Light-Powered Self-Adaptive Mesostructured Microrobots for Simultaneous Microplastics Trapping and Fragmentation via in situ Surface Morphing
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
101024880
European Union's Horizon 2020 research and innovation program
LM2018110
CzechNanoLab
LM2018127
Instruct-CZ Centre of Instruct-ERIC EU consortium
19-26896X
Grant Agency of the Czech Republic - EXPRO
PubMed
37309271
DOI
10.1002/smll.202301467
Knihovny.cz E-zdroje
- Klíčová slova
- TiO2, micromotors, microplastics, microrobots, surface morphology,
- Publikační typ
- časopisecké články MeSH
Microplastics, which comprise one of the omnipresent threats to human health, are diverse in shape and composition. Their negative impacts on human and ecosystem health provide ample incentive to design and execute strategies to trap and degrade diversely structured microplastics, especially from water. This work demonstrates the fabrication of single-component TiO2 superstructured microrobots to photo-trap and photo-fragment microplastics. In a single reaction, rod-like microrobots diverse in shape and with multiple trapping sites, are fabricated to exploit the asymmetry of the microrobotic system advantageous for propulsion. The microrobots work synergistically to photo-catalytically trap and fragment microplastics in water in a coordinated fashion. Hence, a microrobotic model of "unity in diversity" is demonstrated here for the phototrapping and photofragmentation of microplastics. During light irradiation and subsequent photocatalysis, the surface morphology of microrobots transformed into porous flower-like networks that trap microplastics for subsequent degradation. This reconfigurable microrobotic technology represents a significant step forward in the efforts to degrade microplastics.
Zobrazit více v PubMed
R. Geyer, J. R. Jambeck, K. L. Law, Production, Use, and Fate of All Plastics Ever Made, 2017.
A. D. Vethaak, J. Legler, Science 1979 2021, 371.
H. A. Leslie, M. J. M. van Velzen, S. H. Brandsma, A. D. Vethaak, J. J. Garcia-Vallejo, M. H. Lamoree, Environ Int 2022, 163, 107199.
Z. Yan, Y. Liu, T. Zhang, F. Zhang, H. Ren, Y. Zhang, Environ. Sci. Technol. 2022, 56, 414.
A. A. Koelmans, N. H. Mohamed Nor, E. Hermsen, M. Kooi, S. M. Mintenig, J. De France, Water Res. 2019, 155, 410.
Z. Yuan, R. Nag, E. Cummins, Sci. Total Environ. 2022, 823, https://doi.org/10.1016/j.scitotenv.2022.153730.
J. Chen, J. Wu, P. C. Sherrell, J. Chen, H. Wang, W. xian Zhang, J. Yang, Adv. Sci. 2022, 9, https://doi.org/10.1002/advs.202103764.
I. A. Ricardo, E. A. Alberto, A. H. Silva Júnior, D. L. P. Macuvele, N. Padoin, C. Soares, H. Gracher Riella, M. C. V. M. Starling, A. G. Trovó, Chem. Eng. J. 2021, 424, 130282.
H. Zhou, C. C. Mayorga-Martinez, M. Pumera, Small Methods 2021, 5, 2100230.
M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O'Shea, M. H. Entezari, D. D. Dionysiou, Appl. Catal. B 2012, 125, 331.
K. Wenderich, G. Mul, Chem. Rev. 2016, 116, 14587.
T. S. Tofa, F. Ye, K. L. Kunjali, J. Dutta, Catalysts 2019, 9, 819.
R. Jiang, G. Lu, Z. Yan, J. Liu, D. Wu, Y. Wang, J. Hazard. Mater. 2021, 124247, https://doi.org/10.1016/j.jhazmat.2020.124247.
C. Du, W. Feng, S. Nie, J. Zhang, Y. Liang, X. Han, Y. Wu, J. Feng, S. Dong, H. Liu, J. Sun, Sep. Purif. Technol. 2021, 279, 119734.
P. Kaewkam, A. Kanchanapaetnukul, J. Khamyan, N. Phadmanee, K. Y. A. Lin, K. Kobwittaya, S. Sirivithayapakorn, J. Environ. Chem. Eng. 2022, 10, https://doi.org/10.1016/j.jece.2022.108131.
