Molecularly Engineered Fluorescent Magnetic Microrobots for Sensing High-Energy Nitroaromatic Explosives in Highly Acidic Aqueous Environments
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
25-15484X
Grant Agency of the Czech Republic
PubMed
41363892
PubMed Central
PMC12824556
DOI
10.1002/smll.202512670
Knihovny.cz E-zdroje
- Klíčová slova
- explosives, microfluidics, micromotors, nanorobots,
- Publikační typ
- časopisecké články MeSH
Among various analytical sensing approaches currently in use, fluorescence sensing is known for its high sensitivity, rapid response, and applicability in monitoring a wide range of target molecules. Pairing an appropriate navigation system with a fluorescent molecule that can carry it to inaccessible or hard-to-reach environments can pave the way for remote and selective sensing applications. Herein, we design magnetic nanoparticles embedded with fluorescent material to form magneto-fluorescent, precisely navigable microrobots for sensing high-energy explosive compounds in acidic aqueous systems. Magnetic guidance via Helmholtz coils provides dynamic navigational control to direct the microrobots to specific regions of interest using externally applied magnetic fields. Upon specific interaction with picric acid, the sensing mechanism is triggered via fluorescence quenching ("on-off" switch). Materials characterization demonstrates that this quenching mechanism arises from the hydrogen bonding and charge-transfer interactions between ketenimine-functionalized probes and the hydroxyl group in picric acid, leading to the formation of water-soluble picrate complexes. Testing in microfluidic channels as proof-of-concept further validates the microrobot's ability for selective sensing of target analytes, emphasizing them as smart mobile sensors for environmental monitoring in harsh acidic conditions, confined spaces, hazardous material detection, and applications in the real world where conventional sensors face challenges.
Zobrazit více v PubMed
Wang J., Electroanalysis 2007, 19, 415.
To K. C., Ben‐Jaber S., Parkin I. P., ACS Nano 2020, 14, 10804. PubMed
Liu R., Li Z., Huang Z., Li K., Lv Y., TrAC Trends Anal. Chem. 2019, 118, 123.
Wang J., Pumera M., Chatrathi M. P., Escarpa A., Musameh M., Collins G., Mulchandani A., Lin Y., Olsen K., Anal. Chem. 2002, 74, 1187. PubMed
Song J. H., Kang D. W., Coord. Chem. Rev. 2023, 492, 215279.
Giannoukos S., Brkić B., Taylor S., Marshall A., Verbeck G. F., Chem. Rev 2016, 116, 8146. PubMed
S. C. P. A. I.n Gad, Encyclopedia of Toxicology, 3rd ed., Ed. Wexler P., Academic Press, Cambridge, Massachusetts: 2014, Vol. 3, p. 952–954.
Khan I., Shah T., Tariq M. R., Ahmad M., Zhang B., J. Environ. Chem. Eng 2024, 12, 112720.
Neha, Kaur N., Environmental Surfaces and Interfaces 2024, 2, 49.
Pramanik B., Das S., Das D., Chem. Asian J. 2020, 15, 4291. PubMed
Wyman J. F., Serve M. P., Hobson D. W., Lee L. H., Uddin D. E., J. Toxicol. Environ. Health 1992, 37, 313. PubMed
Kovacic P., Somanathan R., J. Appl. Toxicol 2014, 34, 810. PubMed
Ju K. S., Parales R. E. N. C., Biodegradation S., Microbiol Mol Biol Rev 2010, 74, 250. PubMed PMC
Pumera M., Electrophoresis 2008, 29, 269. PubMed
Wang B., Lv X. L., Feng D., Xie L. H., Zhang J., Li M., Xie Y., Li J. R., Zhou H. C., J. Am. Chem. Soc. 2016, 138, 6204. PubMed
Liu S. G., Luo D., Li N., Zhang W., Lei J. L., Li N. B., Luo H. Q., ACS Appl. Mater. Interfaces. 2016, 8, 21700. PubMed
Cavaye H., Smith A. R. G., James M., Nelson A., Burn P. L., Gentle I. R., Lo S. C., Meredith P., Langmuir 2009, 25, 12800. PubMed
Lin L., Rong M., Lu S., Song X., Zhong Y., Yan J., Wang Y., Chen X., Nanoscale 2015, 7, 1872. PubMed
Khan Z. M. S. H., Saifi S., Shumaila, Aslam Z., Khan S. A., Zulfequar M., J. Photochem. Photobiol. A: Chem. 2020, 388, 112201.
Li Y., Feng L., Yan W., Hussain I., Su L., Tan B., Nanoscale 2019, 11, 1286. PubMed
Ahmed R., Ali F., Int. Multidiscip. Res. J. 2023, 06, 1119.
Chowdhury A., Mukherjee P. S., J. Org. Chem. 2015, 80, 4064. PubMed
Fabin M., Łapkowski M., Jarosz T., Appl. Sci 2023, 13, 3991.
Urso M., Ussia M., Pumera M., Nat. Rev. Bioeng 2023, 1, 236. PubMed PMC
Ju X., Chen C., Oral C. M., Sevim S., Golestanian R., Sun M., Bouzari N., Lin X., Urso M., Nam J. S., Cho Y., Peng X., Landers F. C., Yang S., Adibi A., Taz N., Wittkowski R., Ahmed D., Wang W., Magdanz V., Medina‐Sánchez M., Guix M., Bari N., Behkam B., Kapral R., Huang Y., Tang J., Wang B., Morozov K., Leshansky A., et al., ACS Nano 2025, 19, 24174. PubMed PMC
Oral C. M., Pumera M., Nanoscale 2023, 15, 8491. PubMed
Zhu B., Salehi A., Xu L., Yuan W., Yu T., Adv. Intell. Syst. 2025, 7, 2400779.
