Light-Driven ZnO Brush-Shaped Self-Propelled Micromachines for Nitroaromatic Explosives Decomposition
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/15_003/0000444
Advanced Functional Nanorobots
EFRR
17-11456S
Czech Science Foundation
PubMed
31464380
DOI
10.1002/smll.201902944
Knihovny.cz E-zdroje
- Klíčová slova
- ZnO, explosive degradation, light-driven, micromotors, vertically aligned arrays,
- Publikační typ
- časopisecké články MeSH
Self-propelled micromachines have recently attracted lots of attention for environmental remediation. Developing a large-scale but template-free fabrication of self-propelled rod/tubular micro/nanomotors is very crucial but still challenging. Here, a new strategy based on vertically aligned ZnO arrays is employed for the large-scale and template-free fabrication of self-propelled ZnO-based micromotors with H2 O2 -free light-driven propulsion ability. Brush-shaped ZnO-based micromotors with different diameters and lengths are fully studied, which present a fast response to multicycles UV light on/off switches with different interval times (2/5 s) in pure water and slow directional motion in aqueous hydrogen peroxide solution in the absence of UV light. Light-induced electrophoretic and self-diffusiophoretic effects are responsible for these two different self-motion behaviors under different conditions, respectively. In addition, the pH of the media and the presence of H2 O2 show important effects on the motion behavior and microstructure of the ZnO-based micromotors. Finally, these novel ZnO-based brush-shaped micromotors are demonstrated in a proof-of-concept study on nitroaromatic explosive degradation, i.e., picric acid. This work opens a completely new avenue for the template-free fabrication of brush-shaped light-responsive micromotors on a large scale based on vertically aligned ZnO arrays.
Zobrazit více v PubMed
Y. L. Ying, M. Pumera, Chem. - Eur. J. 2019, 25, 106.
B. Esteban-Fernandez de Avila, P. Angsantikul, J. X. Li, M. A. Lopez-Ramirez, D. E. Ramirez-Herrera, S. Thamphiwatana, C. R. Chen, J. Delezuk, R. Samakapiruk, V. Ramez, L. F. Zhang, J. Wang, Nat. Commun. 2017, 8, 272.
B. Khezri, S. M. B. Mousavi, L. Krejcova, Z. Heger, Z. Sofer, M. Pumera, Adv. Funct. Mater. 2019, 29, 1806696.
S. M. Beladi-Mousavi, B. Khezri, L. Krejcova, Z. Heger, Z. Sofer, A. C. Fisher, M. Pumera, ACS Appl. Mater. Interfaces 2019, 11, 13359.
