Technology Roadmap of Micro/Nanorobots

. 2025 Jul 15 ; 19 (27) : 24174-24334. [epub] 20250627

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40577644

Grantová podpora
R01 EB017742 NIBIB NIH HHS - United States

Inspired by Richard Feynman's 1959 lecture and the 1966 film Fantastic Voyage, the field of micro/nanorobots has evolved from science fiction to reality, with significant advancements in biomedical and environmental applications. Despite the rapid progress, the deployment of functional micro/nanorobots remains limited. This review of the technology roadmap identifies key challenges hindering their widespread use, focusing on propulsion mechanisms, fundamental theoretical aspects, collective behavior, material design, and embodied intelligence. We explore the current state of micro/nanorobot technology, with an emphasis on applications in biomedicine, environmental remediation, analytical sensing, and other industrial technological aspects. Additionally, we analyze issues related to scaling up production, commercialization, and regulatory frameworks that are crucial for transitioning from research to practical applications. We also emphasize the need for interdisciplinary collaboration to address both technical and nontechnical challenges, such as sustainability, ethics, and business considerations. Finally, we propose a roadmap for future research to accelerate the development of micro/nanorobots, positioning them as essential tools for addressing grand challenges and enhancing the quality of life.

Acoustic Robotics Systems Lab Institute of Robotics and Intelligent Systems ETH Zurich Rüschlikon CH 8803 Switzerland

Andrew and Peggy Cherng Department of Medical Engineering Division of Engineering and Applied Science California Institute of Technology Pasadena California 91125 United States

Australian Centre for NanoMedicine The University of New South Wales Sydney NSW 2052 Australia

Catalan Institute for Research and Advanced Studies Passeig Lluis Companys 23 Barcelona 08010 Spain

Catalan Institute of Nanoscience and Nanotechnology CSIC and BIST Campus UAB E 08193 Bellaterra Barcelona Spain

Catalan Institution for Research and Advanced Studies Passeig de Lluís Companys 23 Barcelona 08010 Spain

Center for Nanomedicine Institute for Basic Science Seoul 560012 Republic of Korea

Central European Institute of Technology Brno University of Technology Purkyňova 123 Brno 61200 Czech Republic

Centre for Nano Science and Engineering Indian Institute of Science Bangalore 560012 India

Chair of Micro NanoSystems Center for Molecular Bioengineering Dresden 01307 Germany

Chandra Department of Electric and Computer Engineering University of Texas at Austin Austin Texas 78712 United States

Chemical Physics Theory Group Department of Chemistry University of Toronto Toronto Ontario M5S 3H6 Canada

Chemical Research Institute Andres M Del Río Universidad de Alcala Alcala de Henares E 28802 Madrid Spain

Chow Yuk Ho Technology Centre for Innovative Medicine The Chinese University of Hong Kong Shatin Hong Kong 999077 China

CIC nanoGUNE BRTA Tolosa Hiribidea 76 E 20018 Donostia San Sebastian Spain

CNR IMM via S Sofia 64 Catania 95123 Italy

College of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518060 China

Departament de Ciència de Materials i Química Física Institut de Química Teòrica i Computacional Universitat de Barcelona Barcelona 08028 Spain

Departament de Ciència de Materials i Química Física Institute of Nanoscience and Nanotechnology Universitat de Barcelona Barcelona 08028 Spain

Department of Analytical Chemistry Physical Chemistry and Chemical Engineering Universidad de Alcala Alcala de Henares E 28802 Madrid Spain

Department of Applied Mathematics and Theoretical Physics Centre for Mathematical Sciences University of Cambridge Wilberforce Road Cambridge CB3 0WA United Kingdom

Department of Biomedical Engineering and Institute for Quantitative Health Science and Engineering Michigan State University 775 Woodlot Dr East Lansing Michigan 48824 United States

Department of Biomedical Engineering National University of Singapore Singapore 117583 Singapore

Department of Chemical and Biological Engineering University of Colorado Boulder Boulder Colorado 80303 United States

Department of Chemical and Biomolecular Engineering Johns Hopkins University Baltimore Maryland 21218 United States

Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh North Carolina 27695 7905 United States

Department of Chemical and Biomolecular Engineering Yonsei University 50 Yonsei ro Seodaemun gu Seoul 03722 Korea

Department of Chemical Engineering Faculty of Engineering University of Waterloo Waterloo ON N2L3G1 Canada

Department of Chemical Engineering Institute for Polymer Research Center for Bioengineering and Biotechnology Waterloo Institute for Nanotechnology University of Waterloo 200 University Ave W Waterloo ON N2L 3G1 Canada

Department of Chemical Engineering Technion Israel Institute of Technology Haifa 32000 Israel

Department of Chemistry The Pennsylvania State University University Park Pennsylvania 16802 United States

Department of Chemistry The University of Hong Kong Hong Kong 999077 China

Department of Computer Science University of Toronto Toronto ON M5S 1A1 Canada

Department of Condensed Matter Physics University of Barcelona Martí i Franquès 1 11 Barcelona 08028 Spain

Department of Electrical and Computer Engineering University of Toronto Toronto ON M5S 1A1 Canada

Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology 291 Daehak ro Yuseong gu Daejeon 34141 Republic of Korea

Department of Materials Science and Engineering The Pennsylvania State University University Park Pennsylvania 16802 United States

Department of Materials Science and Engineering University of Michigan Ann Arbor Michigan 48109 United States

Department of Materials Science and International Institute of Intelligent Nanorobots and Nanosystems State Key Laboratory of Surface Physics Fudan University Shanghai 200438 China

Department of Materials Science and Physical Chemistry Institute of Theoretical and Computational Chemistry University of Barcelona 08028 Barcelona Spain

Department of Materials Science and Physical Chemistry University of Barcelona 08028 Barcelona Spain

Department of Mechanical and Automation Engineering The Chinese University of Hong Kong Shatin Hong Kong 999077 China

Department of Mechanical and Industrial Engineering University of Toronto 5 King's College Road Toronto Ontario M5S 3G8 Canada

Department of Mechanical Engineering and Materials Science Duke University Durham North Carolina 27709 United States

Department of Mechanical Engineering Department of Biology Biomimicry Research and Innovation Center University of Akron Akron Ohio 44325 United States

Department of Mechanical Engineering George Mason University Manassas Virginia 20110 United States

Department of Nano Biomedical Engineering Advanced Science Institute Yonsei University Seoul 03722 Republic of Korea

Department of Physics Indian Institute of Science Bangalore 560012 India

Department of Robotics and Mechatronics Engineering Daegu Gyeongbuk Institute of Science and Technology Daegu 42988 South Korea

Department of Surgery The Chinese University of Hong Kong Shatin Hong Kong 999077 China

Departments of Chemistry Chemical Engineering and Materials Science and Engineering The Pennsylvania State University University Park Pennsylvania 16802 United States

DGIST ETH Microrobotics Research Center DGIST Daegu 42988 South Korea

Dipartimento di Fisica e Astronomia Ettore Majorana Università degli Studi di Catania via S Sofia 64 Catania 95123 Italy

DWI Leibniz Institute for Interactive Materials Department of Physics RWTH Aachen University Forckenbeckstr 50 52074 Aachen Germany

Graduate School of Biomedical Engineering The University of New South Wales Sydney NSW 2052 Australia

Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging School of Biomedical Engineering Health Science Center Shenzhen University Shenzhen 518060 Guangdong China

HKU CAS Joint Laboratory on New Materials and Department of Chemistry Hong Kong 999077 China

Ikerbasque Basque Foundation for Science Plaza Euskadi 5 48009 Bilbao Spain

Institute for Bioengineering of Catalonia Baldiri i Reixac 10 12 Barcelona 08028 Spain

Institute for Bioengineering of Catalunya The Barcelona Institute of Science and Technology Barcelona 08028 Spain

Institute for Biomaterials and Biomolecular Systems University of Stuttgart 70569 Stuttgart Germany

Institute for Molecular Systems Engineering and Advanced Materials Universität Heidelberg Heidelberg 69120 Germany

Institute of Biomaterials and Biomedical Engineering University of Toronto Toronto ON M5S 1A1 Canada

Institute of Chemical Research of Catalonia Av Països Catalans 16 Tarragona E 43007 Spain

Institute of Mechanical Engineering Ecole Polytechnique Fédérale de Lausanne CH 1015 Lausanne Switzerland

Institute of Robotics and Intelligent Systems Dalian University of Technology Dalian 116024 China

Institute of Science and Technology Austria Klosterneuburg 3400 Austria

Interdisciplinary Nanoscience Center Aarhus University Gustav Wieds Vej 14 Aarhus 8000 Denmark

International Institute for Intelligent Nanorobots and Nanosystems Fudan University Shanghai 200438 China

International Institute of Intelligent Nanorobots and Nanosystems Fudan University Shanghai 200438 China

Key Laboratory of Microsystems and Microstructures Manufacturing Harbin 15001 China

Key Laboratory of Microsystems and Microstructures Manufacturing Harbin Institute of Technology 150080 Harbin China

Key Laboratory of Science and Engineering for the Multi modal Prevention and Control of Major Chronic Diseases Ministry of Industry and Information Technology HIT Zhengzhou Research Institute Zhengzhou 450000 China

Materials Innovation Institute for Life Sciences and Energy The University of Hong Kong Hong Kong 999077 China

Materials Research Institute The Pennsylvania State University University Park Pennsylvania 16802 United States

Materials Science and Engineering Program Texas Materials Institute University of Texas at Austin Austin Texas 78712 United States

Max Planck Institute for Dynamics and Self Organization 37077 Göttingen Germany

Max Planck Institute for Medical Research Universität Heidelberg Heidelberg 69120 Germany

Mechanical Engineering Department School of Biomedical Engineering and Sciences Biological Systems Engineering Department Institute For Critical Technology and Applied Science Virginia Tech Blacksburg Virginia 24061 United States

Mechanical Engineering Department Virginia Tech Blacksburg Virginia 24061 United States

Multi Scale Medical Robotics Center Hong Kong Science Park Shatin NT Hong Kong 999077 China

Multi Scale Robotics Lab Institute of Robotics and Intelligent Systems ETH Zurich Tannenstrasse 3 Zurich 8092 Switzerland

NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 China

Physical Intelligence Department Max Planck Institute for Intelligent Systems Heisenbergstr 3 Stuttgart 70569 Germany

Pure and Applied Chemistry University of Strathclyde Cathedral Street Glasgow G1 1BX United Kingdom

Research Center for Materials Architectures and Integration of Nanomembranes Chemnitz University of Technology 09126 Chemnitz Germany

Robotics Institute University of Toronto Toronto ON M5S 3G8 Canada

Rudolf Peierls Centre for Theoretical Physics University of Oxford Oxford OX1 3PU United Kingdom

Sauvage Laboratory for Smart Materials School of Integrated Circuits Harbin Institute of Technology Shenzhen 518055 China

School of Chemical Engineering and Technology China University of Mining and Technology Xuzhou Jiangsu 221116 China

School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia

School of Materials Science and Engineering Harbin Institute of Technology Shenzhen Guangdong 518055 China

School of Materials Science and Engineering Sun Yat Sen University Guangzhou 510275 China

School of Mechanical Engineering and Department of Biomedical Engineering University of Tel Aviv Tel Aviv 69978 Israel

School of Medicine and College of Engineering Koç University 34450 Istanbul Turkey

School of Medicine and Health Harbin Institute of Technology Harbin 150080 China

Shanghai Clinical Research and Trial Center Shanghai 201210 China

Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception Institute of Optoelectronics Fudan University Shanghai 200438 China

State Key Laboratory of Advanced Medical Materials and Devices ShanghaiTech University Shanghai 201210 China

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing International School of Materials Science and Engineering Wuhan University of Technology Wuhan 430070 China

State Key Laboratory of Photovoltaic Science and Technology Fudan University Shanghai 200438 China

State Key Laboratory of Robotics and System Harbin Institute of Technology Harbin 150080 China

State Key Laboratory of Synthetic Chemistry The University of Hong Kong Hong Kong 999077 China

Surgical Robotics Laboratory Department of Biomaterials and Biomedical Technology University of Groningen and University Medical Center Groningen 9713 AV Groningen The Netherlands

Surgical Robotics Laboratory Department of Biomechanical Engineering University of Twente 7522 NB Enschede The Netherlands

Systems Design and Biomedical Engineering Centre for Bioengineering and Biotechnology Waterloo Institute for Nanotechnology University of Waterloo 200 University Ave W Waterloo ON N2L 3G1 Canada

T Stone Robotics Institute The Chinese University of Hong Kong Shatin Hong Kong 999077 China

The Aiiso Yufeng Li Family Department of Chemical and Nano Engineering University of California San Diego La Jolla California 92093 United States

The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics Department of Health Technology Technical University of Denmark Ørsted Plads Kgs Lyngby 2800 Denmark

University Bordeaux CNRS Bordeaux INP ISM UMR 5255 33607 Pessac France

Walker Department of Mechanical Engineering University of Texas at Austin Austin Texas 78712 United States

Wireless and Smart Bioelectronics Lab School of Biomedical Engineering ShanghaiTech University Shanghai 201210 China

Yiwu Research Institute of Fudan University Yiwu 322000 Zhejiang China

Zobrazit více v PubMed

Feynman, R. P. Plenty of Room at the Bottom. In APS annual meeting, 1959; Little Brown Boston, MA, United States: pp 1-7.

Li J., Esteban-Fernández de Ávila B., Gao W., Zhang L., Wang J.. Micro/Nanorobots for Biomedicine: Delivery, Surgery, Sensing, and Detoxification. Science Robotics. 2017;2(4):eaam6431. doi: 10.1126/scirobotics.aam6431. PubMed DOI PMC

Wang, J. Nanomachines: Fundamentals and Applications; John Wiley & Sons, 2013.

Katuri J., Ma X., Stanton M. M., Sánchez S.. Designing Micro- and Nanoswimmers for Specific Applications. Accounts of Chemical Research. 2017;50(1):2–11. doi: 10.1021/acs.accounts.6b00386. PubMed DOI PMC

Nelson B. J., Kaliakatsos I. K., Abbott J. J.. Microrobots for Minimally Invasive Medicine. Annual Review of Biomedical Engineering. 2010;12(1):55–85. doi: 10.1146/annurev-bioeng-010510-103409. PubMed DOI

Chen C., Ding S., Wang J.. Materials Consideration for the Design, Fabrication and Operation of Microscale Robots. Nature Reviews Materials. 2024;9:159–172. doi: 10.1038/s41578-023-00641-2. DOI

Dong Y., Wang L., Iacovacci V., Wang X., Zhang L., Nelson B. J.. Magnetic Helical Micro-/Nanomachines: Recent Progress and Perspective. Matter. 2022;5(1):77–109. doi: 10.1016/j.matt.2021.10.010. DOI

Villa K., Pumera M.. Fuel-Free Light-Driven Micro/Nanomachines: Artificial Active Matter Mimicking Nature. Chemical Society Reviews. 2019;48(19):4966–4978. doi: 10.1039/C9CS00090A. PubMed DOI

Wang J., Xiong Z., Zheng J., Zhan X., Tang J.. Light-Driven Micro/Nanomotor for Promising Biomedical Tools: Principle, Challenge, and Prospect. Accounts of Chemical Research. 2018;51(9):1957–1965. doi: 10.1021/acs.accounts.8b00254. PubMed DOI

Sánchez S., Soler L., Katuri J.. Chemically Powered Micro- and Nanomotors. Angewandte Chemie International Edition. 2015;54(5):1414–1444. doi: 10.1002/anie.201406096. PubMed DOI

Patiño T., Arqué X., Mestre R., Palacios L., Sánchez S.. Fundamental Aspects of Enzyme-Powered Micro- and Nanoswimmers. Accounts of Chemical Research. 2018;51(11):2662–2671. doi: 10.1021/acs.accounts.8b00288. PubMed DOI

Xu T., Gao W., Xu L.-P., Zhang X., Wang S.. Fuel-Free Synthetic Micro-/Nanomachines. Advanced Materials. 2017;29(9):1603250. doi: 10.1002/adma.201603250. PubMed DOI

Wang H., Pumera M.. Fabrication of Micro/Nanoscale Motors. Chemical Reviews. 2015;115(16):8704–8735. doi: 10.1021/acs.chemrev.5b00047. PubMed DOI

Gao W., Wang J.. The Environmental Impact of Micro/Nanomachines: A Review. ACS Nano. 2014;8(4):3170–3180. doi: 10.1021/nn500077a. PubMed DOI

Safdar M., Khan S. U., Jänis J.. Progress toward Catalytic Micro- and Nanomotors for Biomedical and Environmental Applications. Advanced Materials. 2018;30(24):1703660. doi: 10.1002/adma.201703660. PubMed DOI

Zhang L., Peyer K. E., Nelson B. J.. Artificial Bacterial Flagella for Micromanipulation. Lab on a Chip. 2010;10(17):2203–2215. doi: 10.1039/c004450b. PubMed DOI

Dewdney A. K.. Nanotechnology - Wherein Molecular Computers Control Tiny Circulatory Submarines. Scientific American. 1988;258(1):100. doi: 10.1038/scientificamerican0188-100. DOI

Drexler, K. E. Nanosystems: Molecular Machinery, Manufacturing, and Computation; Wiley, 1992.

Freitas R. A.. Nanodentistry. The Journal of the American Dental Association. 2000;131(11):1559–1565. doi: 10.14219/jada.archive.2000.0084. PubMed DOI

Lauga E., Powers T. R.. The Hydrodynamics of Swimming Microorganisms. Reports on Progress in Physics. 2009;72(9):096601. doi: 10.1088/0034-4885/72/9/096601. DOI

Golestanian R., Liverpool T. B., Ajdari A.. Designing Phoretic Micro- and Nano-Swimmers. New Journal of Physics. 2007;9(5):126. doi: 10.1088/1367-2630/9/5/126. DOI

Howse J. R., Jones R. A. L., Ryan A. J., Gough T., Vafabakhsh R., Golestanian R.. Self-Motile Colloidal Particles: From Directed Propulsion to Random Walk. Physical Review Letters. 2007;99(4):048102. doi: 10.1103/PhysRevLett.99.048102. PubMed DOI

Najafi A., Golestanian R.. Simple Swimmer at Low Reynolds Number: Three Linked Spheres. Physical Review E. 2004;69(6):062901. doi: 10.1103/PhysRevE.69.062901. PubMed DOI

Wang J.. Can Man-Made Nanomachines Compete with Nature Biomotors? ACS Nano. 2009;3(1):4–9. doi: 10.1021/nn800829k. PubMed DOI

Ismagilov R. F., Schwartz A., Bowden N., Whitesides G. M.. Autonomous Movement and Self-Assembly. Angewandte Chemie International Edition. 2002;41(4):652–654. doi: 10.1002/1521-3773(20020215)41:4<652::AID-ANIE652>3.0.CO;2-U. DOI

Paxton W. F., Kistler K. C., Olmeda C. C., Sen A., St. Angelo S. K., Cao Y., Mallouk T. E., Lammert P. E., Crespi V. H.. Catalytic Nanomotors: Autonomous Movement of Striped Nanorods. Journal of the American Chemical Society. 2004;126(41):13424–13431. doi: 10.1021/ja047697z. PubMed DOI

Fournier-Bidoz S., Arsenault A. C., Manners I., Ozin G. A.. Synthetic Self-Propelled Nanorotors. Chemical Communications. 2005;(4):441–443. doi: 10.1039/b414896g. PubMed DOI

Mei Y., Huang G., Solovev A. A., Ureña E. B., Mönch I., Ding F., Reindl T., Fu R. K. Y., Chu P. K., Schmidt O. G.. Versatile Approach for Integrative and Functionalized Tubes by Strain Engineering of Nanomembranes on Polymers. Advanced Materials. 2008;20(21):4085–4090. doi: 10.1002/adma.200801589. DOI

Li J., Rozen I., Wang J.. Rocket Science at the Nanoscale. ACS Nano. 2016;10(6):5619–5634. doi: 10.1021/acsnano.6b02518. PubMed DOI

Mei Y., Solovev A. A., Sanchez S., Schmidt O. G.. Rolled-up Nanotech on Polymers: From Basic Perception to Self-Propelled Catalytic Microengines. Chemical Society Reviews. 2011;40(5):2109–2119. doi: 10.1039/c0cs00078g. PubMed DOI

Gao W., Sattayasamitsathit S., Orozco J., Wang J.. Highly Efficient Catalytic Microengines: Template Electrosynthesis of Polyaniline/Platinum Microtubes. Journal of the American Chemical Society. 2011;133(31):11862–11864. doi: 10.1021/ja203773g. PubMed DOI

Gao W., Uygun A., Wang J.. Hydrogen-Bubble-Propelled Zinc-Based Microrockets in Strongly Acidic Media. Journal of the American Chemical Society. 2012;134(2):897–900. doi: 10.1021/ja210874s. PubMed DOI

Sanchez S., Solovev A. A., Mei Y., Schmidt O. G.. Dynamics of Biocatalytic Microengines Mediated by Variable Friction Control. Journal of the American Chemical Society. 2010;132(38):13144–13145. doi: 10.1021/ja104362r. PubMed DOI

Wang H., Zhao G., Pumera M.. Beyond Platinum: Bubble-Propelled Micromotors Based on Ag and MnO2 Catalysts. Journal of the American Chemical Society. 2014;136(7):2719–2722. doi: 10.1021/ja411705d. PubMed DOI

Ma X., Jannasch A., Albrecht U.-R., Hahn K., Miguel-López A., Schäffer E., Sánchez S.. Enzyme-Powered Hollow Mesoporous Janus Nanomotors. Nano Letters. 2015;15(10):7043–7050. doi: 10.1021/acs.nanolett.5b03100. PubMed DOI

Tang S., Zhang F., Gong H., Wei F., Zhuang J., Karshalev E., Esteban-Fernández de Ávila B., Huang C., Zhou Z., Li Z.. et al. Enzyme-Powered Janus Platelet Cell Robots for Active and Targeted Drug Delivery. Science Robotics. 2020;5(43):eaba6137. doi: 10.1126/scirobotics.aba6137. PubMed DOI

Simó C., Serra-Casablancas M., Hortelao A. C., Di Carlo V., Guallar-Garrido S., Plaza-García S., Rabanal R. M., Ramos-Cabrer P., Yagüe B., Aguado L.. et al. Urease-Powered Nanobots for Radionuclide Bladder Cancer Therapy. Nature Nanotechnology. 2024;19(4):554–564. doi: 10.1038/s41565-023-01577-y. PubMed DOI PMC

Somasundar A., Ghosh S., Mohajerani F., Massenburg L. N., Yang T., Cremer P. S., Velegol D., Sen A.. Positive and Negative Chemotaxis of Enzyme-Coated Liposome Motors. Nature Nanotechnology. 2019;14(12):1129–1134. doi: 10.1038/s41565-019-0578-8. PubMed DOI

Tang S., Tang D., Zhou H., Li Y., Zhou D., Peng X., Ren C., Su Y., Zhang S., Zheng H.. et al. Bacterial Outer Membrane Vesicle Nanorobot. Proceedings of the National Academy of Sciences. 2024;121(30):e2403460121. doi: 10.1073/pnas.2403460121. PubMed DOI PMC

Choi H., Cho S. H., Hahn S. K.. Urease-Powered Polydopamine Nanomotors for Intravesical Therapy of Bladder Diseases. ACS Nano. 2020;14(6):6683–6692. doi: 10.1021/acsnano.9b09726. PubMed DOI

Peyer K. E., Tottori S., Qiu F., Zhang L., Nelson B. J.. Magnetic Helical Micromachines. Chemistry - A European Journal. 2013;19(1):28–38. doi: 10.1002/chem.201203364. PubMed DOI

Pawashe C., Floyd S., Sitti M.. Modeling and Experimental Characterization of an Untethered Magnetic Micro-Robot. The International Journal of Robotics Research. 2009;28(8):1077–1094. doi: 10.1177/0278364909341413. DOI

Behkam, B. ; Sitti, M. . DOI

Yesin, K. B. ; Vollmers, K. ; Nelson, B. J. . Actuation, Sensing, and Fabrication for in Vivo Magnetic Microrobots. In Experimental Robotics IX, Berlin, Heidelberg, 2006, 2006; Ang, M. H. ; Khatib, O. , Eds.; Springer Berlin Heidelberg: pp 321-330.

Yesin, K. B. ; Vollmers, K. ; Nelson, B. J. . Analysis and Design of Wireless Magnetically Guided Microrobots in Body Fluids. In 2004 IEEE International Conference on Robotics and Automation, 2004; Vol. 1-5, pp 1333-1338.

Abbott J. J., Peyer K. E., Lagomarsino M. C., Zhang L., Dong L., Kaliakatsos I. K., Nelson B. J.. How Should Microrobots Swim? The International Journal of Robotics Research. 2009;28(11-12):1434–1447. doi: 10.1177/0278364909341658. DOI

Honda T., Arai K., Ishiyama K.. Micro Swimming Mechanisms Propelled by External Magnetic Fields. IEEE Transactions on Magnetics. 1996;32(5):5085–5087. doi: 10.1109/20.539498. DOI

Zhang L., Ruh E., Grützmacher D., Dong, Bell D. J., Nelson B. J., Schönenberger C.. Anomalous Coiling of Sige/Si and Sige/Si/Cr Helical Nanobelts. Nano Letters. 2006;6(7):1311–1317. doi: 10.1021/nl052340u. PubMed DOI

Bell, D. J. ; Leutenegger, S. ; Hammar, K. M. ; Dong, L. X. ; Nelson, B. J. . Flagella-Like Propulsion for Microrobots Using a Nanocoil and a Rotating Electromagnetic Field. In Proceedings 2007 IEEE International Conference on Robotics and Automation, 10-14 April 2007, 2007; pp 1128-1133. 10.1109/ROBOT.2007.363136. DOI

Zhang L., Abbott J. J., Dong L., Peyer K. E., Kratochvil B. E., Zhang H., Bergeles C., Nelson B. J.. Characterizing the Swimming Properties of Artificial Bacterial Flagella. Nano Letters. 2009;9(10):3663–3667. doi: 10.1021/nl901869j. PubMed DOI

Ghosh A., Fischer P.. Controlled Propulsion of Artificial Magnetic Nanostructured Propellers. Nano Letters. 2009;9(6):2243–2245. doi: 10.1021/nl900186w. PubMed DOI

Venugopalan P. L., Sai R., Chandorkar Y., Basu B., Shivashankar S., Ghosh A.. Conformal Cytocompatible Ferrite Coatings Facilitate the Realization of a Nanovoyager in Human Blood. Nano Letters. 2014;14(4):1968–1975. doi: 10.1021/nl404815q. PubMed DOI

Ullrich F., Bergeles C., Pokki J., Ergeneman O., Erni S., Chatzipirpiridis G., Pané S., Framme C., Nelson B. J.. Mobility Experiments with Microrobots for Minimally Invasive Intraocular Surgery. Investigative ophthalmology & visual science. 2013;54(4):2853–2863. doi: 10.1167/iovs.13-11825. PubMed DOI

Wu Z., Troll J., Jeong H.-H., Wei Q., Stang M., Ziemssen F., Wang Z., Dong M., Schnichels S., Qiu T., Fischer P.. A Swarm of Slippery Micropropellers Penetrates the Vitreous Body of the Eye. Science Advances. 2018;4(11):eaat4388. doi: 10.1126/sciadv.aat4388. PubMed DOI PMC

Rufo J., Zhang P., Zhong R., Lee L. P., Huang T. J.. A Sound Approach to Advancing Healthcare Systems: The Future of Biomedical Acoustics. Nature Communications. 2022;13(1):3459. doi: 10.1038/s41467-022-31014-y. PubMed DOI PMC

Yang S., Tian Z., Wang Z., Rufo J., Li P., Mai J., Xia J., Bachman H., Huang P.-H., Wu M.. et al. Harmonic Acoustics for Dynamic and Selective Particle Manipulation. Nature Materials. 2022;21(5):540–546. doi: 10.1038/s41563-022-01210-8. PubMed DOI PMC

Ahmed D., Ozcelik A., Bojanala N., Nama N., Upadhyay A., Chen Y., Hanna-Rose W., Huang T. J.. Rotational Manipulation of Single Cells and Organisms Using Acoustic Waves. Nature Communications. 2016;7(1):11085. doi: 10.1038/ncomms11085. PubMed DOI PMC

Kagan D., Benchimol M. J., Claussen J. C., Chuluun-Erdene E., Esener S., Wang J.. Acoustic Droplet Vaporization and Propulsion of Perfluorocarbon-Loaded Microbullets for Targeted Tissue Penetration and Deformation. Angewandte Chemie International Edition. 2012;51(30):7519–7522. doi: 10.1002/anie.201201902. PubMed DOI PMC

Wang W., Castro L. A., Hoyos M., Mallouk T. E.. Autonomous Motion of Metallic Microrods Propelled by Ultrasound. ACS Nano. 2012;6(7):6122–6132. doi: 10.1021/nn301312z. PubMed DOI

Ahmed S., Wang W., Bai L., Gentekos D. T., Hoyos M., Mallouk T. E.. Density and Shape Effects in the Acoustic Propulsion of Bimetallic Nanorod Motors. ACS Nano. 2016;10(4):4763–4769. doi: 10.1021/acsnano.6b01344. PubMed DOI

Nadal F., Lauga E.. Asymmetric Steady Streaming as a Mechanism for Acoustic Propulsion of Rigid Bodies. Physics of Fluids. 2014;26(8):082001. doi: 10.1063/1.4891446. DOI

Wang W., Li S., Mair L., Ahmed S., Huang T. J., Mallouk T. E.. Acoustic Propulsion of Nanorod Motors inside Living Cells. Angewandte Chemie International Edition. 2014;53(12):3201–3204. doi: 10.1002/anie.201309629. PubMed DOI PMC

Esteban-Fernández de Ávila B., Angell C., Soto F., Lopez-Ramirez M. A., Báez D. F., Xie S., Wang J., Chen Y.. Acoustically Propelled Nanomotors for Intracellular siRNA Delivery. ACS Nano. 2016;10(5):4997–5005. doi: 10.1021/acsnano.6b01415. PubMed DOI

Xu L., Mou F., Gong H., Luo M., Guan J.. Light-Driven Micro/Nanomotors: From Fundamentals to Applications. Chemical Society Reviews. 2017;46(22):6905–6926. doi: 10.1039/C7CS00516D. PubMed DOI

Villa K.. Exploring Innovative Designs and Heterojunctions in Photocatalytic Micromotors. Chemical Communications. 2023;59(54):8375–8383. doi: 10.1039/D3CC01634J. PubMed DOI PMC

Ibele M., Mallouk T. E., Sen A.. Schooling Behavior of Light-Powered Autonomous Micromotors in Water. Angewandte Chemie International Edition. 2009;48(18):3308–3312. doi: 10.1002/anie.200804704. PubMed DOI

Hong Y., Diaz M., Córdova-Figueroa U. M., Sen A.. Light-Driven Titanium-Dioxide-Based Reversible Microfireworks and Micromotor/Micropump Systems. Advanced Functional Materials. 2010;20(10):1568–1576. doi: 10.1002/adfm.201000063. DOI

Palacci J., Sacanna S., Vatchinsky A., Chaikin P. M., Pine D. J.. Photoactivated Colloidal Dockers for Cargo Transportation. Journal of the American Chemical Society. 2013;135(43):15978–15981. doi: 10.1021/ja406090s. PubMed DOI

Villa K., Novotný F., Zelenka J., Browne M. P., Ruml T., Pumera M.. Visible-Light-Driven Single-Component BiVO4 Micromotors with the Autonomous Ability for Capturing Microorganisms. ACS Nano. 2019;13(7):8135–8145. doi: 10.1021/acsnano.9b03184. PubMed DOI

Wang J., Xiong Z., Zhan X., Dai B., Zheng J., Liu J., Tang J.. A Silicon Nanowire as a Spectrally Tunable Light-Driven Nanomotor. Advanced Materials. 2017;29(30):1701451. doi: 10.1002/adma.201701451. PubMed DOI

María Hormigos R., Jurado Sánchez B., Escarpa A.. Multi-Light-Responsive Quantum Dot Sensitized Hybrid Micromotors with Dual-Mode Propulsion. Angewandte Chemie International Edition. 2019;58(10):3128–3132. doi: 10.1002/anie.201811050. PubMed DOI

Jang B., Hong A., Kang H. E., Alcantara C., Charreyron S., Mushtaq F., Pellicer E., Büchel R., Sort J., Lee S. S.. et al. Multiwavelength Light-Responsive Au/B-TiO2 Janus Micromotors. ACS Nano. 2017;11(6):6146–6154. doi: 10.1021/acsnano.7b02177. PubMed DOI

Liang Z., Joh H., Lian B., Fan D. E.. Light-Stimulated Micromotor Swarms in an Electric Field with Accurate Spatial, Temporal, and Mode Control. Science Advances. 2023;9(43):eadi9932. doi: 10.1126/sciadv.adi9932. PubMed DOI PMC

Dong R., Zhang Q., Gao W., Pei A., Ren B.. Highly Efficient Light-Driven TiO2-Au Janus Micromotors. ACS Nano. 2016;10(1):839–844. doi: 10.1021/acsnano.5b05940. PubMed DOI

Chang S. T., Paunov V. N., Petsev D. N., Velev O. D.. Remotely Powered Self-Propelling Particles and Micropumps Based on Miniature Diodes. Nature Materials. 2007;6(3):235–240. doi: 10.1038/nmat1843. PubMed DOI

Gangwal S., Cayre O. J., Bazant M. Z., Velev O. D.. Induced-Charge Electrophoresis of Metallodielectric Particles. Physical Review Letters. 2008;100(5):058302. doi: 10.1103/PhysRevLett.100.058302. PubMed DOI

Calvo-Marzal P., Sattayasamitsathit S., Balasubramanian S., Windmiller J. R., Dao C., Wang J.. Propulsion of Nanowire Diodes. Chemical Communications. 2010;46(10):1623–1624. doi: 10.1039/b925568k. PubMed DOI

Loget G., Kuhn A.. Propulsion of Microobjects by Dynamic Bipolar Self-Regeneration. Journal of the American Chemical Society. 2010;132(45):15918–15919. doi: 10.1021/ja107644x. PubMed DOI

Loget G., Kuhn A.. Electric Field-Induced Chemical Locomotion of Conducting Objects. Nature Communications. 2011;2(1):535. doi: 10.1038/ncomms1550. PubMed DOI

Boymelgreen A. M., Balli T., Miloh T., Yossifon G.. Active Colloids as Mobile Microelectrodes for Unified Label-Free Selective Cargo Transport. Nature Communications. 2018;9(1):760. doi: 10.1038/s41467-018-03086-2. PubMed DOI PMC

Boymelgreen A., Yossifon G., Miloh T.. Propulsion of Active Colloids by Self-Induced Field Gradients. Langmuir. 2016;32(37):9540–9547. doi: 10.1021/acs.langmuir.6b01758. PubMed DOI

Boymelgreen A. M., Kunti G., Garcia-Sanchez P., Ramos A., Yossifon G., Miloh T.. The Role of Particle-Electrode Wall Interactions in Mobility of Active Janus Particles Driven by Electric Fields. Journal of Colloid and Interface Science. 2022;616:465–475. doi: 10.1016/j.jcis.2022.02.017. PubMed DOI

Bricard A., Caussin J.-B., Desreumaux N., Dauchot O., Bartolo D.. Emergence of Macroscopic Directed Motion in Populations of Motile Colloids. Nature. 2013;503(7474):95–98. doi: 10.1038/nature12673. PubMed DOI

Chen C., Soto F., Karshalev E., Li J., Wang J.. Hybrid Nanovehicles: One Machine, Two Engines. Advanced Functional Materials. 2019;29(2):1806290. doi: 10.1002/adfm.201806290. DOI

Ren L., Wang W., Mallouk T. E.. Two Forces Are Better Than One: Combining Chemical and Acoustic Propulsion for Enhanced Micromotor Functionality. Accounts of Chemical Research. 2018;51(9):1948–1956. doi: 10.1021/acs.accounts.8b00248. PubMed DOI

Gao W., Manesh K. M., Hua J., Sattayasamitsathit S., Wang J.. Hybrid Nanomotor: A Catalytically/Magnetically Powered Adaptive Nanowire Swimmer. Small. 2011;7(14):2047–2051. doi: 10.1002/smll.201100213. PubMed DOI

Li J., Li T., Xu T., Kiristi M., Liu W., Wu Z., Wang J.. Magneto-Acoustic Hybrid Nanomotor. Nano Letters. 2015;15(7):4814–4821. doi: 10.1021/acs.nanolett.5b01945. PubMed DOI

Salinas G., Tieriekhov K., Garrigue P., Sojic N., Bouffier L., Kuhn A.. Lorentz Force-Driven Autonomous Janus Swimmers. Journal of the American Chemical Society. 2021;143(32):12708–12714. doi: 10.1021/jacs.1c05589. PubMed DOI

Soong R. K., Bachand G. D., Neves H. P., Olkhovets A. G., Craighead H. G., Montemagno C. D.. Powering an Inorganic Nanodevice with a Biomolecular Motor. Science. 2000;290(5496):1555–1558. doi: 10.1126/science.290.5496.1555. PubMed DOI

Xi J., Schmidt J. J., Montemagno C. D.. Self-Assembled Microdevices Driven by Muscle. Nature Materials. 2005;4(2):180–184. doi: 10.1038/nmat1308. PubMed DOI

Hiratsuka Y., Miyata M., Tada T., Uyeda T. Q. P.. A Microrotary Motor Powered by Bacteria. Proceedings of the National Academy of Sciences. 2006;103(37):13618–13623. doi: 10.1073/pnas.0604122103. PubMed DOI PMC

Behkam B., Sitti M.. Bacterial Flagella-Based Propulsion and on/Off Motion Control of Microscale Objects. Applied Physics Letters. 2007;90(2):1400023. doi: 10.1063/1.2431454. DOI

Martel S., Tremblay C. C., Ngakeng S., Langlois G.. Controlled Manipulation and Actuation of Micro-Objects with Magnetotactic Bacteria. Applied Physics Letters. 2006;89(23):233904. doi: 10.1063/1.2402221. DOI

Weibel D. B., Garstecki P., Ryan D., DiLuzio W. R., Mayer M., Seto J. E., Whitesides G. M.. Microoxen: Microorganisms to Move Microscale Loads. Proceedings of the National Academy of Sciences. 2005;102(34):11963–11967. doi: 10.1073/pnas.0505481102. PubMed DOI PMC

Magdanz V., Sanchez S., Schmidt O. G.. Development of a Sperm-Flagella Driven Micro-Bio-Robot. Advanced Materials. 2013;25(45):6581–6588. doi: 10.1002/adma.201302544. PubMed DOI

Wang J., Manesh K. M.. Motion Control at the Nanoscale. Small. 2010;6(3):338–345. doi: 10.1002/smll.200901746. PubMed DOI

Balasubramanian S., Kagan D., Manesh K. M., Calvo-Marzal P., Flechsig G.-U., Wang J.. Thermal Modulation of Nanomotor Movement. Small. 2009;5(13):1569–1574. doi: 10.1002/smll.200900023. PubMed DOI

Magdanz V., Stoychev G., Ionov L., Sanchez S., Schmidt O. G.. Stimuli-Responsive Microjets with Reconfigurable Shape. Angewandte Chemie International Edition. 2014;53(10):2673–2677. doi: 10.1002/anie.201308610. PubMed DOI PMC

Mou F., Xie Q., Liu J., Che S., Bahmane L., You M., Guan J.. ZnO-Based Micromotors Fueled by CO2: The First Example of Self-Reorientation-Induced Biomimetic Chemotaxis. National Science Review. 2021;8(11):nwab066. doi: 10.1093/nsr/nwab066. PubMed DOI PMC

Kline T. R., Paxton W. F., Mallouk T. E., Sen A.. Catalytic Nanomotors: Remote-Controlled Autonomous Movement of Striped Metallic Nanorods. Angewandte Chemie International Edition. 2005;44(5):744–746. doi: 10.1002/anie.200461890. PubMed DOI

Burdick J., Laocharoensuk R., Wheat P. M., Posner J. D., Wang J.. Synthetic Nanomotors in Microchannel Networks: Directional Microchip Motion and Controlled Manipulation of Cargo. Journal of the American Chemical Society. 2008;130(26):8164–8165. doi: 10.1021/ja803529u. PubMed DOI

Li T., Chang X., Wu Z., Li J., Shao G., Deng X., Qiu J., Guo B., Zhang G., He Q.. et al. Autonomous Collision-Free Navigation of Microvehicles in Complex and Dynamically Changing Environments. ACS Nano. 2017;11(9):9268–9275. doi: 10.1021/acsnano.7b04525. PubMed DOI

Li J., Gao W., Dong R., Pei A., Sattayasamitsathit S., Wang J.. Nanomotor Lithography. Nature Communications. 2014;5(1):5026. doi: 10.1038/ncomms6026. PubMed DOI

You M., Chen C., Xu L., Mou F., Guan J.. Intelligent Micro/Nanomotors with Taxis. Accounts of Chemical Research. 2018;51(12):3006–3014. doi: 10.1021/acs.accounts.8b00291. PubMed DOI

Ji F., Wu Y., Pumera M., Zhang L.. Collective Behaviors of Active Matter Learning from Natural Taxes across Scales. Advanced Materials. 2023;35(8):2203959. doi: 10.1002/adma.202203959. PubMed DOI

Gao C., Feng Y., Wilson D. A., Tu Y., Peng F.. Micro-Nano Motors with Taxis Behavior: Principles, Designs, and Biomedical Applications. Small. 2022;18(15):2106263. doi: 10.1002/smll.202106263. PubMed DOI

Dai B., Wang J., Xiong Z., Zhan X., Dai W., Li C.-C., Feng S.-P., Tang J.. Programmable Artificial Phototactic Microswimmer. Nature Nanotechnology. 2016;11(12):1087–1092. doi: 10.1038/nnano.2016.187. PubMed DOI

Kagan D., Laocharoensuk R., Zimmerman M., Clawson C., Balasubramanian S., Kang D., Bishop D., Sattayasamitsathit S., Zhang L., Wang J.. Rapid Delivery of Drug Carriers Propelled and Navigated by Catalytic Nanoshuttles. Small. 2010;6(23):2741–2747. doi: 10.1002/smll.201001257. PubMed DOI

