Magneto-Fluorescent Microrobots with Selective Detection Intelligence for High-Energy Explosives and Antibiotics in Aqueous Environments

. 2025 Apr 09 ; 17 (14) : 21691-21704. [epub] 20250327

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40145509

Fluorescence-based sensing is a straightforward and powerful technique with high sensitivity for the detection of a wide range of chemical and biological analytes. Integrating the high sensing capabilities of fluorescent probes with wireless navigation systems can enable the extension of their operational range, even in challenging scenarios with limited accessibility or involving hazardous substances. This study presents the development of molecularly engineered magneto-fluorescent microrobots based on the push-pull quinonoids by incorporating magnetic nanoparticles using a reprecipitation approach with the aim of detecting high-energy explosives and antibiotics in aqueous environments. The magnetic components in the microrobots offer remotely controlled navigability toward the intended target areas under the guidance of external magnetic fields. Upon interactions with either explosives (picric acid) or antibiotics (tetracycline), the microrobots' intrinsic fluorescence switches to a "fluorescence off" state, enabling material-based intelligence for sensing applications. The molecular-level interactions that underlie "on-off" fluorescence state switching upon engagement with target molecules are elucidated through extensive spectroscopy, microscopy, and X-ray diffraction analyses. The microrobots' selectivity toward target molecules is achieved by designing microrobots with amine functionalities capable of intermolecular hydrogen bonding with the acidic hydroxyl group of picric acid, leading to the formation of water-soluble charge transfer picrate complexes through proton transfer. Similarly, proton transfer interactions play a key role in tetracycline detection. The selective fluorescence switching performance of microrobots in fluidic channel experiments illustrates their selective sensing intelligence for target molecules in an externally controlled manner, highlighting their promising characteristics for sensing applications in real-world scenarios.

Zobrazit více v PubMed

Gad S. E.Picric Acid. In Encyclopedia of Toxicology, 3rd ed.; Wexler P., Ed.; Academic Press, 2014; Vol. 3, pp 952–954.

Akhavan J.The Chemistry of Explosives, 2nd ed.; The Royal Society of Chemistry: London, UK, 2022.

Agrawal J. P.Status of Explosives. In High Energy Materials: Propellants, Explosives and Pyrotechnics; Agrawal J. P., Ed.; Wiley-VCH, 2010; pp 69–161.

Zhao Q. J.Provisional Peer-Reviewed Toxicity Values for Picric Acid (2,4,6-Trinitrophenol) (CASRN 88–89–1) and Ammonium Picrate (CASRN 131–74–8). 2020.

Wyman J. F.; Serve M. P.; Hobson D. W.; Lee L. H.; Uddin D. E. Acute Toxicity, Distribution, and Metabolism of 2, 4, 6-Trinitrophenol (Picric Acid) in Fischer 344 Rats. J. Toxicol. Environ. Health 1992, 37 (2), 313–327. 10.1080/15287399209531672. PubMed DOI

Volwiler E. H. Medicináis and Dyes. Ind. Eng. Chem. 1926, 18 (12), 1336–1337. 10.1021/ie50204a051. DOI

Meredith D. T.; Lee C. O. A Study of Antiseptic Compounds for the Treatment of Burns. J. Am. Pharm. Assoc. 1939, 28 (6), 369–373. 10.1002/jps.3080280606. DOI

Tulley F. E. Picric Acid as First Aid in Treatment of Burns. JAMA, J. Am. Med. Assoc. 1898, 31 (3), 138.10.1001/jama.1898.02450030040015. DOI

Chongdar S.; Mondal U.; Chakraborty T.; Banerjee P.; Bhaumik A. A Ni-MOF as Fluorescent/Electrochemical Dual Probe for Ultrasensitive Detection of Picric Acid from Aqueous Media. ACS Appl. Mater. Interfaces 2023, 15, 14575–14586. 10.1021/acsami.3c00604. PubMed DOI

Toal S. J.; Trogler W. C. Polymer Sensors for Nitroaromatic Explosives Detection. J. Mater. Chem. 2006, 16 (28), 2871–2883. 10.1039/b517953j. DOI

Mahto M. K.; Samanta D.; Shaw M.; Shaik M. A. S.; Basu R.; Mondal I.; Bhattacharya A.; Pathak A. Blue-Emissive Nitrogen-Doped Carbon Dots for Picric Acid Detection: Molecular Fluorescence Quenching Mechanism. ACS Appl. Nano Mater. 2023, 6 (9), 8059–8070. 10.1021/acsanm.3c01523. DOI

