Magnetic Microrobot Swarms with Polymeric Hands Catching Bacteria and Microplastics in Water
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38717036
PubMed Central
PMC11112980
DOI
10.1021/acsnano.4c02115
Knihovny.cz E-zdroje
- Klíčová slova
- collective motion, magnetically driven, micromotors, microplastics, self-assembly, swarming behavior, water purification,
- MeSH
- Bacteria izolace a purifikace MeSH
- Escherichia coli izolace a purifikace MeSH
- magnetické pole MeSH
- mikroplasty * chemie MeSH
- polymery chemie MeSH
- robotika * přístrojové vybavení MeSH
- velikost částic MeSH
- voda chemie MeSH
- Publikační typ
- časopisecké články MeSH
The forefront of micro- and nanorobot research involves the development of smart swimming micromachines emulating the complexity of natural systems, such as the swarming and collective behaviors typically observed in animals and microorganisms, for efficient task execution. This study introduces magnetically controlled microrobots that possess polymeric sequestrant "hands" decorating a magnetic core. Under the influence of external magnetic fields, the functionalized magnetic beads dynamically self-assemble from individual microparticles into well-defined rotating planes of diverse dimensions, allowing modulation of their propulsion speed, and exhibiting a collective motion. These mobile microrobotic swarms can actively capture free-swimming bacteria and dispersed microplastics "on-the-fly", thereby cleaning aquatic environments. Unlike conventional methods, these microrobots can be collected from the complex media and can release the captured contaminants in a second vessel in a controllable manner, that is, using ultrasound, offering a sustainable solution for repeated use in decontamination processes. Additionally, the residual water is subjected to UV irradiation to eliminate any remaining bacteria, providing a comprehensive cleaning solution. In summary, this study shows a swarming microrobot design for water decontamination processes.
Zobrazit více v PubMed
Urso M.; Ussia M.; Pumera M. Smart Micro- and Nanorobots for Water Purification. Nat. Rev. Bioeng. 2023, 1, 236–251. 10.1038/s44222-023-00025-9. PubMed DOI PMC
Bacha A. U. R.; Nabi I.; Zaheer M.; Jin W.; Yang L. Biodegradation of Macro- and Micro-Plastics in Environment: A Review on Mechanism, Toxicity, and Future Perspectives. Sci. Total Environ. 2023, 858, 160108.10.1016/j.scitotenv.2022.160108. PubMed DOI
Favere J.; Barbosa R. G.; Sleutels T.; Verstraete W.; De Gusseme B.; Boon N. Safeguarding the Microbial Water Quality from Source to Tap. npj Clean Water 2021, 4, 28.10.1038/s41545-021-00118-1. DOI
Dong D.; Sun H.; Qi Z.; Liu X. Improving Microbial Bioremediation Efficiency of Intensive Aquacultural Wastewater Based on Bacterial Pollutant Metabolism Kinetics Analysis. Chemosphere 2021, 265, 129151.10.1016/j.chemosphere.2020.129151. PubMed DOI