Tottori S., Zhang L., Qiu F., Krawczyk K. K., Franco-Obregón A., Nelson B. J.. Magnetic Helical Micromachines: Fabrication, Controlled Swimming, and Cargo Transport. Advanced Materials. 2012;24(6):811–816. doi: 10.1002/adma.201103818. PubMed DOI

Gao W., Kagan D., Pak O. S., Clawson C., Campuzano S., Chuluun-Erdene E., Shipton E., Fullerton E. E., Zhang L., Lauga E.. et al. Cargo-Towing Fuel-Free Magnetic Nanoswimmers for Targeted Drug Delivery. Small. 2012;8(3):460–467. doi: 10.1002/smll.201101909. PubMed DOI

Wang W., Duan W., Ahmed S., Sen A., Mallouk T. E.. From One to Many: Dynamic Assembly and Collective Behavior of Self-Propelled Colloidal Motors. Accounts of Chemical Research. 2015;48(7):1938–1946. doi: 10.1021/acs.accounts.5b00025. PubMed DOI

Hong Y., Blackman N. M. K., Kopp N. D., Sen A., Velegol D.. Chemotaxis of Nonbiological Colloidal Rods. Physical Review Letters. 2007;99(17):178103. doi: 10.1103/PhysRevLett.99.178103. PubMed DOI

Mou F., Zhang J., Wu Z., Du S., Zhang Z., Xu L., Guan J.. Phototactic Flocking of Photochemical Micromotors. iScience. 2019;19:415–424. doi: 10.1016/j.isci.2019.07.050. PubMed DOI PMC

Wang Y., Chen H., Xie L., Liu J., Zhang L., Yu J.. Swarm Autonomy: From Agent Functionalization to Machine Intelligence. Advanced Materials. 2025;37(2):2312956. doi: 10.1002/adma.202312956. PubMed DOI PMC

Solovev A. A., Sanchez S., Schmidt O. G.. Collective Behaviour of Self-Propelled Catalytic Micromotors. Nanoscale. 2013;5(4):1284–1293. doi: 10.1039/c2nr33207h. PubMed DOI

Pavel I.-A., Salinas G., Mierzwa M., Arnaboldi S., Garrigue P., Kuhn A.. Cooperative Chemotaxis of Magnesium Microswimmers for Corrosion Spotting. ChemPhysChem. 2021;22(13):1321–1325. doi: 10.1002/cphc.202100236. PubMed DOI

Kagan D., Balasubramanian S., Wang J.. Chemically Triggered Swarming of Gold Microparticles. Angewandte Chemie International Edition. 2011;50(2):503–506. doi: 10.1002/anie.201005078. PubMed DOI

Xu T., Soto F., Gao W., Dong R., Garcia-Gradilla V., Magaña E., Zhang X., Wang J.. Reversible Swarming and Separation of Self-Propelled Chemically Powered Nanomotors under Acoustic Fields. Journal of the American Chemical Society. 2015;137(6):2163–2166. doi: 10.1021/ja511012v. PubMed DOI

Gao W., Pei A., Feng X., Hennessy C., Wang J.. Organized Self-Assembly of Janus Micromotors with Hydrophobic Hemispheres. Journal of the American Chemical Society. 2013;135(3):998–1001. doi: 10.1021/ja311455k. PubMed DOI

Martel, S. ; Mohammadi, M. . Using a Swarm of Self-Propelled Natural Microrobots in the Form of Flagellated Bacteria to Perform Complex Micro-Assembly Tasks. In 2010 IEEE International Conference on Robotics and Automation, 3-7 May 2010, 2010; pp 500-505. 10.1109/ROBOT.2010.5509752. DOI

Traoré M. A., Sahari A., Behkam B.. Computational and Experimental Study of Chemotaxis of an Ensemble of Bacteria Attached to a Microbead. Physical Review E. 2011;84(6):061908. doi: 10.1103/PhysRevE.84.061908. PubMed DOI

Leaman, E. J. ; Geuther, B. Q. ; Behkam, B. . Hybrid Centralized/Decentralized Control of Bacteria-Based Bio-Hybrid Microrobots. In 2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), 4-8 July 2018, 2018; pp 1-6. 10.1109/MARSS.2018.8481144. DOI

Wang B., Kostarelos K., Nelson B. J., Zhang L.. Trends in Micro-/Nanorobotics: Materials Development, Actuation, Localization, and System Integration for Biomedical Applications. Advanced Materials. 2021;33(4):2002047. doi: 10.1002/adma.202002047. PubMed DOI

Bozuyuk U., Wrede P., Yildiz E., Sitti M.. Roadmap for Clinical Translation of Mobile Microrobotics. Advanced Materials. 2024;36(23):2311462. doi: 10.1002/adma.202311462. PubMed DOI

Wang T., Wu Y., Yildiz E., Kanyas S., Sitti M.. Clinical Translation of Wireless Soft Robotic Medical Devices. Nature Reviews Bioengineering. 2024;2(6):470–485. doi: 10.1038/s44222-024-00156-7. DOI

Gao W., Dong R., Thamphiwatana S., Li J., Gao W., Zhang L., Wang J.. Artificial Micromotors in the Mouse’s Stomach: A Step toward in vivo Use of Synthetic Motors. ACS Nano. 2015;9(1):117–123. doi: 10.1021/nn507097k. PubMed DOI PMC

Esteban-Fernández de Ávila B., Angsantikul P., Li J., Angel Lopez-Ramirez M., Ramírez-Herrera D. E., Thamphiwatana S., Chen C., Delezuk J., Samakapiruk R., Ramez V.. et al. Micromotor-Enabled Active Drug Delivery for in vivo Treatment of Stomach Infection. Nature Communications. 2017;8(1):272. doi: 10.1038/s41467-017-00309-w. PubMed DOI PMC

Felfoul O., Mohammadi M., Taherkhani S., de Lanauze D., Zhong Xu Y., Loghin D., Essa S., Jancik S., Houle D., Lafleur M.. et al. Magneto-Aerotactic Bacteria Deliver Drug-Containing Nanoliposomes to Tumour Hypoxic Regions. Nature Nanotechnology. 2016;11(11):941–947. doi: 10.1038/nnano.2016.137. PubMed DOI PMC

Chatzipirpiridis G., Ergeneman O., Pokki J., Ullrich F., Fusco S., Ortega J. A., Sivaraman K. M., Nelson B. J., Pané S.. Electroforming of Implantable Tubular Magnetic Microrobots for Wireless Ophthalmologic Applications. Advanced Healthcare Materials. 2015;4(2):209–214. doi: 10.1002/adhm.201400256. PubMed DOI

Choi H., Jeong S.-h., Simo C., Bakenecker A., Liop J., Lee H. S., Kim T. Y., Kwak C., Koh G. Y., Sanchez S., Hahn S. K.. et al. Urease-Powered Nanomotor Containing Sting Agonist for Bladder Cancer Immunotherapy. Nature Communications. 2024;15(1):9934. doi: 10.1038/s41467-024-54293-z. PubMed DOI PMC

Zhang F., Zhuang J., Li Z., Gong H., Esteban-Fernández de Ávila B., Duan Y., Zhang Q., Zhou J., Yin L., Karshalev E.. et al. Nanoparticle-Modified Microrobots for in vivo Antibiotic Delivery to Treat Acute Bacterial Pneumonia. Nature Materials. 2022;21(11):1324–1332. doi: 10.1038/s41563-022-01360-9. PubMed DOI PMC

Del Campo Fonseca A., Glück C., Droux J., Ferry Y., Frei C., Wegener S., Weber B., El Amki M., Ahmed D.. Ultrasound Trapping and Navigation of Microrobots in the Mouse Brain Vasculature. Nature Communications. 2023;14(1):5889. doi: 10.1038/s41467-023-41557-3. PubMed DOI PMC

Karshalev E., Esteban-Fernández de Ávila B., Beltrán-Gastélum M., Angsantikul P., Tang S., Mundaca-Uribe R., Zhang F., Zhao J., Zhang L., Wang J.. Micromotor Pills as a Dynamic Oral Delivery Platform. ACS Nano. 2018;12(8):8397–8405. doi: 10.1021/acsnano.8b03760. PubMed DOI

Mundaca-Uribe R., Karshalev E., Esteban-Fernández de Ávila B., Wei X., Nguyen B., Litvan I., Fang R. H., Zhang L., Wang J.. A Microstirring Pill Enhances Bioavailability of Orally Administered Drugs. Advanced Science. 2021;8(12):2100389. doi: 10.1002/advs.202100389. PubMed DOI PMC

Srinivasan S. S., Alshareef A., Hwang A. V., Kang Z., Kuosmanen J., Ishida K., Jenkins J., Liu S., Madani W. A. M., Lennerz J.. et al. Robocap: Robotic Mucus-Clearing Capsule for Enhanced Drug Delivery in the Gastrointestinal Tract. Science Robotics. 2022;7(70):eabp9066. doi: 10.1126/scirobotics.abp9066. PubMed DOI PMC

Mundaca-Uribe R., Askarinam N., Fang R. H., Zhang L., Wang J.. Towards Multifunctional Robotic Pills. Nature Biomedical Engineering. 2024;8:1334–1346. doi: 10.1038/s41551-023-01090-6. PubMed DOI

Venugopalan P. L., Esteban-Fernández de Ávila B., Pal M., Ghosh A., Wang J.. Fantastic Voyage of Nanomotors into the Cell. ACS Nano. 2020;14(8):9423–9439. doi: 10.1021/acsnano.0c05217. PubMed DOI

Esteban-Fernández de Ávila B., Martín A., Soto F., Lopez-Ramirez M. A., Campuzano S., Vásquez-Machado G. M., Gao W., Zhang L., Wang J.. Single Cell Real-Time miRNAs Sensing Based on Nanomotors. ACS Nano. 2015;9(7):6756–6764. doi: 10.1021/acsnano.5b02807. PubMed DOI

Wu J., Balasubramanian S., Kagan D., Manesh K. M., Campuzano S., Wang J.. Motion-Based DNA Detection Using Catalytic Nanomotors. Nature Communications. 2010;1(1):36. doi: 10.1038/ncomms1035. PubMed DOI

Kagan D., Calvo-Marzal P., Balasubramanian S., Sattayasamitsathit S., Manesh K. M., Flechsig G.-U., Wang J.. Chemical Sensing Based on Catalytic Nanomotors: Motion-Based Detection of Trace Silver. Journal of the American Chemical Society. 2009;131(34):12082–12083. doi: 10.1021/ja905142q. PubMed DOI PMC

Balasubramanian S., Kagan D., Jack Hu C.-M., Campuzano S., Lobo-Castañon M. J., Lim N., Kang D. Y., Zimmerman M., Zhang L., Wang J.. Micromachine-Enabled Capture and Isolation of Cancer Cells in Complex Media. Angewandte Chemie International Edition. 2011;50(18):4161–4164. doi: 10.1002/anie.201100115. PubMed DOI PMC

Campuzano S., Kagan D., Orozco J., Wang J.. Motion-Driven Sensing and Biosensing Using Electrochemically Propelled Nanomotors. Analyst. 2011;136(22):4621–4630. doi: 10.1039/c1an15599g. PubMed DOI

Jurado-Sánchez B., Escarpa A.. Milli, Micro, and Nanomotors: Novel Analytical Tools for Real-World Applications. TrAC Trends in Analytical Chemistry. 2016;84:48–59. doi: 10.1016/j.trac.2016.03.009. DOI

Suh S., Jo A., Traore M. A., Zhan Y., Coutermarsh-Ott S. L., Ringel-Scaia V. M., Allen I. C., Davis R. M., Behkam B.. Nanoscale Bacteria-Enabled Autonomous Drug Delivery System (Nanobeads) Enhances Intratumoral Transport of Nanomedicine. Advanced Science. 2019;6(3):1801309. doi: 10.1002/advs.201801309. PubMed DOI PMC

Urso M., Ussia M., Pumera M.. Smart Micro- and Nanorobots for Water Purification. Nature Reviews Bioengineering. 2023;1(4):236–251. doi: 10.1038/s44222-023-00025-9. PubMed DOI PMC

Parmar J., Vilela D., Villa K., Wang J., Sánchez S.. Micro- and Nanomotors as Active Environmental Microcleaners and Sensors. Journal of the American Chemical Society. 2018;140(30):9317–9331. doi: 10.1021/jacs.8b05762. PubMed DOI

Guix M., Orozco J., García M., Gao W., Sattayasamitsathit S., Merkoçi A., Escarpa A., Wang J.. Superhydrophobic Alkanethiol-Coated Microsubmarines for Effective Removal of Oil. ACS Nano. 2012;6(5):4445–4451. doi: 10.1021/nn301175b. PubMed DOI

Soler L., Magdanz V., Fomin V. M., Sanchez S., Schmidt O. G.. Self-Propelled Micromotors for Cleaning Polluted Water. ACS Nano. 2013;7(11):9611–9620. doi: 10.1021/nn405075d. PubMed DOI PMC

Orozco J., Cheng G., Vilela D., Sattayasamitsathit S., Vazquez-Duhalt R., Valdés-Ramírez G., Pak O. S., Escarpa A., Kan C., Wang J.. Micromotor-Based High-Yielding Fast Oxidative Detoxification of Chemical Threats. Angewandte Chemie International Edition. 2013;52(50):13276–13279. doi: 10.1002/anie.201308072. PubMed DOI

Villa K., Děkanovský L., Plutnar J., Kosina J., Pumera M.. Swarming of Perovskite-Like Bi2 wo6 Microrobots Destroy Textile Fibers under Visible Light. Advanced Functional Materials. 2020;30(51):2007073. doi: 10.1002/adfm.202007073. DOI

Urso M., Ussia M., Novotný F., Pumera M.. Trapping and Detecting Nanoplastics by Mxene-Derived Oxide Microrobots. Nature Communications. 2022;13(1):3573. doi: 10.1038/s41467-022-31161-2. PubMed DOI PMC

Li H., Sun Z., Jiang S., Lai X., Böckler A., Huang H., Peng F., Liu L., Chen Y.. Tadpole-Like Unimolecular Nanomotor with Sub-100 Nm Size Swims in a Tumor Microenvironment Model. Nano Letters. 2019;19(12):8749–8757. doi: 10.1021/acs.nanolett.9b03456. PubMed DOI

Arqué X., Romero-Rivera A., Feixas F., Patiño T., Osuna S., Sánchez S.. Intrinsic Enzymatic Properties Modulate the Self-Propulsion of Micromotors. Nature Communications. 2019;10(1):2826. doi: 10.1038/s41467-019-10726-8. PubMed DOI PMC

Baylis J. R., Yeon J. H., Thomson M. H., Kazerooni A., Wang X., St. John A. E., Lim E. B., Chien D., Lee A., Zhang J. Q.. et al. Self-Propelled Particles That Transport Cargo through Flowing Blood and Halt Hemorrhage. Science Advances. 2015;1(9):e1500379. doi: 10.1126/sciadv.1500379. PubMed DOI PMC

Gao W., Sattayasamitsathit S., Uygun A., Pei A., Ponedal A., Wang J.. Polymer-Based Tubular Microbots: Role of Composition and Preparation. Nanoscale. 2012;4(7):2447–2453. doi: 10.1039/c2nr30138e. PubMed DOI

Hortelao A. C., Patiño T., Perez-Jiménez A., Blanco A., Sánchez S.. Enzyme-Powered Nanobots Enhance Anticancer Drug Delivery. Advanced Functional Materials. 2018;28(25):1705086. doi: 10.1002/adfm.201705086. DOI

Ebbens S. J.. Active Colloids: Progress and Challenges Towards Realising Autonomous Applications. Current Opinion in Colloid & Interface Science. 2016;21:14–23. doi: 10.1016/j.cocis.2015.10.003. DOI

Doherty R. P., Varkevisser T., Teunisse M., Hoecht J., Ketzetzi S., Ouhajji S., Kraft D. J.. Catalytically Propelled 3D Printed Colloidal Microswimmers. Soft Matter. 2020;16(46):10463–10469. doi: 10.1039/D0SM01320J. PubMed DOI

Campbell A. I., Ebbens S. J.. Gravitaxis in Spherical Janus Swimming Devices. Langmuir. 2013;29(46):14066–14073. doi: 10.1021/la403450j. PubMed DOI PMC

Lauga E.. Bacterial Hydrodynamics. Annual Review of Fluid Mechanics. 2016;48:105–130. doi: 10.1146/annurev-fluid-122414-034606. DOI

Purcell E. M.. Life at Low Reynolds Number. American Journal of Physics. 1977;45(1):3–11. doi: 10.1119/1.10903. DOI

Becker L. E., Koehler S. A., Stone H. A.. On Self-Propulsion of Micro-Machines at Low Reynolds Number: Purcell's Three-Link Swimmer. Journal of Fluid Mechanics. 2003;490:15–35. doi: 10.1017/S0022112003005184. DOI

Giraldi L., Martinon P., Zoppello M.. Optimal Design of Purcell's Three-Link Swimmer. Physical Review E. 2015;91(2):023012. doi: 10.1103/PhysRevE.91.023012. PubMed DOI

Wiezel O., Or Y.. Optimization and Small-Amplitude Analysis of Purcell's Three-Link Microswimmer Model. Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences. 2016;472(2192):20160425. doi: 10.1098/rspa.2016.0425. PubMed DOI PMC

Wiezel, O. ; Or, Y. . Using Optimal Control to Obtain Maximum Displacement Gait for Purcell’s Three-Link Swimmer. In 2016 Ieee 55th Conference on Decision and Control (Cdc), 2016; pp 4463-4468.

Tam D., Hosoi A. E.. Optimal Stroke Patterns for Purcell's Three-Link Swimmer. Physical Review Letters. 2007;98(6):068105. doi: 10.1103/PhysRevLett.98.068105. PubMed DOI

Leshansky A. M., Kenneth O.. Surface Tank Treading: Propulsion of Purcell's Toroidal Swimmer. Physics of Fluids. 2008;20(6):063104. doi: 10.1063/1.2939069. DOI

Grosjean G., Hubert M., Lagubeau G., Vandewalle N.. Realization of the Najafi-Golestanian Microswimmer. Physical Review E. 2016;94(2):021101. doi: 10.1103/PhysRevE.94.021101. PubMed DOI

Avron J. E., Kenneth O., Oaknin D. H.. Pushmepullyou: An Efficient Micro-Swimmer. New Journal of Physics. 2005;7:234. doi: 10.1088/1367-2630/7/1/234. DOI

Lanzaro, A. ; Gentile, L. . Rheology of Active Fluids. In Out-of-Equilibrium Soft Matter; Kurzthaler, C. ; Gentile, L. ; Stone, H. A. Eds.; The Royal Society of Chemistry, 2023.

Nishiguchi D., Sano M.. Mesoscopic Turbulence and Local Order in Janus Particles Self-Propelling under an Ac Electric Field. Physical Review E. 2015;92(5):052309. doi: 10.1103/PhysRevE.92.052309. PubMed DOI

Mair L. O., Superfine R.. Single Particle Tracking Reveals Biphasic Transport During Nanorod Magnetophoresis through Extracellular Matrix. Soft Matter. 2014;10(23):4118–4125. doi: 10.1039/C4SM00611A. PubMed DOI PMC

Dreyfus R., Baudry J., Roper M. L., Fermigier M., Stone H. A., Bibette J.. Microscopic Artificial Swimmers. Nature. 2005;437(7060):862–865. doi: 10.1038/nature04090. PubMed DOI

Schamel D., Mark A. G., Gibbs J. G., Miksch C., Morozov K. I., Leshansky A. M., Fischer P.. Nanopropellers and Their Actuation in Complex Viscoelastic Media. ACS Nano. 2014;8(9):8794–8801. doi: 10.1021/nn502360t. PubMed DOI

Solis K. J., Martin J. E.. Multiaxial Fields Drive the Thermal Conductivity Switching of a Magneto-Responsive Platelet Suspension. Soft Matter. 2013;9(38):9182–9188. doi: 10.1039/c3sm50820j. DOI

Golestanian R., Liverpool T. B., Ajdari A.. Propulsion of a Molecular Machine by Asymmetric Distribution of Reaction Products. Physical Review Letters. 2005;94(22):220801. doi: 10.1103/PhysRevLett.94.220801. PubMed DOI

Batchelor, G. K. An Introduction to Fluid Dynamics; Cambridge University Press, 2000. 10.1017/CBO9780511800955. DOI

Karrila, S. K. S. J. In Microhydrodynamics: Principles and Selected Applications, Kim, S. ; Karrila, S. J. Eds.; Butterworth-Heinemann, 1991; p ii.

Brennen C., Winet H.. Fluid Mechanics of Propulsion by Cilia and Flagella. Annual Review of Fluid Mechanics. 1977;9(1):339–398. doi: 10.1146/annurev.fl.09.010177.002011. DOI

Gaffney E. A., Gadêlha H., Smith D. J., Blake J. R., Kirkman-Brown J. C.. Mammalian Sperm Motility: Observation and Theory. Annual Review of Fluid Mechanics. 2011;43:501–528. doi: 10.1146/annurev-fluid-121108-145442. DOI

Lauga, E. The Fluid Dynamics of Cell Motility; Cambridge University Press, 2020. 10.1017/9781316796047. DOI

Qiu T., Lee T. C., Mark A. G., Morozov K. I., Münster R., Mierka O., Turek S., Leshansky A. M., Fischer P.. Swimming by Reciprocal Motion at Low Reynolds Number. Nature Communications. 2014;5:5119. doi: 10.1038/ncomms6119. PubMed DOI PMC

Li G., Lauga E., Ardekani A. M.. Microswimming in Viscoelastic Fluids. Journal of Non-Newtonian Fluid Mechanics. 2021;297:104655. doi: 10.1016/j.jnnfm.2021.104655. DOI

Wang Y., Hernandez R. M., Bartlett D. J., Bingham J. M., Kline T. R., Sen A., Mallouk T. E.. Bipolar Electrochemical Mechanism for the Propulsion of Catalytic Nanomotors in Hydrogen Peroxide Solutions. Langmuir. 2006;22(25):10451–10456. doi: 10.1021/la0615950. PubMed DOI

Solovev A. A., Mei Y., Bermúdez Ureña E., Huang G., Schmidt O. G.. Catalytic Microtubular Jet Engines Self-Propelled by Accumulated Gas Bubbles. Small. 2009;5(14):1688–1692. doi: 10.1002/smll.200900021. PubMed DOI

Ma X., Hahn K., Sanchez S.. Catalytic Mesoporous Janus Nanomotors for Active Cargo Delivery. Journal of the American Chemical Society. 2015;137(15):4976–4979. doi: 10.1021/jacs.5b02700. PubMed DOI PMC

Lee T.-C., Alarcón-Correa M., Miksch C., Hahn K., Gibbs J. G., Fischer P.. Self-Propelling Nanomotors in the Presence of Strong Brownian Forces. Nano Letters. 2014;14(5):2407–2412. doi: 10.1021/nl500068n. PubMed DOI PMC

Katuri J., Caballero D., Voituriez R., Samitier J., Sanchez S.. Directed Flow of Micromotors through Alignment Interactions with Micropatterned Ratchets. ACS Nano. 2018;12(7):7282–7291. doi: 10.1021/acsnano.8b03494. PubMed DOI

Simmchen J., Katuri J., Uspal W. E., Popescu M. N., Tasinkevych M., Sánchez S.. Topographical Pathways Guide Chemical Microswimmers. Nature Communications. 2016;7:10598. doi: 10.1038/ncomms10598. PubMed DOI PMC

Das S., Garg A., Campbell A. I., Howse J., Sen A., Velegol D., Golestanian R., Ebbens S. J.. Boundaries Can Steer Active Janus Spheres. Nature Communications. 2015;6(1):8999. doi: 10.1038/ncomms9999. PubMed DOI PMC

Pavlick R. A., Sengupta S., McFadden T., Zhang H., Sen A.. A Polymerization-Powered Motor. Angewandte Chemie International Edition. 2011;50(40):9374–9377. doi: 10.1002/anie.201103565. PubMed DOI

Gibbs J. G., Zhao Y.. Self-Organized Multiconstituent Catalytic Nanomotors. Small. 2010;6(15):1656–1662. doi: 10.1002/smll.201000415. PubMed DOI

Choudhury U., Soler L., Gibbs J. G., Sanchez S., Fischer P.. Surface Roughness-Induced Speed Increase for Active Janus Micromotors. Chemical Communications. 2015;51(41):8660–8663. doi: 10.1039/C5CC01607J. PubMed DOI PMC

Gibbs J. G., Zhao Y. P.. Autonomously Motile Catalytic Nanomotors by Bubble Propulsion. Applied Physics Letters. 2009;94(16):163104. doi: 10.1063/1.3122346. DOI

Nsamela A., Sharan P., Garcia-Zintzun A., Heckel S., Chattopadhyay P., Wang L., Wittmann M., Gemming T., Saenz J., Simmchen J.. Effect of Viscosity on Microswimmers: A Comparative Study. ChemNanoMat. 2021;7(9):1042–1050. doi: 10.1002/cnma.202100119. DOI

Solovev A. A., Xi W., Gracias D. H., Harazim S. M., Deneke C., Sanchez S., Schmidt O. G.. Self-Propelled Nanotools. ACS Nano. 2012;6(2):1751–1756. doi: 10.1021/nn204762w. PubMed DOI

Solovev A. A., Sanchez S., Pumera M., Mei Y. F., Schmidt O. G.. Magnetic Control of Tubular Catalytic Microbots for the Transport, Assembly, and Delivery of Micro-Objects. Advanced Functional Materials. 2010;20(15):2430–2435. doi: 10.1002/adfm.200902376. DOI

Villa K., Parmar J., Vilela D., Sánchez S.. Metal-Oxide-Based Microjets for the Simultaneous Removal of Organic Pollutants and Heavy Metals. ACS Applied Materials & Interfaces. 2018;10(24):20478–20486. doi: 10.1021/acsami.8b04353. PubMed DOI

Vilela D., Parmar J., Zeng Y., Zhao Y., Sánchez S.. Graphene-Based Microbots for Toxic Heavy Metal Removal and Recovery from Water. Nano Letters. 2016;16(4):2860–2866. doi: 10.1021/acs.nanolett.6b00768. PubMed DOI PMC

Mano N., Heller A.. Bioelectrochemical Propulsion. Journal of the American Chemical Society. 2005;127(33):11574–11575. doi: 10.1021/ja053937e. PubMed DOI

Pantarotto D., Browne W. R., Feringa B. L.. Autonomous Propulsion of Carbon Nanotubes Powered by a Multienzyme Ensemble. Chemical Communications. 2008;(13):1533–1535. doi: 10.1039/B715310D. PubMed DOI

Arqué X., Patiño T., Sánchez S.. Enzyme-Powered Micro- and Nano-Motors: Key Parameters for an Application-Oriented Design. Chemical Science. 2022;13(32):9128–9146. doi: 10.1039/D2SC01806C. PubMed DOI PMC

Wang N. Y., Marcelino T. F., Ade C., Pendlmayr S., Docampo M. A. R., Städler B.. Collagenase Motors in Gelatine-Based Hydrogels. Nanoscale. 2024;16(20):9935–9943. doi: 10.1039/D3NR05712G. PubMed DOI

Joseph A., Contini C., Cecchin D., Nyberg S., Ruiz-Perez L., Gaitzsch J., Fullstone G., Tian X., Azizi J., Preston J.. et al. Chemotactic Synthetic Vesicles: Design and Applications in Blood-Brain Barrier Crossing. Science Advances. 2017;3(8):e1700362. doi: 10.1126/sciadv.1700362. PubMed DOI PMC

Schattling P. S., Ramos-Docampo M. A., Salgueirino V., Städler B.. Double-Fueled Janus Swimmers with Magnetotactic Behavior. ACS Nano. 2017;11(4):3973–3983. doi: 10.1021/acsnano.7b00441. PubMed DOI

Yang Y., Arqué X., Patiño T., Guillerm V., Blersch P.-R., Pérez-Carvajal J., Imaz I., Maspoch D., Sánchez S.. Enzyme-Powered Porous Micromotors Built from a Hierarchical Micro- and Mesoporous Uio-Type Metal-Organic Framework. Journal of the American Chemical Society. 2020;142(50):20962–20967. doi: 10.1021/jacs.0c11061. PubMed DOI

Liu X. X., Wang Y., Wang L. Y., Chen W. J., Ma X.. Enzymatic Nanomotors Surviving Harsh Conditions Enabled by Metal Organic Frameworks Encapsulation. Small. 2024;20(14):2305800. doi: 10.1002/smll.202305800. PubMed DOI

Song S., Mason A. F., Post R. A. J., De Corato M., Mestre R., Yewdall N. A., Cao S., van der Hofstad R. W., Sanchez S., Abdelmohsen L.. et al. Engineering Transient Dynamics of Artificial Cells by Stochastic Distribution of Enzymes. Nature Communications. 2021;12(1):6897. doi: 10.1038/s41467-021-27229-0. PubMed DOI PMC

Hortelao A. C., Garcia-Jimeno S., Cano-Sarabia M., Patiño T., Maspoch D., Sanchez S.. Lipobots: Using Liposomal Vesicles as Protective Shell of Urease-Based Nanomotors. Advanced Functional Materials. 2020;30(42):2002767. doi: 10.1002/adfm.202002767. DOI

Fraire J. C., Guix M., Hortelao A. C., Ruiz-González N., Bakenecker A. C., Ramezani P., Hinnekens C., Sauvage F., De Smedt S. C., Braeckmans K.. et al. Light-Triggered Mechanical Disruption of Extracellular Barriers by Swarms of Enzyme-Powered Nanomotors for Enhanced Delivery. ACS Nano. 2023;17(8):7180–7193. doi: 10.1021/acsnano.2c09380. PubMed DOI PMC

Dey K. K., Zhao X., Tansi B. M., Méndez-Ortiz W. J., Córdova-Figueroa U. M., Golestanian R., Sen A.. Micromotors Powered by Enzyme Catalysis. Nano Letters. 2015;15(12):8311–8315. doi: 10.1021/acs.nanolett.5b03935. PubMed DOI

Lammert P. E., Crespi V. H., Nourhani A.. Bypassing Slip Velocity: Rotational and Translational Velocities of Autophoretic Colloids in Terms of Surface Flux. Journal of Fluid Mechanics. 2016;802:294–304. doi: 10.1017/jfm.2016.460. DOI

Nourhani A., Lammert P. E.. Geometrical Performance of Self-Phoretic Colloids and Microswimmers. Physical Review Letters. 2016;116(17):178302. doi: 10.1103/PhysRevLett.116.178302. PubMed DOI

Schnitzer O., Yariv E.. Osmotic Self-Propulsion of Slender Particles. Physics of Fluids. 2015;27(3):031701. doi: 10.1063/1.4914417. DOI

Dukhin S. S., Ul'berg Z. R., Dvornichenko G. L., Deryagin B. V.. Diffusiophoresis in Electrolyte Solutions and Its Application to the Formation of Surface Coatings. Bulletin of the Academy of Sciences of the USSR, Division of chemical science. 1982;31(8):1535–1544. doi: 10.1007/BF00956888. DOI

Derjaguin B. V., Sidorenkov G., Zubashchenko E., Kiseleva E.. Kinetic Phenomena in the Boundary Layers of Liquids 1. The Capillary Osmosis. Progress in Surface Science. 1993;43(1):138–152. doi: 10.1016/0079-6816(93)90023-O. DOI

Ebel J. P., Anderson J. L., Prieve D. C.. Diffusiophoresis of Latex Particles in Electrolyte Gradients. Langmuir. 1988;4(2):396–406. doi: 10.1021/la00080a024. DOI

Anderson J. L., Lowell M. E., Prieve D. C.. Motion of a Particle Generated by Chemical Gradients.1. Non-Electrolytes. Journal of Fluid Mechanics. 1982;117:107–121. doi: 10.1017/S0022112082001542. DOI

Moran J. L., Posner J. D.. Phoretic Self-Propulsion. Annual Review of Fluid Mechanics. 2017;49:511–540. doi: 10.1146/annurev-fluid-122414-034456. DOI

Wang W., Duan W. T., Ahmed S., Mallouk T. E., Sen A.. Small Power: Autonomous Nano- and Micromotors Propelled by Self-Generated Gradients. Nano Today. 2013;8(5):531–554. doi: 10.1016/j.nantod.2013.08.009. DOI

Shah Z. H., Wang S., Xian L. B., Zhou X. M., Chen Y., Lin G. H., Gao Y. X.. Highly Efficient Chemically-Driven Micromotors with Controlled Snowman-Like Morphology. Chemical Communications. 2020;56(97):15301–15304. doi: 10.1039/D0CC06812H. PubMed DOI

Gao Y., Dullens R. P. A., Aarts D. G. A. L.. Bulk Synthesis of Silver-Head Colloidal Rodlike Micromotors. Soft Matter. 2018;14(35):7119–7125. doi: 10.1039/C8SM00832A. PubMed DOI

Hong Y., Velegol D., Chaturvedi N., Sen A.. Biomimetic Behavior of Synthetic Particles: From Microscopic Randomness to Macroscopic Control. Physical Chemistry Chemical Physics. 2010;12(7):1423–1435. doi: 10.1039/B917741H. PubMed DOI

Guix M., Meyer A. K., Koch B., Schmidt O. G.. Carbonate-Based Janus Micromotors Moving in Ultra-Light Acidic Environment Generated by Hela Cells in situ. Scientific Reports. 2016;6(1):21701. doi: 10.1038/srep21701. PubMed DOI PMC

McDermott J. J., Kar A., Daher M., Klara S., Wang G., Sen A., Velegol D.. Self-Generated Diffusioosmotic Flows from Calcium Carbonate Micropumps. Langmuir. 2012;28(44):15491–15497. doi: 10.1021/la303410w. PubMed DOI

Zhou C., Zhang H., Tang J., Wang W.. Photochemically Powered AgCl Janus Micromotors as a Model System to Understand Ionic Self-Diffusiophoresis. Langmuir. 2018;34(10):3289–3295. doi: 10.1021/acs.langmuir.7b04301. PubMed DOI

Velegol D., Garg A., Guha R., Kar A., Kumar M.. Origins of Concentration Gradients for Diffusiophoresis. Soft Matter. 2016;12(21):4686–4703. doi: 10.1039/C6SM00052E. PubMed DOI

Zhou X., Wang S., Xian L., Shah Z. H., Li Y., Lin G., Gao Y.. Ionic Effects in Ionic Diffusiophoresis in Chemically Driven Active Colloids. Physical Review Letters. 2021;127(16):168001. doi: 10.1103/PhysRevLett.127.168001. PubMed DOI

Hortelao A. C., Simó C., Guix M., Guallar-Garrido S., Julián E., Vilela D., Rejc L., Ramos-Cabrer P., Cossío U., Gómez-Vallejo V.. et al. Swarming Behavior and in vivo Monitoring of Enzymatic Nanomotors within the Bladder. Science Robotics. 2021;6(52):eabd2823. doi: 10.1126/scirobotics.abd2823. PubMed DOI

Ye Z. H., Wang Y., Liu S. H., Xu D. D., Wang W., Ma X.. Construction of Nanomotors with Replaceable Engines by Supramolecular Machine-Based Host-Guest Assembly and Disassembly. Journal of the American Chemical Society. 2021;143(37):15063–15072. doi: 10.1021/jacs.1c04836. PubMed DOI

Mathesh M., Sun J. W., Wilson D. A.. Enzyme Catalysis Powered Micro/Nanomotors for Biomedical Applications. Journal of Materials Chemistry B. 2020;8(33):7319–7334. doi: 10.1039/D0TB01245A. PubMed DOI

Zhao X., Gentile K., Mohajerani F., Sen A.. Powering Motion with Enzymes. Accounts of Chemical Research. 2018;51(10):2373–2381. doi: 10.1021/acs.accounts.8b00286. PubMed DOI

Yuan H., Liu X., Wang L., Ma X.. Fundamentals and Applications of Enzyme Powered Micro/Nano-Motors. Bioactive Materials. 2021;6(6):1727–1749. doi: 10.1016/j.bioactmat.2020.11.022. PubMed DOI PMC

Katuri J., Uspal W. E., Popescu M. N., Sánchez S.. Inferring Non-Equilibrium Interactions from Tracer Response near Confined Active Janus Particles. Science Advances. 2021;7(18):eabd0719. doi: 10.1126/sciadv.abd0719. PubMed DOI PMC

Cui J. Y., Jin H., Zhan W.. Enzyme-Free Liposome Active Motion via Asymmetrical Lipid Efflux. Langmuir. 2022;38(37):11468–11477. doi: 10.1021/acs.langmuir.2c01866. PubMed DOI

Toebes B. J., Cao F., Wilson D. A.. Spatial Control over Catalyst Positioning on Biodegradable Polymeric Nanomotors. Nature Communications. 2019;10:5308. doi: 10.1038/s41467-019-13288-x. PubMed DOI PMC

Wang W.. Open Questions of Chemically Powered Nano- and Micromotors. Journal of the American Chemical Society. 2023;145(50):27185–27197. doi: 10.1021/jacs.3c09223. PubMed DOI

Kuron M., Kreissl P., Holm C.. Toward Understanding of Self-Electrophoretic Propulsion under Realistic Conditions: From Bulk Reactions to Confinement Effects. Accounts of Chemical Research. 2018;51(12):2998–3005. doi: 10.1021/acs.accounts.8b00285. PubMed DOI

Paxton W. F., Sen A., Mallouk T. E.. Motility of Catalytic Nanoparticles through Self-Generated Forces. Chemistry-a European Journal. 2005;11(22):6462–6470. doi: 10.1002/chem.200500167. PubMed DOI

Moran J. L., Wheat P. M., Posner J. D.. Locomotion of Electrocatalytic Nanomotors Due to Reaction Induced Charge Autoelectrophoresis. Physical Review E. 2010;81(6):065302. doi: 10.1103/PhysRevE.81.065302. PubMed DOI

Moran J. L., Posner J. D.. Electrokinetic Locomotion Due to Reaction-Induced Charge Auto-Electrophoresis. Journal of Fluid Mechanics. 2011;680:31–66. doi: 10.1017/jfm.2011.132. DOI

Esplandiu M. J., Afshar Farniya A., Reguera D.. Key Parameters Controlling the Performance of Catalytic Motors. The Journal of Chemical Physics. 2016;144(12):124702. doi: 10.1063/1.4944319. PubMed DOI

Zhang J., Song J., Mou F., Guan J., Sen A.. Titania-Based Micro/Nanomotors: Design Principles, Biomimetic Collective Behavior, and Applications. Trends in Chemistry. 2021;3(5):387–401. doi: 10.1016/j.trechm.2021.02.001. DOI

Maric T., Nasir M. Z. M., Webster R. D., Pumera M.. Tailoring Metal/TiO2 Interface to Influence Motion of Light-Activated Janus Micromotors. Advanced Functional Materials. 2020;30(9):1908614. doi: 10.1002/adfm.201908614. DOI

Mou F., Kong L., Chen C., Chen Z., Xu L., Guan J.. Light-Controlled Propulsion, Aggregation and Separation of Water-Fuelled TiO2/Pt Janus Submicromotors and Their “on-the-fly” Photocatalytic Activities. Nanoscale. 2016;8(9):4976–4983. doi: 10.1039/C5NR06774J. PubMed DOI

Peng Y. X., Xu P. Z., Duan S. F., Liu J. Y., Moran J. L., Wang W.. Generic Rules for Distinguishing Autophoretic Colloidal Motors. Angewandte Chemie International Edition. 2022;61(12):e202116041. doi: 10.1002/anie.202116041. PubMed DOI

Sabass B., Seifert U.. Nonlinear, Electrocatalytic Swimming in the Presence of Salt. The Journal of Chemical Physics. 2012;136(21):214507. doi: 10.1063/1.4719538. PubMed DOI

Rey M., Volpe G., Volpe G.. Light, Matter, Action: Shining Light on Active Matter. ACS Photonics. 2023;10(5):1188–1201. doi: 10.1021/acsphotonics.3c00140. PubMed DOI PMC

Wang Q. L., Wang C., Dong R. F., Pang Q. Q., Cai Y. P.. Steerable Light-Driven TiO-Fe Janus Micromotor. Inorganic Chemistry Communications. 2018;91:1–4. doi: 10.1016/j.inoche.2018.02.020. DOI

Zhan X., Wang J., Xiong Z., Zhang X., Zhou Y., Zheng J., Chen J., Feng S.-P., Tang J.. Enhanced Ion Tolerance of Electrokinetic Locomotion in Polyelectrolyte-Coated Microswimmer. Nature Communications. 2019;10(1):3921. doi: 10.1038/s41467-019-11907-1. PubMed DOI PMC

Zhou D. K., Li Y. C. G., Xu P. T., Ren L. Q., Zhang G. Y., Mallouk T. E., Li L. Q.. Visible-Light Driven Si-Au Micromotors in Water and Organic Solvents. Nanoscale. 2017;9(32):11434–11438. doi: 10.1039/C7NR04161F. PubMed DOI

Lin X., Si T., Wu Z., He Q.. Self-Thermophoretic Motion of Controlled Assembled Micro-/Nanomotors. Physical Chemistry Chemical Physics. 2017;19(35):23606–23613. doi: 10.1039/C7CP02561K. PubMed DOI

Colberg P. H., Kapral R.. Nanoconfined Catalytic Ångström-Size Motors. The Journal of Chemical Physics. 2015;143(18):184906. doi: 10.1063/1.4935173. PubMed DOI

Reigh S. Y., Kapral R.. Catalytic Dimer Nanomotors: Continuum Theory and Microscopic Dynamics. Soft Matter. 2015;11(16):3149–3158. doi: 10.1039/C4SM02857K. PubMed DOI

Succi, S. The Lattice Boltzmann Equation: For Complex States of Flowing Matter; Oxford University Press, 2018. 10.1093/oso/9780199592357.001.0001. DOI

Lugli F., Brini E., Zerbetto F.. Shape Governs the Motion of Chemically Propelled Janus Swimmers. The Journal of Physical Chemistry C. 2012;116(1):592–598. doi: 10.1021/jp205018u. DOI

de Buyl P.. Mesoscopic Simulations of Anisotropic Chemically Powered Nanomotors. Physical Review E. 2019;100(2):022603. doi: 10.1103/PhysRevE.100.022603. PubMed DOI

