Magnetic Microrobot Swarms with Polymeric Hands Catching Bacteria and Microplastics in Water

. 2024 May 21 ; 18 (20) : 13171-13183. [epub] 20240508

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38717036

The forefront of micro- and nanorobot research involves the development of smart swimming micromachines emulating the complexity of natural systems, such as the swarming and collective behaviors typically observed in animals and microorganisms, for efficient task execution. This study introduces magnetically controlled microrobots that possess polymeric sequestrant "hands" decorating a magnetic core. Under the influence of external magnetic fields, the functionalized magnetic beads dynamically self-assemble from individual microparticles into well-defined rotating planes of diverse dimensions, allowing modulation of their propulsion speed, and exhibiting a collective motion. These mobile microrobotic swarms can actively capture free-swimming bacteria and dispersed microplastics "on-the-fly", thereby cleaning aquatic environments. Unlike conventional methods, these microrobots can be collected from the complex media and can release the captured contaminants in a second vessel in a controllable manner, that is, using ultrasound, offering a sustainable solution for repeated use in decontamination processes. Additionally, the residual water is subjected to UV irradiation to eliminate any remaining bacteria, providing a comprehensive cleaning solution. In summary, this study shows a swarming microrobot design for water decontamination processes.

Zobrazit více v PubMed

Urso M.; Ussia M.; Pumera M. Smart Micro- and Nanorobots for Water Purification. Nat. Rev. Bioeng. 2023, 1, 236–251. 10.1038/s44222-023-00025-9. PubMed DOI PMC

Bacha A. U. R.; Nabi I.; Zaheer M.; Jin W.; Yang L. Biodegradation of Macro- and Micro-Plastics in Environment: A Review on Mechanism, Toxicity, and Future Perspectives. Sci. Total Environ. 2023, 858, 160108.10.1016/j.scitotenv.2022.160108. PubMed DOI

Favere J.; Barbosa R. G.; Sleutels T.; Verstraete W.; De Gusseme B.; Boon N. Safeguarding the Microbial Water Quality from Source to Tap. npj Clean Water 2021, 4, 28.10.1038/s41545-021-00118-1. DOI

Dong D.; Sun H.; Qi Z.; Liu X. Improving Microbial Bioremediation Efficiency of Intensive Aquacultural Wastewater Based on Bacterial Pollutant Metabolism Kinetics Analysis. Chemosphere 2021, 265, 129151.10.1016/j.chemosphere.2020.129151. PubMed DOI

Ciofu O.; Moser C.; Jensen P. Ø.; Høiby N. Tolerance and Resistance of Microbial Biofilms. Nat. Rev. Microbiol. 2022, 20, 621–635. 10.1038/s41579-022-00682-4. PubMed DOI

Chamas A.; Moon H.; Zheng J.; Qiu Y.; Tabassum T.; Jang J. H.; Abu-Omar M.; Scott S. L.; Suh S. Degradation Rates of Plastics in the Environment. ACS Sustain. Chem. Eng. 2020, 8 (9), 3494–3511. 10.1021/acssuschemeng.9b06635. DOI

Mitrano D. M.; Wick P.; Nowack B. Placing Nanoplastics in the Context of Global Plastic Pollution. Nat. Nanotechnol. 2021, 16, 491–500. 10.1038/s41565-021-00888-2. PubMed DOI

Leslie H. A.; van Velzen M. J. M.; Brandsma S. H.; Vethaak A. D.; Garcia-Vallejo J. J.; Lamoree M. H. Discovery and Quantification of Plastic Particle Pollution in Human Blood. Environ. Int. 2022, 163, 107199.10.1016/j.envint.2022.107199. PubMed DOI

Liu Q.; Chen Y.; Chen Z.; Yang F.; Xie Y.; Yao W. Current Status of Microplastics and Nanoplastics Removal Methods: Summary, Comparison and Prospect. Sci. Total Environ. 2022, 851, 157991.10.1016/j.scitotenv.2022.157991. PubMed DOI

Zhai X.; Zhang X. H.; Yu M. Microbial Colonization and Degradation of Marine Microplastics in the Plastisphere: A Review. Front. Microbiol. 2023, 14, 1127308.10.3389/fmicb.2023.1127308. PubMed DOI PMC

Anand U.; Dey S.; Bontempi E.; Ducoli S.; Vethaak A. D.; Dey A.; Federici S. Biotechnological Methods to Remove Microplastics: A Review. Environ. Chem. Lett. 2023, 21, 1787–1810. 10.1007/s10311-022-01552-4. PubMed DOI PMC