Keerthana P.; Cherian A. R.; Sirimahachai U.; Thadathil D. A.; Varghese A.; Hegde G. Detection of Picric Acid in Industrial Effluents Using Multifunctional Green Fluorescent B/N-Carbon Quantum Dots. J. Environ. Chem. Eng. 2022, 10 (2), 10720910.1016/j.jece.2022.107209. DOI

Wang T.; Zhang N.; Bai R.; Bao Y. Aggregation-Enhanced FRET-Active Conjugated Polymer Nanoparticles for Picric Acid Sensing in Aqueous Solution. J. Mater. Chem. C 2018, 6 (2), 266–270. 10.1039/C7TC05015A. DOI

Ahmed R.; Ali F. Review: Fluorophores for Detecting Nitroaromatic Compounds, Picric Acid. Int. J. Multidiscip. Res. Anal. 2023, 06 (3), 1119–1131. 10.47191/ijmra/v6-i3-33. DOI

Mazumdar P.; Maity S.; Shyamal M.; Das D.; Sahoo G. P.; Misra A. Proton Triggered Emission and Selective Sensing of Picric Acid by the Fluorescent Aggregates of 6,7-Dimethyl-2,3-Bis-(2-Pyridyl)-Quinoxaline. Phys. Chem. Chem. Phys. 2016, 18 (10), 7055–7067. 10.1039/C5CP05827A. PubMed DOI

Fabin M.; Łapkowski M.; Jarosz T. Methods for Detecting Picric Acid-A Review of Recent Progress. Appl. Sci. 2023, 13 (6), 17–19. 10.3390/app13063991. DOI

Grossman T. H. Tetracycline Antibiotics and Resistance. Cold Spring Harbor Perspect. Med. 2016, 6 (4), a02538710.1101/cshperspect.a025387. PubMed DOI PMC

Dürckheimer W. Tetracyclines: Chemistry, Biochemistry, and Structure-Activity Relations. Angew. Chem., Int. Ed. 1975, 14 (11), 721–734. 10.1002/anie.197507211. PubMed DOI

MacKie R. I.; Koike S.; Krapac I.; Chee-Sanford J.; Maxwell S.; Aminov R. I. Tetracycline Residues and Tetracycline Resistance Genes in Groundwater Impacted by Swine Production Facilities. Anim. Biotechnol. 2006, 17 (2), 157–176. 10.1080/10495390600956953. PubMed DOI

Xu L.; Zhang H.; Xiong P.; Zhu Q.; Liao C.; Jiang G. Occurrence, Fate, and Risk Assessment of Typical Tetracycline Antibiotics in the Aquatic Environment: A Review. Sci. Total Environ. 2021, 753, 14197510.1016/j.scitotenv.2020.141975. PubMed DOI

Getahun M.; Abebe R. B.; Sendekie A. K.; Woldeyohanis A. E.; Kasahun A. E. Evaluation of Antibiotics Residues in Milk and Meat Using Different Analytical Methods. Int. J. Anal. Chem. 2023, 2023, 438026110.1155/2023/4380261. PubMed DOI PMC

Pratiwi R.; Azizah P. N.; Hasanah A. N.; Asman S. B. Analytical Method for Monitoring Tetracycline Residues in Various Samples: A Focus on Environmental and Health Implications. Microchem. J. 2024, 206, 11140810.1016/j.microc.2024.111408. DOI

Xie B.; Peng H.; Zhang R.; Wang C.; He Y. Label-Free Electrochemical Aptasensor Based on Stone-like Gold Nanoparticles for Ultrasensitive Detection of Tetracycline. J. Phys. Chem. C 2021, 125 (10), 5678–5683. 10.1021/acs.jpcc.0c10809. DOI

Wang Y.; Sun Y.; Dai H.; Ni P.; Jiang S.; Lu W.; Li Z.; Li Z. A Colorimetric Biosensor Using Fe3O4 Nanoparticles for Highly Sensitive and Selective Detection of Tetracyclines. Sens. Actuators, B. 2016, 236, 621–626. 10.1016/j.snb.2016.06.029. DOI

Basak M.; Das G. Fluorescent Sensors for Tetracycline Detection in Aqueous Medium: A Mini-Review. Chem. - Asian J. 2024, 19 (15), e20240040610.1002/asia.202400406. PubMed DOI