Wang J., Huang M.-J., Baker-Sediako R. D., Kapral R., Aranson I. S.. Forces That Control Self-Organization of Chemically-Propelled Janus Tori. Communications Physics. 2022;5(1):176. doi: 10.1038/s42005-022-00953-9. DOI

Lüsebrink D., Yang M., Ripoll M.. Thermophoresis of Colloids by Mesoscale Simulations. Journal of Physics: Condensed Matter. 2012;24(28):284132. doi: 10.1088/0953-8984/24/28/284132. PubMed DOI

Avital E. J., Miloh T.. Self-Thermophoresis of Laser-Heated Spherical Janus Particles. The European Physical Journal E. 2021;44(11):139. doi: 10.1140/epje/s10189-021-00128-4. PubMed DOI PMC

Jiang H.-R., Yoshinaga N., Sano M.. Active Motion of a Janus Particle by Self-Thermophoresis in a Defocused Laser Beam. Physical Review Letters. 2010;105(26):268302. doi: 10.1103/PhysRevLett.105.268302. PubMed DOI

Ahn J. O., Lee H. W., Seo K. W., Kang S. K., Ra J. C., Youn H. Y.. Anti-Tumor Effect of Adipose Tissue Derived-Mesenchymal Stem Cells Expressing Interferon-Β and Treatment with Cisplatin in a Xenograft Mouse Model for Canine Melanoma. Plos One. 2013;8(9):e74897. doi: 10.1371/journal.pone.0074897. PubMed DOI PMC

Wu Z., Chen Y., Mukasa D., Pak O. S., Gao W.. Medical Micro/Nanorobots in Complex Media. Chemical Society Reviews. 2020;49(22):8088–8112. doi: 10.1039/D0CS00309C. PubMed DOI

Lin Z., Gao C., Wang D., He Q.. Bubble-Propelled Janus Gallium/Zinc Micromotors for the Active Treatment of Bacterial Infections. Angewandte Chemie International Edition. 2021;60(16):8750–8754. doi: 10.1002/anie.202016260. PubMed DOI

Huang D., Cai L., Li N., Zhao Y.. Ultrasound-Trigged Micro/Nanorobots for Biomedical Applications. Smart Medicine. 2023;2(2):e20230003. doi: 10.1002/SMMD.20230003. PubMed DOI PMC

Wang J. J., Li L., Wei R. Y., Dong R. F.. Quantum Dot-Based Micromotors with NIR-I Light Photocatalytic Propulsion and NIR-Ii Fluorescence. ACS Applied Materials & Interfaces. 2022;14:48967. doi: 10.1021/acsami.2c13254. PubMed DOI

Wang D., Gao C., Si T., Li Z., Guo B., He Q.. Near-Infrared Light Propelled Motion of Needlelike Liquid Metal Nanoswimmers. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021;611:125865. doi: 10.1016/j.colsurfa.2020.125865. DOI

Xie L., Yan M., Liu T., Gong K., Luo X., Qiu B., Zeng J., Liang Q., Zhou S., He Y.. et al. Kinetics-Controlled Super-Assembly of Asymmetric Porous and Hollow Carbon Nanoparticles as Light-Sensitive Smart Nanovehicles. Journal of the American Chemical Society. 2022;144(4):1634–1646. doi: 10.1021/jacs.1c10391. PubMed DOI

Baraban L., Streubel R., Makarov D., Han L., Karnaushenko D., Schmidt O. G., Cuniberti G.. Fuel-Free Locomotion of Janus Motors: Magnetically Induced Thermophoresis. ACS Nano. 2013;7(2):1360–1367. doi: 10.1021/nn305726m. PubMed DOI

Xing Y., Zhou M., Liu X., Qiao M., Zhou L., Xu T., Zhang X., Du X.. Bioinspired Jellyfish-Like Carbon/Manganese Nanomotors with H2O2 and NIR Light Dual-Propulsion for Enhanced Tumor Penetration and Chemodynamic Therapy. Chemical Engineering Journal. 2023;461:142142. doi: 10.1016/j.cej.2023.142142. DOI

Xing Y., Du X., Xu T., Zhang X.. Janus Dendritic Silica/Carbon@Pt Nanomotors with Multiengines for H2O2, near-Infrared Light and Lipase Powered Propulsion. Soft Matter. 2020;16(41):9553–9558. doi: 10.1039/D0SM01355B. PubMed DOI

Han X., Chen Z., Liu Y., Song B., Zhang H., Dong B.. Light Driven ZnO/Aunp Micro/Nanomotor with Controlled Rotation and Phototaxis. ChemistrySelect. 2023;8(5):e202203888. doi: 10.1002/slct.202203888. DOI

Zhao G., Ambrosi A., Pumera M.. Self-Propelled Nanojets via Template Electrodeposition. Nanoscale. 2013;5(4):1319–1324. doi: 10.1039/C2NR31566A. PubMed DOI

Wang J. Z., Xiong Z., Tang J. Y.. The Encoding of Light-Driven Micro/Nanorobots: From Single to Swarming Systems. Advanced Intelligent Systems. 2021;3(4):2000170. doi: 10.1002/aisy.202000170. DOI

Villa K., Manzanares Palenzuela C. L., Sofer Z., Matějková S., Pumera M.. Metal-Free Visible-Light Photoactivated C3n4 Bubble-Propelled Tubular Micromotors with Inherent Fluorescence and on/Off Capabilities. ACS Nano. 2018;12(12):12482–12491. doi: 10.1021/acsnano.8b06914. PubMed DOI

Ye Z. R., Sun Y. Y., Zhang H., Song B., Dong B.. A Phototactic Micromotor Based on Platinum Nanoparticle Decorated Carbon Nitride. Nanoscale. 2017;9(46):18516–18522. doi: 10.1039/C7NR05896A. PubMed DOI

Pourrahimi A. M., Villa K., Palenzuela C. L. M., Ying Y. L., Sofer Z., Pumera M.. Catalytic and Light-Driven ZnO/Pt Janus Nano/Micromotors: Switching of Motion Mechanism via Interface Roughness and Defect Tailoring at the Nanoscale. Advanced Functional Materials. 2019;29(22):1808678. doi: 10.1002/adfm.201808678. DOI

Dong R., Hu Y., Wu Y., Gao W., Ren B., Wang Q., Cai Y.. Visible-Light-Driven BiOI-Based Janus Micromotor in Pure Water. Journal of the American Chemical Society. 2017;139(5):1722–1725. doi: 10.1021/jacs.6b09863. PubMed DOI

Zhou D. K., Li Y. G. C., Xu P. T., McCool N. S., Li L. Q., Wang W., Mallouk T. E.. Visible-Light Controlled Catalytic Cu2O-Au Micromotors. Nanoscale. 2017;9(1):75–78. doi: 10.1039/C6NR08088J. PubMed DOI

Li J., He X., Jiang H., Xing Y., Fu B., Hu C.. Enhanced and Robust Directional Propulsion of Light-Activated Janus Micromotors by Magnetic Spinning and the Magnus Effect. ACS Applied Materials & Interfaces. 2022;14(31):36027–36037. doi: 10.1021/acsami.2c08464. PubMed DOI

Ferrer Campos R., Bakenecker A. C., Chen Y., Spadaro M. C., Fraire J., Arbiol J., Sánchez S., Villa K.. Boosting the Efficiency of Photoactive Rod-Shaped Nanomotors via Magnetic Field-Induced Charge Separation. ACS Applied Materials & Interfaces. 2024;16(23):30077–30087. doi: 10.1021/acsami.4c03905. PubMed DOI PMC

O'Neel-Judy É., Nicholls D., Castañeda J., Gibbs J. G.. Light-Activated, Multi-Semiconductor Hybrid Microswimmers. Small. 2018;14(32):1801860. doi: 10.1002/smll.201801860. PubMed DOI

Sridhar V., Park B. W., Guo S. R., van Aken P. A., Sitti M.. Multiwavelength-Steerable Visible-Light-Driven Magnetic CoO-TiO Microswimmers. ACS Applied Materials & Interfaces. 2020;12(21):24149–24155. doi: 10.1021/acsami.0c06100. PubMed DOI PMC

Zhan X. J., Zheng J., Zhao Y., Zhu B. R., Cheng R., Wang J. Z., Liu J., Tang J., Tang J. Y.. From Strong Dichroic Nanomotor to Polarotactic Microswimmer. Advanced Materials. 2019;31(48):1903329. doi: 10.1002/adma.201903329. PubMed DOI

Wolff N., Ciobanu V., Enachi M., Kamp M., Braniste T., Duppel V., Shree S., Raevschi S., Medina-Sánchez M., Adelung R.. et al. Advanced Hybrid GaN/ZnO Nanoarchitectured Microtubes for Fluorescent Micromotors Driven by UV Light. Small. 2020;16(2):1905141. doi: 10.1002/smll.201905141. PubMed DOI

Ying Y. L., Plutnar J., Pumera M.. Six-Degree-of-Freedom Steerable Visible-Light-Driven Microsubmarines Using Water as a Fuel: Application for Explosives Decontamination. Small. 2021;17(23):2100294. doi: 10.1002/smll.202100294. PubMed DOI

Wang J. Z., Xiong Z., Liu M., Li X. M., Zheng J., Zhan X. J., Ding W. T., Chen J. N., Li X. C., Li X. D.. et al. Rational Design of Reversible Redox Shuttle for Highly Efficient Light-Driven Microswimmer. ACS Nano. 2020;14(3):3272–3280. doi: 10.1021/acsnano.9b08799. PubMed DOI

Mitchell P.. Coupling of Phosphorylation to Electron and Hydrogen Transfer by a Chemi-Osmotic Type of Mechanism. Nature. 1961;191(4784):144–148. doi: 10.1038/191144a0. PubMed DOI

Mitchell P.. Self-Electrophoretic Locomotion in Microorganisms - Bacterial Flagella as Giant Ionophores. Febs Letters. 1972;28(1):1–4. doi: 10.1016/0014-5793(72)80661-6. PubMed DOI

Anderson J. L.. Colloid Transport by Interfacial Forces. Annual Review of Fluid Mechanics. 1989;21:61–99. doi: 10.1146/annurev.fl.21.010189.000425. DOI

De Corato M., Arqué X., Patiño T., Arroyoe M., Sánchez S., Pagonabarraga I.. Self-Propulsion of Active Colloids via Ion Release: Theory and Experiments. Physical Review Letters. 2020;124(10):108001. doi: 10.1103/PhysRevLett.124.108001. PubMed DOI

Feuerstein L., Biermann C. G., Xiao Z. Y., Holm C., Simmchen J.. Highly Efficient Active Colloids Driven by Galvanic Exchange Reactions. Journal of the American Chemical Society. 2021;143(41):17015–17022. doi: 10.1021/jacs.1c06400. PubMed DOI

Xiao Z., Simmchen J., Pagonabarraga I., De Corato M.. Ionic Diffusiophoresis of Active Colloids via Galvanic Exchange Reactions. Nano Lett. 2025;25(19):7975–7980. doi: 10.1021/acs.nanolett.5c01567. PubMed DOI PMC

Brown A. T., Poon W. C. K., Holm C., de Graaf J.. Ionic Screening and Dissociation Are Crucial for Understanding Chemical Self-Propulsion in Polar Solvents. Soft Matter. 2017;13(6):1200–1222. doi: 10.1039/C6SM01867J. PubMed DOI

Bouffier L., Zigah D., Sojic N., Kuhn A.. Bipolar Electrochemistry. Encyclopedia of Electrochemistry. 2021:1–53. doi: 10.1002/9783527610426.bard030112. DOI

Jiang J.-Z., Guo M.-H., Yao F.-Z., Li J., Sun J.-J.. Propulsion of Copper Microswimmers in Folded Fluid Channels by Bipolar Electrochemistry. RSC Advances. 2017;7(11):6297–6302. doi: 10.1039/C6RA25162E. DOI

Loget G., Kuhn A.. Bipolar Electrochemistry for Cargo-Lifting in Fluid Channels. Lab on a Chip. 2012;12(11):1967–1971. doi: 10.1039/c2lc21301j. PubMed DOI

Sentic M., Loget G., Manojlovic D., Kuhn A., Sojic N.. Light-Emitting Electrochemical "Swimmers". Angewandte Chemie International Edition. 2012;51(45):11284. doi: 10.1002/anie.201206227. PubMed DOI

Bouffier L., Zigah D., Adam C., Sentic M., Fattah Z., Manojlovic D., Kuhn A., Sojic N.. Lighting up Redox Propulsion with Luminol Electrogenerated Chemiluminescence. Chemelectrochem. 2014;1(1):95–98. doi: 10.1002/celc.201300042. DOI

Roche J., Carrara S., Sanchez J., Lannelongue J., Loget G., Bouffier L., Fischer P., Kuhn A.. Wireless Powering of E -Swimmers. Scientific Reports. 2014;4(1):6705. doi: 10.1038/srep06705. PubMed DOI PMC

Gupta B., Goudeau B., Garrigue P., Kuhn A.. Bipolar Conducting Polymer Crawlers Based on Triple Symmetry Breaking. Advanced Functional Materials. 2018;28(25):1705825. doi: 10.1002/adfm.201705825. DOI

Gupta B., Afonso M. C., Zhang L., Ayela C., Garrigue P., Goudeau B., Kuhn A.. Wireless Coupling of Conducting Polymer Actuators with Light Emission. ChemPhysChem. 2019;20(7):941–945. doi: 10.1002/cphc.201900116. PubMed DOI

Esplandiu M. J., Reguera D., Fraxedas J.. Electrophoretic Origin of Long-Range Repulsion of Colloids near Water/Nafion Interfaces. Soft Matter. 2020;16(15):3717–3726. doi: 10.1039/D0SM00170H. PubMed DOI

Wu C. J., Dai J., Li X. F., Gao L., Wang J. Z., Liu J., Zheng J., Zhan X. J., Chen J. W., Cheng X.. et al. Ion-Exchange Enabled Synthetic Swarm. Nature Nanotechnology. 2021;16(3):288–295. doi: 10.1038/s41565-020-00825-9. PubMed DOI

Niu R., Fischer A., Palberg T., Speck T.. Dynamics of Binary Active Clusters Driven by Ion-Exchange Particles. ACS Nano. 2018;12(11):10932–10938. doi: 10.1021/acsnano.8b04221. PubMed DOI

Esplandiu M. J., Reguera D., Romero-Guzmán D., Gallardo-Moreno A. M., Fraxedas J.. From Radial to Unidirectional Water Pumping in Zeta-Potential Modulated Nafion Nanostructures. Nature Communications. 2022;13(1):2812. doi: 10.1038/s41467-022-30554-7. PubMed DOI PMC

Esplandiu M. J., Zhang K., Fraxedas J., Sepulveda B., Reguera D.. Unraveling the Operational Mechanisms of Chemically Propelled Motors with Micropumps. Accounts of Chemical Research. 2018;51(9):1921–1930. doi: 10.1021/acs.accounts.8b00241. PubMed DOI

Fraxedas J., Reguera D., Esplandiu M. J.. Collective Motion of Nafion-Based Micromotors in Water. Faraday Discussions. 2024;249(0):424–439. doi: 10.1039/D3FD00098B. PubMed DOI

Cameron L. A., Footer M. J., van Oudenaarden A., Theriot J. A.. Motility of Acta Protein-Coated Microspheres Driven by Actin Polymerization. Proceedings of the National Academy of Sciences. 1999;96(9):4908–4913. doi: 10.1073/pnas.96.9.4908. PubMed DOI PMC

Wang D., Han X., Dong B., Shi F.. Stimuli Responsiveness, Propulsion and Application of the Stimuli-Responsive Polymer Based Micromotor. Applied Materials Today. 2021;25:101250. doi: 10.1016/j.apmt.2021.101250. DOI

Ramos-Docampo M. A., Brodszkij E., Ceccato M., Foss M., Folkjær M., Lock N., Städler B.. Surface Polymerization Induced Locomotion. Nanoscale. 2021;13(22):10035–10043. doi: 10.1039/D1NR01465J. PubMed DOI

Zhang H., Yeung K., Robbins J. S., Pavlick R. A., Wu M., Liu R., Sen A., Phillips S. T.. Self-Powered Microscale Pumps Based on Analyte-Initiated Depolymerization/ Degradation Reactions. Angewandte Chemie. 2012;124:2450. doi: 10.1002/ange.201107787. PubMed DOI

Ramos Docampo M. A., Nieto S., de Dios Andres P., Qian X., Städler B.. Self-Immolative Polymers to Initiate Locomotion in Motors. ChemNanoMat. 2023;9(5):e202300016. doi: 10.1002/cnma.202300016. DOI

Fernández-Medina M., Qian X., Hovorka O., Städler B.. Disintegrating Polymer Multilayers to Jump-Start Colloidal Micromotors. Nanoscale. 2019;11(2):733–741. doi: 10.1039/C8NR08071B. PubMed DOI

Ramos Docampo M. A., Wang N., Pendlmayr S., Stadler B.. Self-Propelled Collagenase-Powered Nano/Micromotors. ACS Applied Nano Materials. 2022;5(10):14622–14629. doi: 10.1021/acsanm.2c02989. DOI

Ramos-Docampo M. A., Fernández-Medina M., Taipaleenmäki E., Hovorka O., Salgueiriño V., Städler B.. Microswimmers with Heat Delivery Capacity for 3D Cell Spheroid Penetration. ACS Nano. 2019;13(10):12192–12205. doi: 10.1021/acsnano.9b06869. PubMed DOI

Scriven L. E., Sternling C. V.. The Marangoni Effects. Nature. 1960;187(4733):186–188. doi: 10.1038/187186a0. DOI

Pena-Francesch A., Giltinan J., Sitti M.. Multifunctional and Biodegradable Self-Propelled Protein Motors. Nature Communications. 2019;10(1):3188. doi: 10.1038/s41467-019-11141-9. PubMed DOI PMC

Bassik N., Abebe B. T., Gracias D. H.. Solvent Driven Motion of Lithographically Fabricated Gels. Langmuir. 2008;24(21):12158–12163. doi: 10.1021/la801329g. PubMed DOI

Thomson J.. Xlii. On Certain Curious Motions Observable at the Surfaces of Wine and Other Alcoholic Liquors. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1855;10(67):330–333. doi: 10.1080/14786445508641982. DOI

Strutt R. J.. IV. Measurements of the Amount of Oil Necessary Iu Order to Check the Motions of Camphor Upon Water. Proceedings of the Royal Society of London. 1890;47(286-291):364–367. doi: 10.1098/rspl.1889.0099. DOI

Dietrich K., Jaensson N., Buttinoni I., Volpe G., Isa L.. Microscale Marangoni Surfers. Physical Review Letters. 2020;125(9):098001. doi: 10.1103/PhysRevLett.125.098001. PubMed DOI

Lv C., Varanakkottu S. N., Baier T., Hardt S.. Controlling the Trajectories of Nano/Micro Particles Using Light-Actuated Marangoni Flow. Nano Letters. 2018;18(11):6924–6930. doi: 10.1021/acs.nanolett.8b02814. PubMed DOI

Maass C. C., Krüger C., Herminghaus S., Bahr C.. Swimming Droplets. Annual Review of Condensed Matter Physics. 2016;7:171–193. doi: 10.1146/annurev-conmatphys-031115-011517. DOI

Birrer S., Cheon S. I., Zarzar L. D.. We the Droplets: A Constitutional Approach to Active and Self-Propelled Emulsions. Current Opinion in Colloid & Interface Science. 2022;61:101623. doi: 10.1016/j.cocis.2022.101623. DOI

Čejková J., Banno T., Hanczyc M. M., Štěpánek F.. Droplets as Liquid Robots. Artificial Life. 2017;23(4):528–549. doi: 10.1162/ARTL_a_00243. PubMed DOI

Dwivedi P., Pillai D., Mangal R.. Self-Propelled Swimming Droplets. Current Opinion in Colloid & Interface Science. 2022;61:101614. doi: 10.1016/j.cocis.2022.101614. DOI

Schatz M. F., Neitzel G. P.. Experiments on Thermocapillary Instabilities. Annual Review of Fluid Mechanics. 2001;33:93–127. doi: 10.1146/annurev.fluid.33.1.93. DOI

Lovass P., Branicki M., Tóth R., Braun A., Suzuno K., Ueyama D., Lagzi I.. Maze Solving Using Temperature-Induced Marangoni Flow. RSC Advances. 2015;5(60):48563–48568. doi: 10.1039/C5RA08207B. DOI

Rybalko S., Magome N., Yoshikawa K.. Forward and Backward Laser-Guided Motion of an Oil Droplet. Physical Review E. 2004;70(4):046301. doi: 10.1103/PhysRevE.70.046301. PubMed DOI

Namura K., Nakajima K., Kimura K., Suzuki M.. Photothermally Controlled Marangoni Flow around a Micro Bubble. Applied Physics Letters. 2015;106(4):043101. doi: 10.1063/1.4906929. DOI

Michelin S.. Self-Propulsion of Chemically Active Droplets. Annual Review of Fluid Mechanics. 2023;55:77–101. doi: 10.1146/annurev-fluid-120720-012204. DOI

Toyota T., Maru N., Hanczyc M. M., Ikegami T., Sugawara T.. Self-Propelled Oil Droplets Consuming “Fuel” Surfactant. Journal of the American Chemical Society. 2009;131(14):5012–5013. doi: 10.1021/ja806689p. PubMed DOI

Thutupalli S., Seemann R., Herminghaus S.. Swarming Behavior of Simple Model Squirmers. New Journal of Physics. 2011;13(7):073021. doi: 10.1088/1367-2630/13/7/073021. DOI

Banno T., Kuroha R., Toyota T.. pH-Sensitive Self-Propelled Motion of Oil Droplets in the Presence of Cationic Surfactants Containing Hydrolyzable Ester Linkages. Langmuir. 2012;28(2):1190–1195. doi: 10.1021/la2045338. PubMed DOI

Kasuo Y., Kitahata H., Koyano Y., Takinoue M., Asakura K., Banno T.. Start of Micrometer-Sized Oil Droplet Motion through Generation of Surfactants. Langmuir. 2019;35(41):13351–13355. doi: 10.1021/acs.langmuir.9b01722. PubMed DOI

Suematsu N. J., Saikusa K., Nagata T., Izumi S.. Interfacial Dynamics in the Spontaneous Motion of an Aqueous Droplet. Langmuir. 2019;35(35):11601–11607. doi: 10.1021/acs.langmuir.9b01866. PubMed DOI

Wentworth C. M., Castonguay A. C., Moerman P. G., Meredith C. H., Balaj R. V., Cheon S. I., Zarzar L. D.. Chemically Tuning Attractive and Repulsive Interactions between Solubilizing Oil Droplets. Angewandte Chemie International Edition. 2022;61(32):e202204510. doi: 10.1002/anie.202204510. PubMed DOI

Peña A. A., Miller C. A.. Solubilization Rates of Oils in Surfactant Solutions and Their Relationship to Mass Transport in Emulsions. Advances in Colloid and Interface Science. 2006;123-126:241–257. doi: 10.1016/j.cis.2006.05.005. PubMed DOI

Adler J.. Chemotaxis in Bacteria. Annual Review of Biochemistry. 1975;44:341–356. doi: 10.1146/annurev.bi.44.070175.002013. PubMed DOI

Luster, A. D. Chemotaxis: Role in Immune Response. In Encyclopedia of Life Sciences, Wiley, 2001. 10.1038/npg.els.0000507 DOI

Kaupp U. B., Kashikar N. D., Weyand I.. Mechanisms of Sperm Chemotaxis. Annual Review of Physiology. 2008;70:93–117. doi: 10.1146/annurev.physiol.70.113006.100654. PubMed DOI

Jin C., Krüger C., Maass C. C.. Chemotaxis and Autochemotaxis of Self-Propelling Droplet Swimmers. Proceedings of the National Academy of Sciences. 2017;114(20):5089–5094. doi: 10.1073/pnas.1619783114. PubMed DOI PMC

Ma X., Hortelao A. C., Patiño T., Sánchez S.. Enzyme Catalysis to Power Micro/Nanomachines. ACS Nano. 2016;10(10):9111–9122. doi: 10.1021/acsnano.6b04108. PubMed DOI PMC

Ghosh S., Somasundar A., Sen A.. Enzymes as Active Matter. Annual Review of Condensed Matter Physics. 2021;12:177–200. doi: 10.1146/annurev-conmatphys-061020-053036. DOI

Mandal N. S., Sen A.. Relative Diffusivities of Bound and Unbound Protein Can Control Chemotactic Directionality. Langmuir. 2021;37(42):12263–12270. doi: 10.1021/acs.langmuir.1c01360. PubMed DOI

Agudo-Canalejo J., Illien P., Golestanian R.. Phoresis and Enhanced Diffusion Compete in Enzyme Chemotaxis. Nano Letters. 2018;18(4):2711–2717. doi: 10.1021/acs.nanolett.8b00717. PubMed DOI

Wilkinson P. C.. Random Locomotion; Chemotaxis and Chemokinesis. A Guide to Terms Defining Cell Locomotion. Immunol Today. 1985;6(9):273–278. doi: 10.1016/0167-5699(85)90066-0. PubMed DOI

Brown S., Poole P. S., Jeziorska W., Armitage J. P.. Chemokinesis in Rhodobacter Sphaeroides Is the Result of a Long Term Increase in the Rate of Flagellar Rotation. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1993;1141(2):309–312. doi: 10.1016/0005-2728(93)90058-N. DOI

D’Orsogna M. R., Suchard M. A., Chou T.. Interplay of Chemotaxis and Chemokinesis Mechanisms in Bacterial Dynamics. Physical Review E. 2003;68(2):021925. doi: 10.1103/PhysRevE.68.021925. PubMed DOI

Ralt D., Manor M., Cohen-Dayag A., Tur-Kaspa I., Ben-Shlomo I., Makler A., Yuli I., Dor J., Blumberg S., Mashiach S.. et al. Chemotaxis and Chemokinesis of Human Spermatozoa to Follicular Factors. Biology of Reproduction. 1994;50(4):774–785. doi: 10.1095/biolreprod50.4.774. PubMed DOI

Wilkinson P. C.. Assays of Leukocyte Locomotion and Chemotaxis. Journal of Immunological Methods. 1998;216(1):139–153. doi: 10.1016/S0022-1759(98)00075-1. PubMed DOI

Paxton W. F., Baker P. T., Kline T. R., Wang Y., Mallouk T. E., Sen A.. Catalytically Induced Electrokinetics for Motors and Micropumps. Journal of the American Chemical Society. 2006;128(46):14881–14888. doi: 10.1021/ja0643164. PubMed DOI

Popescu M. N., Uspal W. E., Bechinger C., Fischer P.. Chemotaxis of Active Janus Nanoparticles. Nano Letters. 2018;18(9):5345–5349. doi: 10.1021/acs.nanolett.8b02572. PubMed DOI

Moran J. L., Wheat P. M., Marine N. A., Posner J. D.. Chemokinesis-Driven Accumulation of Active Colloids in Low-Mobility Regions of Fuel Gradients. Scientific Reports. 2021;11(1):4785. doi: 10.1038/s41598-021-83963-x. PubMed DOI PMC

Archer R. A., Howse J. R., Fujii S., Kawashima H., Buxton G. A., Ebbens S. J.. pH-Responsive Catalytic Janus Motors with Autonomous Navigation and Cargo-Release Functions. Advanced Functional Materials. 2020;30(19):2000324. doi: 10.1002/adfm.202000324. DOI

Boedtkjer E., Pedersen S. F.. The Acidic Tumor Microenvironment as a Driver of Cancer. Annual Review of Physiology. 2020;82:103–126. doi: 10.1146/annurev-physiol-021119-034627. PubMed DOI

Hunter R. C., Beveridge T. J.. Application of a pH-Sensitive Fluoroprobe (C-Snarf-4) for pH Microenvironment Analysis in Pseudomonas Aeruginosa Biofilms. Applied and Environmental Microbiology. 2005;71(5):2501–2510. doi: 10.1128/AEM.71.5.2501-2510.2005. PubMed DOI PMC

Puigmartí-Luis, J. ; Pellicer, E. ; Jang, B. ; Chatzipirpiridis, G. ; Sevim, S. ; Chen, X.-Z. ; Nelson, B. J. ; Pané, S. . 26 - Magnetically and Chemically Propelled Nanowire-Based Swimmers. In Magnetic Nano- and Microwires, Second ed.; Vázquez, M. Ed.; Woodhead Publishing, 2020; pp 777-799.

Jiles, D. Introduction to Magnetism and Magnetic Materials; Chapman and Hall, 1991.

Cullity, B. D. ; Graham, C. D. . Introduction to Magnetic Materials; IEEE/Wiley, 2009.

Kim Y., Zhao X.. Magnetic Soft Materials and Robots. Chemical Reviews. 2022;122(5):5317–5364. doi: 10.1021/acs.chemrev.1c00481. PubMed DOI PMC

Rikken R. S. M., Nolte R. J. M., Maan J. C., van Hest J. C. M., Wilson D. A., Christianen P. C. M.. Manipulation of Micro- and Nanostructure Motion with Magnetic Fields. Soft Matter. 2014;10(9):1295–1308. doi: 10.1039/C3SM52294F. PubMed DOI

Zhou H., Mayorga-Martinez C. C., Pané S., Zhang L., Pumera M.. Magnetically Driven Micro and Nanorobots. Chemical Reviews. 2021;121(8):4999–5041. doi: 10.1021/acs.chemrev.0c01234. PubMed DOI PMC

Yasa O., Toshimitsu Y., Michelis M. Y., Jones L. S., Filippi M., Buchner T., Katzschmann R. K.. An Overview of Soft Robotics. Annual Review of Control, Robotics, and Autonomous Systems. 2023;6(1):1–29. doi: 10.1146/annurev-control-062322-100607. DOI

Wang Q., Zhang L.. External Power-Driven Microrobotic Swarm: From Fundamental Understanding to Imaging-Guided Delivery. ACS Nano. 2021;15(1):149–174. doi: 10.1021/acsnano.0c07753. PubMed DOI

Wang X., Qin X.-H., Hu C., Terzopoulou A., Chen X.-Z., Huang T.-Y., Maniura-Weber K., Pané S., Nelson B. J.. 3D Printed Enzymatically Biodegradable Soft Helical Microswimmers. Advanced Functional Materials. 2018;28(45):1804107. doi: 10.1002/adfm.201804107. DOI

Alcântara C. C. J., Kim S., Lee S., Jang B., Thakolkaran P., Kim J.-Y., Choi H., Nelson B. J., Pané S.. 3D Fabrication of Fully Iron Magnetic Microrobots. Small. 2019;15(16):1805006. doi: 10.1002/smll.201805006. PubMed DOI

Landers F. C., Gantenbein V., Hertle L., Veciana A., Llacer-Wintle J., Chen X.-Z., Ye H., Franco C., Puigmartí-Luis J., Kim M.. et al. On-Command Disassembly of Microrobotic Superstructures for Transport and Delivery of Magnetic Micromachines. Advanced Materials. 2024;36(18):2310084. doi: 10.1002/adma.202310084. PubMed DOI

Alcântara C. C. J., Landers F. C., Kim S., De Marco C., Ahmed D., Nelson B. J., Pané S.. Mechanically Interlocked 3D Multi-Material Micromachines. Nature Communications. 2020;11(1):5957. doi: 10.1038/s41467-020-19725-6. PubMed DOI PMC

Spaldin N. A., Ramesh R.. Advances in Magnetoelectric Multiferroics. Nature Materials. 2019;18(3):203–212. doi: 10.1038/s41563-018-0275-2. PubMed DOI

Choi J., Kim D.-i., Kim J.-y., Pané S., Nelson B. J., Chang Y.-T., Choi H.. Magnetically Enhanced Intracellular Uptake of Superparamagnetic Iron Oxide Nanoparticles for Antitumor Therapy. ACS Nano. 2023;17(16):15857–15870. doi: 10.1021/acsnano.3c03780. PubMed DOI

Yu J., Jin D., Chan K.-F., Wang Q., Yuan K., Zhang L.. Active Generation and Magnetic Actuation of Microrobotic Swarms in Bio-Fluids. Nature Communications. 2019;10(1):5631. doi: 10.1038/s41467-019-13576-6. PubMed DOI PMC

Yu J., Yang L., Du X., Chen H., Xu T., Zhang L.. Adaptive Pattern and Motion Control of Magnetic Microrobotic Swarms. IEEE Transactions on Robotics. 2022;38(3):1552–1570. doi: 10.1109/TRO.2021.3130432. DOI

Kim D., Kim M., Reidt S., Han H., Baghizadeh A., Zeng P., Choi H., Puigmartí-Luis J., Trassin M., Nelson B. J.. et al. Shape-Memory Effect in Twisted Ferroic Nanocomposites. Nature Communications. 2023;14(1):750. doi: 10.1038/s41467-023-36274-w. PubMed DOI PMC

Yan X., Zhou Q., Vincent M., Deng Y., Yu J., Xu J., Xu T., Tang T., Bian L., Wang Y.-X. J.. et al. Multifunctional Biohybrid Magnetite Microrobots for Imaging-Guided Therapy. Science Robotics. 2017;2(12):eaaq1155. doi: 10.1126/scirobotics.aaq1155. PubMed DOI

Suter M., Zhang L., Siringil E. C., Peters C., Luehmann T., Ergeneman O., Peyer K. E., Nelson B. J., Hierold C.. Superparamagnetic Microrobots: Fabrication by Two-Photon Polymerization and Biocompatibility. Biomedical Microdevices. 2013;15(6):997–1003. doi: 10.1007/s10544-013-9791-7. PubMed DOI

Berry M. V., Geim A. K.. Of Flying Frogs and Levitrons. European Journal of Physics. 1997;18(4):307. doi: 10.1088/0143-0807/18/4/012. DOI

Nguyen J., Conca D. V., Stein J., Bovo L., Howard C. A., Llorente Garcia I.. Magnetic Control of Graphitic Microparticles in Aqueous Solutions. Proceedings of the National Academy of Sciences. 2019;116(7):2425–2434. doi: 10.1073/pnas.1817989116. PubMed DOI PMC

Zhang M., Xie X., Tang M., Criddle C. S., Cui Y., Wang S. X.. Magnetically Ultraresponsive Nanoscavengers for Next-Generation Water Purification Systems. Nature Communications. 2013;4(1):1866. doi: 10.1038/ncomms2892. PubMed DOI PMC

Kummer M. P., Abbott J. J., Kratochvil B. E., Borer R., Sengul A., Nelson B. J.. Octomag: An Electromagnetic System for 5-Dof Wireless Micromanipulation. IEEE Transactions on Robotics. 2010;26(6):1006–1017. doi: 10.1109/TRO.2010.2073030. DOI

Abbott J. J., Diller E., Petruska A. J.. Magnetic Methods in Robotics. Annual Review of Control, Robotics, and Autonomous Systems. 2020;3:57–90. doi: 10.1146/annurev-control-081219-082713. DOI

Chen X.-Z., Hoop M., Mushtaq F., Siringil E., Hu C., Nelson B. J., Pané S.. Recent Developments in Magnetically Driven Micro- and Nanorobots. Applied Materials Today. 2017;9:37–48. doi: 10.1016/j.apmt.2017.04.006. DOI

Elbuken C., Khamesee M. B., Yavuz M.. Design and Implementation of a Micromanipulation System Using a Magnetically Levitated Mems Robot. IEEE/ASME Transactions on Mechatronics. 2009;14(4):434–445. doi: 10.1109/TMECH.2009.2023648. DOI

Keuning, J. D. ; Vriesy, J. d. ; Abelmanny, L. ; Misra, S. . Image-Based Magnetic Control of Paramagnetic Microparticles in Water. In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, 25-30 Sept. 2011, 2011; pp 421-426. 10.1109/IROS.2011.6095011. DOI

Wang X., Ho C., Tsatskis Y., Law J., Zhang Z., Zhu M., Dai C., Wang F., Tan M., Hopyan S.. et al. Intracellular Manipulation and Measurement with Multipole Magnetic Tweezers. Science Robotics. 2019;4(28):eaav6180. doi: 10.1126/scirobotics.aav6180. PubMed DOI

Gervasoni S., Pedrini N., Rifai T., Fischer C., Landers F. C., Mattmann M., Dreyfus R., Viviani S., Veciana A., Masina E.. et al. A Human-Scale Clinically Ready Electromagnetic Navigation System for Magnetically Responsive Biomaterials and Medical Devices. Advanced Materials. 2024;36(31):2310701. doi: 10.1002/adma.202310701. PubMed DOI

Erin O., Boyvat M., Tiryaki M. E., Phelan M., Sitti M.. Magnetic Resonance Imaging System-Driven Medical Robotics. Advanced Intelligent Systems. 2020;2(2):1900110. doi: 10.1002/aisy.201900110. DOI

Li N., Fei P., Tous C., Rezaei Adariani M., Hautot M.-L., Ouedraogo I., Hadjadj A., Dimov I. P., Zhang Q., Lessard S.. et al. Human-Scale Navigation of Magnetic Microrobots in Hepatic Arteries. Science Robotics. 2024;9(87):eadh8702. doi: 10.1126/scirobotics.adh8702. PubMed DOI

Zhang L., Abbott J. J., Dong L., Kratochvil B. E., Bell D., Nelson B. J.. Artificial Bacterial Flagella: Fabrication and Magnetic Control. Applied Physics Letters. 2009;94(6):064107. doi: 10.1063/1.3079655. DOI

Morozov K. I., Leshansky A. M.. The Chiral Magnetic Nanomotors. Nanoscale. 2014;6(3):1580–1588. doi: 10.1039/C3NR04853E. PubMed DOI

Smith E. J., Makarov D., Sanchez S., Fomin V. M., Schmidt O. G.. Magnetic Microhelix Coil Structures. Physical Review Letters. 2011;107(9):097204. doi: 10.1103/PhysRevLett.107.097204. PubMed DOI

Gao W., Feng X., Pei A., Kane C. R., Tam R., Hennessy C., Wang J.. Bioinspired Helical Microswimmers Based on Vascular Plants. Nano Letters. 2014;14(1):305–310. doi: 10.1021/nl404044d. PubMed DOI

Peters C., Ergeneman O., García P. D. W., Müller M., Pané S., Nelson B. J., Hierold C.. Superparamagnetic Twist-Type Actuators with Shape-Independent Magnetic Properties and Surface Functionalization for Advanced Biomedical Applications. Advanced Functional Materials. 2014;24(33):5269–5276. doi: 10.1002/adfm.201400596. DOI

Yu Y., Shang L., Gao W., Zhao Z., Wang H., Zhao Y.. Microfluidic Lithography of Bioinspired Helical Micromotors. Angewandte Chemie International Edition. 2017;56(40):12127–12131. doi: 10.1002/anie.201705667. PubMed DOI

Ghosh A., Mandal P., Karmakar S., Ghosh A.. Analytical Theory and Stability Analysis of an Elongated Nanoscale Object under External Torque. Physical Chemistry Chemical Physics. 2013;15(26):10817–10823. doi: 10.1039/c3cp50701g. PubMed DOI

Morozov K. I., Leshansky A. M.. Dynamics and Polarization of Superparamagnetic Chiral Nanomotors in a Rotating Magnetic Field. Nanoscale. 2014;6(20):12142–12150. doi: 10.1039/C4NR02953D. PubMed DOI

Yan X., Zhou Q., Yu J., Xu T., Deng Y., Tang T., Feng Q., Bian L., Zhang Y., Ferreira A.. et al. Magnetite Nanostructured Porous Hollow Helical Microswimmers for Targeted Delivery. Advanced Functional Materials. 2015;25(33):5333–5342. doi: 10.1002/adfm.201502248. DOI

Peyer, K. E. ; Siringil, E. C. ; Zhang, L. ; Suter, M. ; Nelson, B. J. . Bacteria-Inspired Magnetic Polymer Composite Microrobots. In Biomimetic and Biohybrid Systems; Lepora, N. F. ; Mura, A. ; Krapp, H. G. ; Verschure, P. F. M. J. ; Prescott, T. J. , Eds.; Springer Berlin Heidelberg, 2013; pp 216-227.