W. Xi, A. A. Solovev, A. N. Ananth, D. H. Gracias, S. Sanchez, O. G. Schmidt, Nanoscale 2013, 5, 1294.
A. A. Solovev, W. Xi, D. H. Gracias, S. M. Harazim, C. Deneke, S. Sanchez, O. G. Schmidt, ACS Nano 2012, 6, 1751.
E. Morales-Narvaez, M. Guix, M. Medina-Sanchez, C. C. Mayorga-Martinez, A. Merkoci, Small 2014, 10, 2542.
H. Wang, M. G. Potroz, J. A. Jackman, B. Khezri, T. Maric, N. J. Cho, M. Pumera, Adv. Funct. Mater. 2017, 27, 1702338.
V. V. Singh, F. Soto, K. Kaufmann, J. Wang, Angew. Chem., Int. Ed. 2015, 54, 6896.
B. Jurado-Sanchez, J. Wang, Environ. Sci.: Nano 2018, 5, 1530.
J. G. Moo, M. Pumera, Chem. - Eur. J. 2015, 21, 58.
W. Gao, A. Pei, J. Wang, ACS Nano 2012, 6, 8432.
J. Wang, W. Gao, ACS Nano 2012, 6, 5745.
W. Gao, X. Feng, A. Pei, Y. Gu, J. Li, J. Wang, Nanoscale 2013, 5, 4696.
W. Gao, R. Dong, S. Thamphiwatana, J. Li, W. Gao, L. Zhang, J. Wang, ACS Nano 2015, 9, 117.
W. Z. Teo, R. Zboril, I. Medrik, M. Pumera, Chem. - Eur. J. 2016, 22, 4789.
L. Xu, F. Mou, H. Gong, M. Luo, J. Guan, Chem. Soc. Rev. 2017, 46, 6905.
H. Eskandarloo, A. Kierulf, A. Abbaspourrad, Nanoscale 2017, 9, 12218.
M. F. Tsai, S. H. Chang, F. Y. Cheng, V. Shanmugam, Y. S. Cheng, C. H. Su, C. S. Yeh, ACS Nano 2013, 7, 5330.
A. M. Pourrahimi, K. Villa, C. L. Manzanares Palenzuela, Y. Ying, Z. Sofer, M. Pumera, Adv. Funct. Mater. 2019, 29, 1808678.
L. Kong, C. C. Mayorga-Martinez, J. Guan, M. Pumera, ACS Appl. Mater. Interfaces 2018, 10, 22427.
R. Dong, Y. Hu, Y. Wu, W. Gao, B. Ren, Q. Wang, Y. Cai, J. Am. Chem. Soc. 2017, 139, 1722.
D. Zhou, Y. C. Li, P. Xu, N. S. McCool, L. Li, W. Wang, T. E. Mallouk, Nanoscale 2017, 9, 75.
R. F. Dong, C. Wang, Q. L. Wang, A. E. Pei, X. L. She, Y. X. Zhang, Y. P. Cai, Nanoscale 2017, 9, 15027.
A. M. Pourrahimi, K. Villa, Y. Ying, Z. Sofer, M. Pumera, ACS Appl. Mater. Interfaces 2018, 10, 42688.
Y. L. Ying, T. Song, H. W. Huang, X. S. Peng, Appl. Phys. A 2013, 110, 351.
K. M. Lee, C. W. Lai, K. S. Ngai, J. C. Juan, Water Res. 2016, 88, 428.
R. F. Dong, Q. L. Zhang, W. Gao, A. Pei, B. Y. Ren, ACS Nano 2016, 10, 839.
B. Jang, A. Hong, H. E. Kang, C. Alcantara, S. Charreyron, F. Mushtaq, E. Pellicer, R. Buchel, J. Sort, S. S. Lee, B. J. Nelson, S. Pane, ACS Nano 2017, 11, 6146.
F. Mou, Y. Li, C. Chen, W. Li, Y. Yin, H. Ma, J. Guan, Small 2015, 11, 2564.
F. Mou, L. Kong, C. Chen, Z. Chen, L. Xu, J. Guan, Nanoscale 2016, 8, 4976.
H. Wang, M. Pumera, Chem. Rev. 2015, 115, 8704.
T. Maric, C. C. Mayorga-Martinez, B. Khezri, M. Z. M. Nasir, X. Y. Chia, M. Pumera, Adv. Funct. Mater. 2018, 28, 1802762.
R. Dong, C. Wang, Q. Wang, A. Pei, X. She, Y. Zhang, Y. Cai, Nanoscale 2017, 9, 15027.
H. Yu, Z. Zhang, M. Han, X. Hao, F. Zhu, J. Am. Chem. Soc. 2005, 127, 2378.
A. Manekkathodi, M. Y. Lu, C. W. Wang, L. J. Chen, Adv. Mater. 2010, 22, 4059.
L. Vayssieres, K. Keis, A. Hagfeldt, S. E. Lindquist, Chem. Mater. 2001, 13, 4395.
O. Lupan, V. M. Guerin, I. M. Tiginyanu, V. V. Ursaki, L. Chow, H. Heinrich, T. Pauporte, J. Photochem. Photobiol., A 2010, 211, 65.