Ciofu O.; Moser C.; Jensen P. Ø.; Høiby N. Tolerance and Resistance of Microbial Biofilms. Nat. Rev. Microbiol. 2022, 20, 621–635. 10.1038/s41579-022-00682-4. PubMed DOI
Chamas A.; Moon H.; Zheng J.; Qiu Y.; Tabassum T.; Jang J. H.; Abu-Omar M.; Scott S. L.; Suh S. Degradation Rates of Plastics in the Environment. ACS Sustain. Chem. Eng. 2020, 8 (9), 3494–3511. 10.1021/acssuschemeng.9b06635. DOI
Mitrano D. M.; Wick P.; Nowack B. Placing Nanoplastics in the Context of Global Plastic Pollution. Nat. Nanotechnol. 2021, 16, 491–500. 10.1038/s41565-021-00888-2. PubMed DOI
Leslie H. A.; van Velzen M. J. M.; Brandsma S. H.; Vethaak A. D.; Garcia-Vallejo J. J.; Lamoree M. H. Discovery and Quantification of Plastic Particle Pollution in Human Blood. Environ. Int. 2022, 163, 107199.10.1016/j.envint.2022.107199. PubMed DOI
Liu Q.; Chen Y.; Chen Z.; Yang F.; Xie Y.; Yao W. Current Status of Microplastics and Nanoplastics Removal Methods: Summary, Comparison and Prospect. Sci. Total Environ. 2022, 851, 157991.10.1016/j.scitotenv.2022.157991. PubMed DOI
Zhai X.; Zhang X. H.; Yu M. Microbial Colonization and Degradation of Marine Microplastics in the Plastisphere: A Review. Front. Microbiol. 2023, 14, 1127308.10.3389/fmicb.2023.1127308. PubMed DOI PMC
Anand U.; Dey S.; Bontempi E.; Ducoli S.; Vethaak A. D.; Dey A.; Federici S. Biotechnological Methods to Remove Microplastics: A Review. Environ. Chem. Lett. 2023, 21, 1787–1810. 10.1007/s10311-022-01552-4. PubMed DOI PMC
Urso M.; Pumera M. Nano/Microplastics Capture and Degradation by Autonomous Nano/Microrobots: A Perspective. Adv. Funct. Mater. 2022, 32, 2112120.10.1002/adfm.202112120. DOI
Ukhurebor K. E.; Hossain I.; Pal K.; Jokthan G.; Osang F.; Ebrima F.; Katal D. Applications and Contemporary Issues with Adsorption for Water Monitoring and Remediation: A Facile Review. Top. Catal. 2024, 67, 140–155. 10.1007/s11244-023-01817-4. DOI
Peng X.; Urso M.; Ussia M.; Pumera M. Shape-Controlled Self-Assembly of Light-Powered Microrobots into Ordered Microchains for Cells Transport and Water Remediation. ACS Nano 2022, 16 (5), 7615–7625. 10.1021/acsnano.1c11136. PubMed DOI
Al-Ahmad A.; Wiedmann-Al-Ahmad M.; Faust J.; Bächle M.; Follo M.; Wolkewitz M.; Hannig C.; Hellwig E.; Carvalho C.; Kohal R. Biofilm Formation and Composition on Different Implant Materials in Vivo. J. Biomed. Mater. Res. - Part B Appl. Biomater. 2010, 95 (1), 101–109. 10.1002/jbm.b.31688. PubMed DOI
Debata S.; Kherani N. A.; Panda S. K.; Singh D. P. Light-Driven Microrobots: Capture and Transport of Bacteria and Microparticles in a Fluid Medium. J. Mater. Chem. B 2022, 10, 8235–8243. 10.1039/D2TB01367C. PubMed DOI
Vilela D.; Stanton M. M.; Parmar J.; Sánchez S. Microbots Decorated with Silver Nanoparticles Kill Bacteria in Aqueous Media. ACS Appl. Mater. Interfaces 2017, 9, 22093–22100. 10.1021/acsami.7b03006. PubMed DOI