Leshansky A. M., Morozov K. I., Rubinstein B. Y.. Shape-Controlled Anisotropy of Superparamagnetic Micro-/Nanohelices. Nanoscale. 2016;8(29):14127–14138. doi: 10.1039/C6NR01803C. PubMed DOI

Walker D., Kübler M., Morozov K. I., Fischer P., Leshansky A. M.. Optimal Length of Low Reynolds Number Nanopropellers. Nano Letters. 2015;15(7):4412–4416. doi: 10.1021/acs.nanolett.5b01925. PubMed DOI

Cheang U. K., Meshkati F., Kim D., Kim M. J., Fu H. C.. Minimal Geometric Requirements for Micropropulsion via Magnetic Rotation. Physical Review E. 2014;90(3):033007. doi: 10.1103/PhysRevE.90.033007. PubMed DOI

Cheang U. K., Kim M. J.. Self-Assembly of Robotic Micro- and Nanoswimmers Using Magnetic Nanoparticles. Journal of Nanoparticle Research. 2015;17(3):145. doi: 10.1007/s11051-014-2737-z. DOI

Morozov K. I., Mirzae Y., Kenneth O., Leshansky A. M.. Dynamics of Arbitrary Shaped Propellers Driven by a Rotating Magnetic Field. Physical Review Fluids. 2017;2(4):044202. doi: 10.1103/PhysRevFluids.2.044202. DOI

Sachs J., Morozov K. I., Kenneth O., Qiu T., Segreto N., Fischer P., Leshansky A. M.. Role of Symmetry in Driven Propulsion at Low Reynolds Number. Physical Review E. 2018;98(6):063105. doi: 10.1103/PhysRevE.98.063105. DOI

Tottori S., Nelson B. J.. Controlled Propulsion of Two-Dimensional Microswimmers in a Precessing Magnetic Field. Small. 2018;14(24):1800722. doi: 10.1002/smll.201800722. PubMed DOI

Cohen K.-J., Rubinstein B. Y., Kenneth O., Leshansky A. M.. Unidirectional Propulsion of Planar Magnetic Nanomachines. Physical Review Applied. 2019;12(1):014025. doi: 10.1103/PhysRevApplied.12.014025. DOI

Duygu Y. C., Cheang U. K., Leshansky A. M., Kim M. J.. Propulsion of Planar V-Shaped Microswimmers in a Conically Rotating Magnetic Field. Advanced Intelligent Systems. 2024;6(1):2300496. doi: 10.1002/aisy.202300496. DOI

Gao W., Sattayasamitsathit S., Manesh K. M., Weihs D., Wang J.. Magnetically Powered Flexible Metal Nanowire Motors. Journal of the American Chemical Society. 2010;132(41):14403–14405. doi: 10.1021/ja1072349. PubMed DOI

Pak O. S., Gao W., Wang J., Lauga E.. High-Speed Propulsion of Flexible Nanowire Motors: Theory and Experiments. Soft Matter. 2011;7(18):8169–8181. doi: 10.1039/c1sm05503h. DOI

Mirzae Y., Rubinstein B. Y., Morozov K. I., Leshansky A. M.. Modeling Propulsion of Soft Magnetic Nanowires. Frontiers in Robotics and AI. 2020;7:na. doi: 10.3389/frobt.2020.595777. PubMed DOI PMC

Vach P. J., Fratzl P., Klumpp S., Faivre D.. Fast Magnetic Micropropellers with Random Shapes. Nano Letters. 2015;15(10):7064–7070. doi: 10.1021/acs.nanolett.5b03131. PubMed DOI PMC

Vach P. J., Brun N., Bennet M., Bertinetti L., Widdrat M., Baumgartner J., Klumpp S., Fratzl P., Faivre D.. Selecting for Function: Solution Synthesis of Magnetic Nanopropellers. Nano Letters. 2013;13(11):5373–5378. doi: 10.1021/nl402897x. PubMed DOI PMC

Mirzae Y., Dubrovski O., Kenneth O., Morozov K. I., Leshansky A. M.. Geometric Constraints and Optimization in Externally Driven Propulsion. Science Robotics. 2018;3(17):eaas8713. doi: 10.1126/scirobotics.aas8713. PubMed DOI

Morozov K. I., Leshansky A. M.. Towards Focusing of a Swarm of Magnetic Micro/Nanomotors. Physical Chemistry Chemical Physics. 2020;22(28):16407–16420. doi: 10.1039/D0CP01514H. PubMed DOI

Gutman E., Or Y.. Simple Model of a Planar Undulating Magnetic Microswimmer. Physical Review E. 2014;90(1):013012. doi: 10.1103/PhysRevE.90.013012. PubMed DOI

Jang B., Gutman E., Stucki N., Seitz B. F., Wendel-Garcia P. D., Newton T., Pokki J., Ergeneman O., Pane S., Or Y., Nelson B. J.. Undulatory Locomotion of Magnetic Multilink Nanoswimmers. Nano Letters. 2015;15(7):4829–4833. doi: 10.1021/acs.nanolett.5b01981. PubMed DOI

Li T., Li J., Morozov K. I., Wu Z., Xu T., Rozen I., Leshansky A. M., Li L., Wang J.. Highly Efficient Freestyle Magnetic Nanoswimmer. Nano Letters. 2017;17(8):5092–5098. doi: 10.1021/acs.nanolett.7b02383. PubMed DOI

Wang M., Wu T., Liu R., Zhang Z., Liu J.. Selective and Independent Control of Microrobots in a Magnetic Field: A Review. Engineering. 2023;24:21–38. doi: 10.1016/j.eng.2023.02.011. DOI

Zhou J., Li M., Li N., Zhou Y., Wang J., Jiao N.. System Integration of Magnetic Medical Microrobots: From Design to Control. Frontiers in Robotics and AI. 2023;10:na. doi: 10.3389/frobt.2023.1330960. PubMed DOI PMC

Son D., Dong X., Sitti M.. A Simultaneous Calibration Method for Magnetic Robot Localization and Actuation Systems. IEEE Transactions on Robotics. 2019;35(2):343–352. doi: 10.1109/TRO.2018.2885218. DOI

Shao Y., Fahmy A., Li M., Li C., Zhao W., Sienz J.. Study on Magnetic Control Systems of Micro-Robots. Frontiers in Neuroscience. 2021;15:na. doi: 10.3389/fnins.2021.736730. PubMed DOI PMC

McCaslin M. F.. An Improved Hand Electromagnet for Eye Surgery. Transactions of the American Ophthalmological Society. 1958;56:571–605. PubMed PMC

Ginsberg D. M., Melchner M. J.. Optimum Geometry of Saddle Shaped Coils for Generating a Uniform Magnetic Field. Review of Scientific Instruments. 1970;41(1):122–123. doi: 10.1063/1.1684235. DOI

Ha Y. H., Han B. H., Lee S. Y.. Magnetic Propulsion of a Magnetic Device Using Three Square-Helmholtz Coils and a Square-Maxwell Coil. Medical & Biological Engineering & Computing. 2010;48(2):139–145. doi: 10.1007/s11517-009-0574-5. PubMed DOI

Petruska, A. J. ; Brink, J. B. ; Abbott, J. J. . First Demonstration of a Modular and Reconfigurable Magnetic-Manipulation System. In 2015 IEEE International Conference on Robotics and Automation (ICRA), 26-30 May 2015, 2015; pp 149-155. 10.1109/ICRA.2015.7138993. DOI

Mahoney A. W., Abbott J. J.. Five-Degree-of-Freedom Manipulation of an Untethered Magnetic Device in Fluid Using a Single Permanent Magnet with Application in Stomach Capsule Endoscopy. The International Journal of Robotics Research. 2016;35(1-3):129–147. doi: 10.1177/0278364914558006. DOI

Salmanipour, S. ; Diller, E. . Eight-Degrees-of-Freedom Remote Actuation of Small Magnetic Mechanisms. In 2018 IEEE International Conference on Robotics and Automation (ICRA), 21-25 May 2018, 2018; pp 3608-3613. 10.1109/ICRA.2018.8461026. DOI

Ryan P., Diller E.. Magnetic Actuation for Full Dexterity Microrobotic Control Using Rotating Permanent Magnets. IEEE Transactions on Robotics. 2017;33(6):1398–1409. doi: 10.1109/TRO.2017.2719687. DOI

Grady M. S., Howard M. A., Dacey R. G., Blume W., Lawson M., Werp P., Ritter R. C.. Experimental Study of the Magnetic Stereotaxis System for Catheter Manipulation within the Brain. Journal of Neurosurgery. 2000;93(2):282–288. doi: 10.3171/jns.2000.93.2.0282. PubMed DOI

Sikorski J., Denasi A., Bucchi G., Scheggi S., Misra S.. Vision-Based 3-D Control of Magnetically Actuated Catheter Using Bigmagan Array of Mobile Electromagnetic Coils. IEEE/ASME Transactions on Mechatronics. 2019;24(2):505–516. doi: 10.1109/TMECH.2019.2893166. DOI

Yang, L. ; Du, X. ; Yu, E. ; Jin, D. ; Zhang, L. . Deltamag: An Electromagnetic Manipulation System with Parallel Mobile Coils. In 2019 International Conference on Robotics and Automation (ICRA), 20-24 May 2019, 2019; pp 9814-9820. 10.1109/ICRA.2019.8793543. DOI

Boehler Q., Gervasoni S., Charreyron S. L., Chautems C., Nelson B. J.. On the Workspace of Electromagnetic Navigation Systems. IEEE Transactions on Robotics. 2023;39(1):791–807. doi: 10.1109/TRO.2022.3197107. DOI

Lee H., Purdon A.M., Westervelt R.M.. Micromanipulation of Biological Systems with Microelectromagnets. IEEE Transactions on Magnetics. 2004;40(4):2991–2993. doi: 10.1109/TMAG.2004.829179. DOI

Choi H., Choi J., Jang G., Park J.-o., Park S.. Two-Dimensional Actuation of a Microrobot with a Stationary Two-Pair Coil system. Smart Materials and Structures. 2009;18(5):055007. doi: 10.1088/0964-1726/18/5/055007. DOI

Wissner E., Kuck K.-H.. Catheter Ablation of Atrial Fibrillation: An Update for 2011. Interventional Cardiology. 2011;3(4):493–502. doi: 10.2217/ica.11.47. DOI

Keller, H. ; Juloski, A. ; Kawano, H. ; Bechtold, M. ; Kimura, A. ; Takizawa, H. ; Kuth, R. . Method for Navigation and Control of a Magnetically Guided Capsule Endoscope in the Human Stomach. In 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), 24-27 June 2012, 2012; pp 859-865. 10.1109/BioRob.2012.6290795. DOI

Choi H., Cha K., Choi J., Jeong S., Jeon S., Jang G., Park J.-o., Park S.. Ema System with Gradient and Uniform Saddle Coils for 3D Locomotion of Microrobot. Sensors and Actuators A: Physical. 2010;163(1):410–417. doi: 10.1016/j.sna.2010.08.014. DOI

Kratochvil, B. E. ; Kummer, M. P. ; Erni, S. ; Borer, R. ; Frutiger, D. R. ; Schürle, S. ; Nelson, B. J. . Minimag: A Hemispherical Electromagnetic System for 5-Dof Wireless Micromanipulation. In Experimental Robotics: The 12th International Symposium on Experimental Robotics, Khatib, O. ; Kumar, V. ; Sukhatme, G. Eds.; Springer Berlin Heidelberg, 2014; pp 317-329.

Liao Z., Hou X., Lin-Hu E.-Q., Sheng J.-Q., Ge Z.-Z., Jiang B., Hou X.-H., Liu J.-Y., Li Z., Huang Q.-Y.. et al. Accuracy of Magnetically Controlled Capsule Endoscopy, Compared with Conventional Gastroscopy, in Detection Of gastric Diseases. Clinical Gastroenterology and Hepatology. 2016;14(9):1266–1273. doi: 10.1016/j.cgh.2016.05.013. PubMed DOI

Chautems, C. ; Nelson, B. J. . The Tethered Magnet: Force and 5-Dof Pose Control for Cardiac Ablation. In 2017 IEEE International Conference on Robotics and Automation (ICRA), 29 May-3 June 2017, 2017; pp 4837-4842. 10.1109/ICRA.2017.7989562. DOI

Hwang J., Kim J.-y., Choi H.. A Review of Magnetic Actuation Systems and Magnetically Actuated Guidewire- and Catheter-Based Microrobots for Vascular Interventions. Intelligent Service Robotics. 2020;13(1):1–14. doi: 10.1007/s11370-020-00311-0. DOI

Ibsen S., Tong A., Schutt C., Esener S., Chalasani S. H.. Sonogenetics Is a Non-Invasive Approach to Activating Neurons in Caenorhabditis Elegans. Nature Communications. 2015;6(1):8264. doi: 10.1038/ncomms9264. PubMed DOI PMC

Hahmann J., Ishaqat A., Lammers T., Herrmann A.. Sonogenetics for Monitoring and Modulating Biomolecular Function by Ultrasound. Angewandte Chemie International Edition. 2024;63(13):e202317112. doi: 10.1002/anie.202317112. PubMed DOI

Pokhrel N., Vabbina P. K., Pala N.. Sonochemistry: Science and Engineering. Ultrasonics Sonochemistry. 2016;29:104–128. doi: 10.1016/j.ultsonch.2015.07.023. PubMed DOI

Brugger M. S., Baumgartner K., Mauritz S. C. F., Gerlach S. C., Röder F., Schlosser C., Fluhrer R., Wixforth A., Westerhausen C.. Vibration Enhanced Cell Growth Induced by Surface Acoustic Waves as in vitro Wound-Healing Model. Proceedings of the National Academy of Sciences. 2020;117(50):31603–31613. doi: 10.1073/pnas.2005203117. PubMed DOI PMC

Rwei A. Y., Paris J. L., Wang B., Wang W., Axon C. D., Vallet-Regí M., Langer R., Kohane D. S.. Ultrasound-Triggered Local Anaesthesia. Nature Biomedical Engineering. 2017;1(8):644–653. doi: 10.1038/s41551-017-0117-6. PubMed DOI PMC

Christensen-Jeffries K., Browning R. J., Tang M. X., Dunsby C., Eckersley R. J.. In Vivo Acoustic Super-Resolution and Super-Resolved Velocity Mapping Using Microbubbles. IEEE Transactions on Medical Imaging. 2015;34(2):433–440. doi: 10.1109/TMI.2014.2359650. PubMed DOI

Carpentier A., Canney M., Vignot A., Reina V., Beccaria K., Horodyckid C., Karachi C., Leclercq D., Lafon C., Chapelon J.-Y.. et al. Clinical Trial of Blood-Brain Barrier Disruption by Pulsed Ultrasound. Science Translational Medicine. 2016;8(343):343re342. doi: 10.1126/scitranslmed.aaf6086. PubMed DOI

Ozcelik A., Rufo J., Guo F., Gu Y., Li P., Lata J., Huang T. J.. Acoustic Tweezers for the Life Sciences. Nature Methods. 2018;15(12):1021–1028. doi: 10.1038/s41592-018-0222-9. PubMed DOI PMC

Maeng S. K., Sharma S. K., Lekkerkerker-Teunissen K., Amy G. L.. Occurrence and Fate of Bulk Organic Matter and Pharmaceutically Active Compounds in Managed Aquifer Recharge: A Review. Water Research. 2011;45(10):3015–3033. doi: 10.1016/j.watres.2011.02.017. PubMed DOI

Voß J., Wittkowski R.. Orientation-Dependent Propulsion of Triangular Nano- and Microparticles by a Traveling Ultrasound Wave. ACS Nano. 2022;16(3):3604–3612. doi: 10.1021/acsnano.1c02302. PubMed DOI

Voß J., Wittkowski R.. Dependence of the Acoustic Propulsion of Nano- and Microcones on Their Orientation and Aspect Ratio. Scientific Reports. 2023;13(1):12858. doi: 10.1038/s41598-023-39231-1. PubMed DOI PMC

Wu Z., Li T., Li J., Gao W., Xu T., Christianson C., Gao W., Galarnyk M., He Q., Zhang L.. et al. Turning Erythrocytes into Functional Micromotors. ACS Nano. 2014;8(12):12041–12048. doi: 10.1021/nn506200x. PubMed DOI PMC

Balk A. L., Mair L. O., Mathai P. P., Patrone P. N., Wang W., Ahmed S., Mallouk T. E., Liddle J. A., Stavis S. M.. Kilohertz Rotation of Nanorods Propelled by Ultrasound, Traced by Microvortex Advection of Nanoparticles. ACS Nano. 2014;8(8):8300–8309. doi: 10.1021/nn502753x. PubMed DOI

Collis J. F., Chakraborty D., Sader J. E.. Autonomous Propulsion of Nanorods Trapped in an Acoustic Field. Journal of Fluid Mechanics. 2017;825:29–48. doi: 10.1017/jfm.2017.381. DOI

Voß J., Wittkowski R.. Acoustically Propelled Nano- and Microcones: Fast Forward and Backward Motion. Nanoscale Advances. 2021;4(1):281–293. doi: 10.1039/D1NA00655J. PubMed DOI PMC

Voß J., Wittkowski R.. On the Shape-Dependent Propulsion of Nano- and Microparticles by Traveling Ultrasound Waves. Nanoscale Advances. 2020;2(9):3890–3899. doi: 10.1039/D0NA00099J. PubMed DOI PMC

Voß J., Wittkowski R.. Propulsion of Bullet- and Cup-Shaped Nano- and Microparticles by Traveling Ultrasound Waves. Physics of Fluids. 2022;34(5):052007. doi: 10.1063/5.0089367. DOI

Voß J., Wittkowski R.. Acoustic Propulsion of Nano- and Microcones: Dependence on the Viscosity of the Surrounding Fluid. Langmuir. 2022;38(35):10736–10748. doi: 10.1021/acs.langmuir.2c00603. PubMed DOI

Garcia-Gradilla V., Orozco J., Sattayasamitsathit S., Soto F., Kuralay F., Pourazary A., Katzenberg A., Gao W., Shen Y., Wang J.. Functionalized Ultrasound-Propelled Magnetically Guided Nanomotors: Toward Practical Biomedical Applications. ACS Nano. 2013;7(10):9232–9240. doi: 10.1021/nn403851v. PubMed DOI

Valdez-Garduño M., Leal-Estrada M., Oliveros-Mata E. S., Sandoval-Bojorquez D. I., Soto F., Wang J., Garcia-Gradilla V.. Density Asymmetry Driven Propulsion of Ultrasound-Powered Janus Micromotors. Advanced Functional Materials. 2020;30(50):2004043. doi: 10.1002/adfm.202004043. DOI

McNeill J. M., Choi Y. C., Cai Y.-Y., Guo J., Nadal F., Kagan C. R., Mallouk T. E.. Three-Dimensionally Complex Phase Behavior and Collective Phenomena in Mixtures of Acoustically Powered Chiral Microspinners. ACS Nano. 2023;17(8):7911–7919. doi: 10.1021/acsnano.3c01966. PubMed DOI

Janiak J., Li Y., Ferry Y., Doinikov A. A., Ahmed D.. Acoustic Microbubble Propulsion, Train-Like Assembly and Cargo Transport. Nature Communications. 2023;14(1):4705. doi: 10.1038/s41467-023-40387-7. PubMed DOI PMC

Esteban-Fernández de Ávila B., Ramírez-Herrera D. E., Campuzano S., Angsantikul P., Zhang L., Wang J.. Nanomotor-Enabled pH-Responsive Intracellular Delivery of Caspase-3: Toward Rapid Cell Apoptosis. ACS Nano. 2017;11(6):5367–5374. doi: 10.1021/acsnano.7b01926. PubMed DOI PMC

Jooss V. M., Bolten J. S., Huwyler J., Ahmed D.. In Vivo Acoustic Manipulation of Microparticles in Zebrafish Embryos. Science Advances. 2022;8(12):eabm2785. doi: 10.1126/sciadv.abm2785. PubMed DOI PMC

Doinikov A. A.. Translational Motion of a Bubble Undergoing Shape Oscillations. Journal of Fluid Mechanics. 1999;501:1–24. doi: 10.1017/S0022112003006220. DOI

Doinikov A. A.. Translational Motion of Two Interacting Bubbles in a Strong Acoustic Field. Physical Review E. 2001;64(2):026301. doi: 10.1103/PhysRevE.64.026301. PubMed DOI

Fan Z., Liu H., Mayer M., Deng C. X.. Spatiotemporally Controlled Single Cell Sonoporation. Proceedings of the National Academy of Sciences. 2012;109(41):16486–16491. doi: 10.1073/pnas.1208198109. PubMed DOI PMC

Shakya G., Cattaneo M., Guerriero G., Prasanna A., Fiorini S., Supponen O.. Ultrasound-Responsive Microbubbles and Nanodroplets: A Pathway to Targeted Drug Delivery. Advanced Drug Delivery Reviews. 2024;206:115178. doi: 10.1016/j.addr.2023.115178. PubMed DOI

Bertin N., Spelman T. A., Stephan O., Gredy L., Bouriau M., Lauga E., Marmottant P.. Propulsion of Bubble-Based Acoustic Microswimmers. Physical Review Applied. 2015;4(6):064012. doi: 10.1103/PhysRevApplied.4.064012. DOI

Aghakhani A., Yasa O., Wrede P., Sitti M.. Acoustically Powered Surface-Slipping Mobile Microrobots. Proceedings of the National Academy of Sciences. 2020;117(7):3469–3477. doi: 10.1073/pnas.1920099117. PubMed DOI PMC

Ren L., Nama N., McNeill J. M., Soto F., Yan Z., Liu W., Wang W., Wang J., Mallouk T. E.. 3D Steerable, Acoustically Powered Microswimmers for Single-Particle Manipulation. Science Advances. 2019;5(10):eaax3084. doi: 10.1126/sciadv.aax3084. PubMed DOI PMC

Ahmed D., Lu M., Nourhani A., Lammert P. E., Stratton Z., Muddana H. S., Crespi V. H., Huang T. J.. Selectively Manipulable Acoustic-Powered Microswimmers. Scientific Reports. 2015;5(1):9744. doi: 10.1038/srep09744. PubMed DOI PMC

Aghakhani A., Pena-Francesch A., Bozuyuk U., Cetin H., Wrede P., Sitti M.. High Shear Rate Propulsion of Acoustic Microrobots in Complex Biological Fluids. Science Advances. 2022;8(10):eabm5126. doi: 10.1126/sciadv.abm5126. PubMed DOI PMC

Qiu T., Palagi S., Mark A. G., Melde K., Adams F., Fischer P.. Wireless Actuation with Functional Acoustic Surfaces. Applied Physics Letters. 2016;109(19):191602. doi: 10.1063/1.4967194. DOI

Shi, Z. ; Zhang, Z. ; Ahmed, D. . Ultrasound-Driven Programmable Artificial Muscles; bioRxiv Preprint, 2024. 10.1101/2024.01.08.574699. DOI

Läubli N. F., Gerlt M. S., Wüthrich A., Lewis R. T. M., Shamsudhin N., Kutay U., Ahmed D., Dual J., Nelson B. J.. Embedded Microbubbles for Acoustic Manipulation of Single Cells and Microfluidic Applications. Analytical Chemistry. 2021;93(28):9760–9770. doi: 10.1021/acs.analchem.1c01209. PubMed DOI PMC

Dolev A., Kaynak M., Sakar M. S.. Dynamics of Entrapped Microbubbles with Multiple Openings. Physics of Fluids. 2022;34(1):012012. doi: 10.1063/5.0075876. DOI

Lo W.-C., Fan C.-H., Ho Y.-J., Lin C.-W., Yeh C.-K.. Tornado-Inspired Acoustic Vortex Tweezer for Trapping and Manipulating Microbubbles. Proceedings of the National Academy of Sciences. 2021;118(4):e2023188118. doi: 10.1073/pnas.2023188118. PubMed DOI PMC

Lee J. G., Raj R. R., Thome C. P., Day N. B., Martinez P., Bottenus N., Gupta A., Wyatt Shields IV C.. Bubble-Based Microrobots with Rapid Circular Motions for Epithelial Pinning and Drug Delivery. Small. 2023;19(32):2300409. doi: 10.1002/smll.202300409. PubMed DOI PMC

Fonseca A. D. C., Kohler T., Ahmed D.. Ultrasound-Controlled Swarmbots under Physiological Flow Conditions. Advanced Materials Interfaces. 2022;9(26):2200877. doi: 10.1002/admi.202200877. DOI

Yang Y., Yang Y., Liu D., Wang Y., Lu M., Zhang Q., Huang J., Li Y., Ma T., Yan F., Zheng H.. In-Vivo Programmable Acoustic Manipulation of Genetically Engineered Bacteria. Nature Communications. 2023;14(1):3297. doi: 10.1038/s41467-023-38814-w. PubMed DOI PMC

Ahmed D., Baasch T., Jang B., Pane S., Dual J., Nelson B. J.. Artificial Swimmers Propelled by Acoustically Activated Flagella. Nano Letters. 2016;16(8):4968–4974. doi: 10.1021/acs.nanolett.6b01601. PubMed DOI

Doinikov A. A., Gerlt M. S., Dual J.. Acoustic Radiation Forces Produced by Sharp-Edge Structures in Microfluidic Systems. Physical Review Letters. 2020;124(15):154501. doi: 10.1103/PhysRevLett.124.154501. PubMed DOI

Huang P.-H., Xie Y., Ahmed D., Rufo J., Nama N., Chen Y., Chan C. Y., Huang T. J.. An Acoustofluidic Micromixer Based on Oscillating Sidewall Sharp-Edges. Lab on a Chip. 2013;13(19):3847–3852. doi: 10.1039/c3lc50568e. PubMed DOI PMC

Kaynak M., Ozcelik A., Nourhani A., Lammert P. E., Crespi V. H., Huang T. J.. Acoustic Actuation of Bioinspired Microswimmers. Lab on a Chip. 2017;17(3):395–400. doi: 10.1039/C6LC01272H. PubMed DOI PMC

Dillinger C., Nama N., Ahmed D.. Ultrasound-Activated Ciliary Bands for Microrobotic Systems Inspired by Starfish. Nature Communications. 2021;12(1):6455. doi: 10.1038/s41467-021-26607-y. PubMed DOI PMC

Deng Y., Paskert A., Zhang Z., Wittkowski R., Ahmed D.. An Acoustically Controlled Helical Microrobot. Science Advances. 2023;9(38):eadh5260. doi: 10.1126/sciadv.adh5260. PubMed DOI PMC

Zhang Z., Shi Z., Ahmed D.. Sonotransformers: Transformable Acoustically Activated Wireless Microscale Machines. Proceedings of the National Academy of Sciences. 2024;121(6):e2314661121. doi: 10.1073/pnas.2314661121. PubMed DOI PMC

Bezares-Calderón L. A., Berger J., Jékely G.. Diversity of Cilia-Based Mechanosensory Systems and Their Functions in Marine Animal Behaviour. Philosophical Transactions of the Royal Society B: Biological Sciences. 2020;375(1792):20190376. doi: 10.1098/rstb.2019.0376. PubMed DOI PMC

Ahmed D., Baasch T., Blondel N., Läubli N., Dual J., Nelson B. J.. Neutrophil-Inspired Propulsion in a Combined Acoustic and Magnetic Field. Nature Communications. 2017;8(1):770. doi: 10.1038/s41467-017-00845-5. PubMed DOI PMC

Durrer J., Agrawal P., Ozgul A., Neuhauss S. C. F., Nama N., Ahmed D.. A Robot-Assisted Acoustofluidic End Effector. Nature Communications. 2022;13(1):6370. doi: 10.1038/s41467-022-34167-y. PubMed DOI PMC

Zhang Z., Cao Y., Caviglia S., Agrawal P., Neuhauss S. C. F., Ahmed D.. A Vibrating Capillary for Ultrasound Rotation Manipulation of Zebrafish Larvae. Lab on a Chip. 2024;24(4):764–775. doi: 10.1039/D3LC00817G. PubMed DOI PMC

Zhang Z., Allegrini L. K., Yanagisawa N., Deng Y., Neuhauss S. C. F., Ahmed D.. Sonorotor: An Acoustic Rotational Robotic Platform for Zebrafish Embryos and Larvae. IEEE Robotics and Automation Letters. 2023;8(5):2598–2605. doi: 10.1109/LRA.2023.3257683. DOI

Mohanty S., Paul A., Matos P. M., Zhang J., Sikorski J., Misra S.. Ceflowbot: A Biomimetic Flow-Driven Microrobot That Navigates under Magneto-Acoustic Fields. Small. 2022;18(9):2105829. doi: 10.1002/smll.202105829. PubMed DOI

Wang Q. Q., Chan K. F., Schweizer K., Du X. Z., Jin D. D., Yu S. C. H., Nelson B. J., Zhang L.. Ultrasound Doppler-Guided Real-Time Navigation of a Magnetic Microswarm for Active Endovascular Delivery. Science Advances. 2021;7(9):eabe5914. doi: 10.1126/sciadv.abe5914. PubMed DOI PMC

Ahmed D., Sukhov A., Hauri D., Rodrigue D., Maranta G., Harting J., Nelson B. J.. Bioinspired Acousto-Magnetic Microswarm Robots with Upstream Motility. Nature Machine Intelligence. 2021;3(2):116–124. doi: 10.1038/s42256-020-00275-x. PubMed DOI PMC

Ahmed D., Dillinger C., Hong A., Nelson B. J.. Artificial Acousto-Magnetic Soft Microswimmers. Advanced Materials Technologies. 2017;2(7):1700050. doi: 10.1002/admt.201700050. DOI

Zhang Z., Sukhov A., Harting J., Malgaretti P., Ahmed D.. Rolling Microswarms Along Acoustic Virtual Walls. Nature Communications. 2022;13(1):7347. doi: 10.1038/s41467-022-35078-8. PubMed DOI PMC

Dillinger C., Knipper J., Nama N., Ahmed D.. Steerable Acoustically Powered Starfish-Inspired Microrobot. Nanoscale. 2024;16(3):1125–1134. doi: 10.1039/D3NR03516F. PubMed DOI PMC

Kobatake S., Takami S., Muto H., Ishikawa T., Irie M.. Rapid and Reversible Shape Changes of Molecular Crystals on Photoirradiation. Nature. 2007;446(7137):778–781. doi: 10.1038/nature05669. PubMed DOI

Iamsaard S., Aßhoff S. J., Matt B., Kudernac T., Cornelissen J. J. L. M., Fletcher S. P., Katsonis N.. Conversion of Light into Macroscopic Helical Motion. Nature Chemistry. 2014;6(3):229–235. doi: 10.1038/nchem.1859. PubMed DOI

Hu Y., Wu G., Lan T., Zhao J., Liu Y., Chen W.. A Graphene-Based Bimorph Structure for Design of High Performance Photoactuators. Advanced Materials. 2015;27(47):7867–7873. doi: 10.1002/adma.201502777. PubMed DOI

Palagi S., Mark A. G., Reigh S. Y., Melde K., Qiu T., Zeng H., Parmeggiani C., Martella D., Sanchez-Castillo A., Kapernaum N.. et al. Structured Light Enables Biomimetic Swimming and Versatile Locomotion of Photoresponsive Soft Microrobots. Nature Materials. 2016;15(6):647–653. doi: 10.1038/nmat4569. PubMed DOI

Ashkin A., Dziedzic J. M., Yamane T.. Optical Trapping and Manipulation of Single Cells Using Infrared Laser Beams. Nature. 1987;330(6150):769–771. doi: 10.1038/330769a0. PubMed DOI

Terray A., Oakey J., Marr D. W. M.. Microfluidic Control Using Colloidal Devices. Science. 2002;296(5574):1841–1844. doi: 10.1126/science.1072133. PubMed DOI

Abbondanzieri E. A., Greenleaf W. J., Shaevitz J. W., Landick R., Block S. M.. Direct Observation of Base-Pair Stepping by RNA Polymerase. Nature. 2005;438(7067):460–465. doi: 10.1038/nature04268. PubMed DOI PMC

Grigorenko A. N., Roberts N. W., Dickinson M. R., Zhang Y.. Nanometric Optical Tweezers Based on Nanostructured Substrates. Nature Photonics. 2008;2(6):365–370. doi: 10.1038/nphoton.2008.78. DOI

Ashkin A.. Acceleration and Trapping of Particles by Radiation Pressure. Physical Review Letters. 1970;24(4):156–159. doi: 10.1103/PhysRevLett.24.156. DOI

Köhler J., Ksouri S. I., Esen C., Ostendorf A.. Optical Screw-Wrench for Microassembly. Microsystems & Nanoengineering. 2017;3(1):16083. doi: 10.1038/micronano.2016.83. PubMed DOI PMC

Iványi G. T., Nemes B., Gróf I., Fekete T., Kubacková J., Tomori Z., Bánó G., Vizsnyiczai G., Kelemen L.. Optically Actuated Soft Microrobot Family for Single-Cell Manipulation. Advanced Materials. 2024;36(32):2401115. doi: 10.1002/adma.202401115. PubMed DOI

Leach J., Mushfique H., di Leonardo R., Padgett M., Cooper J.. An Optically Driven Pump for Microfluidics. Lab on a Chip. 2006;6(6):735–739. doi: 10.1039/b601886f. PubMed DOI

Ladavac K., Grier D. G.. Microoptomechanical Pumps Assembled and Driven by Holographic Optical Vortex Arrays. Optics Express. 2004;12(6):1144–1149. doi: 10.1364/OPEX.12.001144. PubMed DOI

Aubret A., Martinet Q., Palacci J.. Metamachines of Pluripotent Colloids. Nature Communications. 2021;12(1):6398. doi: 10.1038/s41467-021-26699-6. PubMed DOI PMC

Martinet Q., Aubret A., Palacci J.. Rotation Control, Interlocking, and Self-Positioning of Active Cogwheels. Advanced Intelligent Systems. 2023;5(1):2200129. doi: 10.1002/aisy.202200129. DOI

Diwakar N. M., Kunti G., Miloh T., Yossifon G., Velev O. D.. Ac Electrohydrodynamic Propulsion and Rotation of Active Particles of Engineered Shape and Asymmetry. Current Opinion in Colloid & Interface Science. 2022;59:101586. doi: 10.1016/j.cocis.2022.101586. DOI

Yan J., Han M., Zhang J., Xu C., Luijten E., Granick S.. Reconfiguring Active Particles by Electrostatic imbalance. Nature Materials. 2016;15(10):1095–1099. doi: 10.1038/nmat4696. PubMed DOI

Huo X., Wu Y., Boymelgreen A., Yossifon G.. Analysis of Cargo Loading Modes and Capacity of an Electrically-Powered Active Carrier. Langmuir. 2020;36(25):6963–6970. doi: 10.1021/acs.langmuir.9b03036. PubMed DOI

Wu Y., Fu A., Yossifon G.. Active Particle Based Selective Transport and Release of Cell Organelles and Mechanical Probing of a Single Nucleus. Small. 2020;16(22):1906682. doi: 10.1002/smll.201906682. PubMed DOI

Wu Y., Fu A., Yossifon G.. Micromotor-Based Localized Electroporation and Gene Transfection of Mammalian Cells. Proceedings of the National Academy of Sciences. 2021;118(38):e2106353118. doi: 10.1073/pnas.2106353118. PubMed DOI PMC

Velev O. D., Gangwal S., Petsev D. N.. Particle-Localized Ac and Dc Manipulation and Electrokinetics. Annual Reports Section "C" (Physical Chemistry) 2009;105(0):213–246. doi: 10.1039/b803015b. DOI

Harraq A. A., Choudhury B. D., Bharti B.. Field-Induced Assembly and Propulsion of Colloids. Langmuir. 2022;38(10):3001–3016. doi: 10.1021/acs.langmuir.1c02581. PubMed DOI PMC

Bazant M. Z.. Electrokinetics meets Electrohydrodynamics. Journal of Fluid Mechanics. 2015;782:1–4. doi: 10.1017/jfm.2015.416. DOI

Ristenpart W. D., Aksay I. A., Saville D. A.. Electrohydrodynamic Flow around a Colloidal Particle near an Electrode with an Oscillating Potential. Journal of Fluid Mechanics. 2007;575:83–109. doi: 10.1017/S0022112006004368. DOI

Yang X., Wu N.. Change the Collective Behaviors of Colloidal Motors by Tuning Electrohydrodynamic Flow at the Subparticle Level. Langmuir. 2018;34(3):952–960. doi: 10.1021/acs.langmuir.7b02793. PubMed DOI

Shields IV C. W., Han K., Ma F., Miloh T., Yossifon G., Velev O. D.. Supercolloidal Spinners: Complex Active Particles for Electrically Powered and Switchable Rotation. Advanced Functional Materials. 2018;28(35):1803465. doi: 10.1002/adfm.201803465. DOI

Peng C., Lazo I., Shiyanovskii S. V., Lavrentovich O. D.. Induced-Charge Electro-Osmosis around Metal and Janus Spheres in Water: Patterns of Flow and Breaking Symmetries. Physical Review E. 2014;90(5):051002. doi: 10.1103/PhysRevE.90.051002. PubMed DOI

Squires T. M., Bazant M. Z.. Induced-Charge Electro-Osmosis. Journal of Fluid Mechanics. 1999;509:217–252. doi: 10.1017/S0022112004009309. DOI

Squires T. M., Bazant M. Z.. Breaking Symmetries in Induced-Charge Electro-Osmosis and Electrophoresis. Journal of Fluid Mechanics. 2006;560:65–101. doi: 10.1017/S0022112006000371. DOI

Ohiri U., Shields C. W., Han K., Tyler T., Velev O. D., Jokerst N.. Reconfigurable Engineered Motile Semiconductor Microparticles. Nature Communications. 2018;9(1):1791. doi: 10.1038/s41467-018-04183-y. PubMed DOI PMC

Demirörs A. F., Stauffer A., Lauener C., Cossu J., Ramakrishna S. N., de Graaf J., Alcantara C. C. J., Pané S., Spencer N., Studart A. R.. Magnetic Propulsion of Colloidal Microrollers Controlled by Electrically Modulated Friction. Soft Matter. 2021;17(4):1037–1047. doi: 10.1039/D0SM01449D. PubMed DOI

Wu Y., Yakov S., Fu A., Yossifon G.. A Magnetically and Electrically Powered Hybrid Micromotor in Conductive Solutions: Synergistic Propulsion Effects and Label-Free Cargo Transport and Sensing. Advanced Science. 2023;10(8):2204931. doi: 10.1002/advs.202204931. PubMed DOI PMC

Han K., Shields IV C. W., Velev O. D.. Engineering of Self-Propelling Microbots and Microdevices Powered by Magnetic and Electric Fields. Advanced Functional Materials. 2018;28(25):1705953. doi: 10.1002/adfm.201705953. DOI

Berg H. C.. Motile Behavior of Bacteria. Physics Today. 2000;53(1):24–29. doi: 10.1063/1.882934. DOI

Traore M. A., Damico C. M., Behkam B.. Biomanufacturing and Self-Propulsion Dynamics of Nanoscale Bacteria-Enabled Autonomous Delivery Systems. Applied Physics Letters. 2014;105(17):173702. doi: 10.1063/1.4900641. DOI

Zhan Y., Fergusson A., McNally L. R., Davis R. M., Behkam B.. Robust and Repeatable Biofabrication of Bacteria-Mediated Drug Delivery Systems: Effect of Conjugation Chemistry, Assembly Process Parameters, and Nanoparticle Size. Advanced Intelligent Systems. 2022;4(3):2100135. doi: 10.1002/aisy.202100135. DOI

Behkam B., Sitti M.. Effect of Quantity and Configuration of Attached Bacteria on Bacterial Propulsion of Microbeads. Applied Physics Letters. 2008;93(22):223901. doi: 10.1063/1.3040318. DOI

Sahari A., Headen D., Behkam B.. Effect of Body Shape on the Motile Behavior of Bacteria-Powered Swimming Microrobots (Bacteriabots) Biomedical Microdevices. 2012;14(6):999–1007. doi: 10.1007/s10544-012-9712-1. PubMed DOI

Johnson R. E., Brokaw C. J.. Flagellar Hydrodynamics. A Comparison between Resistive-Force Theory and Slender-Body Theory. Biophysical Journal. 1979;25(1):113–127. doi: 10.1016/S0006-3495(79)85281-9. PubMed DOI PMC

Leaman E. J., Sahari A., Traore M. A., Geuther B. Q., Morrow C. M., Behkam B.. Data-Driven Statistical Modeling of the Emergent Behavior of Biohybrid Microrobots. APL Bioengineering. 2020;4(1):016104. doi: 10.1063/1.5134926. PubMed DOI PMC

Li G., Ardekani A. M.. Collective Motion of Microorganisms in a Viscoelastic Fluid. Physical Review Letters. 2016;117(11):118001. doi: 10.1103/PhysRevLett.117.118001. PubMed DOI

Akolpoglu M. B., Alapan Y., Dogan N. O., Baltaci S. F., Yasa O., Aybar Tural G., Sitti M.. Magnetically Steerable Bacterial Microrobots Moving in 3D Biological Matrices for Stimuli-Responsive Cargo Delivery. Science Advances. 2022;8(28):eabo6163. doi: 10.1126/sciadv.abo6163. PubMed DOI PMC

Windes P., Tafti D. K., Behkam B.. A Computational Framework for Investigating Bacteria Transport in Microvasculature. Computer Methods in Biomechanics and Biomedical Engineering. 2023;26(4):438–449. doi: 10.1080/10255842.2022.2066473. PubMed DOI

Smith D. J., Gaffney E. A., Blake J. R., Kirkman-Brown J. C.. Human Sperm Accumulation near Surfaces: A Simulation Study. Journal of Fluid Mechanics. 2009;621:289–320. doi: 10.1017/S0022112008004953. DOI

Gray J., Hancock G. J.. The Propulsion of Sea-Urchin Spermatozoa. Journal of Experimental Biology. 1955;32(4):802–814. doi: 10.1242/jeb.32.4.802. DOI

Khalil I. S. M., Klingner A., Magdanz V., Striggow F., Medina-Sánchez M., Schmidt O. G., Misra S.. Modeling of Spermbots in a Viscous Colloidal Suspension. Advanced Theory and Simulations. 2019;2(8):1900072. doi: 10.1002/adts.201900072. DOI

Striggow F., Medina-Sánchez M., Auernhammer G. K., Magdanz V., Friedrich B. M., Schmidt O. G.. Sperm-Driven Micromotors Moving in Oviduct Fluid and Viscoelastic Media. Small. 2020;16(24):2000213. doi: 10.1002/smll.202000213. PubMed DOI

Striggow F., Nadporozhskaia L., Friedrich B. M., Schmidt O. G., Medina-Sánchez M.. Micromotor-Mediated Sperm Constrictions for Improved Swimming Performance. The European Physical Journal E. 2021;44(5):67. doi: 10.1140/epje/s10189-021-00050-9. PubMed DOI PMC

Magdanz V., Medina-Sánchez M., Schwarz L., Xu H., Elgeti J., Schmidt O. G.. Spermatozoa as Functional Components of Robotic Microswimmers. Advanced Materials. 2017;29(24):1606301. doi: 10.1002/adma.201606301. PubMed DOI

Khalil I. S. M., Magdanz V., Sanchez S., Schmidt O. G., Misra S.. Biocompatible, Accurate, and Fully Autonomous: A Sperm-Driven Micro-Bio-Robot. Journal of Micro-Bio Robotics. 2014;9(3):79–86. doi: 10.1007/s12213-014-0077-9. DOI

Magdanz V., Medina-Sánchez M., Chen Y., Guix M., Schmidt O. G.. How to Improve Spermbot Performance. Advanced Functional Materials. 2015;25(18):2763–2770. doi: 10.1002/adfm.201500015. DOI

Magdanz V., Guix M., Hebenstreit F., Schmidt O. G.. Dynamic Polymeric Microtubes for the Remote-Controlled Capture, Guidance, and Release of Sperm Cells. Advanced Materials. 2016;28(21):4084–4089. doi: 10.1002/adma.201505487. PubMed DOI

Ricotti L., Menciassi A.. Bio-Hybrid Muscle Cell-Based Actuators. Biomedical Microdevices. 2012;14(6):987–998. doi: 10.1007/s10544-012-9697-9. PubMed DOI

Cvetkovic C., Raman R., Chan V., Williams B. J., Tolish M., Bajaj P., Sakar M. S., Asada H. H., Saif M. T. A., Bashir R.. Three-Dimensionally Printed Biological Machines Powered by Skeletal Muscle. Proceedings of the National Academy of Sciences. 2014;111(28):10125–10130. doi: 10.1073/pnas.1401577111. PubMed DOI PMC