Urso M.; Pumera M. Nano/Microplastics Capture and Degradation by Autonomous Nano/Microrobots: A Perspective. Adv. Funct. Mater. 2022, 32, 2112120.10.1002/adfm.202112120. DOI

Ukhurebor K. E.; Hossain I.; Pal K.; Jokthan G.; Osang F.; Ebrima F.; Katal D. Applications and Contemporary Issues with Adsorption for Water Monitoring and Remediation: A Facile Review. Top. Catal. 2024, 67, 140–155. 10.1007/s11244-023-01817-4. DOI

Peng X.; Urso M.; Ussia M.; Pumera M. Shape-Controlled Self-Assembly of Light-Powered Microrobots into Ordered Microchains for Cells Transport and Water Remediation. ACS Nano 2022, 16 (5), 7615–7625. 10.1021/acsnano.1c11136. PubMed DOI

Al-Ahmad A.; Wiedmann-Al-Ahmad M.; Faust J.; Bächle M.; Follo M.; Wolkewitz M.; Hannig C.; Hellwig E.; Carvalho C.; Kohal R. Biofilm Formation and Composition on Different Implant Materials in Vivo. J. Biomed. Mater. Res. - Part B Appl. Biomater. 2010, 95 (1), 101–109. 10.1002/jbm.b.31688. PubMed DOI

Debata S.; Kherani N. A.; Panda S. K.; Singh D. P. Light-Driven Microrobots: Capture and Transport of Bacteria and Microparticles in a Fluid Medium. J. Mater. Chem. B 2022, 10, 8235–8243. 10.1039/D2TB01367C. PubMed DOI

Vilela D.; Stanton M. M.; Parmar J.; Sánchez S. Microbots Decorated with Silver Nanoparticles Kill Bacteria in Aqueous Media. ACS Appl. Mater. Interfaces 2017, 9, 22093–22100. 10.1021/acsami.7b03006. PubMed DOI

Urso M.; Ussia M.; Novotný F.; Pumera M. Trapping and Detecting Nanoplastics by MXene-Derived Oxide Microrobots. Nat. Commun. 2022, 13, 3573.10.1038/s41467-022-31161-2. PubMed DOI PMC

Nguyen H. T.; Lee Y. K.; Kwon J. H.; Hur J. Microplastic Biofilms in Water Treatment Systems: Fate and Risks of Pathogenic Bacteria, Antibiotic-Resistant Bacteria, and Antibiotic Resistance Genes. Sci. Total Environ. 2023, 892, 164523.10.1016/j.scitotenv.2023.164523. PubMed DOI

Jung Y.; Yoon S.-J.; Byun J.; Jung K.-W.; Choi J.-W. Visible-Light-Induced Self-Propelled Nanobots against Nanoplastics. Water Res. 2023, 244, 120543.10.1016/j.watres.2023.120543. PubMed DOI

Oral C. M.; Ussia M.; Yavuz D. K.; Pumera M. Shape Engineering of TiO2Microrobots for “ On-the-Fly ” Optical Brake. Small 2022, 18, 2106271.10.1002/smll.202106271. PubMed DOI

Oral C. M.; Ussia M.; Pumera M. Self-Propelled Activated Carbon Micromotors for “On-the-Fly” Capture of Nitroaromatic Explosives. J. Phys. Chem. C 2021, 125 (32), 18040–18045. 10.1021/acs.jpcc.1c05136. DOI

Gordón Pidal J. M.; Arruza L.; Moreno-Guzmán M.; López M. Á.; Escarpa A. OFF-ON on-the-Fly Aptassay for Rapid and Accurate Determination of Procalcitonin in Very Low Birth Weight Infants with Sepsis Suspicion. Sensors Actuators B Chem. 2023, 378, 133107.10.1016/j.snb.2022.133107. DOI

Ussia M.; Urso M.; Kratochvilova M.; Navratil J.; Balvan J.; Mayorga-Martinez C. C.; Vyskocil J.; Masarik M.; Pumera M. Magnetically Driven Self-Degrading Zinc-Containing Cystine Microrobots for Treatment of Prostate Cancer. Small 2023, 19, 2208259.10.1002/smll.202208259. PubMed DOI

