investigation of the Stepwise Deprotonation in Tetracycline: PKa Assignment and UV-Vis Spectroscopy. Theor. Chem. Acc. 2012, 131 (5), 121810.1007/s00214-012-1218-7. DOI
Zuo W.; Li N.; Chen B.; Zhang C.; Li Q.; Yan M. Investigation of the Deprotonation of Tetracycline Using Differential Absorbance Spectra: A Comparative Experimental and DFT/TD-DFT Study. Sci. Total Environ. 2020, 726, 13843210.1016/j.scitotenv.2020.138432. PubMed DOI