Q. Guo, C. Zhou, Z. Ma, X. Yang, Adv. Mater. 2019, 1901997, https://doi.org/10.1002/adma.201901997.
H. Cölfen, M. Antonietti, Angewandte Chemie - International Edition 2005, 44, 5576.
P. Zhang, M. Fujitsuka, T. Majima, Appl. Catal. B 2016, 185, 181.
S. Sun, X. Zhang, X. Yu, J. Cui, M. Yang, Q. Yang, P. Xiao, S. Liang, Nanoscale 2021, 13, 11867.
J. Huang, S. Liu, W. Long, Q. Wang, X. Yu, S. Li, Sep. Purif. Technol. 2021, 279, 119733.
S. Xiao, D. Pan, R. Liang, W. Dai, Q. Zhang, G. Zhang, C. Su, H. Li, W. Chen, Appl. Catal. B 2018, 236, 304.
Y. Peng, Y. Wang, Q. G. Chen, Q. Zhu, A. W. Xu, CrystEngComm 2014, 16, 7906.
W. Gao, J. Wang, ACS Nano 2014, 8, 3170.
B. Wang, S. Handschuh-Wang, J. Shen, X. Zhou, Z. Guo, W. Liu, M. Pumera, L. Zhang, Adv. Mater. 2022, 2205732.
K. Villa, M. Pumera, Chem. Soc. Rev. 2019, 48, 4966.
L. Kong, C. C. Mayorga-Martinez, J. Guan, M. Pumera, Small 2020, 16, https://doi.org/10.1002/smll.201903179.
M. Urso, M. Pumera, Adv. Funct. Mater. 2022, 32, 2112120.
K. Villa, J. Parmar, D. Vilela, S. Sánchez, ACS Appl. Mater. Interfaces 2018, 10, 20478.
A. Bunea, D. Martella, S. Nocentini, C. Parmeggiani, R. Taboryski, D. S. Wiersma, Advanced Intelligent Systems 2021, 3, 2000256.
Y. Ying, A. M. Pourrahimi, C. L. Manzanares-Palenzuela, F. Novotny, Z. Sofer, M. Pumera, Small 2020, 16, https://doi.org/10.1002/smll.201902944.
J. Li, V. V. Singh, S. Sattayasamitsathit, J. Orozco, K. Kaufmann, R. Dong, W. Gao, B. Jurado-Sanchez, Y. Fedorak, J. Wang, ACS Nano 2014, 8, 11118.
H. Ceylan, I. C. Yasa, U. Kilic, W. Hu, M. Sitti, Progress in Biomedical Engineering 2019, 1, 012002.
W. Zhang, Y. Deng, J. Zhao, T. Zhang, X. Zhang, W. Song, L. Wang, T. Li, Small 2023, https://doi.org/10.1002/smll.202207360.
T. Li, A. Zhang, G. Shao, M. Wei, B. Guo, G. Zhang, L. Li, W. Wang, Adv. Funct. Mater. 2018, 28, 1706066.
M. Urso, M. Ussia, M. Pumera, Adv. Funct. Mater. 2021, 2101510, https://doi.org/10.1002/adfm.202101510.
S. M. Beladi-Mousavi, S. Hermanová, Y. Ying, J. Plutnar, M. Pumera, ACS Appl. Mater. Interfaces 2021, 25102, https://doi.org/10.1021/acsami.1c04559.
K. Villa, L. Děkanovský, J. Plutnar, J. Kosina, M. Pumera, Adv. Funct. Mater. 2020, 30, 2007073.
M. Urso, M. Ussia, F. Novotný, M. Pumera, Nat. Commun. 2022, 13, https://doi.org/10.1038/s41467-022-31161-2.
L. Wang, A. Kaeppler, D. Fischer, J. Simmchen, ACS Appl. Mater. Interfaces 2019, 11, 32937.
H. Wang, M. Pumera, Chem. Soc. Rev. 2020, 49, 3211.
X. Lu, H. Shen, Y. Wei, H. Ge, J. Wang, H. Peng, W. Liu, Small 2020, 16, https://doi.org/10.1002/smll.202003678.
W. Duan, R. Liu, A. Sen, J. Am. Chem. Soc. 2013, 135, 1280.
Q. Wang, J. Yu, K. Yuan, L. Yang, D. Jin, L. Zhang, Appl. Mater. Today 2020, 18, https://doi.org/10.1016/j.apmt.2019.100489.