Urso M.; Ussia M.; Novotný F.; Pumera M. Trapping and Detecting Nanoplastics by MXene-Derived Oxide Microrobots. Nat. Commun. 2022, 13, 3573.10.1038/s41467-022-31161-2. PubMed DOI PMC
Nguyen H. T.; Lee Y. K.; Kwon J. H.; Hur J. Microplastic Biofilms in Water Treatment Systems: Fate and Risks of Pathogenic Bacteria, Antibiotic-Resistant Bacteria, and Antibiotic Resistance Genes. Sci. Total Environ. 2023, 892, 164523.10.1016/j.scitotenv.2023.164523. PubMed DOI
Jung Y.; Yoon S.-J.; Byun J.; Jung K.-W.; Choi J.-W. Visible-Light-Induced Self-Propelled Nanobots against Nanoplastics. Water Res. 2023, 244, 120543.10.1016/j.watres.2023.120543. PubMed DOI
Oral C. M.; Ussia M.; Yavuz D. K.; Pumera M. Shape Engineering of TiO2Microrobots for “ On-the-Fly ” Optical Brake. Small 2022, 18, 2106271.10.1002/smll.202106271. PubMed DOI
Oral C. M.; Ussia M.; Pumera M. Self-Propelled Activated Carbon Micromotors for “On-the-Fly” Capture of Nitroaromatic Explosives. J. Phys. Chem. C 2021, 125 (32), 18040–18045. 10.1021/acs.jpcc.1c05136. DOI
Gordón Pidal J. M.; Arruza L.; Moreno-Guzmán M.; López M. Á.; Escarpa A. OFF-ON on-the-Fly Aptassay for Rapid and Accurate Determination of Procalcitonin in Very Low Birth Weight Infants with Sepsis Suspicion. Sensors Actuators B Chem. 2023, 378, 133107.10.1016/j.snb.2022.133107. DOI
Ussia M.; Urso M.; Kratochvilova M.; Navratil J.; Balvan J.; Mayorga-Martinez C. C.; Vyskocil J.; Masarik M.; Pumera M. Magnetically Driven Self-Degrading Zinc-Containing Cystine Microrobots for Treatment of Prostate Cancer. Small 2023, 19, 2208259.10.1002/smll.202208259. PubMed DOI
Ning S.; Sanchis-Gual R.; Franco C.; Wendel-Garcia P. D.; Ye H.; Veciana A.; Tang Q.; Sevim S.; Hertle L.; Llacer-Wintle J.; Qin X.-H.; Zhu C.; Cai J.; Chen X.; Nelson B. J.; Puigmarti-Luis J.; Pane S. Magnetic PiezoBOTs: A Microrobotic Approach for Targeted Amyloid Protein Dissociation. Nanoscale 2023, 15, 14800–14808. 10.1039/D3NR02418K. PubMed DOI PMC
Iacovacci V.; Blanc A.; Huang H.; Ricotti L.; Schibli R.; Menciassi A.; Behe M.; Pané S.; Nelson B. J. High-Resolution SPECT Imaging of Stimuli-Responsive Soft Microrobots. Small 2019, 15, 1900709.10.1002/smll.201900709. PubMed DOI
Park J.; Kim J. young; Pané S.; Nelson B. J.; Choi H. Acoustically Mediated Controlled Drug Release and Targeted Therapy with Degradable 3D Porous Magnetic Microrobots. Adv. Healthc. Mater. 2021, 10, 2001096.10.1002/adhm.202001096. PubMed DOI
Alcântara C. C. J.; Landers F. C.; Kim S.; De Marco C.; Ahmed D.; Nelson B. J.; Pané S. Mechanically Interlocked 3D Multi-Material Micromachines. Nat. Commun. 2020, 11, 5957.10.1038/s41467-020-19725-6. PubMed DOI PMC
Yong J.; Mellick A. S.; Whitelock J.; Wang J.; Liang K. A Biomolecular Toolbox for Precision Nanomotors. Adv. Mater. 2023, 35, 2205746.10.1002/adma.202205746. PubMed DOI