Ning S.; Sanchis-Gual R.; Franco C.; Wendel-Garcia P. D.; Ye H.; Veciana A.; Tang Q.; Sevim S.; Hertle L.; Llacer-Wintle J.; Qin X.-H.; Zhu C.; Cai J.; Chen X.; Nelson B. J.; Puigmarti-Luis J.; Pane S. Magnetic PiezoBOTs: A Microrobotic Approach for Targeted Amyloid Protein Dissociation. Nanoscale 2023, 15, 14800–14808. 10.1039/D3NR02418K. PubMed DOI PMC

Iacovacci V.; Blanc A.; Huang H.; Ricotti L.; Schibli R.; Menciassi A.; Behe M.; Pané S.; Nelson B. J. High-Resolution SPECT Imaging of Stimuli-Responsive Soft Microrobots. Small 2019, 15, 1900709.10.1002/smll.201900709. PubMed DOI

Park J.; Kim J. young; Pané S.; Nelson B. J.; Choi H. Acoustically Mediated Controlled Drug Release and Targeted Therapy with Degradable 3D Porous Magnetic Microrobots. Adv. Healthc. Mater. 2021, 10, 2001096.10.1002/adhm.202001096. PubMed DOI

Alcântara C. C. J.; Landers F. C.; Kim S.; De Marco C.; Ahmed D.; Nelson B. J.; Pané S. Mechanically Interlocked 3D Multi-Material Micromachines. Nat. Commun. 2020, 11, 5957.10.1038/s41467-020-19725-6. PubMed DOI PMC

Yong J.; Mellick A. S.; Whitelock J.; Wang J.; Liang K. A Biomolecular Toolbox for Precision Nanomotors. Adv. Mater. 2023, 35, 2205746.10.1002/adma.202205746. PubMed DOI

Fonseca A. D. C.; Kohler T.; Ahmed D. Ultrasound-Controlled Swarmbots Under Physiological Flow Conditions. Adv. Mater. Interfaces 2022, 9, 2200877.10.1002/admi.202200877. DOI

Urso M.; Pumera M. Micro- and Nanorobots Meet DNA. Adv. Funct. Mater. 2022, 32, 2200711.10.1002/adfm.202200711. DOI

Soto F.; Karshalev E.; Zhang F.; Esteban Fernandez De Avila B.; Nourhani A.; Wang J. Smart Materials for Microrobots. Chem. Rev. 2022, 122 (5), 5365–5403. 10.1021/acs.chemrev.0c00999. PubMed DOI

Ji F.; Wu Y.; Pumera M.; Zhang L. Collective Behaviors of Active Matter Learning from Natural Taxes Across Scales. Adv. Mater. 2023, 35, 2203959.10.1002/adma.202203959. PubMed DOI

Vaghasiya J. V.; Mayorga-Martinez C. C.; Matějková S.; Pumera M. Pick up and Dispose of Pollutants from Water via Temperature-Responsive Micellar Copolymers on Magnetite Nanorobots. Nat. Commun. 2022, 13, 1026.10.1038/s41467-022-28406-5. PubMed DOI PMC

Xie H.; Sun M.; Fan X.; Lin Z.; Chen W.; Wang L.; Dong L.; He Q. Reconfigurable Magnetic Microrobot Swarm: Multimode Transformation, Locomotion, and Manipulation. Sci. Robot. 2019, 4, eaav800610.1126/scirobotics.aav8006. PubMed DOI

Martínez-Pedrero F.; González-Banciella A.; Camino A.; Mateos-Maroto A.; Ortega F.; Rubio R. G.; Pagonabarraga I.; Calero C. Static and Dynamic Self-Assembly of Pearl-Like-Chains of Magnetic Colloids Confined at Fluid Interfaces. Small 2021, 17, 2101188.10.1002/smll.202101188. PubMed DOI

Massana-Cid H.; Meng F.; Matsunaga D.; Golestanian R.; Tierno P. Tunable Self-Healing of Magnetically Propelling Colloidal Carpets. Nat. Commun. 2019, 10, 2444.10.1038/s41467-019-10255-4. PubMed DOI PMC

Kim J.; Mayorga-Martinez C. C.; Pumera M. Magnetically Boosted 1D Photoactive Microswarm for COVID-19 Face Mask Disruption. Nat. Commun. 2023, 14, 935.10.1038/s41467-023-36650-6. PubMed DOI PMC

Jin D.; Yu J.; Yuan K.; Zhang L. Mimicking the Structure and Function of Ant Bridges in a Reconfigurable Microswarm for Electronic Applications. ACS Nano 2019, 13 (5), 5999–6007. 10.1021/acsnano.9b02139. PubMed DOI