Jurado‐Sánchez B., Wang J., Environ. Sci. Nano 2018, 5, 1530.
Parmar J., Vilela D., Villa K., Wang J., Sánchez S., J. Am. Chem. Soc. 2018, 140, 9317. PubMed
Hussein H., Damdam A., Ren L., Obeid Charrouf Y., Challita J., Zwain M., Fariborzi H., Adv. Intell. Syst. 2023, 5, 2300168.
Gardi G., Ceron S., Wang W., Petersen K., Sitti M., Nat. Commun. 2022, 13, 2239. PubMed PMC
Peng X., Urso M., Ussia M., Pumera M., ACS Nano 2022, 16, 7615. PubMed
Ullattil S. G., Pumera M., Small 2023, 19, 2301467. PubMed
Eskandarloo H., Kierulf A., Abbaspourrad A., Nanoscale 2017, 9, 12218. PubMed
Ying Y., Pourrahimi A. M., Manzanares‐Palenzuela C. L., Novotny F., Sofer Z., Pumera M., Small 2020, 16, 1902944. PubMed
Zhou H., Mayorga‐Martinez C. C., Pané S., Zhang L., Pumera M., Chem. Rev 2021, 121, 4999. PubMed PMC
Mayorga‐Burrezo P., Mayorga‐Martinez C. C., Kuchař M., Pumera M., Small 2024, 20, 2306943. PubMed
Liu H., Guo Q., Wang W., Yu T., Yuan Z., Ge Z., Yang W., Rev. Adv. Mater. Sci. 2023, 62, 20230119.
Moo J. G. S., Mayorga‐Martinez C. C., Wang H., Khezri B., Teo W. Z., Pumera M., Adv. Funct. Mater. 2017, 27, 1604759.
Han K., Snezhko A., ACS Nano 2025, 19, 16248. PubMed
Máthé M. T., Nishikawa H., Araoka F., Jákli A., Salamon P., Nat. Commun. 2024, 15, 6928. PubMed PMC
Lu X., Zhao K., Liu W., Yang D., Shen H., Peng H., Guo X., Li J., Wang J., ACS Nano 2019, 13, 11443. PubMed
Zhou Y., Wang H., Ma Z., Yang J. K. W., Ai Y., Adv. Mater. Technol. 2020, 5, 2000323.
Cao C., Mou F., Yang M., Zhang S., Zhang D., Li L., Lan T., Xiao D., Luo W., Ma H., Guan J., Adv. Sci. 2024, 11, 2401711. PubMed PMC
Urso M., Ussia M., Peng X., Oral C. M., Pumera M., Nat. Commun. 2023, 14, 6969. PubMed PMC
Zhang L., Wang S., Hou Y., ACS Nano 2025, 19, 7444. PubMed
Dutta S., Noh S., Gual R. S., Chen X., Pané S., Nelson B. J., Choi H., Nano‐Micro Lett. 2024, 16, 41. PubMed PMC
Ussia M., Urso M., Kratochvilova M., Navratil J., Balvan J., Mayorga‐Martinez C. C., Vyskocil J., Masarik M., Pumera M., Small 2023, 19, 2208259. PubMed
Peng X., Oral C. M., Urso M., Ussia M., Pumera M., ACS Appl. Mater. Interfaces. 2025, 17, 3608. PubMed PMC
Ussia M., Urso M., Oral C. M., Peng X., Pumera M., ACS Nano 2024, 18, 13171. PubMed PMC
Oral C. M., Ussia M., Pumera M., J. Phys. Chem. C. 2021, 125, 18040.
Peng X., Urso M., Pumera M., npj Clean Water 2023, 6, 21.
Peng X., Urso M., Pumera M., Small Methods 2021, 5, 2100617. PubMed
Pourrahimi A. M., Villa K., Ying Y., Sofer Z., Pumera M., ACS Appl. Mater. Interfaces. 2018, 10, 42688. PubMed
Novotný F., Plutnar J., Pumera M., Adv. Funct. Mater. 2019, 29, 1903041.
Ma Y., Zhang Y., Liu X., Zhang Q., Kong L., Tian Y., Li G., Zhang X., Yang J., Dyes Pigments 2019, 163, 1.
Patra A., Radhakrishnan T. P., Chem. ‐ Eur. J. 2009, 15, 2792. PubMed
Mahajan N., Radhakrishnan T. P., J. Mater. Chem. C 2024, 12, 13430.
Senthilnathan N., Gaurav K., Venkata Ramana C., Radhakrishnan T. P., J. Mater. Chem. B 2020, 8, 4601. PubMed
Senthilnathan N., Oral C. M., Novobilsky A., Pumera M., Adv. Funct. Mater. 2024, 34, 2401463.
Senthilnathan N., Oral C. M., Pumera M., ACS Appl. Mater. Interfaces. 2025, 17, 21691. PubMed PMC
Jayanty S., Radhakrishnan T. P., Chem. ‐ Eur. J. 2004, 10, 791. PubMed
Jayanty S., Radhakrishnan T. P., Chem. Mater 2001, 13, 2072.
Gaballa A. S., Amin A. S., Spectrochim. Acta ‐ A: Mol. Biomol. Spectrosc. 2015, 145, 302. PubMed
Dhanabal T., Amirthaganesan G., Dhandapani M., Das S. K., J Chem Sci 2012, 124, 951.