Fonseca A. D. C.; Kohler T.; Ahmed D. Ultrasound-Controlled Swarmbots Under Physiological Flow Conditions. Adv. Mater. Interfaces 2022, 9, 2200877.10.1002/admi.202200877. DOI
Urso M.; Pumera M. Micro- and Nanorobots Meet DNA. Adv. Funct. Mater. 2022, 32, 2200711.10.1002/adfm.202200711. DOI
Soto F.; Karshalev E.; Zhang F.; Esteban Fernandez De Avila B.; Nourhani A.; Wang J. Smart Materials for Microrobots. Chem. Rev. 2022, 122 (5), 5365–5403. 10.1021/acs.chemrev.0c00999. PubMed DOI
Ji F.; Wu Y.; Pumera M.; Zhang L. Collective Behaviors of Active Matter Learning from Natural Taxes Across Scales. Adv. Mater. 2023, 35, 2203959.10.1002/adma.202203959. PubMed DOI
Vaghasiya J. V.; Mayorga-Martinez C. C.; Matějková S.; Pumera M. Pick up and Dispose of Pollutants from Water via Temperature-Responsive Micellar Copolymers on Magnetite Nanorobots. Nat. Commun. 2022, 13, 1026.10.1038/s41467-022-28406-5. PubMed DOI PMC
Xie H.; Sun M.; Fan X.; Lin Z.; Chen W.; Wang L.; Dong L.; He Q. Reconfigurable Magnetic Microrobot Swarm: Multimode Transformation, Locomotion, and Manipulation. Sci. Robot. 2019, 4, eaav800610.1126/scirobotics.aav8006. PubMed DOI
Martínez-Pedrero F.; González-Banciella A.; Camino A.; Mateos-Maroto A.; Ortega F.; Rubio R. G.; Pagonabarraga I.; Calero C. Static and Dynamic Self-Assembly of Pearl-Like-Chains of Magnetic Colloids Confined at Fluid Interfaces. Small 2021, 17, 2101188.10.1002/smll.202101188. PubMed DOI
Massana-Cid H.; Meng F.; Matsunaga D.; Golestanian R.; Tierno P. Tunable Self-Healing of Magnetically Propelling Colloidal Carpets. Nat. Commun. 2019, 10, 2444.10.1038/s41467-019-10255-4. PubMed DOI PMC
Kim J.; Mayorga-Martinez C. C.; Pumera M. Magnetically Boosted 1D Photoactive Microswarm for COVID-19 Face Mask Disruption. Nat. Commun. 2023, 14, 935.10.1038/s41467-023-36650-6. PubMed DOI PMC
Jin D.; Yu J.; Yuan K.; Zhang L. Mimicking the Structure and Function of Ant Bridges in a Reconfigurable Microswarm for Electronic Applications. ACS Nano 2019, 13 (5), 5999–6007. 10.1021/acsnano.9b02139. PubMed DOI
Law J.; Yu J.; Tang W.; Gong Z.; Wang X.; Sun Y. Micro/Nanorobotic Swarms: From Fundamentals to Functionalities. ACS Nano 2023, 17, 12971–12999. 10.1021/acsnano.2c11733. PubMed DOI
Wu R.; Zhu Y.; Cai X.; Wu S.; Xu L.; Yu T. Recent Process in Microrobots: From Propulsion to Swarming for Biomedical Applications. Micromachines 2022, 13, 1473.10.3390/mi13091473. PubMed DOI PMC
Chen H.; Yu J. Magnetic Microrobotic Swarms in Fluid Suspensions. Curr. Robot. Reports 2022, 3 (3), 127–137. 10.1007/s43154-022-00085-6. DOI
Yang L.; Jiang J.; Gao X.; Wang Q.; Dou Q.; Zhang L. Autonomous Environment-Adaptive Microrobot Swarm Navigation Enabled by Deep Learning-Based Real-Time Distribution Planning. Nat. Mach. Intell. 2022, 4 (5), 480–493. 10.1038/s42256-022-00482-8. DOI