Guix M., Mestre R., Patiño T., De Corato M., Fuentes J., Zarpellon G., Sánchez S.. Biohybrid Soft Robots with Self-Stimulating Skeletons. Science Robotics. 2021;6(53):eabe7577. doi: 10.1126/scirobotics.abe7577. PubMed DOI

Nawroth J. C., Lee H., Feinberg A. W., Ripplinger C. M., McCain M. L., Grosberg A., Dabiri J. O., Parker K. K.. A Tissue-Engineered Jellyfish with Biomimetic Propulsion. Nature Biotechnology. 2012;30(8):792–797. doi: 10.1038/nbt.2269. PubMed DOI PMC

Park S.-J., Gazzola M., Park K. S., Park S., Di Santo V., Blevins E. L., Lind J. U., Campbell P. H., Dauth S., Capulli A. K.. et al. Phototactic Guidance of a Tissue-Engineered Soft-Robotic Ray. Science. 2016;353(6295):158–162. doi: 10.1126/science.aaf4292. PubMed DOI PMC

Lee K. Y., Park S.-J., Matthews D. G., Kim S. L., Marquez C. A., Zimmerman J. F., Ardoña H. A. M., Kleber A. G., Lauder G. V., Parker K. K.. An Autonomously Swimming Biohybrid Fish Designed with Human Cardiac Biophysics. Science. 2022;375(6581):639–647. doi: 10.1126/science.abh0474. PubMed DOI PMC

Kriegman S., Blackiston D., Levin M., Bongard J.. A Scalable Pipeline for Designing Reconfigurable Organisms. Proceedings of the National Academy of Sciences. 2020;117(4):1853–1859. doi: 10.1073/pnas.1910837117. PubMed DOI PMC

Blackiston D., Lederer E., Kriegman S., Garnier S., Bongard J., Levin M.. A Cellular Platform for the Development of Synthetic Living Machines. Science Robotics. 2021;6(52):eabf1571. doi: 10.1126/scirobotics.abf1571. PubMed DOI

Kriegman S., Blackiston D., Levin M., Bongard J.. Kinematic Self-Replication in Reconfigurable Organisms. Proceedings of the National Academy of Sciences. 2021;118(49):e2112672118. doi: 10.1073/pnas.2112672118. PubMed DOI PMC

Mirkovic T., Zacharia N. S., Scholes G. D., Ozin G. A.. Fuel for Thought: Chemically Powered Nanomotors out-Swim Nature’s Flagellated Bacteria. ACS Nano. 2010;4(4):1782–1789. doi: 10.1021/nn100669h. PubMed DOI

Patino T., Porchetta A., Jannasch A., Lladó A., Stumpp T., Schäffer E., Ricci F., Sánchez S.. Self-Sensing Enzyme-Powered Micromotors Equipped with pH-Responsive DNA Nanoswitches. Nano Letters. 2019;19(6):3440–3447. doi: 10.1021/acs.nanolett.8b04794. PubMed DOI

Alapan Y., Yigit B., Beker O., Demirörs A. F., Sitti M.. Shape-Encoded Dynamic Assembly of Mobile Micromachines. Nature Materials. 2019;18(11):1244–1251. doi: 10.1038/s41563-019-0407-3. PubMed DOI

Sridhar V., Podjaski F., Kröger J., Jiménez-Solano A., Park B.-W., Lotsch B. V., Sitti M.. Carbon Nitride-Based Light-Driven Microswimmers with Intrinsic Photocharging Ability. Proceedings of the National Academy of Sciences. 2020;117(40):24748–24756. doi: 10.1073/pnas.2007362117. PubMed DOI PMC

Sridhar V., Yildiz E., Rodriguez-Camargo A., Lyu X., Yao L., Wrede P., Aghakhani A., Akolpoglu B. M., Podjaski F., Lotsch B. V., Sitti M.. Designing Covalent Organic Framework-Based Light-Driven Microswimmers toward Therapeutic Applications. Advanced Materials. 2023;35(25):2301126. doi: 10.1002/adma.202301126. PubMed DOI PMC

Bunea A.-I., Martella D., Nocentini S., Parmeggiani C., Taboryski R., Wiersma D. S.. Light-Powered Microrobots: Challenges and Opportunities for Hard and Soft Responsive Microswimmers. Advanced Intelligent Systems. 2021;3(4):2000256. doi: 10.1002/aisy.202000256. DOI

Wrede P., Aghakhani A., Bozuyuk U., Yildiz E., Sitti M.. Acoustic Trapping and Manipulation of Hollow Microparticles under Fluid Flow Using a Single-Lens Focused Ultrasound Transducer. ACS Applied Materials & Interfaces. 2023;15(45):52224–52236. doi: 10.1021/acsami.3c11656. PubMed DOI PMC

Bozuyuk U., Aghakhani A., Alapan Y., Yunusa M., Wrede P., Sitti M.. Reduced Rotational Flows Enable the Translation of Surface-Rolling Microrobots in Confined Spaces. Nature Communications. 2022;13(1):6289. doi: 10.1038/s41467-022-34023-z. PubMed DOI PMC

Wang W., Mallouk T. E.. A Practical Guide to Analyzing and Reporting the Movement of Nanoscale Swimmers. ACS Nano. 2021;15(10):15446–15460. doi: 10.1021/acsnano.1c07503. PubMed DOI

Novotný F., Pumera M.. Nanomotor Tracking Experiments at the Edge of Reproducibility. Scientific Reports. 2019;9(1):13222. doi: 10.1038/s41598-019-49527-w. PubMed DOI PMC

Volpe G., Bechinger C., Cichos F., Golestanian R., Löwen H., Sperl M., Volpe G.. Active Matter in Space. npj Microgravity. 2022;8(1):54. doi: 10.1038/s41526-022-00230-7. PubMed DOI PMC

Gompper G., Winkler R. G., Speck T., Solon A., Nardini C., Peruani F., Löwen H., Golestanian R., Kaupp U. B., Alvarez L.. et al. The 2020 Motile Active Matter Roadmap. Journal of Physics: Condensed Matter. 2020;32(19):193001. doi: 10.1088/1361-648X/ab6348. PubMed DOI

Najafi A., Golestanian R.. Propulsion at Low Reynolds Number. Journal of Physics: Condensed Matter. 2005;17(14):S1203. doi: 10.1088/0953-8984/17/14/009. DOI

Ramaswamy S.. The Mechanics and Statistics of Active Matter. Annual Review of Condensed Matter Physics. 2010;1(1):323–345. doi: 10.1146/annurev-conmatphys-070909-104101. DOI

Araújo N. A. M., Janssen L. M. C., Barois T., Boffetta G., Cohen I., Corbetta A., Dauchot O., Dijkstra M., Durham W. M., Dussutour A.. et al. Steering Self-Organisation through Confinement. Soft Matter. 2023;19(9):1695–1704. doi: 10.1039/D2SM01562E. PubMed DOI PMC

Illien P., Golestanian R., Sen A.. ‘Fuelled’ Motion: Phoretic Motility and Collective Behaviour of Active Colloids. Chemical Society Reviews. 2017;46(18):5508–5518. doi: 10.1039/C7CS00087A. PubMed DOI

Golestanian, R. Phoretic Active Matter. In Active Matter and Nonequilibrium Statistical Physics: Lecture Notes of the Les Houches Summer School: Volume 112, September 2018, Tailleur, J. ; Gompper, G. ; Marchetti, M. C. ; Yeomans, J. M. ; Salomon, C. Eds.; Oxford University Press, 2022.

Golestanian R., Yeomans J. M., Uchida N.. Hydrodynamic Synchronization at Low Reynolds Number. Soft Matter. 2011;7(7):3074–3082. doi: 10.1039/c0sm01121e. DOI

Golestanian R.. Three-Sphere Low-Reynolds-Number Swimmer with a Cargo Container. The European Physical Journal E. 2008;25(1):1–4. doi: 10.1140/epje/i2007-10276-2. PubMed DOI

Golestanian R., Ajdari A.. Analytic Results for the Three-Sphere Swimmer at Low Reynolds Number. Physical Review E. 2008;77(3):036308. doi: 10.1103/PhysRevE.77.036308. PubMed DOI

Nasouri B., Golestanian R.. Exact Phoretic Interaction of Two Chemically Active Particles. Physical Review Letters. 2020;124(16):168003. doi: 10.1103/PhysRevLett.124.168003. PubMed DOI

Nasouri B., Golestanian R.. Exact Axisymmetric Interaction of Phoretically Active Janus Particles. Journal of Fluid Mechanics. 2020;905:A13. doi: 10.1017/jfm.2020.753. DOI

Bennett R. R., Golestanian R.. Emergent Run-and-Tumble Behavior in a Simple Model of Chlamydomonas with Intrinsic Noise. Physical Review Letters. 2013;110(14):148102. doi: 10.1103/PhysRevLett.110.148102. PubMed DOI

Bennett R. R., Golestanian R.. Phase-Dependent Forcing and Synchronization in the Three-Sphere Model of Chlamydomonas. New Journal of Physics. 2013;15(7):075028. doi: 10.1088/1367-2630/15/7/075028. DOI

Utada A. S., Bennett R. R., Fong J. C. N., Gibiansky M. L., Yildiz F. H., Golestanian R., Wong G. C. L.. Vibrio Cholerae Use Pili and Flagella Synergistically to Effect Motility Switching and Conditional Surface Attachment. Nature Communications. 2014;5(1):4913. doi: 10.1038/ncomms5913. PubMed DOI PMC

Bennett R. R., Golestanian R.. A Steering Mechanism for Phototaxis in <i>Chlamydomonas</i>. Journal of The Royal Society Interface. 2015;12(104):20141164. doi: 10.1098/rsif.2014.1164. PubMed DOI PMC

Nasouri B., Vilfan A., Golestanian R.. Efficiency Limits of the Three-Sphere Swimmer. Physical Review Fluids. 2019;4(7):073101. doi: 10.1103/PhysRevFluids.4.073101. DOI

Nasouri B., Vilfan A., Golestanian R.. Minimum Dissipation Theorem for Microswimmers. Physical Review Letters. 2021;126(3):034503. doi: 10.1103/PhysRevLett.126.034503. PubMed DOI

Daddi-Moussa-Ider A., Nasouri B., Vilfan A., Golestanian R.. Optimal Swimmers Can Be Pullers, Pushers or Neutral Depending on the Shape. Journal of Fluid Mechanics. 2021;922:R5. doi: 10.1017/jfm.2021.562. DOI

Daddi-Moussa-Ider A., Golestanian R., Vilfan A.. Minimum Entropy Production by Microswimmers with Internal Dissipation. Nature Communications. 2023;14(1):6060. doi: 10.1038/s41467-023-41280-z. PubMed DOI PMC

Piro L., Vilfan A., Golestanian R., Mahault B.. Energetic Cost of Microswimmer Navigation: The Role of Body Shape. Physical Review Research. 2024;6(1):013274. doi: 10.1103/PhysRevResearch.6.013274. DOI

Daddi-Moussa-Ider A., Golestanian R., Vilfan A.. Hydrodynamic Efficiency Limit on a Marangoni Surfer. Journal of Fluid Mechanics. 2024;986:A32. doi: 10.1017/jfm.2024.363. DOI

Piro L., Tang E., Golestanian R.. Optimal Navigation Strategies for Microswimmers on Curved Manifolds. Physical Review Research. 2021;3(2):023125. doi: 10.1103/PhysRevResearch.3.023125. DOI

Ouazan-Reboul V., Golestanian R., Agudo-Canalejo J.. Interaction-Motif-Based Classification of Self-Organizing Metabolic Cycles. New Journal of Physics. 2023;25(10):103013. doi: 10.1088/1367-2630/acfdc2. DOI

Piro L., Golestanian R., Mahault B.. Efficiency of Navigation Strategies for Active Particles in Rugged Landscapes. Frontiers in Physics. 2022;10:na. doi: 10.3389/fphy.2022.1034267. DOI

Spagnolie S. E., Underhill P. T.. Swimming in Complex Fluids. Annual Review of Condensed Matter Physics. 2023;14:381–415. doi: 10.1146/annurev-conmatphys-040821-112149. DOI

Riley E. E., Lauga E.. Enhanced Active Swimming in Viscoelastic Fluids. Europhysics Letters. 2014;108(3):34003. doi: 10.1209/0295-5075/108/34003. DOI

Hosaka Y., Golestanian R., Daddi-Moussa-Ider A.. Hydrodynamics of an Odd Active Surfer in a Chiral Fluid. New Journal of Physics. 2023;25(8):083046. doi: 10.1088/1367-2630/aceea4. DOI

Hosaka Y., Golestanian R., Vilfan A.. Lorentz Reciprocal Theorem in Fluids with Odd Viscosity. Physical Review Letters. 2023;131(17):178303. doi: 10.1103/PhysRevLett.131.178303. PubMed DOI

Ebbens S., Jones R. A. L., Ryan A. J., Golestanian R., Howse J. R.. Self-Assembled Autonomous Runners and Tumblers. Physical Review E. 2010;82(1):015304. doi: 10.1103/PhysRevE.82.015304. PubMed DOI

Ebbens S., Tu M.-H., Howse J. R., Golestanian R.. Size Dependence of the Propulsion Velocity for Catalytic Janus-Sphere Swimmers. Physical Review E. 2012;85(2):020401. doi: 10.1103/PhysRevE.85.020401. PubMed DOI

Ibrahim Y., Golestanian R., Liverpool T. B.. Shape Dependent Phoretic Propulsion of Slender Active Particles. Physical Review Fluids. 2018;3(3):033101. doi: 10.1103/PhysRevFluids.3.033101. DOI

Ebbens S., Gregory D. A., Dunderdale G., Howse J. R., Ibrahim Y., Liverpool T. B., Golestanian R.. Electrokinetic Effects in Catalytic Platinum-Insulator Janus Swimmers. Europhysics Letters. 2014;106(5):58003. doi: 10.1209/0295-5075/106/58003. DOI

Ibrahim Y., Golestanian R., Liverpool T. B.. Multiple Phoretic Mechanisms in the Self-Propulsion of a Pt-Insulator Janus Swimmer. Journal of Fluid Mechanics. 2017;828:318–352. doi: 10.1017/jfm.2017.502. DOI

Brown A., Poon W.. Ionic Effects in Self-Propelled Pt-Coated Janus Swimmers. Soft Matter. 2014;10(22):4016–4027. doi: 10.1039/C4SM00340C. PubMed DOI

Campbell A. I., Ebbens S. J., Illien P., Golestanian R.. Experimental Observation of Flow Fields around Active Janus Spheres. Nature Communications. 2019;10(1):3952. doi: 10.1038/s41467-019-11842-1. PubMed DOI PMC

Sharan P., Daddi-Moussa-Ider A., Agudo-Canalejo J., Golestanian R., Simmchen J.. Pair Interaction between Two Catalytically Active Colloids. Small. 2023;19(36):2300817. doi: 10.1002/smll.202300817. PubMed DOI

Tierno P., Golestanian R., Pagonabarraga I., Sagués F.. Controlled Swimming in Confined Fluids of Magnetically Actuated Colloidal Rotors. Physical Review Letters. 2008;101(21):218304. doi: 10.1103/PhysRevLett.101.218304. PubMed DOI

Tierno P., Golestanian R., Pagonabarraga I., Sagués F.. Magnetically Actuated Colloidal Microswimmers. The Journal of Physical Chemistry B. 2008;112(51):16525–16528. doi: 10.1021/jp808354n. PubMed DOI

Tierno P., Güell O., Sagués F., Golestanian R., Pagonabarraga I.. Controlled Propulsion in Viscous Fluids of Magnetically Actuated Colloidal Doublets. Physical Review E. 2010;81(1):011402. doi: 10.1103/PhysRevE.81.011402. PubMed DOI

Matsunaga D., Hamilton J. K., Meng F., Bukin N., Martin E. L., Ogrin F. Y., Yeomans J. M., Golestanian R.. Controlling Collective Rotational Patterns of Magnetic Rotors. Nature Communications. 2019;10(1):4696. doi: 10.1038/s41467-019-12665-w. PubMed DOI PMC

Meng F., Ortiz-Ambriz A., Massana-Cid H., Vilfan A., Golestanian R., Tierno P.. Field Synchronized Bidirectional Current in Confined Driven Colloids. Physical Review Research. 2020;2(1):012025. doi: 10.1103/PhysRevResearch.2.012025. DOI

Kawai T., Matsunaga D., Meng F., Yeomans J. M., Golestanian R.. Degenerate States, Emergent Dynamics and Fluid Mixing by Magnetic Rotors. Soft Matter. 2020;16(28):6484–6492. doi: 10.1039/D0SM00454E. PubMed DOI

Golestanian R., Ajdari A.. Mechanical Response of a Small Swimmer Driven by Conformational Transitions. Physical Review Letters. 2008;100(3):038101. doi: 10.1103/PhysRevLett.100.038101. PubMed DOI

Golestanian R., Ajdari A.. Stochastic Low Reynolds Number Swimmers. Journal of Physics: Condensed Matter. 2009;21(20):204104. doi: 10.1088/0953-8984/21/20/204104. PubMed DOI

Najafi A., Golestanian R.. Coherent Hydrodynamic Coupling for Stochastic Swimmers. Europhysics Letters. 2010;90(6):68003. doi: 10.1209/0295-5075/90/68003. DOI

Golestanian R.. Synthetic Mechanochemical Molecular Swimmer. Physical Review Letters. 2010;105(1):018103. doi: 10.1103/PhysRevLett.105.018103. PubMed DOI

Chatzittofi M., Agudo-Canalejo J., Golestanian R.. Entropy Production and Thermodynamic Inference for Stochastic Microswimmers. Physical Review Research. 2024;6(2):L022044. doi: 10.1103/PhysRevResearch.6.L022044. DOI

Golestanian R.. Anomalous Diffusion of Symmetric and Asymmetric Active Colloids. Physical Review Letters. 2009;102(18):188305. doi: 10.1103/PhysRevLett.102.188305. PubMed DOI

Golestanian R.. Enhanced Diffusion of Enzymes That Catalyze Exothermic Reactions. Physical Review Letters. 2015;115(10):108102. doi: 10.1103/PhysRevLett.115.108102. PubMed DOI

Illien P., Zhao X., Dey K. K., Butler P. J., Sen A., Golestanian R.. Exothermicity Is Not a Necessary Condition for Enhanced Diffusion of Enzymes. Nano Letters. 2017;17(7):4415–4420. doi: 10.1021/acs.nanolett.7b01502. PubMed DOI

Agudo-Canalejo J., Adeleke-Larodo T., Illien P., Golestanian R.. Enhanced Diffusion and Chemotaxis at the Nanoscale. Accounts of Chemical Research. 2018;51(10):2365–2372. doi: 10.1021/acs.accounts.8b00280. PubMed DOI

Adeleke-Larodo T., Agudo-Canalejo J., Golestanian R.. Chemical and Hydrodynamic Alignment of an Enzyme. The Journal of Chemical Physics. 2019;150(11):115102. doi: 10.1063/1.5081717. PubMed DOI

Adeleke-Larodo T., Illien P., Golestanian R.. Fluctuation-Induced Hydrodynamic Coupling in an Asymmetric, Anisotropic Dumbbell. The European Physical Journal E. 2019;42(3):39. doi: 10.1140/epje/i2019-11799-5. PubMed DOI

Agudo-Canalejo J., Golestanian R.. Diffusion and Steady State Distributions of Flexible Chemotactic Enzymes. The European Physical Journal Special Topics. 2020;229(17):2791–2806. doi: 10.1140/epjst/e2020-900224-3. DOI

Zhang Y., Hess H.. Enhanced Diffusion of Catalytically Active Enzymes. ACS Central Science. 2019;5(6):939–948. doi: 10.1021/acscentsci.9b00228. PubMed DOI PMC

Bellotto N., Agudo-Canalejo J., Colin R., Golestanian R., Malengo G., Sourjik V.. Dependence of Diffusion in Escherichia Coli Cytoplasm on Protein Size, Environmental Conditions, and Cell Growth. eLife. 2022;11:e82654. doi: 10.7554/eLife.82654. PubMed DOI PMC

Illien P., Adeleke-Larodo T., Golestanian R.. Diffusion of an Enzyme: The Role of Fluctuation-Induced Hydrodynamic Coupling. Europhysics Letters. 2017;119(4):40002. doi: 10.1209/0295-5075/119/40002. DOI

Testa A., Dindo M., Rebane A. A., Nasouri B., Style R. W., Golestanian R., Dufresne E. R., Laurino P.. Sustained Enzymatic Activity and Flow in Crowded Protein Droplets. Nature Communications. 2021;12(1):6293. doi: 10.1038/s41467-021-26532-0. PubMed DOI PMC

Agudo-Canalejo J., Illien P., Golestanian R.. Cooperatively Enhanced Reactivity and “Stabilitaxis” of Dissociating Oligomeric Proteins. Proceedings of the National Academy of Sciences. 2020;117(22):11894–11900. doi: 10.1073/pnas.1919635117. PubMed DOI PMC

Agudo-Canalejo J., Adeleke-Larodo T., Illien P., Golestanian R.. Synchronization and Enhanced Catalysis of Mechanically Coupled Enzymes. Physical Review Letters. 2021;127(20):208103. doi: 10.1103/PhysRevLett.127.208103. PubMed DOI

Chatzittofi M., Golestanian R., Agudo-Canalejo J.. Collective Synchronization of Dissipatively-Coupled Noise-Activated Processes. New Journal of Physics. 2023;25(9):093014. doi: 10.1088/1367-2630/acf2bc. DOI

Vilfan A., Subramani S., Bodenschatz E., Golestanian R., Guido I.. Flagella-Like Beating of a Single Microtubule. Nano Letters. 2019;19(5):3359–3363. doi: 10.1021/acs.nanolett.9b01091. PubMed DOI PMC

Collesano L., Guido I., Golestanian R., Vilfan A.. Active Beating Modes of Two Clamped Filaments Driven by Molecular Motors. Journal of The Royal Society Interface. 2022;19(186):20210693. doi: 10.1098/rsif.2021.0693. PubMed DOI PMC

Guido I., Vilfan A., Ishibashi K., Sakakibara H., Shiraga M., Bodenschatz E., Golestanian R., Oiwa K.. A Synthetic Minimal Beating Axoneme. Small. 2022;18(32):2107854. doi: 10.1002/smll.202107854. PubMed DOI

Meng F., Matsunaga D., Yeomans J. M., Golestanian R.. Magnetically-Actuated Artificial Cilium: A Simple Theoretical Model. Soft Matter. 2019;15(19):3864–3871. doi: 10.1039/C8SM02561D. PubMed DOI

Hickey D., Vilfan A., Golestanian R.. Ciliary Chemosensitivity Is Enhanced by Cilium Geometry and Motility. eLife. 2021;10:e66322. doi: 10.7554/eLife.66322. PubMed DOI PMC

Pumm A.-K., Engelen W., Kopperger E., Isensee J., Vogt M., Kozina V., Kube M., Honemann M. N., Bertosin E., Langecker M.. et al. A DNA Origami Rotary Ratchet Motor. Nature. 2022;607(7919):492–498. doi: 10.1038/s41586-022-04910-y. PubMed DOI PMC

Shi X., Pumm A.-K., Isensee J., Zhao W., Verschueren D., Martin-Gonzalez A., Golestanian R., Dietz H., Dekker C.. Sustained Unidirectional Rotation of a Self-Organized DNA Rotor on a Nanopore. Nature Physics. 2022;18(9):1105–1111. doi: 10.1038/s41567-022-01683-z. DOI

Shi X., Pumm A.-K., Maffeo C., Kohler F., Feigl E., Zhao W., Verschueren D., Golestanian R., Aksimentiev A., Dietz H.. et al. A DNA Turbine Powered by a Transmembrane Potential across a Nanopore. Nature Nanotechnology. 2024;19(3):338–344. doi: 10.1038/s41565-023-01527-8. PubMed DOI PMC

Uchida N., Golestanian R.. Synchronization in a Carpet of Hydrodynamically Coupled Rotors with Random Intrinsic Frequency. Europhysics Letters. 2010;89(5):50011. doi: 10.1209/0295-5075/89/50011. DOI

Uchida N., Golestanian R.. Generic Conditions for Hydrodynamic Synchronization. Physical Review Letters. 2011;106(5):058104. doi: 10.1103/PhysRevLett.106.058104. PubMed DOI

Uchida N., Golestanian R.. Synchronization and Collective Dynamics in a Carpet of Microfluidic Rotors. Physical Review Letters. 2010;104(17):178103. doi: 10.1103/PhysRevLett.104.178103. PubMed DOI

Uchida N., Golestanian R.. Hydrodynamic Synchronization between Objects with Cyclic Rigid Trajectories. The European Physical Journal E. 2012;35(12):135. doi: 10.1140/epje/i2012-12135-5. PubMed DOI

Maestro A., Bruot N., Kotar J., Uchida N., Golestanian R., Cicuta P.. Control of Synchronization in Models of Hydrodynamically Coupled Motile Cilia. Communications Physics. 2018;1(1):28. doi: 10.1038/s42005-018-0031-6. DOI

Meng F., Bennett R. R., Uchida N., Golestanian R.. Conditions for Metachronal Coordination in Arrays of Model Cilia. Proceedings of the National Academy of Sciences. 2021;118(32):e2102828118. doi: 10.1073/pnas.2102828118. PubMed DOI PMC

Hickey D. J., Golestanian R., Vilfan A.. Nonreciprocal Interactions Give Rise to Fast Cilium Synchronization in Finite Systems. Proceedings of the National Academy of Sciences. 2023;120(40):e2307279120. doi: 10.1073/pnas.2307279120. PubMed DOI PMC

Cates M. E., Tailleur J.. Motility-Induced Phase Separation. Annual Review of Condensed Matter Physics. 2015;6:219–244. doi: 10.1146/annurev-conmatphys-031214-014710. DOI

Soto R., Golestanian R.. Run-and-Tumble Dynamics in a Crowded Environment: Persistent Exclusion Process for Swimmers. Physical Review E. 2014;89(1):012706. doi: 10.1103/PhysRevE.89.012706. PubMed DOI

Matas-Navarro R., Golestanian R., Liverpool T. B., Fielding S. M.. Hydrodynamic Suppression of Phase Separation in Active Suspensions. Physical Review E. 2014;90(3):032304. doi: 10.1103/PhysRevE.90.032304. PubMed DOI

Massana-Cid H., Meng F., Matsunaga D., Golestanian R., Tierno P.. Tunable Self-Healing of Magnetically Propelling Colloidal Carpets. Nature Communications. 2019;10(1):2444. doi: 10.1038/s41467-019-10255-4. PubMed DOI PMC

Meng F., Matsunaga D., Mahault B., Golestanian R.. Magnetic Microswimmers Exhibit Bose-Einstein-Like Condensation. Physical Review Letters. 2021;126(7):078001. doi: 10.1103/PhysRevLett.126.078001. PubMed DOI

Cotton M. W., Golestanian R., Agudo-Canalejo J.. Catalysis-Induced Phase Separation and Autoregulation of Enzymatic Activity. Physical Review Letters. 2022;129(15):158101. doi: 10.1103/PhysRevLett.129.158101. PubMed DOI

Golestanian R.. Bose-Einstein-Like Condensation in Scalar Active Matter with Diffusivity Edge. Physical Review E. 2019;100(1):010601. doi: 10.1103/PhysRevE.100.010601. PubMed DOI

Mahault B., Golestanian R.. Bose-Einstein-Like Condensation Due to Diffusivity Edge under Periodic Confinement. New Journal of Physics. 2020;22(6):063045. doi: 10.1088/1367-2630/ab90d8. DOI

Berx J., Bose A., Golestanian R., Mahault B.. Reentrant Condensation Transition in a Model of Driven Scalar Active Matter with Diffusivity Edge. Europhysics Letters. 2023;142(6):67004. doi: 10.1209/0295-5075/acdcb7. DOI

Golestanian R.. Collective Behavior of Thermally Active Colloids. Physical Review Letters. 2012;108(3):038303. doi: 10.1103/PhysRevLett.108.038303. PubMed DOI

Prathyusha K. R., Saha S., Golestanian R.. Anomalous Fluctuations in a Droplet of Chemically Active Colloids or Enzymes. Physical Review Letters. 2024;133(5):058401. doi: 10.1103/PhysRevLett.133.058401. PubMed DOI

Illien P., Golestanian R.. Chemotactic Particles as Strong Electrolytes: Debye-Hückel Approximation and Effective Mobility Law. The Journal of Chemical Physics. 2024;160(15):154901. doi: 10.1063/5.0203593. PubMed DOI

Gelimson A., Golestanian R.. Collective Dynamics of Dividing Chemotactic Cells. Physical Review Letters. 2015;114(2):028101. doi: 10.1103/PhysRevLett.114.028101. PubMed DOI

Mahdisoltani S., Zinati R. B. A., Duclut C., Gambassi A., Golestanian R.. Nonequilibrium Polarity-Induced Chemotaxis: Emergent Galilean Symmetry and Exact Scaling Exponents. Physical Review Research. 2021;3(1):013100. doi: 10.1103/PhysRevResearch.3.013100. DOI

Ben Alì Zinati R., Duclut C., Mahdisoltani S., Gambassi A., Golestanian R.. Stochastic Dynamics of Chemotactic Colonies with Logistic Growth. Europhysics Letters. 2021;136(5):50003. doi: 10.1209/0295-5075/ac48c9. DOI

Kranz W. T., Gelimson A., Zhao K., Wong G. C. L., Golestanian R.. Effective Dynamics of Microorganisms That Interact with Their Own Trail. Physical Review Letters. 2016;117(3):038101. doi: 10.1103/PhysRevLett.117.038101. PubMed DOI

Gelimson A., Zhao K., Lee C. K., Kranz W. T., Wong G. C. L., Golestanian R.. Multicellular Self-Organization of P. Aeruginosa Due to Interactions with Secreted Trails. Physical Review Letters. 2016;117(17):178102. doi: 10.1103/PhysRevLett.117.178102. PubMed DOI

Michelin S., Lauga E.. Phoretic Self-Propulsion at Finite Péclet Numbers. Journal of Fluid Mechanics. 2014;747:572–604. doi: 10.1017/jfm.2014.158. DOI

Kranz W. T., Golestanian R.. Trail-Mediated Self-Interaction. The Journal of Chemical Physics. 2019;150(21):214111. doi: 10.1063/1.5081122. PubMed DOI

Hokmabad B. V., Agudo-Canalejo J., Saha S., Golestanian R., Maass C. C.. Chemotactic Self-Caging in Active Emulsions. Proceedings of the National Academy of Sciences. 2022;119(24):e2122269119. doi: 10.1073/pnas.2122269119. PubMed DOI PMC

Soto R., Golestanian R.. Self-Assembly of Catalytically Active Colloidal Molecules: Tailoring Activity through Surface Chemistry. Physical Review Letters. 2014;112(6):068301. doi: 10.1103/PhysRevLett.112.068301. PubMed DOI

Cohen J. A., Golestanian R.. Emergent Cometlike Swarming of Optically Driven Thermally Active Colloids. Physical Review Letters. 2014;112(6):068302. doi: 10.1103/PhysRevLett.112.068302. PubMed DOI

Soto R., Golestanian R.. Self-Assembly of Active Colloidal Molecules with Dynamic Function. Physical Review E. 2015;91(5):052304. doi: 10.1103/PhysRevE.91.052304. PubMed DOI

Agudo-Canalejo J., Golestanian R.. Active Phase Separation in Mixtures of Chemically Interacting Particles. Physical Review Letters. 2019;123(1):018101. doi: 10.1103/PhysRevLett.123.018101. PubMed DOI

Ouazan-Reboul V., Agudo-Canalejo J., Golestanian R.. Non-Equilibrium Phase Separation in Mixtures of Catalytically Active Particles: Size Dispersity and Screening Effects. The European Physical Journal E. 2021;44(9):113. doi: 10.1140/epje/s10189-021-00118-6. PubMed DOI PMC

Saha S., Ramaswamy S., Golestanian R.. Pairing, Waltzing and Scattering of Chemotactic Active Colloids. New Journal of Physics. 2019;21(6):063006. doi: 10.1088/1367-2630/ab20fd. DOI

Duan Y., Agudo-Canalejo J., Golestanian R., Mahault B.. Dynamical Pattern Formation without Self-Attraction in Quorum-Sensing Active Matter: The Interplay between Nonreciprocity and Motility. Physical Review Letters. 2023;131(14):148301. doi: 10.1103/PhysRevLett.131.148301. PubMed DOI

Tucci G., Golestanian R., Saha S.. Nonreciprocal Collective Dynamics in a Mixture of Phoretic Janus Colloids. New Journal of Physics. 2024;26(7):073006. doi: 10.1088/1367-2630/ad50ff. DOI

Saha S., Agudo-Canalejo J., Golestanian R.. Scalar Active Mixtures: The Nonreciprocal Cahn-Hilliard Model. Physical Review X. 2020;10(4):041009. doi: 10.1103/PhysRevX.10.041009. DOI

You Z., Baskaran A., Marchetti M. C.. Nonreciprocity as a Generic Route to Traveling States. Proceedings of the National Academy of Sciences. 2020;117(33):19767–19772. doi: 10.1073/pnas.2010318117. PubMed DOI PMC

Rana N., Golestanian R.. Defect Solutions of the Nonreciprocal Cahn-Hilliard Model: Spirals and Targets. Physical Review Letters. 2024;133(7):078301. doi: 10.1103/PhysRevLett.133.078301. PubMed DOI

Osat S., Golestanian R.. Non-Reciprocal Multifarious Self-Organization. Nature Nanotechnology. 2023;18(1):79–85. doi: 10.1038/s41565-022-01258-2. PubMed DOI PMC

Osat S., Metson J., Kardar M., Golestanian R.. Escaping Kinetic Traps Using Nonreciprocal Interactions. Physical Review Letters. 2024;133(2):028301. doi: 10.1103/PhysRevLett.133.028301. PubMed DOI

Ouazan-Reboul V., Agudo-Canalejo J., Golestanian R.. Self-Organization of Primitive Metabolic Cycles Due to Non-Reciprocal Interactions. Nature Communications. 2023;14(1):4496. doi: 10.1038/s41467-023-40241-w. PubMed DOI PMC

Ouazan-Reboul V., Golestanian R., Agudo-Canalejo J.. Network Effects Lead to Self-Organization in Metabolic Cycles of Self-Repelling Catalysts. Physical Review Letters. 2023;131(12):128301. doi: 10.1103/PhysRevLett.131.128301. PubMed DOI

Thampi S. P., Golestanian R., Yeomans J. M.. Velocity Correlations in an Active Nematic. Physical Review Letters. 2013;111(11):118101. doi: 10.1103/PhysRevLett.111.118101. PubMed DOI

Thampi S. P., Golestanian R., Yeomans J. M.. Instabilities and Topological Defects in Active Nematics. Europhysics Letters. 2014;105(1):18001. doi: 10.1209/0295-5075/105/18001. DOI

Thampi S. P., Golestanian R., Yeomans J. M.. Vorticity, Defects and Correlations in Active Turbulence. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2014;372(2029):20130366. doi: 10.1098/rsta.2013.0366. PubMed DOI PMC

Thampi S. P., Golestanian R., Yeomans J. M.. Active Nematic Materials with Substrate Friction. Physical Review E. 2014;90(6):062307. doi: 10.1103/PhysRevE.90.062307. PubMed DOI

Thampi S. P., Golestanian R., Yeomans J. M.. Driven Active and Passive Nematics. Molecular Physics. 2015;113(17-18):2656–2665. doi: 10.1080/00268976.2015.1031840. DOI

Thampi S. P., Doostmohammadi A., Golestanian R., Yeomans J. M.. Intrinsic Free Energy in Active Nematics. Europhysics Letters. 2015;112(2):28004. doi: 10.1209/0295-5075/112/28004. DOI

Strübing T., Khosravanizadeh A., Vilfan A., Bodenschatz E., Golestanian R., Guido I.. Wrinkling Instability in 3D Active Nematics. Nano Letters. 2020;20(9):6281–6288. doi: 10.1021/acs.nanolett.0c01546. PubMed DOI PMC

Martínez-Prat B., Alert R., Meng F., Ignés-Mullol J., Joanny J.-F., Casademunt J., Golestanian R., Sagués F.. Scaling Regimes of Active Turbulence with External Dissipation. Physical Review X. 2021;11(3):031065. doi: 10.1103/PhysRevX.11.031065. DOI

Thampi S. P., Doostmohammadi A., Shendruk T. N., Golestanian R., Yeomans J. M.. Active Micromachines: Microfluidics Powered by Mesoscale Turbulence. Science Advances. 2016;2(7):e1501854. doi: 10.1126/sciadv.1501854. PubMed DOI PMC

Jülicher F., Prost J.. Generic Theory of Colloidal Transport. The European Physical Journal E. 2009;29(1):27–36. doi: 10.1140/epje/i2008-10446-8. PubMed DOI

Oshanin G., Popescu M. N., Dietrich S.. Active Colloids in the Context of Chemical Kinetics. Journal of Physics A: Mathematical and Theoretical. 2017;50(13):134001. doi: 10.1088/1751-8121/aa5e91. DOI

Gaspard P., Kapral R.. Fluctuating Chemohydrodynamics and the Stochastic Motion of Self-Diffusiophoretic Particles. The Journal of Chemical Physics. 2018;148(13):134104. doi: 10.1063/1.5020442. PubMed DOI

Popescu M. N., Dietrich S., Tasinkevych M., Ralston J.. Phoretic Motion of Spheroidal Particles Due to Self-Generated Solute Gradients. The European Physical Journal E. 2010;31(4):351–367. doi: 10.1140/epje/i2010-10593-3. PubMed DOI

Popescu M. N., Tasinkevych M., Dietrich S.. Pulling and Pushing a Cargo with a Catalytically Active Carrier. Europhysics Letters. 2011;95(2):28004. doi: 10.1209/0295-5075/95/28004. DOI

Michelin S., Lauga E.. Autophoretic Locomotion from Geometric Asymmetry. The European Physical Journal E. 2015;38(2):7. doi: 10.1140/epje/i2015-15007-6. PubMed DOI

Sharifi-Mood N., Mozaffari A., Córdova-Figueroa U. M.. Pair Interaction of Catalytically Active Colloids: From Assembly to Escape. Journal of Fluid Mechanics. 2016;798:910–954. doi: 10.1017/jfm.2016.317. DOI

Pozrikidis, C. A Practical Guide to Boundary Element Methods with the Software Library Bemlib; CRC Press, 2002.

Courant R.. Variational Methods for the Solution of Problems of Equilibrium and Vibrations. Bulletin of the American Mathematical Society. 2012;49:1–23. doi: 10.1090/S0002-9904-1943-07818-4. DOI

Elfring G. J., Brady J. F.. Active Stokesian Dynamics. Journal of Fluid Mechanics. 2022;952:A19. doi: 10.1017/jfm.2022.909. DOI

Pooley C. M., Yeomans J. M.. Lattice Boltzmann Simulation Techniques for Simulating Microscopic Swimmers. Computer Physics Communications. 2008;179(1):159–164. doi: 10.1016/j.cpc.2008.01.044. DOI

Shaebani M. R., Wysocki A., Winkler R. G., Gompper G., Rieger H.. Computational Models for Active matter. Nature Reviews Physics. 2020;2(4):181–199. doi: 10.1038/s42254-020-0152-1. DOI

Baker R. D., Montenegro-Johnson T., Sediako A. D., Thomson M. J., Sen A., Lauga E., Aranson I. S.. Shape-Programmed 3D Printed Swimming Microtori for the Transport of Passive and Active Agents. Nature Communications. 2019;10(1):4932. doi: 10.1038/s41467-019-12904-0. PubMed DOI PMC

Unruh A., Brooks A. M., Aranson I. S., Sen A.. Programming Motion of Platinum Microparticles: From Linear to Orbital. ACS Applied Engineering Materials. 2023;1(4):1126–1133. doi: 10.1021/acsaenm.2c00249. DOI

Schmieding L. C., Lauga E., Montenegro-Johnson T. D.. Autophoretic Flow on a Torus. Physical Review Fluids. 2017;2(3):034201. doi: 10.1103/PhysRevFluids.2.034201. DOI

Popescu M. N., Uspal W. E., Domínguez A., Dietrich S.. Effective Interactions between Chemically Active Colloids and Interfaces. Accounts of Chemical Research. 2018;51(12):2991–2997. doi: 10.1021/acs.accounts.8b00237. PubMed DOI

Natale G., Datt C., Hatzikiriakos S. G., Elfring G. J.. Autophoretic Locomotion in Weakly Viscoelastic Fluids at Finite Péclet Number. Physics of Fluids. 2017;29(12):123102. doi: 10.1063/1.5002729. DOI

Romanczuk P., Bär M., Ebeling W., Lindner B., Schimansky-Geier L.. Active Brownian Particles. The European Physical Journal Special Topics. 2012;202(1):1–162. doi: 10.1140/epjst/e2012-01529-y. DOI

Zöttl A., Stark H.. Emergent Behavior in Active Colloids. Journal of Physics: Condensed Matter. 2016;28(25):253001. doi: 10.1088/0953-8984/28/25/253001. DOI

Gaspard P., Kapral R.. Communication: Mechanochemical Fluctuation Theorem and Thermodynamics of Self-Phoretic Motors. The Journal of Chemical Physics. 2017;147(21):211101. doi: 10.1063/1.5008562. PubMed DOI

De Corato M., Pagonabarraga I.. Onsager Reciprocal Relations and Chemo-Mechanical Coupling for Chemically Active Colloids. The Journal of Chemical Physics. 2022;157(8):084901. doi: 10.1063/5.0098425. PubMed DOI

Gaspard P., Kapral R.. The Stochastic Motion of Self-Thermophoretic Janus Particles. Journal of Statistical Mechanics: Theory and Experiment. 2019;2019(7):074001. doi: 10.1088/1742-5468/ab252f. DOI

Gaspard P., Kapral R.. Thermodynamics and Statistical Mechanics of Chemically Powered Synthetic Nanomotors. Advances in Physics: X. 2019;4(1):1602480. doi: 10.1080/23746149.2019.1602480. DOI

Robertson B., Schofield J., Gaspard P., Kapral R.. Molecular Theory of Langevin Dynamics for Active Self-Diffusiophoretic Colloids. The Journal of Chemical Physics. 2020;153(12):124104. doi: 10.1063/5.0020553. PubMed DOI

Robertson B., Schofield J., Kapral R.. Microscopic Theory of a Janus Motor in a Non-Equilibrium Fluid: Surface Hydrodynamics and Boundary Conditions. The Journal of Chemical Physics. 2024;160(1):014502. doi: 10.1063/5.0185361. PubMed DOI

Huang M. J., Schofield J., Gaspard P., Kapral R.. Dynamics of Janus Motors with Microscopically Reversible Kinetics. The Journal of Chemical Physics. 2018;149(2):024904. doi: 10.1063/1.5029344. PubMed DOI

Yang M., Ripoll M.. Simulations of Thermophoretic Nanoswimmers. Physical Review E. 2011;84(6):061401. doi: 10.1103/PhysRevE.84.061401. PubMed DOI

Yang M., Wysocki A., Ripoll M.. Hydrodynamic Simulations of Self-Phoretic Microswimmers. Soft Matter. 2014;10(33):6208–6218. doi: 10.1039/C4SM00621F. PubMed DOI

Heidari M., Kremer K., Golestanian R., Potestio R., Cortes-Huerto R.. Open-Boundary Hamiltonian Adaptive Resolution. From Grand Canonical to Non-Equilibrium Molecular Dynamics Simulations. The Journal of Chemical Physics. 2020;152(19):194104. doi: 10.1063/1.5143268. PubMed DOI

Rapaport D. C.. Microscale Swimming: The Molecular Dynamics Approach. Physical Review Letters. 2007;99(23):238101. doi: 10.1103/PhysRevLett.99.238101. PubMed DOI

Colberg P. H., Kapral R.. Ångström-Scale Chemically Powered Motors. Europhysics Letters. 2014;106(3):30004. doi: 10.1209/0295-5075/106/30004. DOI

Malevanets A., Kapral R.. Mesoscopic Model for Solvent Dynamics. The Journal of Chemical Physics. 1999;110(17):8605–8613. doi: 10.1063/1.478857. DOI

Malevanets A., Kapral R.. Solute Molecular Dynamics in a Mesoscale Solvent. The Journal of Chemical Physics. 2000;112(16):7260–7269. doi: 10.1063/1.481289. DOI

Kapral R.. Multiparticle Collision Dynamics: Simulation of Complex Systems on Mesoscales. Advances in Chemical Physics. 2008;140:89–146. doi: 10.1002/9780470371572.ch2. DOI

Gompper, G. ; Ihle, T. ; Kroll, D. M. ; Winkler, R. G. . Multi-Particle Collision Dynamics: A Particle-Based Mesoscale Simulation Approach to the Hydrodynamics of Complex Fluids. In Advanced Computer Simulation Approaches for Soft Matter Sciences III, Holm, C. ; Kremer, K. Eds.; Springer Berlin Heidelberg, 2009; pp 1-87.