Law J.; Yu J.; Tang W.; Gong Z.; Wang X.; Sun Y. Micro/Nanorobotic Swarms: From Fundamentals to Functionalities. ACS Nano 2023, 17, 12971–12999. 10.1021/acsnano.2c11733. PubMed DOI

Wu R.; Zhu Y.; Cai X.; Wu S.; Xu L.; Yu T. Recent Process in Microrobots: From Propulsion to Swarming for Biomedical Applications. Micromachines 2022, 13, 1473.10.3390/mi13091473. PubMed DOI PMC

Chen H.; Yu J. Magnetic Microrobotic Swarms in Fluid Suspensions. Curr. Robot. Reports 2022, 3 (3), 127–137. 10.1007/s43154-022-00085-6. DOI

Yang L.; Jiang J.; Gao X.; Wang Q.; Dou Q.; Zhang L. Autonomous Environment-Adaptive Microrobot Swarm Navigation Enabled by Deep Learning-Based Real-Time Distribution Planning. Nat. Mach. Intell. 2022, 4 (5), 480–493. 10.1038/s42256-022-00482-8. DOI

Yang L.; Zhang L. Motion Control in Magnetic Microrobotics: From Individual and Multiple Robots to Swarms. Annu. Rev. Control. Robot. Auton. Syst. 2021, 4, 509–534. 10.1146/annurev-control-032720-104318. DOI

Huang H.; Yang S.; Ying Y.; Chen X.; Puigmartì-Luis J.; Zhang L.; Pané S. 3D Motion Manipulation for Micro- and Nanomachines: Progress and Future Directions. Adv. Mater. 2024, 36, 2305925.10.1002/adma.202305925. PubMed DOI

Lu X.; Shen H.; Wei Y.; Ge H.; Wang J.; Peng H.; Liu W. Ultrafast Growth and Locomotion of Dandelion-Like Microswarms with Tubular Micromotors. Small 2020, 16, 2003678.10.1002/smll.202003678. PubMed DOI

Wang X.; Wang T.; Chen X.; Law J.; Shan G.; Tang W.; Gong Z.; Pan P.; Liu X.; Yu J.; Ru C.; Huang X.; Sun Y. Microrobotic Swarms for Intracellular Measurement with Enhanced Signal-to-Noise Ratio. ACS Nano 2022, 16 (7), 10824–10839. 10.1021/acsnano.2c02938. PubMed DOI

Wang B.; Zhang Y.; Zhang L. Recent Progress on Micro- and Nano-Robots: Towards in Vivo Tracking and Localization. Quant. Imaging Med. Surg. 2018, 8, 461–479. 10.21037/qims.2018.06.07. PubMed DOI PMC

Llacer-Wintle J.; Rivas-Dapena A.; Chen X. Z.; Pellicer E.; Nelson B. J.; Puigmartí-Luis J.; Pané S. Biodegradable Small-Scale Swimmers for Biomedical Applications. Adv. Mater. 2021, 33, 2102049.10.1002/adma.202102049. PubMed DOI

Sun M.; Chan K. F.; Zhang Z.; Wang L.; Wang Q.; Yang S.; Chan S. M.; Chiu P. W. Y.; Sung J. J. Y.; Zhang L. Magnetic Microswarm and Fluoroscopy-Guided Platform for Biofilm Eradication in Biliary Stents. Adv. Mater. 2022, 34, 2201888.10.1002/adma.202201888. PubMed DOI

de la Asunción-nadal V.; Franco C.; Veciana A.; Ning S.; Terzopoulou A.; Sevim S.; Chen X.; Gong D.; Cai J.; Wendel-garcia P. D.; Jurado-sánchez B.; Escarpa A.; Puigmartí-Luis J.; Pané S. MoSBOTs: Magnetically Driven Biotemplated MoS2 -Based Microrobots for Biomedical Applications. Small 2022, 18, 2203821.10.1002/smll.202203821. PubMed DOI

Yang M.; Zhang Y.; Mou F.; Cao C.; Yu L.; Li Z.; Guan J. Swarming Magnetic Nanorobots Bio-Interfaced by Heparinoid-Polymer Brushes for in Vivo Safe Synergistic Thrombolysis. Sci. Adv. 2023, 9, eadk725110.1126/sciadv.adk7251. PubMed DOI PMC

Xu Z.; Chen M.; Lee H.; Feng S. P.; Park J. Y.; Lee S.; Kim J. T. X-Ray-Powered Micromotors. ACS Appl. Mater. Interfaces 2019, 11 (17), 15727–15732. 10.1021/acsami.9b00174. PubMed DOI