L. F. Xu, Q. Liao, J. P. Zhang, X. C. Ai, D. S. Xu, J. Phys. Chem. C 2007, 111, 4549.
S. C. Lyu, Y. Zhang, C. J. Lee, H. Ruh, H. J. Lee, Chem. Mater. 2003, 15, 3294.
C. C. Wu, D. S. Wuu, P. R. Lin, T. N. Chen, R. H. Horng, Cryst. Growth Des. 2009, 9, 4555.
L. Guo, Y. L. Ji, H. B. Xu, P. Simon, Z. Y. Wu, J. Am. Chem. Soc. 2002, 124, 14864.
Y. Chen, R. Z. Yu, Q. Shi, J. L. Qin, F. Zheng, Mater. Lett. 2007, 61, 4438.
P. S. Cho, K. W. Kim, J. H. Lee, J. Electroceram. 2006, 17, 975.
Z. Kang, H. Si, S. Zhang, J. Wu, Y. Sun, Q. Liao, Z. Zhang, Y. Zhang, Adv. Funct. Mater. 2019, 29, 1808032.
Q. Zhang, Q. Zhang, H. Wang, Y. Li, J. Hazard. Mater. 2013, 254-255, 318.
Y. Z. Li, X. M. Li, X. D. Gao, J. Alloys Compd. 2011, 509, 7193.
Z. Zhang, Q. L. Liao, Y. H. Yu, X. D. Wang, Y. Zhang, Nano Energy 2014, 9, 237.
C. Chen, F. Mou, L. Xu, S. Wang, J. Guan, Z. Feng, Q. Wang, L. Kong, W. Li, J. Wang, Q. Zhang, Adv. Mater. 2017, 29, 1603374.
Y. K. Tseng, C. J. Huang, H. M. Cheng, I. N. Lin, K. S. Liu, I. C. Chen, Adv. Funct. Mater. 2003, 13, 811.
J. P. Liu, X. T. Huang, Y. Y. Li, X. X. Ji, Z. K. Li, X. He, F. L. Sun, J. Phys. Chem. C 2007, 111, 4990.
R. Dong, Q. Zhang, W. Gao, A. Pei, B. Ren, ACS Nano 2016, 10, 839.
A. Brown, W. Poon, Soft Matter 2014, 10, 4016.
E. O'Neel-Judy, D. Nicholls, J. Castaneda, J. G. Gibbs, Small 2018, 14, 1801860.
V. Sridhar, B. W. Park, M. Sitti, Adv. Funct. Mater. 2018, 28, 1704902.
Y. Ji, X. Lin, H. Zhang, Y. Wu, J. Li, Q. He, Angew. Chem., Int. Ed. 2019, 58, 4184.
J. Zhang, X. Zheng, H. H. Cui, Z. Silber-Li, Micromachines 2017, 8, 123.
Y. Kashiwaba, T. Abe, A. Nakagawa, I. Niikura, Y. Kashiwaba, M. Daibo, T. Fujiwara, H. Osada, J. Appl. Phys. 2013, 113, 113501.
A. M. Pourrahimi, D. M. Liu, R. L. Andersson, V. Strom, U. W. Gedde, R. T. Olsson, Langmuir 2016, 32, 11002.
J. X. Wang, X. W. Sun, H. Huang, Y. C. Lee, O. K. Tan, M. B. Yu, G. Q. Lo, D. L. Kwong, Appl. Phys. A 2007, 88, 611.
A. Wei, X. W. Sun, C. X. Xu, Z. L. Dong, Y. Yang, S. T. Tan, W. Huang, Nanotechnology 2006, 17, 1740.
A. M. Pourrahimi, D. Liu, L. K. H. Pallon, R. L. Andersson, A. M. Abad, J. M. Lagaron, M. S. Hedenqvist, V. Stroem, U. W. Gedde, R. T. Olsson, RSC Adv. 2014, 4, 35568.
L. Schlur, J. R. Calado, D. Spitzer, R. Soc. Open Sci. 2018, 5, 180510.
Magnetically Driven Micro and Nanorobots