Hoogerbrugge P. J., Koelman J. M. V. A.. Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics. Europhysics Letters. 1992;19(3):155. doi: 10.1209/0295-5075/19/3/001. DOI

Español P., Warren P.. Statistical Mechanics of Dissipative Particle Dynamics. Europhysics Letters. 1995;30(4):191. doi: 10.1209/0295-5075/30/4/001. DOI

Rohlf K., Fraser S., Kapral R.. Reactive Multiparticle Collision Dynamics. Computer Physics Communications. 2008;179(1):132–139. doi: 10.1016/j.cpc.2008.01.027. DOI

Fan R., Habibi P., Padding J. T., Hartkamp R.. Coupling Mesoscale Transport to Catalytic Surface Reactions in a Hybrid Model. The Journal of Chemical Physics. 2022;156(8):084105. doi: 10.1063/5.0081829. PubMed DOI

Rückner G., Kapral R.. Chemically Powered Nanodimers. Physical Review Letters. 2007;98(15):150603. doi: 10.1103/PhysRevLett.98.150603. PubMed DOI

Huang M.-J., Schofield J., Gaspard P., Kapral R.. From Single Particle Motion to Collective Dynamics in Janus Motor Systems. The Journal of Chemical Physics. 2019;150(12):124110. doi: 10.1063/1.5081820. PubMed DOI

Gaspard P., Grosfils P., Huang M.-J., Kapral R.. Finite-Time Fluctuation Theorem for Diffusion-Influenced Surface Reactions on Spherical and Janus Catalytic Particles. Journal of Statistical Mechanics: Theory and Experiment. 2018;2018(12):123206. doi: 10.1088/1742-5468/aaeda1. DOI

Fedosov D. A., Sengupta A., Gompper G.. Effect of Fluid-Colloid Interactions on the Mobility of a Thermophoretic Microswimmer in Non-Ideal Fluids. Soft Matter. 2015;11(33):6703–6715. doi: 10.1039/C5SM01364J. PubMed DOI

Tao Y.-G., Götze I. O., Gompper G.. Multiparticle Collision Dynamics Modeling of Viscoelastic Fluids. The Journal of Chemical Physics. 2008;128(14):144902. doi: 10.1063/1.2850082. PubMed DOI

Sahoo S., Singh S. P., Thakur S.. Enhanced Self-Propulsion of a Sphere-Dimer in Viscoelastic Fluid. Soft Matter. 2019;15(10):2170–2177. doi: 10.1039/C8SM02311E. PubMed DOI

Qi K., Westphal E., Gompper G., Winkler R. G.. Enhanced Rotational Motion of Spherical Squirmer in Polymer Solutions. Physical Review Letters. 2020;124(6):068001. doi: 10.1103/PhysRevLett.124.068001. PubMed DOI

Barriuso Gutiérrez C. M., Martín-Roca J., Bianco V., Pagonabarraga I., Valeriani C.. Simulating Microswimmers under Confinement with Dissipative Particle (Hydro) Dynamics. Frontiers in Physics. 2022;10:na. doi: 10.3389/fphy.2022.926609. DOI

Thakur S., Qiao L., Kapral R.. Self-Propelled Motors in Complex Fluids and as Constituents of Active Materials. Europhysics Letters. 2022;138(3):37001. doi: 10.1209/0295-5075/ac6e84. DOI

de Buyl P., Kapral R.. Phoretic Self-Propulsion: A Mesoscopic Description of Reaction Dynamics That Powers Motion. Nanoscale. 2013;5(4):1337–1344. doi: 10.1039/c2nr33711h. PubMed DOI

McGovern A. D., Huang M.-J., Wang J., Kapral R., Aranson I. S.. Multifunctional Chiral Chemically-Powered Micropropellers for Cargo Transport and Manipulation. Small. 2024;20(11):2304773. doi: 10.1002/smll.202304773. PubMed DOI

Saha S., Golestanian R., Ramaswamy S.. Clusters, Asters, and Collective Oscillations in Chemotactic Colloids. Physical Review E. 2014;89(6):062316. doi: 10.1103/PhysRevE.89.062316. PubMed DOI

Elgeti J., Winkler R. G., Gompper G.. Physics of MicroswimmersSingle Particle Motion and Collective Behavior: A Review. Reports on Progress in Physics. 2015;78(5):056601. doi: 10.1088/0034-4885/78/5/056601. PubMed DOI

Stark H.. Artificial Chemotaxis of Self-Phoretic Active Colloids: Collective Behavior. Accounts of Chemical Research. 2018;51(11):2681–2688. doi: 10.1021/acs.accounts.8b00259. PubMed DOI

Robertson B., Huang M.-J., Chen J.-X., Kapral R.. Synthetic Nanomotors: Working Together through Chemistry. Accounts of Chemical Research. 2018;51(10):2355–2364. doi: 10.1021/acs.accounts.8b00239. PubMed DOI

Saintillan D.. Rheology of Active Fluids. Annual Review of Fluid Mechanics. 2018;50(1):563–592. doi: 10.1146/annurev-fluid-010816-060049. DOI

Lighthill M. J.. On the Squirming Motion of Nearly Spherical Deformable Bodies through Liquids at Very Small Reynolds Numbers. Communications on Pure and Applied Mathematics. 1952;5(2):109–118. doi: 10.1002/cpa.3160050201. DOI

Blake J. R.. A Spherical Envelope Approach to Ciliary Propulsion. Journal of Fluid Mechanics. 1971;46(1):199–208. doi: 10.1017/S002211207100048X. DOI

Pohl O., Stark H.. Dynamic Clustering and Chemotactic Collapse of Self-Phoretic Active Particles. Physical Review Letters. 2014;112(23):238303. doi: 10.1103/PhysRevLett.112.238303. PubMed DOI

Bialké J., Speck T., Löwen H.. Active Colloidal Suspensions: Clustering and Phase Behavior. Journal of Non-Crystalline Solids. 2015;407:367–375. doi: 10.1016/j.jnoncrysol.2014.08.011. DOI

Mallory S. A., Alarcon F., Cacciuto A., Valeriani C.. Self-Assembly of Active Amphiphilic Janus Particles. New Journal of Physics. 2017;19(12):125014. doi: 10.1088/1367-2630/aa9b77. DOI

Peng Z., Kapral R.. Self-Organization of Active Colloids Mediated by Chemical Interactions. Soft Matter. 2024;20(5):1100–1113. doi: 10.1039/D3SM01272G. PubMed DOI

Thakur S., Kapral R.. Collective Dynamics of Self-Propelled Sphere-Dimer Motors. Physical Review E. 2012;85(2):026121. doi: 10.1103/PhysRevE.85.026121. PubMed DOI

Huang M.-J., Schofield J., Kapral R.. Chemotactic and Hydrodynamic Effects on Collective Dynamics of Self-Diffusiophoretic Janus Motors. New Journal of Physics. 2017;19(12):125003. doi: 10.1088/1367-2630/aa958c. DOI

Colberg P. H., Kapral R.. Many-Body Dynamics of Chemically Propelled Nanomotors. The Journal of Chemical Physics. 2017;147(6):064910. doi: 10.1063/1.4997572. PubMed DOI

Wagner M., Ripoll M.. Hydrodynamic Front-Like Swarming of Phoretically Active Dimeric Colloids. Europhysics Letters. 2017;119(6):66007. doi: 10.1209/0295-5075/119/66007. DOI

Lüsebrink D., Ripoll M.. Collective Thermodiffusion of Colloidal Suspensions. The Journal of Chemical Physics. 2012;137(19):194904. doi: 10.1063/1.4767398. PubMed DOI

Wagner M., Roca-Bonet S., Ripoll M.. Collective Behavior of Thermophoretic Dimeric Active Colloids in Three-Dimensional Bulk. The European Physical Journal E. 2021;44(3):43. doi: 10.1140/epje/s10189-021-00043-8. PubMed DOI PMC

Qiao L., Kapral R.. Self-Assembly of Chemical Shakers. The Journal of Chemical Physics. 2024;160(15):154905. doi: 10.1063/5.0200758. PubMed DOI

Becton M., Hou J., Zhao Y., Wang X.. Dynamic Clustering and Scaling Behavior of Active Particles under Confinement. Nanomaterials. 2024;14(2):144. doi: 10.3390/nano14020144. PubMed DOI PMC

Winkler R. G., Ripoll M., Mussawisade K., Gompper G.. Simulation of Complex Fluids by Multi-Particle-Collision Dynamics. Computer Physics Communications. 2005;169(1):326–330. doi: 10.1016/j.cpc.2005.03.073. DOI

Qiao L., Kapral R.. Control of Active Polymeric Filaments by Chemically Powered Nanomotors. Physical Review Applied. 2022;18(2):024051. doi: 10.1103/PhysRevApplied.18.024051. DOI

Kikuchi N., Gent A., Yeomans J. M.. Polymer Collapse in the Presence of Hydrodynamic Interactions. The European Physical Journal E. 2002;9(1):63–66. doi: 10.1140/epje/i2002-10056-6. PubMed DOI

Ripoll M., Winkler R. G., Gompper G.. Hydrodynamic Screening of Star Polymers in Shear Flow. The European Physical Journal E. 2007;23(4):349–354. doi: 10.1140/epje/i2006-10220-0. PubMed DOI

Speck T., Menzel A. M., Bialké J., Löwen H.. Dynamical Mean-Field Theory and Weakly Non-Linear Analysis for the Phase Separation of Active Brownian Particles. The Journal of Chemical Physics. 2015;142(22):224109. doi: 10.1063/1.4922324. PubMed DOI

Liebchen B., Marenduzzo D., Pagonabarraga I., Cates M. E.. Clustering and Pattern Formation in Chemorepulsive Active Colloids. Physical Review Letters. 2015;115(25):258301. doi: 10.1103/PhysRevLett.115.258301. PubMed DOI

Gaspard P., Kapral R.. Active Matter, Microreversibility, and Thermodynamics. Research. 2020;2020:9739231. doi: 10.34133/2020/9739231. PubMed DOI PMC

Khatri N., Kapral R.. Clustering of Chemically Propelled Nanomotors in Chemically Active Environments. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2024;34(3):033103. doi: 10.1063/5.0188624. PubMed DOI

Wang H., Pumera M.. Coordinated Behaviors of Artificial Micro/Nanomachines: From Mutual Interactions to Interactions with the Environment. Chemical Society Reviews. 2020;49(10):3211–3230. doi: 10.1039/C9CS00877B. PubMed DOI

Sun M., Fan X., Meng X., Song J., Chen W., Sun L., Xie H.. Magnetic Biohybrid Micromotors with High Maneuverability for Efficient Drug Loading and Targeted Drug Delivery. Nanoscale. 2019;11(39):18382–18392. doi: 10.1039/C9NR06221A. PubMed DOI

Martinez-Pedrero F., Tierno P.. Magnetic Propulsion of Self-Assembled Colloidal Carpets: Efficient Cargo Transport via a Conveyor-Belt Effect. Physical Review Applied. 2015;3(5):051003. doi: 10.1103/PhysRevApplied.3.051003. DOI

Dong X., Sitti M.. Controlling Two-Dimensional Collective Formation and Cooperative Behavior of Magnetic Microrobot Swarms. The International Journal of Robotics Research. 2020;39(5):617–638. doi: 10.1177/0278364920903107. DOI

Gardi G., Ceron S., Wang W., Petersen K., Sitti M.. Microrobot Collectives with Reconfigurable Morphologies, Behaviors, and Functions. Nature Communications. 2022;13:2239. doi: 10.1038/s41467-022-29882-5. PubMed DOI PMC

Yu J. F., Wang B., Du X. Z., Wang Q. Q., Zhang L.. Ultra-Extensible Ribbon-Like Magnetic Microswarm. Nature Communications. 2018;9:3260. doi: 10.1038/s41467-018-05749-6. PubMed DOI PMC

Sun M., Fan X., Tian C., Yang M., Sun L., Xie H.. Swarming Microdroplets to a Dexterous Micromanipulator. Advanced Functional Materials. 2021;31(19):2011193. doi: 10.1002/adfm.202011193. DOI

Sun M., Yang S., Jiang J., Zhang L.. Horizontal and Vertical Coalescent Microrobotic Collectives Using Ferrofluid Droplets. Advanced Materials. 2023;35:2300521. doi: 10.1002/adma.202300521. PubMed DOI

Yang S., Wang Q., Jin D., Du X., Zhang L.. Probing Fast Transformation of Magnetic Colloidal Microswarms in Complex Fluids. ACS Nano. 2022;16(11):19025–19037. doi: 10.1021/acsnano.2c07948. PubMed DOI

Jin D., Yu J., Yuan K., Zhang L.. Mimicking the Structure and Function of Ant Bridges in a Reconfigurable Microswarm for Electronic Applications. ACS Nano. 2019;13(5):5999–6007. doi: 10.1021/acsnano.9b02139. PubMed DOI

Yu J., Xu T., Lu Z., Vong C. I., Zhang L.. On-Demand Disassembly of Paramagnetic Nanoparticle Chains for Microrobotic Cargo Delivery. IEEE Transactions on Robotics. 2017;33(5):1213–1225. doi: 10.1109/TRO.2017.2693999. DOI

Fan X., Sun M., Sun L., Xie H.. Ferrofluid Droplets as Liquid Microrobots with Multiple Deformabilities. Advanced Functional Materials. 2020;30(24):2000138. doi: 10.1002/adfm.202000138. DOI

Sun M., Chen W., Fan X., Tian C., Sun L., Xie H.. Cooperative Recyclable Magnetic Microsubmarines for Oil and Microplastics Removal from Water. Applied Materials Today. 2020;20:100682. doi: 10.1016/j.apmt.2020.100682. DOI

Xie H., Sun M., Fan X., Lin Z., Chen W., Wang L., Dong L., He Q.. Reconfigurable Magnetic Microrobot Swarm: Multimode Transformation, Locomotion, and Manipulation. Science Robotics. 2019;4(28):eaav8006. doi: 10.1126/scirobotics.aav8006. PubMed DOI

Martinez-Pedrero F., Cebers A., Tierno P.. Dipolar Rings of Microscopic Ellipsoids: Magnetic Manipulation and Cell Entrapment. Physical Review Applied. 2016;6(3):034002. doi: 10.1103/PhysRevApplied.6.034002. DOI

Sun M., Chan K. F., Zhang Z., Wang L., Wang Q., Yang S., Chan S. M., Chiu P. W. Y., Sung J. J. Y., Zhang L.. Magnetic Microswarm and Fluoroscopy-Guided Platform for Biofilm Eradication in Biliary Stents. Advanced Materials. 2022;34(34):2201888. doi: 10.1002/adma.202201888. PubMed DOI

Law J., Wang X., Luo M., Xin L., Du X., Dou W., Wang T., Shan G., Wang Y., Song P.. et al. Microrobotic Swarms for Selective Embolization. Science Advances. 2022;8(29):eabm5752. doi: 10.1126/sciadv.abm5752. PubMed DOI PMC

Driscoll M., Delmotte B., Youssef M., Sacanna S., Donev A., Chaikin P.. Unstable Fronts and Motile Structures Formed by Microrollers. Nature Physics. 2017;13(4):375–379. doi: 10.1038/nphys3970. DOI

Chen C., Chang X., Teymourian H., Ramírez-Herrera D. E., Esteban-Fernández de Ávila B., Lu X., Li J., He S., Fang C., Liang Y.. Bioinspired Chemical Communication between Synthetic Nanomotors. Angewandte Chemie International Edition. 2018;57(1):241–245. doi: 10.1002/anie.201710376. PubMed DOI

Ibele M. E., Lammert P. E., Crespi V. H., Sen A.. Emergent, Collective Oscillations of Self-Mobile Particles and Patterned Surfaces under Redox Conditions. ACS Nano. 2010;4(8):4845–4851. doi: 10.1021/nn101289p. PubMed DOI

Duan W., Liu R., Sen A.. Transition between Collective Behaviors of Micromotors in Response to Different Stimuli. Journal of the American Chemical Society. 2013;135(4):1280–1283. doi: 10.1021/ja3120357. PubMed DOI

Ibele M., Mallouk T. E., Sen A.. Schooling Behavior of Light-Powered Autonomous Micromotors in Water. Angewandte Chemie International Edition. 2009;121(18):3358–3362. doi: 10.1002/ange.200804704. PubMed DOI

Niu R., Palberg T.. Modular Approach to Microswimming. Soft Matter. 2018;14(37):7554–7568. doi: 10.1039/C8SM00995C. PubMed DOI

Niu R., Palberg T.. Seedless Assembly of Colloidal Crystals by Inverted Micro-Fluidic Pumping. Soft Matter. 2018;14(18):3435–3442. doi: 10.1039/C8SM00256H. PubMed DOI

Liu Y., Kailasham R., Moerman P. G., Khair A. S., Zarzar L. D.. Self-Organized Patterns in Non-Reciprocal Active Droplet Systems. Angewandte Chemie International Edition. 2024;63(49):e202409382. doi: 10.1002/anie.202409382. PubMed DOI PMC

Cira N. J., Benusiglio A., Prakash M.. Vapour-Mediated Sensing and Motility in Two-Component Droplets. Nature. 2015;519(7544):446–450. doi: 10.1038/nature14272. PubMed DOI

Kim K. E., Balaj R. V., Zarzar L. D.. Chemical Programming of Solubilizing, Nonequilibrium Active Droplets. Accounts of Chemical Research. 2024;57(16):2372–2382. doi: 10.1021/acs.accounts.4c00299. PubMed DOI

Moerman P. G., Moyses H. W., van der Wee E. B., Grier D. G., van Blaaderen A., Kegel W. K., Groenewold J., Brujic J.. Solute-Mediated Interactions between Active Droplets. Physical Review E. 2017;96(3):032607. doi: 10.1103/PhysRevE.96.032607. PubMed DOI

Meredith C. H., Moerman P. G., Groenewold J., Chiu Y.-J., Kegel W. K., van Blaaderen A., Zarzar L. D.. Predator-Prey Interactions between Droplets Driven by Non-Reciprocal Oil Exchange. Nature Chemistry. 2020;12(12):1136–1142. doi: 10.1038/s41557-020-00575-0. PubMed DOI

Meredith C. H., Castonguay A. C., Chiu Y.-J., Brooks A. M., Moerman P. G., Torab P., Wong P. K., Sen A., Velegol D., Zarzar L. D.. Chemical Design of Self-Propelled Janus Droplets. Matter. 2022;5(2):616–633. doi: 10.1016/j.matt.2021.12.014. DOI

Hokmabad B. V., Nishide A., Ramesh P., Krüger C., Maass C. C.. Spontaneously Rotating Clusters of Active Droplets. Soft Matter. 2022;18(14):2731–2741. doi: 10.1039/D1SM01795K. PubMed DOI

Ma F., Wang S., Wu D. T., Wu N.. Electric-Field-Induced Assembly and Propulsion of Chiral Colloidal Clusters. Proceedings of the National Academy of Sciences. 2015;112(20):6307–6312. doi: 10.1073/pnas.1502141112. PubMed DOI PMC

Wang W., Duan W., Sen A., Mallouk T. E.. Catalytically Powered Dynamic Assembly of Rod-Shaped Nanomotors and Passive Tracer Particles. Proceedings of the National Academy of Sciences. 2013;110(44):17744–17749. doi: 10.1073/pnas.1311543110. PubMed DOI PMC

Gao Y., Mou F., Feng Y., Che S., Li W., Xu L., Guan J.. Dynamic Colloidal Molecules Maneuvered by Light-Controlled Janus Micromotors. ACS Applied Materials & Interfaces. 2017;9(27):22704–22712. doi: 10.1021/acsami.7b05794. PubMed DOI

Huang N., Martínez L. J., Jaquay E., Nakano A., Povinelli M. L.. Optical Epitaxial Growth of Gold Nanoparticle Arrays. Nano Letters. 2015;15(9):5841–5845. doi: 10.1021/acs.nanolett.5b01929. PubMed DOI

Solovev A. A., Mei Y., Schmidt O. G.. Catalytic Microstrider at the Air-Liquid Interface. Advanced Materials. 2010;22(39):4340–4344. doi: 10.1002/adma.201001468. PubMed DOI

Chen S., Peetroons X., Bakenecker A. C., Lezcano F., Aranson I. S., Sánchez S.. Collective Buoyancy-Driven Dynamics in Swarming Enzymatic Nanomotors. Nature Communications. 2024;15(1):9315. doi: 10.1038/s41467-024-53664-w. PubMed DOI PMC

Yan J., Bae S. C., Granick S.. Colloidal Superstructures Programmed into Magnetic Janus Particles. Advanced Materials. 2015;27(5):874–879. doi: 10.1002/adma.201403857. PubMed DOI

Yu J., Yang L., Zhang L.. Pattern Generation and Motion Control of a Vortex-Like Paramagnetic Nanoparticle Swarm. The International Journal of Robotics Research. 2018;37(8):912–930. doi: 10.1177/0278364918784366. DOI

Snezhko A., Aranson I. S.. Magnetic Manipulation of Self-Assembled Colloidal Asters. Nature Materials. 2011;10(9):698–703. doi: 10.1038/nmat3083. PubMed DOI

Wang W., Giltinan J., Zakharchenko S., Sitti M.. Dynamic and Programmable Self-Assembly of Micro-Rafts at the Air-Water Interface. Science Advances. 2017;3(5):e1602522. doi: 10.1126/sciadv.1602522. PubMed DOI PMC

Snezhko A., Belkin M., Aranson I., Kwok W.-K.. Self-Assembled Magnetic Surface Swimmers. Physical Review Letters. 2009;102(11):118103. doi: 10.1103/PhysRevLett.102.118103. PubMed DOI

Servant A., Qiu F., Mazza M., Kostarelos K., Nelson B. J.. Controlled in vivo Swimming of a Swarm of Bacteria-Like Microrobotic Flagella. Advanced Materials. 2015;27(19):2981–2988. doi: 10.1002/adma.201404444. PubMed DOI

Wang W., Duan W., Zhang Z., Sun M., Sen A., Mallouk T. E.. A Tale of Two Forces: Simultaneous Chemical and Acoustic Propulsion of Bimetallic Micromotors. Chemical Communications. 2015;51(6):1020–1023. doi: 10.1039/C4CC09149C. PubMed DOI

Li Z., Zhang H., Wang D., Gao C., Sun M., Wu Z., He Q.. Reconfigurable Assembly of Active Liquid Metal Colloidal Cluster. Angewandte Chemie International Edition. 2020;59(45):19884–19888. doi: 10.1002/anie.202007911. PubMed DOI

Liang X., Mou F., Huang Z., Zhang J., You M., Xu L., Luo M., Guan J.. Hierarchical Microswarms with Leader-Follower-Like Structures: Electrohydrodynamic Self-Organization and Multimode Collective Photoresponses. Advanced Functional Materials. 2020;30(16):1908602. doi: 10.1002/adfm.201908602. DOI

Buttinoni I., Bialké J., Kümmel F., Löwen H., Bechinger C., Speck T.. Dynamical Clustering and Phase Separation in Suspensions of Self-Propelled Colloidal Particles. Physical Review Letters. 2013;110(23):238301. doi: 10.1103/PhysRevLett.110.238301. PubMed DOI

Singh D. P., Choudhury U., Fischer P., Mark A. G.. Non-Equilibrium Assembly of Light-Activated Colloidal Mixtures. Advanced Materials. 2017;29(32):1701328. doi: 10.1002/adma.201701328. PubMed DOI

Palacci J., Sacanna S., Steinberg A. P., Pine D. J., Chaikin P. M.. Living Crystals of Light-Activated Colloidal Surfers. Science. 2013;339(6122):936–940. doi: 10.1126/science.1230020. PubMed DOI

Hernández-Navarro S., Tierno P., Farrera J. A., Ignés-Mullol J., Sagués F.. Reconfigurable Swarms of Nematic Colloids Controlled by Photoactivated Surface Patterns. Angewandte Chemie International Edition. 2014;53(40):10696–10700. doi: 10.1002/anie.201406136. PubMed DOI

Deng Z., Mou F., Tang S., Xu L., Luo M., Guan J.. Swarming and Collective Migration of Micromotors under near Infrared Light. Applied Materials Today. 2018;13:45–53. doi: 10.1016/j.apmt.2018.08.004. DOI

Leaman E. J., Geuther B. Q., Behkam B.. Hybrid Centralized/Decentralized Control of a Network of Bacteria-Based Bio-Hybrid Microrobots. Journal of Micro-Bio Robotics. 2019;15(1):1–12. doi: 10.1007/s12213-019-00116-0. DOI

Sahari A., Traore M. A., Scharf B. E., Behkam B.. Directed Transport of Bacteria-Based Drug Delivery Vehicles: Bacterial Chemotaxis Dominates Particle Shape. Biomedical Microdevices. 2014;16(5):717–725. doi: 10.1007/s10544-014-9876-y. PubMed DOI

Jin D., Zhang L.. Collective Behaviors of Magnetic Active Matter: Recent Progress toward Reconfigurable, Adaptive, and Multifunctional Swarming Micro/Nanorobots. Accounts of Chemical Research. 2022;55(1):98–109. doi: 10.1021/acs.accounts.1c00619. PubMed DOI

Law J., Yu J., Tang W., Gong Z., Wang X., Sun Y.. Micro/Nanorobotic Swarms: From Fundamentals to Functionalities. ACS Nano. 2023;17(14):12971–12999. doi: 10.1021/acsnano.2c11733. PubMed DOI

Wang Q., Yang S., Zhang L.. Untethered Micro/Nanorobots for Remote Sensing: Toward Intelligent Platform. Nano-Micro Letters. 2024;16(1):40. doi: 10.1007/s40820-023-01261-9. PubMed DOI PMC

Jin D., Wang Q., Chan K. F., Xia N., Yang H., Wang Q., Yu S. C. H., Zhang L.. Swarming Self-Adhesive Microgels Enabled Aneurysm on-Demand Embolization in Physiological Blood Flow. Science Advances. 2023;9(19):eadf9278. doi: 10.1126/sciadv.adf9278. PubMed DOI PMC

Yue H., Chang X., Liu J., Zhou D., Li L.. Wheel-Like Magnetic-Driven Microswarm with a Band-Aid Imitation for Patching up Microscale Intestinal Perforation. ACS Applied Materials & Interfaces. 2022;14(7):8743–8752. doi: 10.1021/acsami.1c21352. PubMed DOI

Li M., Zhang T., Zhang X., Mu J., Zhang W.. Vector-Controlled Wheel-Like Magnetic Swarms with Multimodal Locomotion and Reconfigurable Capabilities. Frontiers in Bioengineering and Biotechnology. 2022;10:877964. doi: 10.3389/fbioe.2022.877964. PubMed DOI PMC

Law J., Chen H., Wang Y., Yu J., Sun Y.. Gravity-Resisting Colloidal Collectives. Science Advances. 2022;8(46):eade3161. doi: 10.1126/sciadv.ade3161. PubMed DOI PMC

Love J. C., Urbach A. R., Prentiss M. G., Whitesides G. M.. Three-Dimensional Self-Assembly of Metallic Rods with Submicron Diameters Using Magnetic Interactions. Journal of the American Chemical Society. 2003;125(42):12696–12697. doi: 10.1021/ja037642h. PubMed DOI

Erb R. M., Son H. S., Samanta B., Rotello V. M., Yellen B. B.. Magnetic Assembly of Colloidal Superstructures with Multipole Symmetry. Nature. 2009;457(7232):999–1002. doi: 10.1038/nature07766. PubMed DOI

Yan J., Bloom M., Bae S. C., Luijten E., Granick S.. Linking Synchronization to Self-Assembly Using Magnetic Janus Colloids. Nature. 2012;491(7425):578–581. doi: 10.1038/nature11619. PubMed DOI

Mehdizadeh Taheri S., Michaelis M., Friedrich T., Förster B., Drechsler M., Römer F. M., Bösecke P., Narayanan T., Weber B., Rehberg I.. et al. Self-Assembly of Smallest Magnetic Particles. Proceedings of the National Academy of Sciences. 2015;112(47):14484–14489. doi: 10.1073/pnas.1511443112. PubMed DOI PMC

Wang X., Sprinkle B., Bisoyi H. K., Yang T., Chen L., Huang S., Li Q.. Colloidal Tubular Microrobots for Cargo Transport and Compression. Proceedings of the National Academy of Sciences. 2023;120(37):e2304685120. doi: 10.1073/pnas.2304685120. PubMed DOI PMC

Ji F., Jin D., Wang B., Zhang L.. Light-Driven Hovering of a Magnetic Microswarm in Fluid. ACS Nano. 2020;14(6):6990–6998. doi: 10.1021/acsnano.0c01464. PubMed DOI

Vach P. J., Walker D., Fischer P., Fratzl P., Faivre D.. Pattern Formation and Collective Effects in Populations of Magnetic Microswimmers. Journal of Physics D: Applied Physics. 2017;50(11):11LT03. doi: 10.1088/1361-6463/aa5d36. DOI

Sun M., Yang S., Jiang J., Jiang S., Sitti M., Zhang L.. Bioinspired Self-Assembled Colloidal Collectives Drifting in Three Dimensions Underwater. Science Advances. 2023;9(45):eadj4201. doi: 10.1126/sciadv.adj4201. PubMed DOI PMC

Jin D., Yuan K., Du X., Wang Q., Wang S., Zhang L.. Domino Reaction Encoded Heterogeneous Colloidal Microswarm with on-Demand Morphological Adaptability. Advanced Materials. 2021;33(37):2100070. doi: 10.1002/adma.202100070. PubMed DOI

Zhang S., Mou F., Yu Z., Li L., Yang M., Zhang D., Ma H., Luo W., Li T., Guan J.. Heterogeneous Sensor-Carrier Microswarms for Collaborative Precise Drug Delivery toward Unknown Targets with Localized Acidosis. Nano Letters. 2024;24(20):5958–5967. doi: 10.1021/acs.nanolett.4c00162. PubMed DOI

Cao C., Mou F., Yang M., Zhang S., Zhang D., Li L., Lan T., Xiao D., Luo W., Ma H., Guan J.. Harnessing Disparities in Magnetic Microswarms: From Construction to Collaborative Tasks. Advanced Science. 2024;11(30):2401711. doi: 10.1002/advs.202401711. PubMed DOI PMC

Mou F., Li X., Xie Q., Zhang J., Xiong K., Xu L., Guan J.. Active Micromotor Systems Built from Passive Particles with Biomimetic Predator-Prey Interactions. ACS Nano. 2020;14(1):406–414. doi: 10.1021/acsnano.9b05996. PubMed DOI

Ceron S., Gardi G., Petersen K., Sitti M.. Programmable Self-Organization of Heterogeneous Microrobot Collectives. Proceedings of the National Academy of Sciences. 2023;120(24):e2221913120. doi: 10.1073/pnas.2221913120. PubMed DOI PMC

Du X., Yu J., Jin D., Chiu P. W. Y., Zhang L.. Independent Pattern Formation of Nanorod and Nanoparticle Swarms under an Oscillating Field. ACS Nano. 2021;15(4):4429–4439. doi: 10.1021/acsnano.0c08284. PubMed DOI

Sun M., Yang S., Jiang J., Wang Q., Zhang L.. Multiple Magneto-Optical Microrobotic Collectives with Selective Control in Three Dimensions under Water. Small. 2024;20:22310769. doi: 10.1002/smll.202310769. PubMed DOI PMC

Leaman E. J., Geuther B. Q., Behkam B.. Quantitative Investigation of the Role of Intra-/Intercellular Dynamics in Bacterial Quorum Sensing. ACS Synthetic Biology. 2018;7(4):1030–1042. doi: 10.1021/acssynbio.7b00406. PubMed DOI

Zhang K. X., Klingner A., Le Gars Y., Misra S., Magdanz V., Khalil I. S. M.. Locomotion of Bovine Spermatozoa During the Transition from Individual Cells to Bundles. Proceedings of the National Academy of Sciences. 2023;120(3):e2211911120. doi: 10.1073/pnas.2211911120. PubMed DOI PMC

Morcillo i Soler P., Hidalgo C., Fekete Z., Zalanyi L., Khalil I. S. M., Yeste M., Magdanz V.. Bundle Formation of Sperm: Influence of Environmental Factors. Frontiers in Endocrinology. 2022;13:na. doi: 10.3389/fendo.2022.957684. PubMed DOI PMC

Cruse, H. ; Dean, J. ; Ritter, H. , Eds; Prerational Intelligence: Adaptive Behavior and Intelligent Systems without Symbols and Logic, Volume 1, Volume 2; Prerational Intelligence: Interdisciplinary Perspectives on the Behavior of Natural and Artificial Systems, Volume 3; Springer Science & Business Media, 2013, Vol. 26.

Lanz P.. Introduction to Part Ii. In Prerational Intelligence: Adaptive Behavior and Intelligent Systems without Symbols and Logic, Volume 1, Volume 2 Prerational Intelligence: Interdisciplinary Perspectives on the Behavior of Natural and Artificial Systems, Volume 3. Springer. 2000;26:7–18. doi: 10.1007/978-94-010-0870-9_2. DOI

Ruiz-Mirazo K., Moreno A.. Autonomy in Evolution: From Minimal to Complex Life. Synthese. 2012;185:21–52. doi: 10.1007/s11229-011-9874-z. DOI

Bich L., Bechtel W.. Mechanism, Autonomy and Biological Explanation. Biology & Philosophy. 2021;36:53. doi: 10.1007/s10539-021-09829-8. DOI

Cruse H., Dean J., Ritter H.. Prerational Intelligence: Interdisciplinary Perspectives on the Behavior of Natural and Artificial Systems. Springer. 2000;26:3. doi: 10.1007/978-94-010-0870-9_1. DOI

Wilson A. D., Golonka S.. Embodied Cognition Is Not What You Think It Is. Frontiers in Psychology. 2013;4:na. doi: 10.3389/fpsyg.2013.00058. PubMed DOI PMC

Moravec, H. Mind Children: The Future of Robot and Human Intelligence; Harvard University Press, 1988.

Luc Steels, R. B. The Artificial Life Route to Artificial Intelligence: Building Embodied, Situated Agents; Routledge, 2018.

Ye M., Zhou Y., Zhao H., Wang Z., Nelson B. J., Wang X.. A Review of Soft Microrobots: Material, Fabrication, and Actuation. Advanced Intelligent Systems. 2023;5(11):2300311. doi: 10.1002/aisy.202300311. DOI

Bernasconi, R. ; Pané, S. ; Magagnin, L. . Chapter One - Soft Microrobotics. In Advances in Chemical Engineering, Magagnin, L. ; Rossi, F. Eds.; Vol. 57; Academic Press, 2021; pp 1-44.

Hu W., Lum G. Z., Mastrangeli M., Sitti M.. Small-Scale Soft-Bodied Robot with Multimodal Locomotion. Nature. 2018;554(7690):81–85. doi: 10.1038/nature25443. PubMed DOI

Cui J., Huang T.-Y., Luo Z., Testa P., Gu H., Chen X.-Z., Nelson B. J., Heyderman L. J.. Nanomagnetic Encoding of Shape-Morphing Micromachines. Nature. 2019;575(7781):164–168. doi: 10.1038/s41586-019-1713-2. PubMed DOI

Huang T.-Y., Gu H., Nelson B. J.. Increasingly Intelligent Micromachines. Annual Review of Control, Robotics, and Autonomous Systems. 2022;5:279–310. doi: 10.1146/annurev-control-042920-013322. DOI

Sitti M.. Microscale and Nanoscale Robotics Systems [Grand Challenges of Robotics] IEEE Robotics & Automation Magazine. 2007;14(1):53–60. doi: 10.1109/MRA.2007.339606. DOI

Wang, J. Nanomachines: Fundamentals and Applications; Wiley, 2013.