Feng M. X.; Wang G. N.; Yang K.; Liu H. Z.; Wang J. P. Molecularly Imprinted Polymer-High Performance Liquid Chromatography for the Determination of Tetracycline Drugs in Animal Derived Foods. Food Control 2016, 69, 171–176. 10.1016/j.foodcont.2016.04.050. DOI

Hu Z.; Lustig W. P.; Zhang J.; Zheng C.; Wang H.; Teat S. J.; Gong Q.; Rudd N. D.; Li J. Effective Detection of Mycotoxins by a Highly Luminescent Metal-Organic Framework. J. Am. Chem. Soc. 2015, 137 (51), 16209–16215. 10.1021/jacs.5b10308. PubMed DOI

Li G.; Liu S.; Bian Y.; Chen R.; Li S.; Kang W.; Gao Z. In Situ Fabrication of Photoluminescent Hydrogen-Bonded Organic Framework-Functionalized Ca (II) Hydrogel Film for the Tetracyclines Visual Sensor and Information Security. ACS Appl. Mater. Interfaces 2024, 16 (8), 10522–10531. 10.1021/acsami.3c17697. PubMed DOI

Guo M.; Wang R.; Jin Z.; Zhang X.; Jokerst J. V.; Sun Y.; Sun L. Hyperbranched Molecularly Imprinted Photoactive Polymers and Its Detection of Tetracycline Antibiotics. ACS Appl. Polym. Mater. 2022, 4 (2), 1234–1242. 10.1021/acsapm.1c01633. DOI

Jurado-Sánchez B.; Wang J. Micromotors for Environmental Applications: A Review. Environ. Sci. Nano 2018, 5 (7), 1530–1544. 10.1039/C8EN00299A. DOI

Oral C. M.; Pumera M. In Vivo Applications of Micro/Nanorobots. Nanoscale 2023, 15 (19), 8491–8507. 10.1039/D3NR00502J. PubMed DOI

Parmar J.; Vilela D.; Villa K.; Wang J.; Sánchez S. Micro- and Nanomotors as Active Environmental Microcleaners and Sensors. J. Am. Chem. Soc. 2018, 140 (30), 9317–9331. 10.1021/jacs.8b05762. PubMed DOI

Ullattil S. G.; Pumera M. Light-Powered Self-Adaptive Mesostructured Microrobots for Simultaneous Microplastics Trapping and Fragmentation via in Situ Surface Morphing. Small 2023, 19 (38), 230146710.1002/smll.202301467. PubMed DOI

Eskandarloo H.; Kierulf A.; Abbaspourrad A. Light-Harvesting Synthetic Nano- and Micromotors: A Review. Nanoscale 2017, 9 (34), 12218–12230. 10.1039/C7NR05166B. PubMed DOI

Xu L.; Mou F.; Gong H.; Luo M.; Guan J. Light-Driven Micro/Nanomotors: From Fundamentals to Applications. Chem. Soc. Rev. 2017, 46 (22), 6905–6926. 10.1039/C7CS00516D. PubMed DOI

Ussia M.; Urso M.; Oral C. M.; Peng X.; Pumera M. Magnetic Microrobot Swarms with Polymeric Hands Catching Bacteria and Microplastics in Water. ACS Nano 2024, 18 (20), 13171–13183. 10.1021/acsnano.4c02115. PubMed DOI PMC

de la Asunción-Nadal V.; Franco C.; Veciana A.; Ning S.; Terzopoulou A.; Sevim S.; Chen X. Z.; Gong D.; Cai J.; Wendel-Garcia P. D.; Jurado-Sánchez B.; Escarpa A.; Puigmartí-Luis J.; Pané S. MoSBOTs: Magnetically Driven Biotemplated MoS2-Based Microrobots for Biomedical Applications. Small 2022, 18 (33), 220382110.1002/smll.202203821. PubMed DOI

Zhou H.; Mayorga-Martinez C. C.; Pané S.; Zhang L.; Pumera M. Magnetically Driven Micro and Nanorobots. Chem. Rev. 2021, 121 (8), 4999–5041. 10.1021/acs.chemrev.0c01234. PubMed DOI PMC

Katzmeier F.; Simmel F. C. Microrobots Powered by Concentration Polarization Electrophoresis (CPEP). Nat. Commun. 2023, 14 (1), 624710.1038/s41467-023-41923-1. PubMed DOI PMC

Máthé M. T.; Nishikawa H.; Araoka F.; Jákli A.; Salamon P. Electrically Activated Ferroelectric Nematic Microrobots. Nat. Commun. 2024, 15 (1), 692810.1038/s41467-024-50226-y. PubMed DOI PMC