Yu J.; Yang L.; Zhang L. Pattern Generation and Motion Control of a Vortex-like Paramagnetic Nanoparticle Swarm. Int. J. Rob. Res. 2018, 37, 912–930. 10.1177/0278364918784366. DOI

Li M.; Wu J.; Lin D.; Yang J.; Jiao N.; Wang Y.; Liu L. A Diatom-Based Biohybrid Microrobot with a High Drug-Loading Capacity and PH-Sensitive Drug Release for Target Therapy. Acta Biomater. 2022, 154, 443–453. 10.1016/j.actbio.2022.10.019. PubMed DOI

Wang Q.; Chan K. F.; Schweizer K.; Du X.; Jin D.; Yu S. C. H.; Nelson B. J.; Zhang L. Ultrasound Doppler-Guided Real-Time Navigation of a Magnetic Microswarm for Active Endovascular Delivery. Sci. Adv. 2021, 7, eabe591410.1126/sciadv.abe5914. PubMed DOI PMC

Hoop M.; Mushtaq F.; Hurter C.; Chen X. Z.; Nelson B. J.; Pané S. A Smart Multifunctional Drug Delivery Nanoplatform for Targeting Cancer Cells. Nanoscale 2016, 8 (25), 12723–12728. 10.1039/C6NR02228F. PubMed DOI

Oral C. M.; Ussia M.; Urso M.; Salat J.; Novobilsky A.; Stefanik M.; Ruzek D.; Pumera M. Radiopaque Nanorobots as Magnetically Navigable Contrast Agents for Localized In Vivo Imaging of the Gastrointestinal Tract. Adv. Healthc. Mater. 2023, 12, 2202682.10.1002/adhm.202202682. PubMed DOI

Wang Q.; Zhang L. External Power-Driven Microrobotic Swarm: From Fundamental Understanding to Imaging-Guided Delivery. ACS Nano 2021, 15, 149–174. 10.1021/acsnano.0c07753. PubMed DOI

Van Reenen A.; De Jong A. M.; Prins M. W. J. Transportation, Dispersion and Ordering of Dense Colloidal Assemblies by Magnetic Interfacial Rotaphoresis. Lab Chip 2015, 15, 2864.10.1039/C5LC00294J. PubMed DOI

Wang B.; Chan K. F.; Yu J.; Wang Q.; Yang L.; Chiu P. W. Y.; Zhang L. Reconfigurable Swarms of Ferromagnetic Colloids for Enhanced Local Hyperthermia. Adv. Funct. Mater. 2018, 28, 1705701.10.1002/adfm.201705701. DOI

Law J.; Wang X.; Luo M.; Xin L.; Du X.; Dou W.; Wang T.; Shan G.; Wang Y.; Song P.; Huang X.; Yu J.; Sun Y. Microrobotic Swarms for Selective Embolization. Sci. Adv. 2022, 8, eabm575210.1126/sciadv.abm5752. PubMed DOI PMC

Jancik-Prochazkova A.; Pumera M. Light-Powered Swarming Phoretic Antimony Chalcogenide-Based Microrobots with “on-the-Fly” Photodegradation Abilities. Nanoscale 2023, 15, 5726–5734. 10.1039/D3NR00098B. PubMed DOI

Zhang Y.; Yan K.; Ji F.; Zhang L. Enhanced Removal of Toxic Heavy Metals Using Swarming Biohybrid Adsorbents. Adv. Funct. Mater. 2018, 28, 1806340.10.1002/adfm.201806340. DOI

Urso M.; Ussia M.; Peng X.; Oral C. M.; Pumera M. Reconfigurable Self-Assembly of Photocatalytic Magnetic Microrobots for Water Purification. Nat. Commun. 2023, 14, 6969.10.1038/s41467-023-42674-9. PubMed DOI PMC

Lui L. T.; Xue X.; Sui C.; Brown A.; Pritchard D. I.; Halliday N.; Winzer K.; Howdle S. M.; Fernandez-Trillo F.; Krasnogor N.; Alexander C. Bacteria Clustering by Polymers Induces the Expression of Quorum-Sensing-Controlled Phenotypes. Nat. Chem. 2013, 5, 1058.10.1038/nchem.1793. PubMed DOI PMC

Haktaniyan M.; Bradley M. Polymers Showing Intrinsic Antimicrobial Activity. Chem. Soc. Rev. 2022, 51 (20), 8584–8611. 10.1039/D2CS00558A. PubMed DOI