Ma K. Y., Chirarattananon P., Fuller S. B., Wood R. J.. Controlled Flight of a Biologically Inspired, Insect-Scale Robot. Science. 2013;340(6132):603–607. doi: 10.1126/science.1231806. PubMed DOI

Baisch A. T., Ozcan O., Goldberg B., Ithier D., Wood R. J.. High Speed Locomotion for a Quadrupedal Microrobot. The International Journal of Robotics Research. 2014;33(8):1063–1082. doi: 10.1177/0278364914521473. DOI

Koh J.-S., Yang E., Jung G.-P., Jung S.-P., Son J. H., Lee S.-I., Jablonski P. G., Wood R. J., Kim H.-Y., Cho K.-J.. Jumping on Water: Surface Tension-Dominated Jumping of Water Striders and Robotic Insects. Science. 2015;349(6247):517–521. doi: 10.1126/science.aab1637. PubMed DOI

de Rivaz S. D., Goldberg B., Doshi N., Jayaram K., Zhou J., Wood R. J.. Inverted and Vertical Climbing of a Quadrupedal Microrobot Using Electroadhesion. Science Robotics. 2018;3(25):eaau3038. doi: 10.1126/scirobotics.aau3038. PubMed DOI

Wang M., Vecchio D., Wang C., Emre A., Xiao X., Jiang Z., Bogdan P., Huang Y., Kotov N. A.. Biomorphic Structural Batteries for Robotics. Science Robotics. 2020;5(45):eaba1912. doi: 10.1126/scirobotics.aba1912. PubMed DOI

Yang X., Chang L., Pérez-Arancibia N. O.. An 88-Milligram Insect-Scale Autonomous Crawling Robot Driven by a Catalytic Artificial Muscle. Science Robotics. 2020;5(45):eaba0015. doi: 10.1126/scirobotics.aba0015. PubMed DOI

Wehner M., Truby R. L., Fitzgerald D. J., Mosadegh B., Whitesides G. M., Lewis J. A., Wood R. J.. An Integrated Design and Fabrication Strategy for Entirely Soft, Autonomous Robots. Nature. 2016;536(7617):451–455. doi: 10.1038/nature19100. PubMed DOI

Ren Z., Hu W., Dong X., Sitti M.. Multi-Functional Soft-Bodied Jellyfish-Like Swimming. Nature Communications. 2019;10(1):2703. doi: 10.1038/s41467-019-10549-7. PubMed DOI PMC

Gu H., Boehler Q., Cui H., Secchi E., Savorana G., De Marco C., Gervasoni S., Peyron Q., Huang T.-Y., Pane S.. et al. Magnetic Cilia Carpets with Programmable Metachronal Waves. Nature Communications. 2020;11(1):2637. doi: 10.1038/s41467-020-16458-4. PubMed DOI PMC

Rubenstein M., Cornejo A., Nagpal R.. Programmable Self-Assembly in a Thousand-Robot Swarm. Science. 2014;345(6198):795–799. doi: 10.1126/science.1254295. PubMed DOI

Li S., Batra R., Brown D., Chang H.-D., Ranganathan N., Hoberman C., Rus D., Lipson H.. Particle Robotics Based on Statistical Mechanics of Loosely Coupled components. Nature. 2019;567(7748):361–365. doi: 10.1038/s41586-019-1022-9. PubMed DOI

Xu B., Tian Z., Wang J., Han H., Lee T., Mei Y.. Stimuli-Responsive and on-Chip Nanomembrane Micro-Rolls for Enhanced Macroscopic Visual Hydrogen Detection. Science Advances. 2018;4(4):eaap8203. doi: 10.1126/sciadv.aap8203. PubMed DOI PMC

Li X., Cao C., Liu C., He W., Wu K., Wang Y., Xu B., Tian Z., Song E., Cui J.. et al. Self-Rolling of Vanadium Dioxide Nanomembranes for Enhanced Multi-Level Solar Modulation. Nature Communications. 2022;13(1):7819. doi: 10.1038/s41467-022-35513-w. PubMed DOI PMC

Wu B., Zhang Z., Chen B., Zheng Z., You C., Liu C., Li X., Wang J., Wang Y., Song E.. et al. One-Step Rolling Fabrication of Vo2 Tubular Bolometers with Polarization-Sensitive and Omnidirectional Detection. Science Advances. 2023;9(42):eadi7805. doi: 10.1126/sciadv.adi7805. PubMed DOI PMC

Tian Z., Xu B., Wan G., Han X., Di Z., Chen Z., Mei Y.. Gaussian-Preserved, Non-Volatile Shape Morphing in Three-Dimensional Microstructures for Dual-Functional Electronic Devices. Nature Communications. 2021;12(1):509. doi: 10.1038/s41467-020-20843-4. PubMed DOI PMC

Liu Q., Wang W., Reynolds M. F., Cao M. C., Miskin M. Z., Arias T. A., Muller D. A., McEuen P. L., Cohen I.. Micrometer-Sized Electrically Programmable Shape-Memory Actuators for Low-Power Microrobotics. Science Robotics. 2021;6(52):eabe6663. doi: 10.1126/scirobotics.abe6663. PubMed DOI

Wang W., Liu Q., Tanasijevic I., Reynolds M. F., Cortese A. J., Miskin M. Z., Cao M. C., Muller D. A., Molnar A. C., Lauga E.. et al. Cilia Metasurfaces for Electronically Programmable Microfluidic Manipulation. Nature. 2022;605(7911):681–686. doi: 10.1038/s41586-022-04645-w. PubMed DOI

Kiener D., Misra A.. Nanomechanical Characterization. MRS Bulletin. 2024;49(3):214–223. doi: 10.1557/s43577-023-00643-z. DOI

You C., Li X., Hu Y., Huang N., Wang Y., Wu B., Jiang G., Huang J., Zhang Z., Chen B.. et al. Cmos-Compatible Reconstructive Spectrometers with Self-Referencing Integrated Fabry-Perot Resonators. Proceedings of the National Academy of Sciences. 2024;121(33):e2403950121. doi: 10.1073/pnas.2403950121. PubMed DOI PMC

Zeng H., Wasylczyk P., Parmeggiani C., Martella D., Burresi M., Wiersma D. S.. Light-Fueled Microscopic Walkers. Advanced Materials. 2015;27(26):3883–3887. doi: 10.1002/adma.201501446. PubMed DOI PMC

Shahsavan H., Aghakhani A., Zeng H., Guo Y., Davidson Z. S., Priimagi A., Sitti M.. Bioinspired Underwater Locomotion of Light-Driven Liquid Crystal Gels. Proceedings of the National Academy of Sciences. 2020;117(10):5125–5133. doi: 10.1073/pnas.1917952117. PubMed DOI PMC

Yasa O., Erkoc P., Alapan Y., Sitti M.. Microalga-Powered Microswimmers toward Active Cargo Delivery. Advanced Materials. 2018;30(45):1804130. doi: 10.1002/adma.201804130. PubMed DOI

Jiang J., Yang Z., Ferreira A., Zhang L.. Control and Autonomy of Microrobots: Recent Progress and Perspective. Advanced Intelligent Systems. 2022;4(5):2100279. doi: 10.1002/aisy.202100279. DOI

Reynolds M. F., Cortese A. J., Liu Q., Zheng Z., Wang W., Norris S. L., Lee S., Miskin M. Z., Molnar A. C., Cohen I., McEuen P. L.. Microscopic Robots with Onboard Digital Control. Science Robotics. 2022;7(70):eabq2296. doi: 10.1126/scirobotics.abq2296. PubMed DOI

Bandari V. K., Schmidt O. G.. System-Engineered Miniaturized Robots: From Structure to Intelligence. Advanced Intelligent Systems. 2021;3(10):2000284. doi: 10.1002/aisy.202170072. DOI

Dolev A., Kaynak M., Sakar M. S.. On-Board Mechanical Control Systems for Untethered Microrobots. Advanced Intelligent Systems. 2021;3(10):2000233. doi: 10.1002/aisy.202000233. DOI

Pu R., Yang X., Mu H., Xu Z., He J.. Current Status and Future Application of Electrically Controlled Micro/Nanorobots in Biomedicine. Frontiers in Bioengineering and Biotechnology. 2024;12:na. doi: 10.3389/fbioe.2024.1353660. PubMed DOI PMC

Wu Y., Fu A., Yossifon G.. Active Particles as Mobile Microelectrodes for Selective Bacteria Electroporation and Transport. Science Advances. 2020;6(5):eaay4412. doi: 10.1126/sciadv.aay4412. PubMed DOI PMC

Ohiri U., Han K., Shields C. W. IV, Velev O. D., Jokerst N. M.. Propulsion and Assembly of Remotely Powered P-Type Silicon Microparticles. APL Materials. 2018;6(12):121102. doi: 10.1063/1.5053862. DOI

Kocak G., Tuncer C., Butun V.. Ph-Responsive Polymers. Polymer Chemistry. 2017;8:144–176. doi: 10.1039/C6PY01872F. DOI

Farshad M., Benine A.. Magnetoactive Elastomer Composites. Polymer Testing. 2004;23(3):347–353. doi: 10.1016/S0142-9418(03)00103-X. DOI

Aubin C. A., Gorissen B., Milana E., Buskohl P. R., Lazarus N., Slipher G. A., Keplinger C., Bongard J., Iida F., Lewis J. A.. et al. Towards Enduring Autonomous Robots via Embodied Energy. Nature. 2022;602(7897):393–402. doi: 10.1038/s41586-021-04138-2. PubMed DOI

Nasseri R., Bouzari N., Huang J., Golzar H., Jankhani S., Tang X., Mekonnen T. H., Aghakhani A., Shahsavan H.. Programmable Nanocomposites of Cellulose Nanocrystals and Zwitterionic Hydrogels for Soft Robotics. Nature Communications. 2023;14(1):6108. doi: 10.1038/s41467-023-41874-7. PubMed DOI PMC

Wu Z. L., Moshe M., Greener J., Therien-Aubin H., Nie Z., Sharon E., Kumacheva E.. Three-Dimensional Shape Transformations of Hydrogel Sheets Induced by Small-Scale Modulation of Internal Stresses. Nature Communications. 2013;4(1):1586. doi: 10.1038/ncomms2549. PubMed DOI

Bastola A. K., Hossain M.. The Shape - Morphing Performance of Magnetoactive Soft Materials. Materials & Design. 2021;211:110172. doi: 10.1016/j.matdes.2021.110172. DOI

Pillay V., Tsai T.-S., Choonara Y. E., du Toit L. C., Kumar P., Modi G., Naidoo D., Tomar L. K., Tyagi C., Ndesendo V. M. K.. A Review of Integrating Electroactive Polymers as Responsive Systems for Specialized Drug Delivery Applications. Journal of Biomedical Materials Research Part A. 2014;102(6):2039–2054. doi: 10.1002/jbm.a.34869. PubMed DOI

Shen Z., Chen F., Zhu X., Yong K.-T., Gu G.. Stimuli-Responsive Functional Materials for Soft Robotics. Journal of Materials Chemistry B. 2020;8(39):8972–8991. doi: 10.1039/D0TB01585G. PubMed DOI

Shklyaev O. E., Balazs A. C.. Interlinking Spatial Dimensions and Kinetic Processes in Dissipative Materials to Create Synthetic Systems with Lifelike Functionality. Nature Nanotechnology. 2024;19(2):146–159. doi: 10.1038/s41565-023-01530-z. PubMed DOI

Li J., Thamphiwatana S., Liu W., Esteban-Fernández de Ávila B., Angsantikul P., Sandraz E., Wang J., Xu T., Soto F., Ramez V.. et al. Enteric Micromotor Can Selectively Position and Spontaneously Propel in the Gastrointestinal Tract. ACS Nano. 2016;10(10):9536–9542. doi: 10.1021/acsnano.6b04795. PubMed DOI PMC

Zhang M., Shahsavan H., Guo Y., Pena-Francesch A., Zhang Y., Sitti M.. Liquid-Crystal-Elastomer-Actuated Reconfigurable Microscale Kirigami Metastructures. Advanced Materials. 2021;33(25):2008605. doi: 10.1002/adma.202008605. PubMed DOI PMC

Shahsavan H., Salili S. M., Jákli A., Zhao B.. Smart Muscle-Driven Self-Cleaning of Biomimetic Microstructures from Liquid Crystal Elastomers. Advanced Materials. 2015;27(43):6828–6833. doi: 10.1002/adma.201503203. PubMed DOI

Erol O., Pantula A., Liu W., Gracias D. H.. Transformer Hydrogels: A Review. Advanced Materials Technologies. 2019;4(4):1900043. doi: 10.1002/admt.201900043. DOI

Hancock M. J., Sekeroglu K., Demirel M. C.. Bioinspired Directional Surfaces for Adhesion, Wetting, and Transport. Advanced Functional Materials. 2012;22(11):2223–2234. doi: 10.1002/adfm.201103017. PubMed DOI PMC

Fan X., Sun M., Lin Z., Song J., He Q., Sun L., Xie H.. Automated Noncontact Micromanipulation Using Magnetic Swimming Microrobots. IEEE Transactions on Nanotechnology. 2018;17(4):666–669. doi: 10.1109/TNANO.2018.2797325. DOI

Ammi, M. ; Ferreira, A. . Path Planning of an Afm-Based Nanomanipulator Using Virtual Force Reflection. In 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), 28 Sept.-2 Oct. 2004, 2004; Vol. 1, pp 577-582. 10.1109/IROS.2004.1389414. DOI

Ding X., Lin S.-C. S., Kiraly B., Yue H., Li S., Chiang I.-K., Shi J., Benkovic S. J., Huang T. J.. On-Chip Manipulation of Single Microparticles, Cells, and Organisms Using Surface Acoustic Waves. Proceedings of the National Academy of Sciences. 2012;109(28):11105–11109. doi: 10.1073/pnas.1209288109. PubMed DOI PMC

Xu H. F., Medina-S ánchez M., Maitz M. F., Werner C., Schmidt O. G.. Sperm Micromotors for Cargo Delivery through Flowing Blood. ACS Nano. 2020;14(3):2982–2993. doi: 10.1021/acsnano.9b07851. PubMed DOI

Medina-Sánchez M., Schwarz L., Meyer A. K., Hebenstreit F., Schmidt O. G.. Cellular Cargo Delivery: Toward Assisted Fertilization by Sperm-Carrying Micromotors. Nano Letters. 2016;16(1):555–561. doi: 10.1021/acs.nanolett.5b04221. PubMed DOI

Jin Q. R., Yang Y. Q., Jackson J. A., Yoon C. Y., Gracias D. H.. Untethered Single Cell Grippers for Active Biopsy. Nano Letters. 2020;20(7):5383–5390. doi: 10.1021/acs.nanolett.0c01729. PubMed DOI PMC

Zhang Z., Li J., Fu L., Liu D., Chen L.. Magnetic Molecularly Imprinted Microsensor for Selective Recognition and Transport of Fluorescent Phycocyanin in Seawater. Journal of Materials Chemistry A. 2015;3(14):7437–7444. doi: 10.1039/C5TA00143A. DOI

Pacheco M., Jurado-Sánchez B., Escarpa A.. Sensitive Monitoring of Enterobacterial Contamination of Food Using Self-Propelled Janus Microsensors. Analytical Chemistry. 2018;90(4):2912–2917. doi: 10.1021/acs.analchem.7b05209. PubMed DOI

Molinero-Fernández Á., Moreno-Guzmán M., López M. Á., Escarpa A.. Biosensing Strategy for Simultaneous and Accurate Quantitative Analysis of Mycotoxins in Food Samples Using Unmodified Graphene Micromotors. Analytical Chemistry. 2017;89(20):10850–10857. doi: 10.1021/acs.analchem.7b02440. PubMed DOI

Rogers J., Huang Y., Schmidt O. G., Gracias D. H.. Origami Mems and Nems. MRS Bulletin. 2016;41(2):123–129. doi: 10.1557/mrs.2016.2. DOI

Wang X. Y., Sprinkle B., Bisoyi H. K., Yang T., Chen L. X., Huang S., Li Q.. Colloidal Tubular Microrobots for Cargo Transport and Compression. Proceedings of the National Academy of Sciences. 2023;120(37):e2304685120. doi: 10.1073/pnas.2304685120. PubMed DOI PMC

Erol O., Pantula A., Liu W. Q., Gracias D. H.. Transformer Hydrogels: A Review. Advanced Materials Technologies. 2019;4(4):1900043. doi: 10.1002/admt.201900043. DOI

Liu X., Liu J., Lin S., Zhao X.. Hydrogel Machines. Materials Today. 2020;36:102–124. doi: 10.1016/j.mattod.2019.12.026. DOI

Huang T. Y., Gu H. R., Nelson B. J.. Increasingly Intelligent Micromachines. Annual Review of Control, Robotics, and Autonomous Systems. 2022;5:279–310. doi: 10.1146/annurev-control-042920-013322. DOI

Li M., Pal A., Aghakhani A., Pena-Francesch A., Sitti M.. Soft Actuators for Real-World Applications. Nature Reviews Materials. 2022;7(3):235–249. doi: 10.1038/s41578-021-00389-7. PubMed DOI PMC

Jiao D., Zhu Q. L., Li C. Y., Zheng Q., Wu Z. L.. Programmable Morphing Hydrogels for Soft Actuators and Robots: From Structure Designs to Active Functions. Accounts of Chemical Research. 2022;55(11):1533–1545. doi: 10.1021/acs.accounts.2c00046. PubMed DOI

Lee Y., Song W. J., Sun J. Y.. Hydrogel Soft Robotics. Materials Today Physics. 2020;15:100258. doi: 10.1016/j.mtphys.2020.100258. DOI

Maeda S., Hara Y., Sakai T., Yoshida R., Hashimoto S.. Self-Walking Gel. Advanced Materials. 2007;19(21):3480–3484. doi: 10.1002/adma.200700625. DOI

Pantula A., Datta B., Shi Y. P., Wang M., Liu J. Y., Deng S. M., Cowan N. J., Nguyen T. D., Gracias D. H.. Untethered Unidirectionally Crawling Gels Driven by Asymmetry in Contact Forces. Science Robotics. 2022;7(73):eadd2903. doi: 10.1126/scirobotics.add2903. PubMed DOI

John S., Hester S., Basij M., Paul A., Xavierselvan M., Mehrmohammadi M., Mallidi S.. Niche Preclinical and Clinical Applications of Photoacoustic Imaging with Endogenous Contrast. Photoacoustics. 2023;32:100533. doi: 10.1016/j.pacs.2023.100533. PubMed DOI PMC

Pinchin N. P., Lin C.-H., Kinane C. A., Yamada N., Pena-Francesch A., Shahsavan H.. Plasticized Liquid Crystal Networks and Chemical Motors for the Active Control of Power Transmission in Mechanical Devices. Soft Matter. 2022;18(42):8063–8070. doi: 10.1039/D2SM00826B. PubMed DOI

Gelebart A. H., Mulder D. J., Varga M., Konya A., Vantomme G., Meijer E. W., Selinger R. L. B., Broer D. J.. Making Waves in a Photoactive Polymer Film. Nature. 2017;546(7660):632–636. doi: 10.1038/nature22987. PubMed DOI PMC

Bennett M. S.. Five Breakthroughs: A First Approximation of Brain Evolution from Early Bilaterians to Humans. Frontiers in Neuroanatomy. 2021;15:na. doi: 10.3389/fnana.2021.693346. PubMed DOI PMC

Leong T. G., Randall C. L., Benson B. R., Bassik N., Stern G. M., Gracias D. H.. Tetherless Thermobiochemically Actuated Microgrippers. Proceedings of the National Academy of Sciences. 2009;106(3):703–708. doi: 10.1073/pnas.0807698106. PubMed DOI PMC

Cui J. Z., Huang T. Y., Luo Z. C., Testa P., Gu H. R., Chen X. Z., Nelson B. J., Heyderman L. J.. Nanomagnetic Encoding of Shape-Morphing Micromachines. Nature. 2019;575(7781):164–168. doi: 10.1038/s41586-019-1713-2. PubMed DOI

Tibbits S.. 4d Printing: Multi-Material Shape Change. Architectural Design. 2014;84(1):116–121. doi: 10.1002/ad.1710. DOI

Shah D. S., Powers J. P., Tilton L. G., Kriegman S., Bongard J., Kramer-Bottiglio R.. A Soft Robot That Adapts to Environments through Shape Change. Nature Machine Intelligence. 2021;3(1):51–59. doi: 10.1038/s42256-020-00263-1. DOI

Cangialosi A., Yoon C., Liu J., Huang Q., Guo J. K., Nguyen T. D., Gracias D. H., Schulman R.. DNA Sequence-Directed Shape Change of Photopatterned Hydrogels via High-Degree Swelling. Science. 2017;357(6356):1126–1129. doi: 10.1126/science.aan3925. PubMed DOI

Gultepe E., Randhawa J. S., Kadam S., Yamanaka S., Selaru F. M., Shin E. J., Kalloo A. N., Gracias D. H.. Biopsy with Thermally-Responsive Untethered Microtools. Advanced Materials. 2013;25(4):514–519. doi: 10.1002/adma.201203348. PubMed DOI PMC

Malachowski K., Jamal M., Jin Q. R., Polat B., Morris C. J., Gracias D. H.. Self-Folding Single Cell Grippers. Nano Letters. 2014;14(7):4164–4170. doi: 10.1021/nl500136a. PubMed DOI PMC

Malachowski K., Breger J., Kwag H. R., Wang M. O., Fisher J. P., Selaru F. M., Gracias D. H.. Stimuli-Responsive Theragrippers for Chemomechanical Controlled Release. Angewandte Chemie International Edition. 2014;53(31):8045–8049. doi: 10.1002/anie.201311047. PubMed DOI PMC

Ghosh A., Li L., Xu L. Y., Dash R. P., Gupta N., Lam J., Jin Q. R., Akshintala V., Pahapale G., Liu W. Q.. et al. Gastrointestinal-Resident, Shape-Changing Microdevices Extend Drug Release in vivo. Science Advances. 2020;6(44):eabb4133. doi: 10.1126/sciadv.abb4133. PubMed DOI PMC

Liu W. Q., Choi S. J., George D., Li L., Zhong Z. J., Zhang R. L., Choi S. Y., Selaru F. M., Gracias D. H.. Untethered Shape-Changing Devices in the Gastrointestinal Tract. Expert Opinion on Drug Delivery. 2023;20(12):1801–1822. doi: 10.1080/17425247.2023.2291450. PubMed DOI PMC

Abramson A., Caffarel-Salvador E., Soares V., Minahan D., Tian R. Y., Lu X., Dellal D., Gao Y., Kim S., Wainer J.. et al. A Luminal Unfolding Microneedle Injector for Oral Delivery of Macromolecules. Nature Medicine. 2019;25(10):1512–1518. doi: 10.1038/s41591-019-0598-9. PubMed DOI PMC

Miyashita, S. ; Guitron, S. ; Yoshida, K. ; Li, S. ; Damian, D. D. ; Rus, D. . Ingestible, Controllable, and Degradable Origami Robot for Patching Stomach Wounds. In 2016 IEEE International Conference on Robotics and Automation (ICRA), 2016; pp 909-916.

Yan W. Z., Li S. G., Deguchi M., Zheng Z. L., Rus D., Mehta A.. Origami-Based Integration of Robots That Sense, Decide, and Respond. Nature Communications. 2023;14(1):1553. doi: 10.1038/s41467-023-37158-9. PubMed DOI PMC

Shi, R. ; Chen, K.-L. ; Fern, J. ; Deng, S. ; Liu, Y. ; Scalise, D. ; Huang, Q. ; Cowan, N. J. ; Gracias, D. H. ; Schulman, R. . Shape-Shifting Microgel Automata Controlled by DNA Sequence Instructions. bioRxiv Preprint, 2022. 10.1101/2022.09.21.508918. DOI

Bassik N., Brafman A., Zarafshar A. M., Jamal M., Luvsanjav D., Selaru F. M., Gracias D. H.. Enzymatically Triggered Actuation of Miniaturized Tools. Journal of the American Chemical Society. 2010;132(46):16314–16317. doi: 10.1021/ja106218s. PubMed DOI PMC

Scalise D., Schulman R.. Controlling Matter at the Molecular Scale with DNA Circuits. Annual Review of Biomedical Engineering. 2019;21:469–493. doi: 10.1146/annurev-bioeng-060418-052357. PubMed DOI

Miskin M. Z., Cortese A. J., Dorsey K., Esposito E. P., Reynolds M. F., Liu Q. K., Cao M. C., Muller D. A., McEuen P. L., Cohen I.. Electronically Integrated, Mass-Manufactured, Microscopic Robots. Nature. 2020;584(7822):557–561. doi: 10.1038/s41586-020-2626-9. PubMed DOI

Liu J. Y., Erol O., Pantula A., Liu W. Q., Jiang Z. R., Kobayashi K., Chatterjee D., Hibino N., Romer L. H., Kang S. H.. et al. Dual-Gel 4d Printing of Bioinspired Tubes. ACS Applied Materials & Interfaces. 2019;11(8):8492–8498. doi: 10.1021/acsami.8b17218. PubMed DOI PMC

Ergeneman O., Dogangil G., Kummer M. P., Abbott J. J., Nazeeruddin M. K., Nelson B. J.. A Magnetically Controlled Wireless Optical Oxygen Sensor for Intraocular Measurements. IEEE Sensors Journal. 2008;8(1):29–37. doi: 10.1109/JSEN.2007.912552. DOI

Ergeneman, O. ; Abbott, J. J. ; Dogangil, G. ; Nelson, B. J. . Functionalizing Intraocular Microrobots with Surface Coatings. In 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, 19-22 Oct. 2008, 2008; pp 232-237 10.1109/BIOROB.2008.4762857. DOI

Bing R., Loganath K., Adamson P., Newby D., Moss A.. Non-Invasive Imaging of High-Risk Coronary Plaque: The Role of Computed Tomography and Positron Emission Tomography. British Journal of Radiology. 2020;93(1113):20190740. doi: 10.1259/bjr.20190740. PubMed DOI PMC

Wang B., Zhang Y., Zhang L.. Recent Progress on Micro- and Nano-Robots: Towards in vivo Tracking and Localization. Quantitative Imaging in Medicine and Surgery. 2018;8(5):461–479. doi: 10.21037/qims.2018.06.07. PubMed DOI PMC

Guo J., Agola J. O., Serda R., Franco S., Lei Q., Wang L., Minster J., Croissant J. G., Butler K. S., Zhu W.. et al. Biomimetic Rebuilding of Multifunctional Red Blood Cells: Modular Design Using Functional Components. ACS Nano. 2020;14(7):7847–7859. doi: 10.1021/acsnano.9b08714. PubMed DOI

Zhang Y., Zhang L., Yang L., Vong C. I., Chan K. F., Wu W. K. K., Kwong T. N. Y., Lo N. W. S., Ip M., Wong S. H.. et al. Real-Time Tracking of Fluorescent Magnetic Spore-Based Microrobots for Remote Detection of C. Diff Toxins. Science Advances. 2019;5(1):eaau9650. doi: 10.1126/sciadv.aau9650. PubMed DOI PMC

Yuan K., López M. Á., Jurado-Sánchez B., Escarpa A.. Janus Micromotors Coated with 2D Nanomaterials as Dynamic Interfaces for (Bio)-Sensing. ACS Applied Materials & Interfaces. 2020;12(41):46588–46597. doi: 10.1021/acsami.0c15389. PubMed DOI

Cogal G. C., Karaca G. Y., Uygun E., Kuralay F., Oksuz L., Remskar M., Oksuz A. U.. Rf Plasma-Enhanced Conducting Polymer/W5o14 Based Self-Propelled Micromotors for miRNA Detection. Analytica Chimica Acta. 2020;1138:69–78. doi: 10.1016/j.aca.2020.07.010. PubMed DOI

Wang K., Wang W., Pan S., Fu Y., Dong B., Wang H.. Fluorescent Self-Propelled Covalent Organic Framework as a Microsensor for Nitro Explosive Detection. Applied Materials Today. 2020;19:100550. doi: 10.1016/j.apmt.2019.100550. DOI

Singh V. V., Kaufmann K., Esteban-Fernández de Ávila B., Karshalev E., Wang J.. Molybdenum Disulfide-Based Tubular Microengines: Toward Biomedical Applications. Advanced Functional Materials. 2016;26(34):6270–6278. doi: 10.1002/adfm.201602005. DOI

Kaspar C., Ravoo B. J., van der Wiel W. G., Wegner S. V., Pernice W. H. P.. The Rise of Intelligent Matter. Nature. 2021;594(7863):345–355. doi: 10.1038/s41586-021-03453-y. PubMed DOI

Chen X., Xu Y., Lou K., Peng Y., Zhou C., Zhang H. P., Wang W.. Programmable, Spatiotemporal Control of Colloidal Motion Waves via Structured Light. ACS Nano. 2022;16(8):12755–12766. doi: 10.1021/acsnano.2c04596. PubMed DOI

Chen X., Xu Y. K., Zhou C., Lou K., Peng Y. X., Zhang H. P., Wang W.. Unraveling the Physiochemical Nature of Colloidal Motion Waves among Silver Colloids. Science Advances. 2022;8(21):eabn9130. doi: 10.1126/sciadv.abn9130. PubMed DOI PMC

Zhou C., Chen X., Han Z., Wang W.. Photochemically Excited, Pulsating Janus Colloidal Motors of Tunable Dynamics. ACS Nano. 2019;13(4):4064–4072. doi: 10.1021/acsnano.8b08276. PubMed DOI

Zhou C., Suematsu N. J., Peng Y., Wang Q., Chen X., Gao Y., Wang W.. Coordinating an Ensemble of Chemical Micromotors via Spontaneous Synchronization. ACS Nano. 2020;14(5):5360–5370. doi: 10.1021/acsnano.9b08421. PubMed DOI

Kuhnert L., Agladze K. I., Krinsky V. I.. Image Processing Using Light-Sensitive Chemical Waves. Nature. 1989;337(6204):244–247. doi: 10.1038/337244a0. DOI

Katz Y., Tunstrøm K., Ioannou C. C., Huepe C., Couzin I. D.. Inferring the Structure and Dynamics of Interactions in Schooling Fish. Proceedings of the National Academy of Sciences. 2011;108(46):18720–18725. doi: 10.1073/pnas.1107583108. PubMed DOI PMC

Ansell H. S., Kovács I. A.. Unveiling Universal Aspects of the Cellular Anatomy of the Brain. Communications Physics. 2024;7(1):184. doi: 10.1038/s42005-024-01665-y. DOI

Palagi S., Fischer P.. Bioinspired Microrobots. Nature Reviews Materials. 2018;3(6):113–124. doi: 10.1038/s41578-018-0016-9. DOI

Peyer K. E., Zhang L., Nelson B. J.. Bio-Inspired Magnetic Swimming Microrobots for Biomedical Applications. Nanoscale. 2013;5(4):1259–1272. doi: 10.1039/C2NR32554C. PubMed DOI

Abbasi S. A., Ahmed A., Noh S., Gharamaleki N. L., Kim S., Chowdhury A. M. M. B., Kim J.-y., Pané S., Nelson B. J., Choi H.. Autonomous 3D Positional Control of a Magnetic Microrobot Using Reinforcement Learning. Nature Machine Intelligence. 2024;6(1):92–105. doi: 10.1038/s42256-023-00779-2. DOI

Xu T., Yu J., Yan X., Choi H., Zhang L.. Magnetic Actuation Based Motion Control for Microrobots: An Overview. Micromachines. 2015;6(9):1346–1364. doi: 10.3390/mi6091346. DOI

Wei T., Liu J., Li D., Chen S., Zhang Y., Li J., Fan L., Guan Z., Lo C.-M., Wang L.. et al. Development of Magnet-Driven and Image-Guided Degradable Microrobots for the Precise Delivery of Engineered Stem Cells for Cancer Therapy. Small. 2020;16(41):1906908. doi: 10.1002/smll.201906908. PubMed DOI

Wang Q., Yang L., Yu J., Chiu P. W. Y., Zheng Y. P., Zhang L.. Real-Time Magnetic Navigation of a Rotating Colloidal Microswarm under Ultrasound Guidance. Ieee Transactions on Biomedical Engineering. 2020;67(12):3403–3412. doi: 10.1109/TBME.2020.2987045. PubMed DOI

Muiños-Landin S., Fischer A., Holubec V., Cichos F.. Reinforcement Learning with Artificial Microswimmers. Science Robotics. 2021;6(52):eabd9285. doi: 10.1126/scirobotics.abd9285. PubMed DOI

Sun T., Zhang Y., Power C., Alexander P. M., Sutton J. T., Aryal M., Vykhodtseva N., Miller E. L., McDannold N. J.. Closed-Loop Control of Targeted Ultrasound Drug Delivery across the Blood-Brain/Tumor Barriers in a Rat Glioma Model. Proceedings of the National Academy of Sciences. 2017;114(48):E10281-E10290. doi: 10.1073/pnas.1713328114. PubMed DOI PMC

Li D., Niu F., Li J., Li X., Sun D.. Gradient-Enhanced Electromagnetic Actuation System with a New Core Shape Design for Microrobot Manipulation. IEEE Transactions on Industrial Electronics. 2020;67(6):4700–4710. doi: 10.1109/TIE.2019.2928283. DOI

Khalil, I. S. M. ; Ferreira, P. ; Eleutério, R. ; Korte, C. L. d. ; Misra, S. . Magnetic-Based Closed-Loop Control of Paramagnetic Microparticles Using Ultrasound Feedback. In 2014 IEEE International Conference on Robotics and Automation (ICRA), 31 May-7 June 2014, 2014; pp 3807-3812. 10.1109/ICRA.2014.6907411. DOI

Ghanbari A., Chang P. H., Nelson B. J., Choi H.. Electromagnetic Steering of a Magnetic Cylindrical Microrobot Using Optical Feedback Closed-Loop Control. International Journal of Optomechatronics. 2014;8(2):129–145. doi: 10.1080/15599612.2014.901454. DOI

Kim J., Choi H., Kim J.. A Robust Motion Control with Antiwindup Scheme for Electromagnetic Actuated Microrobot Using Time-Delay Estimation. IEEE/ASME Transactions on Mechatronics. 2019;24(3):1096–1105. doi: 10.1109/TMECH.2019.2907145. DOI

Mousavi A., Ahmed A., Khaksar H., Choi H., Hoshiar A. K.. An Input Saturation-Tolerant Position Control Method for Magnetic Microrobots Using Adaptive Fuzzy Sliding-Mode Method. IEEE Transactions on Automation Science and Engineering. 2025;22:3852–3865. doi: 10.1109/TASE.2024.3400602. DOI

Dong X., Kheiri S., Lu Y., Xu Z., Zhen M., Liu X.. Toward a Living Soft Microrobot through Optogenetic Locomotion Control of Caenorhabditis elegans . Science Robotics. 2021;6(55):eabe3950. doi: 10.1126/scirobotics.abe3950. PubMed DOI

Jung H., Kwak S., Choi H., Oh S.. Two-Degree-of-Freedom Control of a Micro-Robot Using a Dual-Rate State Observer. IEEE Transactions on Control Systems Technology. 2023;31(3):1451–1459. doi: 10.1109/TCST.2022.3220898. DOI

Yang L., Yu J., Yang S., Wang B., Nelson B. J., Zhang L.. A Survey on Swarm Microrobotics. IEEE Transactions on Robotics. 2022;38(3):1531–1551. doi: 10.1109/TRO.2021.3111788. DOI

Hart P. E., Nilsson N. J., Raphael B.. A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics. 1968;4(2):100–107. doi: 10.1109/TSSC.1968.300136. DOI

Kennedy, J. ; Eberhart, R. . Particle Swarm Optimization. In Proceedings of ICNN'95 - International Conference on Neural Networks, 27 Nov.-1 Dec. 1995, 1995; Vol. 4, pp 1942-1948. 10.1109/ICNN.1995.488968. DOI

Guo, S. ; Gao, B. . Path-Planning Optimization of Underwater Microrobots in 3-D Space by Pso Approach. In 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO), 19-23 Dec. 2009, 2009; pp 1655-1620. 10.1109/ROBIO.2009.5420390. DOI

Klemm, S. ; Oberländer, J. ; Hermann, A. ; Roennau, A. ; Schamm, T. ; Zollner, J. M. ; Dillmann, R. . Rrt*-Connect: Faster, Asymptotically Optimal Motion Planning. In 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), 6-9 Dec. 2015, 2015; pp 1670-1677. 10.1109/ROBIO.2015.7419012. DOI

Huan Z., Wang J., Zhu L., Zhong Z., Ma W., Chen Z.. Navigation and Closed-Loop Control of Magnetic Microrobot in Plant Vein Mimic Environment. Frontiers in Plant Science. 2023;14:na. doi: 10.3389/fpls.2023.1133944. PubMed DOI PMC

Kuffner, J. J. ; LaValle, S. M. . Rrt-Connect: An Efficient Approach to Single-Query Path Planning. In Proceedings 2000 ICRA, Millennium Conference, IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), 24-28 April 2000, 2000; Vol. 2, pp 995-1001. 10.1109/ROBOT.2000.844730. DOI

Karaman S., Frazzoli E.. Sampling-Based Algorithms for Optimal Motion Planning. The International Journal of Robotics Research. 2011;30(7):846–894. doi: 10.1177/0278364911406761. DOI

Soori M., Arezoo B., Dastres R.. Artificial Intelligence, Machine Learning and Deep Learning in Advanced Robotics, a Review. Cognitive Robotics. 2023;3:54–70. doi: 10.1016/j.cogr.2023.04.001. DOI

Morales, E. F. ; Escalante, H. J. . Chapter 6 - a Brief Introduction to Supervised, Unsupervised, and Reinforcement Learning. In Biosignal Processing and Classification Using Computational Learning and Intelligence, Torres-García, A. A. ; Reyes-García, C. A. ; Villaseñor-Pineda, L. ; Mendoza-Montoya, O. Eds.; Academic Press, 2022; pp 111-129.

Yang Y., Bevan M. A., Li B.. Efficient Navigation of Colloidal Robots in an Unknown Environment via Deep Reinforcement Learning. Advanced Intelligent Systems. 2020;2(1):1900106. doi: 10.1002/aisy.201900106. DOI

Yang Y., Bevan M. A., Li B.. Micro/Nano Motor Navigation and Localization via Deep Reinforcement Learning. Advanced Theory and Simulations. 2020;3(6):2000034. doi: 10.1002/adts.202000034. DOI

Schrage M., Medany M., Ahmed D.. Ultrasound Microrobots with Reinforcement Learning. Advanced Materials Technologies. 2023;8(10):2201702. doi: 10.1002/admt.202201702. DOI

Colabrese S., Gustavsson K., Celani A., Biferale L.. Flow Navigation by Smart Microswimmers via Reinforcement Learning. Physical Review Letters. 2017;118(15):158004. doi: 10.1103/PhysRevLett.118.158004. PubMed DOI

Yang L., Jiang J., Gao X., Wang Q., Dou Q., Zhang L.. Autonomous Environment-Adaptive Microrobot Swarm Navigation Enabled by Deep Learning-Based Real-Time Distribution Planning. Nature Machine Intelligence. 2022;4(5):480–493. doi: 10.1038/s42256-022-00482-8. DOI

Chowdhury A. M. M. B., Abbasi S. A., Gharamaleki N. L., Kim J.-y., Choi H.. Virtual Reality-Enabled Intuitive Magnetic Manipulation of Microrobots and Nanoparticles. Advanced Intelligent Systems. 2024;6(7):2300793. doi: 10.1002/aisy.202300793. DOI

Feng Y., An M., Liu Y., Sarwar M. T., Yang H.. Advances in Chemically Powered Micro/Nanorobots for Biological Applications: A Review. Advanced Functional Materials. 2023;33(1):2209883. doi: 10.1002/adfm.202209883. DOI

Teo W. Z., Wang H., Pumera M.. Beyond Platinum: Silver-Catalyst Based Bubble-Propelled Tubular Micromotors. Chemical Communications. 2016;52(23):4333–4336. doi: 10.1039/C6CC00115G. PubMed DOI

Yuan S., Yang L., Lin X., He Q.. Ultrasmall Pt Nps-Modified Flasklike Colloidal Motors with High Mobility and Enhanced Ion Tolerance. Nanoscale. 2023;15(30):12558–12566. doi: 10.1039/D3NR02664G. PubMed DOI

Zhou M., Hou T., Li J., Yu S., Xu Z., Yin M., Wang J., Wang X.. Self-Propelled and Targeted Drug Delivery of Poly (Aspartic Acid)/Iron-Zinc Microrocket in the Stomach. ACS Nano. 2019;13(2):1324–1332. doi: 10.1021/acsnano.8b06773. PubMed DOI

Lin Z., Fan X., Sun M., Gao C., He Q., Xie H.. Magnetically Actuated Peanut Colloid Motors for Cell Manipulation and Patterning. ACS Nano. 2018;12(3):2539–2545. doi: 10.1021/acsnano.7b08344. PubMed DOI

Jodra A., Soto F., Lopez-Ramirez M. A., Escarpa A., Wang J.. Delayed Ignition and Propulsion of Catalytic Microrockets Based on Fuel-Induced Chemical Dealloying of the Inner Alloy Layer. Chemical Communications. 2016;52(79):11838–11841. doi: 10.1039/C6CC06632A. PubMed DOI

Sengupta S., Patra D., Ortiz-Rivera I., Agrawal A., Shklyaev S., Dey K. K., Córdova-Figueroa U., Mallouk T. E., Sen A.. Self-Powered Enzyme Micropumps. Nature Chemistry. 2014;6(5):415–422. doi: 10.1038/nchem.1895. PubMed DOI

Zhou C., Gao C., Wu Y., Si T., Yang M., He Q.. Torque-Driven Orientation Motion of Chemotactic Colloidal Motors. Angewandte Chemie International Edition. 2022;61(10):e202116013. doi: 10.1002/anie.202116013. PubMed DOI

Nourhani A., Lammert P. E., Crespi V. H., Borhan A.. A General Flux-Based Analysis for Spherical Electrocatalytic Nanomotors. Physics of Fluids. 2015;27(1):012001. doi: 10.1063/1.4904951. DOI

Gibbs J., Zhao Y. P.. Design and Characterization of Rotational Multicomponent Catalytic Nanomotors. Small. 2009;5(20):2304–2308. doi: 10.1002/smll.200900686. PubMed DOI

Zhao G., Viehrig M., Pumera M.. Challenges of the Movement of Catalytic Micromotors in Blood. Lab on a Chip. 2013;13(10):1930–1936. doi: 10.1039/c3lc41423j. PubMed DOI

Mozaffari A., Sharifi-Mood N., Koplik J., Maldarelli C.. Self-Diffusiophoretic Colloidal Propulsion near a Solid Boundary. Physics of Fluids. 2016;28(5):053107. doi: 10.1063/1.4948398. DOI

Vilela D., Hortelão A. C., Balderas-Xicohténcatl R., Hirscher M., Hahn K., Ma X., Sánchez S.. Facile Fabrication of Mesoporous Silica Micro-Jets with Multi-Functionalities. Nanoscale. 2017;9(37):13990–13997. doi: 10.1039/C7NR04527A. PubMed DOI PMC

Nourhani A., Karshalev E., Soto F., Wang J.. Multigear Bubble Propulsion of Transient Micromotors. Research. 2020;2020:7823615. doi: 10.34133/2020/7823615. PubMed DOI PMC

Martín A., Jurado-Sánchez B., Escarpa A., Wang J.. Template Electrosynthesis of High-Performance Graphene Microengines. Small. 2015;11(29):3568–3574. doi: 10.1002/smll.201500008. PubMed DOI

Jurado-Sanchez B., Pacheco M., Maria-Hormigos R., Escarpa A.. Perspectives on Janus Micromotors: Materials and Applications. Applied Materials Today. 2017;9:407–418. doi: 10.1016/j.apmt.2017.09.005. DOI

Wu Z. G., Wu Y. J., He W. P., Lin X. K., Sun J. M., He Q.. Self-Propelled Polymer-Based Multilayer Nanorockets for Transportation and Drug Release. Angewandte Chemie International Edition. 2013;52(27):7000–7003. doi: 10.1002/anie.201301643. PubMed DOI

Gao W., Pei A., Dong R., Wang J.. Catalytic Iridium-Based Janus Micromotors Powered by Ultralow Levels of Chemical Fuels. Journal of the American Chemical Society. 2014;136(6):2276–2279. doi: 10.1021/ja413002e. PubMed DOI

Cao S., Wu H., Pijpers I. A., Shao J., Abdelmohsen L. K., Williams D. S., Van Hest J. C.. Cucurbit-Like Polymersomes with Aggregation-Induced Emission Properties Show Enzyme-Mediated Motility. ACS Nano. 2021;15(11):18270–18278. doi: 10.1021/acsnano.1c07343. PubMed DOI PMC

Choi H., Jeong S. H., Kim T. Y., Yi J., Hahn S. K.. Bioinspired Urease-Powered Micromotor as an Active Oral Drug Delivery Carrier in Stomach. Bioactive Materials. 2022;9:54–62. doi: 10.1016/j.bioactmat.2021.08.004. PubMed DOI PMC

Huang Y., Liang Z., Alsoraya M., Guo J., Fan D.. Light-Gated Manipulation of Micro/Nanoparticles in Electric Fields. Advanced Intelligent Systems. 2020;2(7):1900127. doi: 10.1002/aisy.201900127. DOI

Zhan Z., Wei F., Zheng J., Yang W., Luo J., Yao L.. Recent Advances of Light-Driven Micro/Nanomotors: Toward Powerful Thrust and Precise Control. Nanotechnology Reviews. 2018;7(6):555–581. doi: 10.1515/ntrev-2018-0106. DOI

Zhou D., Zhuang R., Chang X., Li L.. Enhanced Light-Harvesting Efficiency and Adaptation: A Review on Visible-Light-Driven Micro/Nanomotors. Research. 2020;2020:6821595. doi: 10.34133/2020/6821595. PubMed DOI PMC

Wang X., Sridhar V., Guo S., Talebi N., Miguel-López A., Hahn K., van Aken P. A., Sánchez S.. Fuel-Free Nanocap-Like Motors Actuated under Visible Light. Advanced Functional Materials. 2018;28(25):1705862. doi: 10.1002/adfm.201705862. DOI