Yang L.; Zhang L. Motion Control in Magnetic Microrobotics: From Individual and Multiple Robots to Swarms. Annu. Rev. Control. Robot. Auton. Syst. 2021, 4, 509–534. 10.1146/annurev-control-032720-104318. DOI
Huang H.; Yang S.; Ying Y.; Chen X.; Puigmartì-Luis J.; Zhang L.; Pané S. 3D Motion Manipulation for Micro- and Nanomachines: Progress and Future Directions. Adv. Mater. 2024, 36, 2305925.10.1002/adma.202305925. PubMed DOI
Lu X.; Shen H.; Wei Y.; Ge H.; Wang J.; Peng H.; Liu W. Ultrafast Growth and Locomotion of Dandelion-Like Microswarms with Tubular Micromotors. Small 2020, 16, 2003678.10.1002/smll.202003678. PubMed DOI
Wang X.; Wang T.; Chen X.; Law J.; Shan G.; Tang W.; Gong Z.; Pan P.; Liu X.; Yu J.; Ru C.; Huang X.; Sun Y. Microrobotic Swarms for Intracellular Measurement with Enhanced Signal-to-Noise Ratio. ACS Nano 2022, 16 (7), 10824–10839. 10.1021/acsnano.2c02938. PubMed DOI
Wang B.; Zhang Y.; Zhang L. Recent Progress on Micro- and Nano-Robots: Towards in Vivo Tracking and Localization. Quant. Imaging Med. Surg. 2018, 8, 461–479. 10.21037/qims.2018.06.07. PubMed DOI PMC
Llacer-Wintle J.; Rivas-Dapena A.; Chen X. Z.; Pellicer E.; Nelson B. J.; Puigmartí-Luis J.; Pané S. Biodegradable Small-Scale Swimmers for Biomedical Applications. Adv. Mater. 2021, 33, 2102049.10.1002/adma.202102049. PubMed DOI
Sun M.; Chan K. F.; Zhang Z.; Wang L.; Wang Q.; Yang S.; Chan S. M.; Chiu P. W. Y.; Sung J. J. Y.; Zhang L. Magnetic Microswarm and Fluoroscopy-Guided Platform for Biofilm Eradication in Biliary Stents. Adv. Mater. 2022, 34, 2201888.10.1002/adma.202201888. PubMed DOI
de la Asunción-nadal V.; Franco C.; Veciana A.; Ning S.; Terzopoulou A.; Sevim S.; Chen X.; Gong D.; Cai J.; Wendel-garcia P. D.; Jurado-sánchez B.; Escarpa A.; Puigmartí-Luis J.; Pané S. MoSBOTs: Magnetically Driven Biotemplated MoS2 -Based Microrobots for Biomedical Applications. Small 2022, 18, 2203821.10.1002/smll.202203821. PubMed DOI
Yang M.; Zhang Y.; Mou F.; Cao C.; Yu L.; Li Z.; Guan J. Swarming Magnetic Nanorobots Bio-Interfaced by Heparinoid-Polymer Brushes for in Vivo Safe Synergistic Thrombolysis. Sci. Adv. 2023, 9, eadk725110.1126/sciadv.adk7251. PubMed DOI PMC
Xu Z.; Chen M.; Lee H.; Feng S. P.; Park J. Y.; Lee S.; Kim J. T. X-Ray-Powered Micromotors. ACS Appl. Mater. Interfaces 2019, 11 (17), 15727–15732. 10.1021/acsami.9b00174. PubMed DOI
Yu J.; Yang L.; Zhang L. Pattern Generation and Motion Control of a Vortex-like Paramagnetic Nanoparticle Swarm. Int. J. Rob. Res. 2018, 37, 912–930. 10.1177/0278364918784366. DOI
Li M.; Wu J.; Lin D.; Yang J.; Jiao N.; Wang Y.; Liu L. A Diatom-Based Biohybrid Microrobot with a High Drug-Loading Capacity and PH-Sensitive Drug Release for Target Therapy. Acta Biomater. 2022, 154, 443–453. 10.1016/j.actbio.2022.10.019. PubMed DOI