J. Zhang, J. Song, F. Mou, J. Guan, A. Sen, Trends Chem 2021, 3, 387.
Y. Hong, M. Diaz, U. M. Córdova-Fteueroa, A. Sen, Adv. Funct. Mater. 2010, 20, 1568.
J. Zhang, F. Mou, Z. Wu, J. Song, J. E. Kauffman, A. Sen, J. Guan, Nanoscale Adv 2021, 3, 6157.
T. Gupta, Samriti, J. C., J. Prakash, Mater. Today Chem. 2021, 20, https://doi.org/10.1016/j.mtchem.2021.100428.
F. Mou, J. Zhang, Z. Wu, S. Du, Z. Zhang, L. Xu, J. Guan, iScience 2019, 19, 415.
B. Liu, C. Feng, X. Zhang, L. Zhu, X. Wang, G. Zhang, D. Xu, CrystEngComm 2016, 18, 1215.
G. Zhu, J. Xu, W. Zhao, F. Huang, ACS Appl. Mater. Interfaces 2016, 8, 31716.
L. Wang, B. Cheng, L. Zhang, J. Yu, Small 2021, 17, 2103447.
A. Naldoni, M. Allieta, S. Santangelo, M. Marelli, F. Fabbri, S. Cappelli, C. L. Bianchi, R. Psaro, V. Dal Santo, J. Am. Chem. Soc. 2012, 134, 7600.
L. Collado, A. Reynal, F. Fresno, M. Barawi, C. Escudero, V. Perez-Dieste, J. M. Coronado, D. P. Serrano, J. R. Durrant, V. A. de la Peña O'Shea, Nat. Commun. 2018, 9, https://doi.org/10.1038/s41467-018-07397-2.
D. Yang, Y. Zhang, S. Zhang, Y. Cheng, Y. Wu, Z. Cai, X. Wang, J. Shi, Z. Jiang, ACS Catal. 2019, 9, 11492.
D. Jin, J. Yu, K. Yuan, L. Zhang, ACS Nano 2019, 13, 5999.
H. Xie, M. Sun, X. Fan, Z. Lin, W. Chen, L. Wang, L. Dong, Q. He, Sci Robot 2019, 4, https://doi.org/10.1126/scirobotics.aav8006.
P. Xu, S. Duan, Z. Xiao, Z. Yang, W. Wang, Soft Matter 2020, 16, 6082.
L. Kong, C. C. Mayorga-Martinez, J. Guan, M. Pumera, Chem Asian J 2019, 14, 2456.
G. Li, J. Li, G. Li, G. Jiang, J Mater Chem A Mater 2015, 3, 22073.
L. Bahrig, S. G. Hickey, A. Eychmüller, CrystEngComm 2014, 16, 9408.
J. M. Dreyfors, S. B. Jones, Y. Sayed, Am Ind Hyg Assoc J 1989, 50, 579.
H. Kang, Y. Zhu, J. Shen, X. Yang, C. Chen, H. Cao, C. Li, Mater. Res. Bull. 2010, 45, 830.
J. Kecht, T. Bein, Microporous Mesoporous Mater. 2008, 116, 123.
S. G. Ullattil, R. M. Ramakrishnan, ACS Appl. Nano Mater. 2018, 1, 4045.
Y. Liu, Y. Shi, S. Zhang, B. Liu, X. Sun, D. Yang, J. Mater. Sci. 2019, 54, 8907.
L. M. C. Honorio, A. L. M. de Oliveira, E. C. da Silva Filho, J. A. Osajima, A. Hakki, D. E. Macphee, I. M. G. dos Santos, Appl. Surf. Sci. 2020, 528, 146991.
T. Hirakawa, K. Yawata, Y. Nosaka, Appl Catal A Gen 2007, 325, 105.
L. C. Santos, A. L. Poli, C. C. S. Cavalheiro, M. G. Neumann, The UV/H 2 O 2-Photodegradation of Poly(Ethyleneglycol) and Model Compounds 2009.
G. Tian, Z. Zhang, H. Li, D. Li, X. Wang, C. Qin, Crit. Rev. Anal. Chem. 2021, 51, http://doi.org/10.1080/10408347.2020.1753163.
Y. Cui, L. Liu, B. Li, X. Zhou, N. Xu, J. Phys. Chem. C 2010, 114, 2434.