Zhou Y.; Wang H.; Ma Z.; Yang J. K. W.; Ai Y. Acoustic Vibration-Induced Actuation of Multiple Microrotors in Microfluidics. Adv. Mater. Technol. 2020, 5 (9), 200032310.1002/admt.202000323. DOI

Xu Z.; Sun H.; Chen Y.; Yu H. H.; Deng C. X.; Xu Q. Bubble-Inspired Multifunctional Magnetic Microrobots for Integrated Multidimensional Targeted Biosensing. Nano Lett. 2024, 24, 13945–13954. 10.1021/acs.nanolett.4c03089. PubMed DOI PMC

Shivalkar S.; Gautam P. K.; Verma A.; Maurya K.; Sk M. P.; Samanta S. K.; Sahoo A. K. Autonomous Magnetic Microbots for Environmental Remediation Developed by Organic Waste Derived Carbon Dots. J. Environ. Manage. 2021, 297, 11332210.1016/j.jenvman.2021.113322. PubMed DOI

Ussia M.; Urso M.; Kratochvilova M.; Navratil J.; Balvan J.; Mayorga-Martinez C. C.; Vyskocil J.; Masarik M.; Pumera M. Magnetically Driven Self-Degrading Zinc-Containing Cystine Microrobots for Treatment of Prostate Cancer. Small 2023, 19 (17), 220825910.1002/smll.202208259. PubMed DOI

Ussia M.; Urso M.; Kment S.; Fialova T.; Klima K.; Dolezelikova K.; Pumera M. Light-Propelled Nanorobots for Facial Titanium Implants Biofilms Removal. Small 2022, 18 (22), 220070810.1002/smll.202200708. PubMed DOI

Urso M.; Ussia M.; Pumera M. Smart Micro- and Nanorobots for Water Purification. Nat. Rev. Bioeng. 2023, 1 (4), 236–251. 10.1038/s44222-023-00025-9. PubMed DOI PMC

Urso M.; Ussia M.; Novotný F.; Pumera M. Trapping and Detecting Nanoplastics by MXene-Derived Oxide Microrobots. Nat. Commun. 2022, 13 (1), 357310.1038/s41467-022-31161-2. PubMed DOI PMC

Liu Y.; Guo H.; Wu N.; Peng L.; Wang M.; Tian J.; Xu J.; Yang W. Eu3+-Functionalized Nanoporous Covalent Organic Frameworks for Fluorescence Detection and Removal of Tetracycline. ACS Appl. Nano Mater. 2023, 6 (8), 6627–6636. 10.1021/acsanm.3c00323. DOI

Zhao Y.; Lin J.; Wu Q.; Ying Y.; Puigmartí-Luis J.; Pané S.; Wang S. Revolutionizing Tetracycline Hydrochloride Remediation: 3D Motile Light-Driven MOFs Based Micromotors in Harsh Saline Environments. Adv. Sci. 2024, 11, 240638110.1002/advs.202406381. PubMed DOI PMC

Peng X.; Urso M.; Pumera M. Metal Oxide Single-Component Light-Powered Micromotors for Photocatalytic Degradation of Nitroaromatic Pollutants. npj Clean Water 2023, 6, 2110.1038/s41545-023-00235-z. DOI

Oral C. M.; Ussia M.; Pumera M. Self-Propelled Activated Carbon Micromotors for “on-the-Fly” Capture of Nitroaromatic Explosives. J. Phys. Chem. C 2021, 125 (32), 18040–18045. 10.1021/acs.jpcc.1c05136. DOI

Gao Y.; Li Y.; Zhang L.; Huang H.; Hu J.; Shah S. M.; Su X. Adsorption and Removal of Tetracycline Antibiotics from Aqueous Solution by Graphene Oxide. J. Colloid Interface Sci. 2012, 368 (1), 540–546. 10.1016/j.jcis.2011.11.015. PubMed DOI

Patra A.; Radhakrishnan T. P. Molecular Materials with Contrasting Optical Responses from a Single-Pot Reaction and Fluorescence Switching in a Carbon Acid. Chem. - Eur. J. 2009, 15 (12), 2792–2800. 10.1002/chem.200801878. PubMed DOI

Mahajan N.; Radhakrishnan T. P. Tuning the Fluorescence Emission of DADQ Based Molecular Solids by Dielectric Environment Variation. J. Mater. Chem. C 2024, 12 (34), 13430–13438. 10.1039/D4TC02052A. DOI