Wang Q.; Chan K. F.; Schweizer K.; Du X.; Jin D.; Yu S. C. H.; Nelson B. J.; Zhang L. Ultrasound Doppler-Guided Real-Time Navigation of a Magnetic Microswarm for Active Endovascular Delivery. Sci. Adv. 2021, 7, eabe591410.1126/sciadv.abe5914. PubMed DOI PMC
Hoop M.; Mushtaq F.; Hurter C.; Chen X. Z.; Nelson B. J.; Pané S. A Smart Multifunctional Drug Delivery Nanoplatform for Targeting Cancer Cells. Nanoscale 2016, 8 (25), 12723–12728. 10.1039/C6NR02228F. PubMed DOI
Oral C. M.; Ussia M.; Urso M.; Salat J.; Novobilsky A.; Stefanik M.; Ruzek D.; Pumera M. Radiopaque Nanorobots as Magnetically Navigable Contrast Agents for Localized In Vivo Imaging of the Gastrointestinal Tract. Adv. Healthc. Mater. 2023, 12, 2202682.10.1002/adhm.202202682. PubMed DOI
Wang Q.; Zhang L. External Power-Driven Microrobotic Swarm: From Fundamental Understanding to Imaging-Guided Delivery. ACS Nano 2021, 15, 149–174. 10.1021/acsnano.0c07753. PubMed DOI
Van Reenen A.; De Jong A. M.; Prins M. W. J. Transportation, Dispersion and Ordering of Dense Colloidal Assemblies by Magnetic Interfacial Rotaphoresis. Lab Chip 2015, 15, 2864.10.1039/C5LC00294J. PubMed DOI
Wang B.; Chan K. F.; Yu J.; Wang Q.; Yang L.; Chiu P. W. Y.; Zhang L. Reconfigurable Swarms of Ferromagnetic Colloids for Enhanced Local Hyperthermia. Adv. Funct. Mater. 2018, 28, 1705701.10.1002/adfm.201705701. DOI
Law J.; Wang X.; Luo M.; Xin L.; Du X.; Dou W.; Wang T.; Shan G.; Wang Y.; Song P.; Huang X.; Yu J.; Sun Y. Microrobotic Swarms for Selective Embolization. Sci. Adv. 2022, 8, eabm575210.1126/sciadv.abm5752. PubMed DOI PMC
Jancik-Prochazkova A.; Pumera M. Light-Powered Swarming Phoretic Antimony Chalcogenide-Based Microrobots with “on-the-Fly” Photodegradation Abilities. Nanoscale 2023, 15, 5726–5734. 10.1039/D3NR00098B. PubMed DOI
Zhang Y.; Yan K.; Ji F.; Zhang L. Enhanced Removal of Toxic Heavy Metals Using Swarming Biohybrid Adsorbents. Adv. Funct. Mater. 2018, 28, 1806340.10.1002/adfm.201806340. DOI
Urso M.; Ussia M.; Peng X.; Oral C. M.; Pumera M. Reconfigurable Self-Assembly of Photocatalytic Magnetic Microrobots for Water Purification. Nat. Commun. 2023, 14, 6969.10.1038/s41467-023-42674-9. PubMed DOI PMC
Lui L. T.; Xue X.; Sui C.; Brown A.; Pritchard D. I.; Halliday N.; Winzer K.; Howdle S. M.; Fernandez-Trillo F.; Krasnogor N.; Alexander C. Bacteria Clustering by Polymers Induces the Expression of Quorum-Sensing-Controlled Phenotypes. Nat. Chem. 2013, 5, 1058.10.1038/nchem.1793. PubMed DOI PMC
Haktaniyan M.; Bradley M. Polymers Showing Intrinsic Antimicrobial Activity. Chem. Soc. Rev. 2022, 51 (20), 8584–8611. 10.1039/D2CS00558A. PubMed DOI
Chen A.; Er G.; Zhang C.; Tang J.; Alam M.; T. Ta H.; Elliott A. G.; Cooper M. A.; Perera J.; Swift S.; Blakey I.; Whittaker A. K.; Peng H. Antimicrobial Anilinium Polymers: The Properties of Poly(N,N-Dimethylaminophenylene Methacrylamide) in Solution and as Coatings. J. Polym. Sci. Part A Polym. Chem. 2019, 57 (18), 1908–1921. 10.1002/pola.29314. DOI