Chen A.; Er G.; Zhang C.; Tang J.; Alam M.; T. Ta H.; Elliott A. G.; Cooper M. A.; Perera J.; Swift S.; Blakey I.; Whittaker A. K.; Peng H. Antimicrobial Anilinium Polymers: The Properties of Poly(N,N-Dimethylaminophenylene Methacrylamide) in Solution and as Coatings. J. Polym. Sci. Part A Polym. Chem. 2019, 57 (18), 1908–1921. 10.1002/pola.29314. DOI

Sprouse D.; Reineke T. M. Investigating the Effects of Block versus Statistical Glycopolycations Containing Primary and Tertiary Amines for Plasmid DNA Delivery. Biomacromolecules 2014, 15, 2616–2628. 10.1021/bm5004527. PubMed DOI PMC

Liu J.; Li L.; Cao C.; Feng Z.; Liu Y.; Ma H.; Luo W.; Guan J.; Mou F. Swarming Multifunctional Heater-Thermometer Nanorobots for Precise Feedback Hyperthermia Delivery. ACS Nano 2023, 17, 16731–16742. 10.1021/acsnano.3c03131. PubMed DOI

Gu H.; Hanedan E.; Boehler Q.; Huang T. Y.; Mathijssen A. J. T. M.; Nelson B. J. Artificial Microtubules for Rapid and Collective Transport of Magnetic Microcargoes. Nat. Mach. Intell. 2022, 4 (8), 678–684. 10.1038/s42256-022-00510-7. DOI

Yu Z.; Li L.; Mou F.; Yu S.; Zhang D.; Yang M.; Zhao Q.; Ma H.; Luo W.; Li T.; Guan J. Swarming Magnetic Photonic-Crystal Microrobots with on-the-Fly Visual PH Detection and Self-Regulated Drug Delivery. InfoMat 2023, 5 (10), 1–16. 10.1002/inf2.12464. DOI

Zhang H.; Li Z.; Gao C.; Fan X.; Pang Y.; Li T.; Wu Z.; Xie H.; He Q. Dual-Responsive Biohybrid Neutrobots for Active Target Delivery. Sci. Robot. 2021, 6, eaaz951910.1126/scirobotics.aaz9519. PubMed DOI

Ussia M.; Urso M.; Dolezelikova K.; Michalkova H.; Adam V.; Pumera M. Active Light-Powered Antibiofilm ZnO Micromotors with Chemically Programmable Properties. Adv. Funct. Mater. 2021, 31 (27), 2101178.10.1002/adfm.202101178. DOI

Bhuyan T.; Simon A. T.; Maity S.; Singh A. K.; Ghosh S. S.; Bandyopadhyay D. Magnetotactic T-Budbots to Kill-n-Clean Biofilms. ACS Appl. Mater. Interfaces 2020, 12, 43352–43364. 10.1021/acsami.0c08444. PubMed DOI

Chen C.; Chen L.; Wang P.; Wu L. F.; Song T. Steering of Magnetotactic Bacterial Microrobots by Focusing Magnetic Field for Targeted Pathogen Killing. J. Magn. Magn. Mater. 2019, 479, 74–83. 10.1016/j.jmmm.2019.02.004. DOI

Dong Y.; Wang L.; Yuan K.; Ji F.; Gao J.; Zhang Z.; Du X.; Tian Y.; Wang Q.; Zhang L. Magnetic Microswarm Composed of Porous Nanocatalysts for Targeted Elimination of Biofilm Occlusion. ACS Nano 2021, 15 (3), 5056–5067. 10.1021/acsnano.0c10010. PubMed DOI

Ussia M.; Urso M.; Kment S.; Fialova T.; Klima K.; Dolezelikova K.; Pumera M. Light-Propelled Nanorobots for Facial Titanium Implants Biofilms Removal. Small 2022, 18 (22), 2200708.10.1002/smll.202200708. PubMed DOI

Stanton M. M.; Park B. W.; Vilela D.; Bente K.; Faivre D.; Sitti M.; Sánchez S. Magnetotactic Bacteria Powered Biohybrids Target E. Coli Biofilms. ACS Nano 2017, 11 (10), 9968–9978. 10.1021/acsnano.7b04128. PubMed DOI

Stratton T. R.; Applegate B. M.; Youngblood J. P. Effect of Steric Hindrance on the Properties of Antibacterial and Biocompatible Copolymers. Biomacromolecules 2011, 12 (1), 50–56. 10.1021/bm1009624. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...