Senthilnathan N.; Gaurav K.; Ramana C. V.; Radhakrishnan T. P. Zwitterionic Small Molecule Based Fluorophores for Efficient and Selective Imaging of Bacterial Endospores. J. Mater. Chem. B 2020, 8 (21), 4601–4608. 10.1039/D0TB00470G. PubMed DOI

Senthilnathan N.; Oral C. M.; Novobilsky A.; Pumera M. Intelligent Magnetic Microrobots with Fluorescent Internal Memory for Monitoring Intragastric Acidity. Adv. Funct. Mater. 2024, 34 (29), 240146310.1002/adfm.202401463. DOI

Jayanty S.; Radhakrishnan T. P. Enhanced Fluorescence of Remote Functionalized Diaminodicyanoquinodimethanes in the Solid State and Fluorescence Switching in a Doped Polymer by Solvent Vapors. Chem. - Eur. J. 2004, 10 (3), 791–797. 10.1002/chem.200305123. PubMed DOI

Srujana P.; Radhakrishnan T. P. Establishing the Critical Role of Oriented Aggregation in Molecular Solid State Fluorescence Enhancement. Chem. - Eur. J. 2018, 24 (8), 1784–1788. 10.1002/chem.201705041. PubMed DOI

Hong Y.; Lam J. W. Y.; Tang B. Z. Aggregation-Induced Emission: Phenomenon, Mechanism and Applications. Chem. Commun. 2009, (29), 4332–4353. 10.1039/b904665h. PubMed DOI

Li X.; Yang H.; Zheng P.; Lin D.; Zhang Z.; Kang M.; Wang D.; Tang B. Z. Aggregation-Induced Emission Materials: A Platform for Diverse Energy Transformation and Applications. J. Mater. Chem. A 2023, 11 (10), 4850–4875. 10.1039/D2TA09630G. DOI

Cai X.; Liu B. Aggregation-Induced Emission: Recent Advances in Materials and Biomedical Applications. Angew. Chem., Int. Ed. 2020, 59 (25), 9868–9886. 10.1002/anie.202000845. PubMed DOI

Dhanabal T.; Amirthaganesan G.; Dhandapani M.; Das S. K. Synthesis, Structure, Thermal and NLO Characterization of 4-Hydroxy Tetramethylpiperazinium Picrate Crystals. J. Chem. Sci. 2012, 124 (4), 951–961. 10.1007/s12039-012-0289-2. DOI

Jayanty S.; Radhakrishnan T. P. Solid-State Charge Transfer Promoted by an Anchoring Agent: A Two-Component Analogue of Kofler’s Ternary Complex. Chem. Mater. 2001, 13 (6), 2072–2077. 10.1021/cm000884l. DOI

Gaballa A. S.; Amin A. S. Preparation, Spectroscopic and Antibacterial Studies on Charge-Transfer Complexes of 2-Hydroxypyridine with Picric Acid and 7,7′,8,8′-Tetracyano-p-Quinodimethane. Spectrochim. Acta, Part A 2015, 145, 302–312. 10.1016/j.saa.2015.03.005. PubMed DOI

Senthilnathan N.; Chandaluri C. G.; Radhakrishnan T. P. Efficient Bioimaging with Diaminodicyanoquinodimethanes: Selective Imaging of Epidermal and Stomatal Cells and Insight into the Molecular Level Interactions. Sci. Rep. 2017, 7, 1058310.1038/s41598-017-11293-y. PubMed DOI PMC

Zhang Z.; Ding C.; Li Y.; Ke H.; Cheng G. Efficient Removal of Tetracycline Hydrochloride from Aqueous Solution by Mesoporous Cage MOF-818. SN Appl. Sci. 2020, 2, 66910.1007/s42452-020-2514-9. DOI

Amat A.; Fantacci S.; de Angelis F.; Carlotti B.; Elisei F. DFT/TDDFT Investigation of the Stepwise Deprotonation in Tetracycline: PKa Assignment and UV-Vis Spectroscopy. Theor. Chem. Acc. 2012, 131 (5), 121810.1007/s00214-012-1218-7. DOI

Zuo W.; Li N.; Chen B.; Zhang C.; Li Q.; Yan M. Investigation of the Deprotonation of Tetracycline Using Differential Absorbance Spectra: A Comparative Experimental and DFT/TD-DFT Study. Sci. Total Environ. 2020, 726, 13843210.1016/j.scitotenv.2020.138432. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...