Sprouse D.; Reineke T. M. Investigating the Effects of Block versus Statistical Glycopolycations Containing Primary and Tertiary Amines for Plasmid DNA Delivery. Biomacromolecules 2014, 15, 2616–2628. 10.1021/bm5004527. PubMed DOI PMC
Liu J.; Li L.; Cao C.; Feng Z.; Liu Y.; Ma H.; Luo W.; Guan J.; Mou F. Swarming Multifunctional Heater-Thermometer Nanorobots for Precise Feedback Hyperthermia Delivery. ACS Nano 2023, 17, 16731–16742. 10.1021/acsnano.3c03131. PubMed DOI
Gu H.; Hanedan E.; Boehler Q.; Huang T. Y.; Mathijssen A. J. T. M.; Nelson B. J. Artificial Microtubules for Rapid and Collective Transport of Magnetic Microcargoes. Nat. Mach. Intell. 2022, 4 (8), 678–684. 10.1038/s42256-022-00510-7. DOI
Yu Z.; Li L.; Mou F.; Yu S.; Zhang D.; Yang M.; Zhao Q.; Ma H.; Luo W.; Li T.; Guan J. Swarming Magnetic Photonic-Crystal Microrobots with on-the-Fly Visual PH Detection and Self-Regulated Drug Delivery. InfoMat 2023, 5 (10), 1–16. 10.1002/inf2.12464. DOI
Zhang H.; Li Z.; Gao C.; Fan X.; Pang Y.; Li T.; Wu Z.; Xie H.; He Q. Dual-Responsive Biohybrid Neutrobots for Active Target Delivery. Sci. Robot. 2021, 6, eaaz951910.1126/scirobotics.aaz9519. PubMed DOI
Ussia M.; Urso M.; Dolezelikova K.; Michalkova H.; Adam V.; Pumera M. Active Light-Powered Antibiofilm ZnO Micromotors with Chemically Programmable Properties. Adv. Funct. Mater. 2021, 31 (27), 2101178.10.1002/adfm.202101178. DOI
Bhuyan T.; Simon A. T.; Maity S.; Singh A. K.; Ghosh S. S.; Bandyopadhyay D. Magnetotactic T-Budbots to Kill-n-Clean Biofilms. ACS Appl. Mater. Interfaces 2020, 12, 43352–43364. 10.1021/acsami.0c08444. PubMed DOI
Chen C.; Chen L.; Wang P.; Wu L. F.; Song T. Steering of Magnetotactic Bacterial Microrobots by Focusing Magnetic Field for Targeted Pathogen Killing. J. Magn. Magn. Mater. 2019, 479, 74–83. 10.1016/j.jmmm.2019.02.004. DOI
Dong Y.; Wang L.; Yuan K.; Ji F.; Gao J.; Zhang Z.; Du X.; Tian Y.; Wang Q.; Zhang L. Magnetic Microswarm Composed of Porous Nanocatalysts for Targeted Elimination of Biofilm Occlusion. ACS Nano 2021, 15 (3), 5056–5067. 10.1021/acsnano.0c10010. PubMed DOI
Ussia M.; Urso M.; Kment S.; Fialova T.; Klima K.; Dolezelikova K.; Pumera M. Light-Propelled Nanorobots for Facial Titanium Implants Biofilms Removal. Small 2022, 18 (22), 2200708.10.1002/smll.202200708. PubMed DOI
Stanton M. M.; Park B. W.; Vilela D.; Bente K.; Faivre D.; Sitti M.; Sánchez S. Magnetotactic Bacteria Powered Biohybrids Target E. Coli Biofilms. ACS Nano 2017, 11 (10), 9968–9978. 10.1021/acsnano.7b04128. PubMed DOI
Stratton T. R.; Applegate B. M.; Youngblood J. P. Effect of Steric Hindrance on the Properties of Antibacterial and Biocompatible Copolymers. Biomacromolecules 2011, 12 (1), 50–56. 10.1021/bm1009624. PubMed DOI