Yan X., Xu J., Meng Z., Xie J., Wang H.. A New Mechanism of Light-Induced Bubble Growth to Propel Microbubble Piston Engine. Small. 2020;16(29):2001548. doi: 10.1002/smll.202001548. PubMed DOI

Mallick A., Roy S.. Visible Light Driven Catalytic Gold Decorated Soft-Oxometalate (Som) Based Nanomotors for Organic Pollutant Remediation. Nanoscale. 2018;10(26):12713–12722. doi: 10.1039/C8NR03534B. PubMed DOI

Eskandarloo H., Kierulf A., Abbaspourrad A.. Light-Harvesting Synthetic Nano-and Micromotors: A Review. Nanoscale. 2017;9(34):12218–12230. doi: 10.1039/C7NR05166B. PubMed DOI

Okawa D., Pastine S. J., Zettl A., Fréchet J. M.. Surface Tension Mediated Conversion of Light to Work. Journal of the American Chemical Society. 2009;131(15):5396–5398. doi: 10.1021/ja900130n. PubMed DOI PMC

Chen H., Zhao Q., Du X.. Light-Powered Micro/Nanomotors. Micromachines. 2018;9(2):41. doi: 10.3390/mi9020041. PubMed DOI PMC

Yang Z., Zhang L.. Magnetic Actuation Systems for Miniature Robots: A Review. Advanced Intelligent Systems. 2020;2(9):2000082. doi: 10.1002/aisy.202000082. DOI

Chen X. Z., Jang B., Ahmed D., Hu C., De Marco C., Hoop M., Mushtaq F., Nelson B. J., Pané S.. Small-Scale Machines Driven by External Power Sources. Advanced Materials. 2018;30(15):1705061. doi: 10.1002/adma.201705061. PubMed DOI

Li T., Li J., Zhang H., Chang X., Song W., Hu Y., Shao G., Sandraz E., Zhang G., Li L., Wang J.. Magnetically Propelled Fish-Like Nanoswimmers. Small. 2016;12(44):6098–6105. doi: 10.1002/smll.201601846. PubMed DOI

Han K., Shields C. W., Diwakar N. M., Bharti B., López G. P., Velev O. D.. Sequence-Encoded Colloidal Origami and Microbot Assemblies from Patchy Magnetic Cubes. Science Advances. 2017;3(8):e1701108. doi: 10.1126/sciadv.1701108. PubMed DOI PMC

Han K., Shields C. W. I. V., Bharti B., Arratia P. E., Velev O. D.. Active Reversible Swimming of Magnetically Assembled “Microscallops” in Non-Newtonian Fluids. Langmuir. 2020;36(25):7148–7154. doi: 10.1021/acs.langmuir.9b03698. PubMed DOI

Shields IV C. W., Kim Y.-K., Han K., Murphy A. C., Scott A. J., Abbott N. L., Velev O. D.. Control of the Folding Dynamics of Self-Reconfiguring Magnetic Microbots Using Liquid Crystallinity. Advanced Intelligent Systems. 2020;2(2):1900114. doi: 10.1002/aisy.201900114. DOI

Mandal P., Patil G., Kakoty H., Ghosh A.. Magnetic Active Matter Based on Helical Propulsion. Accounts of Chemical Research. 2018;51(11):2689–2698. doi: 10.1021/acs.accounts.8b00315. PubMed DOI

Wu Z. G., Li J. X., Esteban-Fernández de Ávila B., Li T. L., Gao W. W., He Q., Zhang L. F., Wang J.. Water-Powered Cell-Mimicking Janus Micromotor. Advanced Functional Materials. 2015;25(48):7497–7501. doi: 10.1002/adfm.201503441. DOI

Esteban-Fernández de Ávila B., Angsantikul P., Ramírez-Herrera D. E., Soto F., Teymourian H., Dehaini D., Chen Y., Zhang L., Wang J.. Hybrid Biomembrane-Functionalized Nanorobots for Concurrent Removal of Pathogenic Bacteria and Toxins. Science Robotics. 2018;3(18):eaat0485. doi: 10.1126/scirobotics.aat0485. PubMed DOI

McNeill J. M., Nama N., Braxton J. M., Mallouk T. E.. Wafer-Scale Fabrication of Micro- to Nanoscale Bubble Swimmers and Their Fast Autonomous Propulsion by Ultrasound. ACS Nano. 2020;14(6):7520–7528. doi: 10.1021/acsnano.0c03311. PubMed DOI

Soto F., Martin A., Ibsen S., Vaidyanathan M., Garcia-Gradilla V., Levin Y., Escarpa A., Esener S. C., Wang J.. Acoustic Microcannons: Toward Advanced Microballistics. ACS Nano. 2016;10(1):1522–1528. doi: 10.1021/acsnano.5b07080. PubMed DOI

Li J., Pumera M.. 3D Printing of Functional Microrobots. Chemical Society Reviews. 2021;50(4):2794–2838. doi: 10.1039/D0CS01062F. PubMed DOI

Wallin T. J., Pikul J., Shepherd R. F.. 3D Printing of Soft Robotic Systems. Nature Reviews Materials. 2018;3(6):84–100. doi: 10.1038/s41578-018-0002-2. DOI

Kaynak M., Dirix P., Sakar M. S.. Addressable Acoustic Actuation of 3D Printed Soft Robotic Microsystems. Advanced Science. 2020;7(20):2001120. doi: 10.1002/advs.202001120. PubMed DOI PMC

Garcia-Gradilla V., Sattayasamitsathit S., Soto F., Kuralay F., Yardımcı C., Wiitala D., Galarnyk M., Wang J.. Ultrasound-Propelled Nanoporous Gold Wire for Efficient Drug Loading and Release. Small. 2014;10(20):4154–4159. doi: 10.1002/smll.201401013. PubMed DOI

Gao F., Tang Y., Liu W. L., Zou M. Z., Huang C., Liu C. J., Zhang X. Z.. Intra/Extracellular Lactic Acid Exhaustion for Synergistic Metabolic Therapy and Immunotherapy of Tumors. Advanced Materials. 2019;31(51):1904639. doi: 10.1002/adma.201904639. PubMed DOI

Zhang H. Y., Li Z. S., Gao C. Y., Fan X. J., Pang Y. X., Li T. L., Wu Z. G., Xie H., He Q.. Dual-Responsive Biohybrid Neutrobots for Active Target Delivery. Science Robotics. 2021;6(52):eaaz9519. doi: 10.1126/scirobotics.aaz9519. PubMed DOI

Huang L., Zhou M. Y., Abbas G., Li C., Cui M. M., Zhang X. E., Wang D. B.. A Cancer Cell Membrane-Derived Biomimetic Nanocarrier for Synergistic Photothermal/Gene Therapy by Efficient Delivery of Crispr/Cas9 and Gold Nanorods. Advanced Healthcare Materials. 2022;11(16):2201038. doi: 10.1002/adhm.202201038. PubMed DOI

Xiong X., Zhao J. Y., Pan J. M., Liu C. P., Guo X., Zhou S. B.. Personalized Nanovaccine Coated with Calcinetin-Expressed Cancer Cell Membrane Antigen for Cancer Immunotherapy. Nano Letters. 2021;21(19):8418–8425. doi: 10.1021/acs.nanolett.1c03004. PubMed DOI

Jeon S., Park S. H., Kim E., Kim J. Y., Kim S. W., Choi H.. A Magnetically Powered Stem Cell-Based Microrobot for Minimally Invasive Stem Cell Delivery via the Intranasal Pathway in a Mouse Brain. Advanced Healthcare Materials. 2021;10(19):2100801. doi: 10.1002/adhm.202100801. PubMed DOI

Striggow F., Ribeiro C., Aziz A., Nauber R., Hebenstreit F., Schmidt O. G., Medina-Sánchez M.. Magnetotactic Sperm Cells for Assisted Reproduction. Small. 2024;20(23):2310288. doi: 10.1002/smll.202310288. PubMed DOI

Yeaman M. R.. Platelets in Defense against Bacterial Pathogens. Cellular and Molecular Life Sciences. 2010;67(4):525–544. doi: 10.1007/s00018-009-0210-4. PubMed DOI PMC

Wang S. Y., Duan Y. O., Zhang Q. Z., Komarla A., Gong H., Gao W. W., Zhang L. F.. Drug Targeting via Platelet Membrane-Coated Nanoparticles. Small Structures. 2020;1(1):2000018. doi: 10.1002/sstr.202000018. PubMed DOI PMC

Uchida T.. Neutrophil Kinetics in Health and Disease (Author's Transl) Rinsho ketsueki, The Japanese journal of clinical hematology. 1979;20(12):1548–1561. PubMed

Williams M. R., Azcutia V., Newton G., Alcaide P., Luscinskas F. W.. Emerging Mechanisms of Neutrophil Recruitment across Endothelium. Trends in Immunology. 2011;32(10):461–469. doi: 10.1016/j.it.2011.06.009. PubMed DOI PMC

Kruger P., Saffarzadeh M., Weber A. N. R., Rieber N., Radsak M., von Bernuth H., Benarafa C., Roos D., Skokowa J., Hartl D.. Neutrophils: Between Host Defence, Immune Modulation, and Tissue Injury. Plos Pathogens. 2015;11(3):e1004651. doi: 10.1371/journal.ppat.1004651. PubMed DOI PMC

Wright H. L., Moots R. J., Bucknall R. C., Edwards S. W.. Neutrophil Function in Inflammation and Inflammatory Diseases. Rheumatology. 2010;49(9):1618–1631. doi: 10.1093/rheumatology/keq045. PubMed DOI

Chu D. F., Zhao Q., Yu J., Zhang F. Y., Zhang H., Wang Z. J.. Nanoparticle Targeting of Neutrophils for Improved Cancer Immunotherapy. Advanced Healthcare Materials. 2016;5(9):1088–1093. doi: 10.1002/adhm.201500998. PubMed DOI PMC

Xue J. W., Zhao Z. K., Zhang L., Xue L. J., Shen S. Y., Wen Y. J., Wei Z. Y., Wang L., Kong L. Y., Sun H. B.. et al. Neutrophil-Mediated Anticancer Drug Delivery for Suppression of Postoperative Malignant Glioma Recurrence. Nature Nanotechnology. 2017;12(7):692–700. doi: 10.1038/nnano.2017.54. PubMed DOI

Chu D. F., Gao J., Wang Z. J.. Neutrophil-Mediated Delivery of Therapeutic Nanoparticles across Blood Vessel Barrier for Treatment of Inflammation and Infection. ACS Nano. 2015;9(12):11800–11811. doi: 10.1021/acsnano.5b05583. PubMed DOI PMC

Hou J., Yang X., Li S. Y., Cheng Z. K., Wang Y. H., Zhao J., Zhang C., Li Y. J., Luo M., Ren H. W.. et al. Accessing Neuroinflammation Sites: Monocyte/Neutrophil-Mediated Drug Delivery for Cerebral Ischemia. Science Advances. 2019;5(7):eaau8301. doi: 10.1126/sciadv.aau8301. PubMed DOI PMC

Wu M. Y., Zhang H. X., Tie C. J., Yan C. H., Deng Z. T., Wan Q., Liu X., Yan F., Zheng H. R.. Mr Imaging Tracking of Inflammation-Activatable Engineered Neutrophils for Targeted Therapy of Surgically Treated Glioma. Nature Communications. 2018;9:4777. doi: 10.1038/s41467-018-07250-6. PubMed DOI PMC

Fang R. H., Hu C. M. J., Luk B. T., Gao W. W., Copp J. A., Tai Y. Y., O'Connor D. E., Zhang L. F.. Cancer Cell Membrane-Coated Nanoparticles for Anticancer Vaccination and Drug Delivery. Nano Letters. 2014;14(4):2181–2188. doi: 10.1021/nl500618u. PubMed DOI PMC

Chen Z., Zhao P. F., Luo Z. Y., Zheng M. B., Tian H., Gong P., Gao G. H., Pan H., Liu L. L., Ma A. Q.. et al. Cancer Cell Membrane-Biomimetic Nanoparticles for Homologous-Targeting Dual-Modal Imaging and Photothermal Therapy. ACS Nano. 2016;10(11):10049–10057. doi: 10.1021/acsnano.6b04695. PubMed DOI

Jaiswal S., Jamieson C. H. M., Pang W. W., Park C. Y., Chao M. P., Majeti R., Traver D., van Rooijen N., Weissman I. L.. Cd47 Is Upregulated on Circulating Hematopoietic Stem Cells and Leukemia Cells to Avoid Phagocytosis. Cell. 2009;138(2):271–285. doi: 10.1016/j.cell.2009.05.046. PubMed DOI PMC

Majeti R., Chao M. P., Alizadeh A. A., Pang W. W., Jaiswal S., Gibbs K. D., van Rooijen N., Weissman I. L.. Cd47 Is an Adverse Prognostic Factor and Therapeutic Antibody Target on Human Acute Myeloid Leukemia Stem Cells. Cell. 2009;138(2):286–299. doi: 10.1016/j.cell.2009.05.045. PubMed DOI PMC

Fang R. H., Kroll A. V., Gao W. W., Zhang L. F.. Cell Membrane Coating Nanotechnology. Advanced Materials. 2018;30(23):1706759. doi: 10.1002/adma.201706759. PubMed DOI PMC

Su Y. X., Xie Z. W., Kim G. B., Dong C., Yang J.. Design Strategies and Applications of Circulating Cell-Mediated Drug Delivery Systems. ACS Biomaterials Science & Engineering. 2015;1(4):201–217. doi: 10.1021/ab500179h. PubMed DOI PMC

Majumdar M. K., Thiede M. A., Mosca J. D., Moorman M., Gerson S. L.. Phenotypic and Functional Comparison of Cultures of Marrow-Derived Mesenchymal Stem Cells (Mscs) and Stromal Cells. Journal of Cellular Physiology. 1998;176(1):57–66. doi: 10.1002/(SICI)1097-4652(199807)176:1<57::AID-JCP7>3.0.CO;2-7. PubMed DOI

Sellheyer K., Krahl D.. Skin Mesenchymal Stem Cells: Prospects for Clinical Dermatology. Journal of the American Academy of Dermatology. 2010;63(5):859–865. doi: 10.1016/j.jaad.2009.09.022. PubMed DOI

Hassan G., Kasem I., Antaki R., Mohammad M. B., AlKadry R., Aljamali M.. Isolation of Umbilical Cord Mesenchymal Stem Cells Using Human Blood Derivatives Accompanied with Explant Method. Stem cell investigation. 2019;6:28. doi: 10.21037/sci.2019.08.06. PubMed DOI PMC

Xie C. Y., Yang Z. R., Suo Y. Z., Chen Q. Q., Wei D., Weng X. F., Gu Z. Q., Wei X. B.. Systemically Infused Mesenchymal Stem Cells Show Different Homing Profiles in Healthy and Tumor Mouse Models. Stem Cells Translational Medicine. 2017;6(4):1120–1131. doi: 10.1002/sctm.16-0204. PubMed DOI PMC

Wang L. T., Ting C. H., Yen M. L., Liu K. J., Sytwu H. K., Wu K. K., Yen B. L.. Human Mesenchymal Stem Cells (Mscs) for Treatment Towards Immune- and Inflammation-Mediated Diseases: Review of Current Clinical Trials. Journal of Biomedical Science. 2016;23:76. doi: 10.1186/s12929-016-0289-5. PubMed DOI PMC

Cipriani P., Ruscitti P., Di Benedetto P., Carubbi F., Liakouli V., Berardicurti O., Ciccia F., Triolo G., Giacomelli R.. Mesenchymal Stromal Cells and Rheumatic Diseases: New Tools from Pathogenesis to Regenerative Therapies. Cytotherapy. 2015;17(7):832–849. doi: 10.1016/j.jcyt.2014.12.006. PubMed DOI

Kidd S., Spaeth E., Dembinski J. L., Dietrich M., Watson K., Klopp A., Battula V. L., Weil M., Andreeff M., Marini F. C.. Direct Evidence of Mesenchymal Stem Cell Tropism for Tumor and Wounding Microenvironments Using in vivo Bioluminescent Imaging. Stem Cells. 2009;27(10):2614–2623. doi: 10.1002/stem.187. PubMed DOI PMC

Bexell D., Scheding S., Bengzon J.. Toward Brain Tumor Gene Therapy Using Multipotent Mesenchymal Stromal Cell Vectors. Molecular Therapy. 2010;18(6):1067–1075. doi: 10.1038/mt.2010.58. PubMed DOI PMC

Layek B., Sadhukha T., Panyam J., Prabha S.. Nano-Engineered Mesenchymal Stem Cells Increase Therapeutic Efficacy of Anticancer Drug through True Active Tumor Targeting. Molecular Cancer Therapeutics. 2018;17(6):1196–1206. doi: 10.1158/1535-7163.MCT-17-0682. PubMed DOI PMC

Nitzsche F., Muller C., Lukomska B., Jolkkonen J., Deten A., Boltze J.. Concise Review: Msc Adhesion Cascade-Insights into Homing and Transendothelial Migration. Stem Cells. 2017;35(6):1446–1460. doi: 10.1002/stem.2614. PubMed DOI

Wang X. L., Gao J. Q., Ouyang X. M., Wang J. B., Sun X. Y., Lv Y. Y.. Mesenchymal Stem Cells Loaded with Paclitaxel-Poly­(Lactic-Co-Glycolic Acid) Nanoparticles for Glioma-Targeting Therapy. International Journal of Nanomedicine. 2018;13:5231–5248. doi: 10.2147/IJN.S167142. PubMed DOI PMC

Bengisu, M. ; Ferrara, M. . Materials That Move: Smart Materials, Intelligent Design; Springer, 2018.

Brizzi S., Cavozzi C., Storti F.. Smart Materials for Experimental Tectonics: Viscous Behavior of Magnetorheological Silicones. Tectonophysics. 2023;867:230038. doi: 10.1016/j.tecto.2023.230038. DOI

Bahl S., Nagar H., Singh I., Sehgal S.. Smart Materials Types, Properties and Applications: A Review. Materials Today: Proceedings. 2020;28:1302–1306. doi: 10.1016/j.matpr.2020.04.505. DOI

Soto F., Karshalev E., Zhang F., Esteban-Fernández de Ávila B., Nourhani A., Wang J.. Smart Materials for Microrobots. Chemical Reviews. 2022;122(5):5365–5403. doi: 10.1021/acs.chemrev.0c00999. PubMed DOI

Shahinpoor, M. ; Schneider, H.-J. . Intelligent Materials; Royal Society of Chemistry, 2007.

Xu, C. ; Schwartz, M. . Encyclopedia of Smart Materials; John Wiley & Sons, 2002; Vol. 1, pp 190-201.

Nakanishi, T. Supramolecular Soft Matter: Applications in Materials and Organic Electronics; John Wiley & Sons, 2011.

Huang H.-W., Sakar M. S., Petruska A. J., Pané S., Nelson B.. Soft Micromachines with Programmable Motility and Morphology. Nature Communications. 2016;7(1):12263. doi: 10.1038/ncomms12263. PubMed DOI PMC

Palacci J., Sacanna S., Abramian A., Barral J., Hanson K., Grosberg A. Y., Pine D. J., Chaikin P. M.. Artificial Rheotaxis. Science Advances. 2015;1(4):e1400214. doi: 10.1126/sciadv.1400214. PubMed DOI PMC

Zhuang J., Sitti M.. Chemotaxis of Bio-Hybrid Multiple Bacteria-Driven Microswimmers. Scientific Reports. 2016;6(1):32135. doi: 10.1038/srep32135. PubMed DOI PMC

Cappelleri D., Bi C., Noguera M.. Tumbling Microrobots for Future Medicine. American Scientists. 2018;106:210. doi: 10.1511/2018.106.4.210. DOI

Sattayasamitsathit S., Kou H., Gao W., Thavarajah W., Kaufmann K., Zhang L., Wang J.. Fully Loaded Micromotors for Combinatorial Delivery and Autonomous Release of Cargoes. Small. 2014;10(14):2830–2833. doi: 10.1002/smll.201303646. PubMed DOI PMC

Mou F., Chen C., Zhong Q., Yin Y., Ma H., Guan J.. interfaces. Autonomous Motion and Temperature-Controlled Drug Delivery of Mg/Pt-Poly (N-Isopropylacrylamide) Janus Micromotors Driven by Simulated Body Fluid and Blood Plasma. ACS Applied Materials & Interfaces. 2014;6(12):9897–9903. doi: 10.1021/am502729y. PubMed DOI

Gao W., Pei A., Wang J.. Water-Driven Micromotors. ACS Nano. 2012;6(9):8432–8438. doi: 10.1021/nn303309z. PubMed DOI

Li J., Singh V. V., Sattayasamitsathit S., Orozco J., Kaufmann K., Dong R., Gao W., Jurado-Sanchez B., Fedorak Y., Wang J.. Water-Driven Micromotors for Rapid Photocatalytic Degradation of Biological and Chemical Warfare Agents. ACS Nano. 2014;8(11):11118–11125. doi: 10.1021/nn505029k. PubMed DOI

Esteban-Fernández de Ávila B., Lopez-Ramirez M. A., Mundaca-Uribe R., Wei X., Ramírez-Herrera D. E., Karshalev E., Nguyen B., Fang R. H., Zhang L., Wang J.. Multicompartment Tubular Micromotors toward Enhanced Localized Active Delivery. Advanced Materials. 2020;32(25):2000091. doi: 10.1002/adma.202000091. PubMed DOI

Liu J., Li L., Cao C., Feng Z., Liu Y., Ma H., Luo W., Guan J., Mou F.. Swarming Multifunctional Heater-Thermometer Nanorobots for Precise Feedback Hyperthermia Delivery. ACS Nano. 2023;17(17):16731–16742. doi: 10.1021/acsnano.3c03131. PubMed DOI

Li L., Yu Z., Liu J., Yang M., Shi G., Feng Z., Luo W., Ma H., Guan J., Mou F.. Swarming Responsive Photonic Nanorobots for Motile-Targeting Microenvironmental Mapping and Mapping-Guided Photothermal Treatment. Nano-Micro Letters. 2023;15(1):141. doi: 10.1007/s40820-023-01095-5. PubMed DOI PMC

Yu Z., Li L., Mou F., Yu S., Zhang D., Yang M., Zhao Q., Ma H., Luo W., Li T., Guan J.. Swarming Magnetic Photonic-Crystal Microrobots with on-the-fly Visual pH Detection and Self-Regulated Drug Delivery. InfoMat. 2023;5(10):e12464. doi: 10.1002/inf2.12464. DOI

Li J., Yu X., Xu M., Liu W., Sandraz E., Lan H., Wang J., Cohen S. M.. Metal-Organic Frameworks as Micromotors with Tunable Engines and Brakes. Journal of the American Chemical Society. 2017;139(2):611–614. doi: 10.1021/jacs.6b11899. PubMed DOI

Wang X., Chen X. Z., Alcântara C. C., Sevim S., Hoop M., Terzopoulou A., De Marco C., Hu C., de Mello A. J., Falcaro P.. et al. Mofbots: Metal-Organic-Framework-Based Biomedical Microrobots. Advanced Materials. 2019;31(27):1901592. doi: 10.1002/adma.201901592. PubMed DOI

Diao Y. Y., Liu X. Y., Toh G. W., Shi L., Zi J.. Multiple Structural Coloring of Silk-Fibroin Photonic Crystals and Humidity-Responsive Color Sensing. Advanced Functional Materials. 2013;23(43):5373–5380. doi: 10.1002/adfm.201203672. DOI

Fang Y., Ni Y., Choi B., Leo S. Y., Gao J., Ge B., Taylor C., Basile V., Jiang P.. Chromogenic Photonic Crystals Enabled by Novel Vapor-Responsive Shape-Memory Polymers. Advanced Materials. 2015;27(24):3696–3704. doi: 10.1002/adma.201500835. PubMed DOI

Patiño T., Feiner-Gracia N., Arqué X., Miguel-Lopez A., Jannasch A., Stumpp T., Schäffer E., Albertazzi L., Sanchez S.. Influence of Enzyme Quantity and Distribution on the Self-Propulsion of Non-Janus Urease-Powered Micromotors. Journal of the American Chemical Society. 2018;140(25):7896–7903. doi: 10.1021/jacs.8b03460. PubMed DOI

Greco F. V., Tarnowski M. J., Gorochowski T. E.. Living Computers Powered by Biochemistry. Biochem. 2019;41(3):14–18. doi: 10.1042/BIO04103014. DOI

Marucci L., Barberis M., Karr J., Ray O., Race P. R., de Souza Andrade M., Grierson C., Hoffmann S. A., Landon S., Rech E.. et al. Computer-Aided Whole-Cell Design: Taking a Holistic Approach by Integrating Synthetic with Systems Biology. Front. Bioeng. Biotechnol. 2020;8:942. doi: 10.3389/fbioe.2020.00942. PubMed DOI PMC

Pena-Francesch A., Demirel M. C.. Squid-Inspired Tandem Repeat Proteins: Functional Fibers and Films. Frontiers in Chemistry. 2019;7:na. doi: 10.3389/fchem.2019.00069. PubMed DOI PMC

Ceylan H., Yasa I. C., Yasa O., Tabak A. F., Giltinan J., Sitti M.. 3D-Printed Biodegradable Microswimmer for Theranostic Cargo Delivery and Release. ACS Nano. 2019;13(3):3353–3362. doi: 10.1021/acsnano.8b09233. PubMed DOI PMC

Pena-Francesch A., Jung H., Demirel M. C., Sitti M.. Biosynthetic Self-Healing Materials for Soft Machines. Nature Materials. 2020;19(11):1230–1235. doi: 10.1038/s41563-020-0736-2. PubMed DOI PMC

Terzopoulou A., Nicholas J. D., Chen X.-Z., Nelson B. J., Pane S., Puigmarti-Luis J.. Metal-Organic Frameworks in Motion. Chemical Reviews. 2020;120(20):11175–11193. doi: 10.1021/acs.chemrev.0c00535. PubMed DOI

Feng J., Yuan J., Cho S. K.. 2-D Steering and Propelling of Acoustic Bubble-Powered Microswimmers. Lab on a Chip. 2016;16(12):2317–2325. doi: 10.1039/C6LC00431H. PubMed DOI

Zhou Y., Wang H., Ma Z., Yang J. K., Ai Y.. Acoustic Vibration-Induced Actuation of Multiple Microrotors in Microfluidics. Advanced Materials Technologies. 2020;5(9):2000323. doi: 10.1002/admt.202000323. DOI

Irie M., Fukaminato T., Matsuda K., Kobatake S.. Photochromism of Diarylethene Molecules and Crystals: Memories, Switches, and Actuators. Chemical Reviews. 2014;114(24):12174–12277. doi: 10.1021/cr500249p. PubMed DOI

Guo S., Matsukawa K., Miyata T., Okubo T., Kuroda K., Shimojima A.. Photoinduced Bending of Self-Assembled Azobenzene-Siloxane Hybrid. Journal of the American Chemical Society. 2015;137(49):15434–15440. doi: 10.1021/jacs.5b06172. PubMed DOI

Liu D., Liu L., Onck P. R., Broer D. J.. Reverse Switching of Surface Roughness in a Self-Organized Polydomain Liquid Crystal Coating. Proceedings of the National Academy of Sciences. 2015;112(13):3880–3885. doi: 10.1073/pnas.1419312112. PubMed DOI PMC

Kim T., Zhu L., Mueller L. J., Bardeen C. J.. Mechanism of Photoinduced Bending and Twisting in Crystalline Microneedles and Microribbons Composed of 9-Methylanthracene. Journal of the American Chemical Society. 2014;136(18):6617–6625. doi: 10.1021/ja412216z. PubMed DOI

Ohshima A., Momotake A., Arai T.. Photochromism, Thermochromism, and Solvatochromism of Naphthalene-Based Analogues of Salicylideneaniline in Solution. Journal of Photochemistry and Photobiology. 2004;162(2-3):473–479. doi: 10.1016/S1010-6030(03)00388-5. DOI

Gupta P., Panda T., Allu S., Borah S., Baishya A., Gunnam A., Nangia A., Naumov P., Nath N. K.. Crystalline Acylhydrazone Photoswitches with Multiple Mechanical Responses. Crystal Growth & Design. 2019;19(5):3039–3044. doi: 10.1021/acs.cgd.8b01860. DOI

Morimoto M., Irie M.. A Diarylethene Cocrystal That Converts Light into Mechanical Work. Journal of the American Chemical Society. 2010;132(40):14172–14178. doi: 10.1021/ja105356w. PubMed DOI

Kitagawa D., Tsujioka H., Tong F., Dong X., Bardeen C. J., Kobatake S.. Control of Photomechanical Crystal Twisting by Illumination Direction. Journal of the American Chemical Society. 2018;140(12):4208–4212. doi: 10.1021/jacs.7b13605. PubMed DOI

Zhu L., Al-Kaysi R. O., Bardeen C. J.. Photoinduced Ratchet-Like Rotational Motion of Branched Molecular Crystals. Angewandte Chemie International Edition. 2016;55(25):7073–7076. doi: 10.1002/anie.201511444. PubMed DOI

Tong F., Al-Haidar M., Zhu L., Al-Kaysi R. O., Bardeen C. J.. Photoinduced Peeling of Molecular Crystals. Chemical Communications. 2019;55(26):3709–3712. doi: 10.1039/C8CC10051A. PubMed DOI

Xuan M., Wu Z., Shao J., Dai L., Si T., He Q.. Near Infrared Light-Powered Janus Mesoporous Silica Nanoparticle Motors. Journal of the American Chemical Society. 2016;138(20):6492–6497. doi: 10.1021/jacs.6b00902. PubMed DOI

Ji Y., Lin X., Zhang H., Wu Y., Li J., He Q.. Thermoresponsive Polymer Brush Modulation on the Direction of Motion of Phoretically Driven Janus Micromotors. Angewandte Chemie International Edition. 2019;131(13):4228–4232. doi: 10.1002/ange.201812860. PubMed DOI

Bandari V. K., Nan Y., Karnaushenko D., Hong Y., Sun B., Striggow F., Karnaushenko D. D., Becker C., Faghih M., Medina-Sánchez M.. et al. A Flexible Microsystem Capable of Controlled Motion and Actuation by Wireless Power Transfer. Nature Electronics. 2020;3(3):172–180. doi: 10.1038/s41928-020-0384-1. DOI

Wang H., Pumera M.. Emerging Materials for the Fabrication of Micro/Nanomotors. Nanoscale. 2017;9(6):2109–2116. doi: 10.1039/C6NR09217A. PubMed DOI

Gao W., Liu M., Liu L., Zhang H., Dong B., Li C. Y.. One-Step Fabrication of Multifunctional Micromotors. Nanoscale. 2015;7(33):13918–13923. doi: 10.1039/C5NR03574K. PubMed DOI

Tabrizi M. A., Shamsipur M.. A Simple Method for the Fabrication of Nanomotors Based on a Gold Nanosheet Decorated with Copt Nanoparticles. RSC Advances. 2015;5(64):51508–51511. doi: 10.1039/C5RA08552G. DOI

Su M., Liu M., Liu L., Sun Y., Li M., Wang D., Zhang H., Dong B.. Shape-Controlled Fabrication of the Polymer-Based Micromotor Based on the Polydimethylsiloxane Template. Langmuir. 2015;31(43):11914–11920. doi: 10.1021/acs.langmuir.5b03649. PubMed DOI

Walker D., Käsdorf B. T., Jeong H.-H., Lieleg O., Fischer P.. Enzymatically Active Biomimetic Micropropellers for the Penetration of Mucin Gels. Science Advances. 2015;1(11):e1500501. doi: 10.1126/sciadv.1500501. PubMed DOI PMC

Wu Z., Li J., Esteban-Fernández de Ávila B., Li T., Gao W., He Q., Zhang L., Wang J.. Water-Powered Cell-Mimicking Janus Micromotor. Advanced Functional Materials. 2015;25(48):7497–7501. doi: 10.1002/adfm.201503441. DOI

Wang D., Gao C., Zhou C., Lin Z., He Q.. Leukocyte Membrane-Coated Liquid Metal Nanoswimmers for Actively Targeted Delivery and Synergistic Chemophotothermal Therapy. Research. 2020;2020:3676954. doi: 10.34133/2020/3676954. PubMed DOI PMC

Chen C., Karshalev E., Guan J., Wang J.. Magnesium-Based Micromotors: Water-Powered Propulsion, Multifunctionality, and Biomedical and Environmental Applications. Small. 2018;14(23):1704252. doi: 10.1002/smll.201704252. PubMed DOI

Bozuyuk U., Yasa O., Yasa I. C., Ceylan H., Kizilel S., Sitti M.. Light-Triggered Drug Release from 3D-Printed Magnetic Chitosan Microswimmers. ACS Nano. 2018;12(9):9617–9625. doi: 10.1021/acsnano.8b05997. PubMed DOI

Ye H., Wang Y., Xu D., Liu X., Liu S., Ma X.. Design and Fabrication of Micro/Nano-Motors for Environmental and Sensing Applications. Applied Materials Today. 2021;23:101007. doi: 10.1016/j.apmt.2021.101007. DOI

Verma C., Berdimurodov E., Verma D. K., Berdimuradov K., Alfantazi A., Hussain C. M.. 3D Nanomaterials: The Future of Industrial, Biological, and Environmental Applications. Inorganic Chemistry Communications. 2023;156:111163. doi: 10.1016/j.inoche.2023.111163. DOI

Xu B., Zhang B., Wang L., Huang G., Mei Y.. Tubular Micro/Nanomachines: From the Basics to Recent Advances. Advanced Functional Materials. 2018;28(25):1705872. doi: 10.1002/adfm.201705872. DOI

Zhao Y., Jiang L.. Hollow Micro/Nanomaterials with Multilevel Interior Structures. Advanced Materials. 2009;21(36):3621–3638. doi: 10.1002/adma.200803645. DOI

Liu X., Dong R., Chen Y., Zhang Q., Yu S., Zhang Z., Hong X., Li T., Gao M., Cai Y.. Motion Mode-Driven Adsorption by Magnetically Propelled MOF-Based Nanomotor. Materials Today Nano. 2022;18:100182. doi: 10.1016/j.mtnano.2022.100182. DOI

Tan C., Cao X., Wu X.-J., He Q., Yang J., Zhang X., Chen J., Zhao W., Han S., Nam G.-H.. et al. Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chemical Reviews. 2017;117(9):6225–6331. doi: 10.1021/acs.chemrev.6b00558. PubMed DOI

Zhang H., Cao Z., Zhang Q., Xu J., Yun S. L. J., Liang K., Gu Z.. Chemotaxis-Driven 2D Nanosheet for Directional Drug Delivery toward the Tumor Microenvironment. Small. 2020;16(44):2002732. doi: 10.1002/smll.202002732. PubMed DOI

Chang X., Feng Y., Guo B., Zhou D., Li L.. Nature-Inspired Micro/Nanomotors. Nanoscale. 2022;14(2):219–238. doi: 10.1039/D1NR07172F. PubMed DOI

Poon W., Zhang Y.-N., Ouyang B., Kingston B. R., Wu J. L. Y., Wilhelm S., Chan W. C. W.. Elimination Pathways of Nanoparticles. ACS Nano. 2019;13(5):5785–5798. doi: 10.1021/acsnano.9b01383. PubMed DOI

Tsoi K. M., MacParland S. A., Ma X.-Z., Spetzler V. N., Echeverri J., Ouyang B., Fadel S. M., Sykes E. A., Goldaracena N., Kaths J. M.. et al. Mechanism of Hard-Nanomaterial Clearance by The liver. Nature Materials. 2016;15(11):1212–1221. doi: 10.1038/nmat4718. PubMed DOI PMC

Zhu W., Li J., Leong Y. J., Rozen I., Qu X., Dong R., Wu Z., Gao W., Chung P. H., Wang J.. et al. 3D-Printed Artificial Microfish. Advanced Materials. 2015;27(30):4411–4417. doi: 10.1002/adma.201501372. PubMed DOI PMC

Wang Y., Shen J., Handschuh-Wang S., Qiu M., Du S., Wang B.. Microrobots for Targeted Delivery and Therapy in Digestive System. ACS Nano. 2023;17(1):27–50. doi: 10.1021/acsnano.2c04716. PubMed DOI

Wang B., Chan K. F., Yuan K., Wang Q., Xia X., Yang L., Ko H., Wang Y.-X. J., Sung J. J. Y., Chiu P. W. Y., Zhang L.. Endoscopy-Assisted Magnetic Navigation of Biohybrid Soft Microrobots with Rapid Endoluminal Delivery and Imaging. Science Robotics. 2021;6(52):eabd2813. doi: 10.1126/scirobotics.abd2813. PubMed DOI

Wu Z., Li L., Yang Y., Hu P., Li Y., Yang S.-Y., Wang L. V., Gao W.. A Microrobotic System Guided by Photoacoustic Computed Tomography for Targeted Navigation in Intestines in vivo. Science Robotics. 2019;4(32):eaax0613. doi: 10.1126/scirobotics.aax0613. PubMed DOI PMC

Li H. C., Li Y., Liu J., He Q., Wu Y. J.. Asymmetric Colloidal Motors: From Dissymmetric Nanoarchitectural Fabrication to Efficient Propulsion Strategy. Nanoscale. 2022;14(20):7444–7459. doi: 10.1039/D2NR00610C. PubMed DOI

Zhang, J. ; Zheng, X. ; Cui, H. ; Silber-Li, Z. . The Self-Propulsion of the Spherical Pt-SiO

Wang H., Moo J. G. S., Pumera M.. From Nanomotors to Micromotors: The Influence of the Size of an Autonomous Bubble-Propelled Device Upon Its Motion. ACS Nano. 2016;10(5):5041–5050. doi: 10.1021/acsnano.5b07771. PubMed DOI

Piazza R., Parola A.. Thermophoresis in Colloidal Suspensions. Journal of Physics: Condensed Matter. 2008;20(15):153102. doi: 10.1088/0953-8984/20/15/153102. DOI

Blanco E., Shen H., Ferrari M.. Principles of Nanoparticle Design for Overcoming Biological Barriers to Drug Delivery. Nature Biotechnology. 2015;33(9):941–951. doi: 10.1038/nbt.3330. PubMed DOI PMC

Kim J., Mayorga-Burrezo P., Song S.-J., Mayorga-Martinez C. C., Medina-Sánchez M., Pané S., Pumera M.. Advanced Materials for Micro/Nanorobotics. Chemical Society Reviews. 2024;53(18):9190–9253. doi: 10.1039/D3CS00777D. PubMed DOI

Yoo J., Tang S., Gao W.. Micro- and Nanorobots for Biomedical Applications in the Brain. Nature Reviews Bioengineering. 2023;1(5):308–310. doi: 10.1038/s44222-023-00038-4. DOI

Parrish J. K., Edelstein-Keshet L.. Complexity, Pattern, and Evolutionary Trade-Offs in Animal Aggregation. Science. 1999;284(5411):99–101. doi: 10.1126/science.284.5411.99. PubMed DOI

Marchetti M. C., Joanny J.-F., Ramaswamy S., Liverpool T. B., Prost J., Rao M., Simha R. A.. Hydrodynamics of Soft Active Matter. Reviews of Modern Physics. 2013;85(3):1143. doi: 10.1103/RevModPhys.85.1143. DOI

Grzybowski B. A., Whitesides G. M.. Dynamic Aggregation of Chiral Spinners. Science. 2002;296(5568):718–721. doi: 10.1126/science.1068130. PubMed DOI

Cheng R., Huang W., Huang L., Yang B., Mao L., Jin K., ZhuGe Q., Zhao Y.. Acceleration of Tissue Plasminogen Activator-Mediated Thrombolysis by Magnetically Powered Nanomotors. ACS Nano. 2014;8(8):7746–7754. doi: 10.1021/nn5029955. PubMed DOI PMC

Hu J., Huang S., Zhu L., Huang W., Zhao Y., Jin K., ZhuGe Q.. interfaces. Tissue Plasminogen Activator-Porous Magnetic Microrods for Targeted Thrombolytic Therapy after Ischemic Stroke. ACS Applied Materials & Interfaces. 2018;10(39):32988–32997. doi: 10.1021/acsami.8b09423. PubMed DOI

Cademartiri L., Bishop K. J.. Programmable Self-Assembly. Nature Materials. 2015;14(1):2–9. doi: 10.1038/nmat4184. PubMed DOI

Li Q., Hu E., Yu K., Xie R., Lu F., Lu B., Bao R., Zhao T., Dai F., Lan G.. Self-Propelling Janus Particles for Hemostasis in Perforating and Irregular Wounds with Massive Hemorrhage. Advanced Functional Materials. 2020;30(42):2004153. doi: 10.1002/adfm.202004153. DOI

Katsamba P., Lauga E.. Micro-Tug-of-War: A Selective Control Mechanism for Magnetic Swimmers. Physical Review Applied. 2016;5(6):064019. doi: 10.1103/PhysRevApplied.5.064019. DOI

Mandal P., Chopra V., Ghosh A.. Independent Positioning of Magnetic Nanomotors. ACS Nano. 2015;9(5):4717–4725. doi: 10.1021/acsnano.5b01518. PubMed DOI

Hong Y., Diaz M., Córdova-Figueroa U. M., Sen A.. Light-Driven Titanium-Dioxide-Based Reversible Microfireworks and Micromotor/Micropump Systems. Advanced Functional Materials. 2010;20(10):1568–1576. doi: 10.1002/adfm.201000063. DOI

Altemose A., Sánchez-Farrán M. A., Duan W. T., Schulz S., Borhan A., Crespi V. H., Sen A.. Chemically Controlled Spatiotemporal Oscillations of Colloidal Assemblies. Angewandte Chemie International Edition. 2017;56(27):7817–7821. doi: 10.1002/anie.201703239. PubMed DOI

Aubret A., Youssef M., Sacanna S., Palacci J.. Targeted Assembly and Synchronization of Self-Spinning Microgears. Nature Physics. 2018;14(11):1114–1118. doi: 10.1038/s41567-018-0227-4. DOI

Maggi C., Simmchen J., Saglimbeni F., Katuri J., Dipalo M., De Angelis F., Sanchez S., Di Leonardo R.. Self-Assembly of Micromachining Systems Powered by Janus Micromotors. Small. 2016;12(4):446–451. doi: 10.1002/smll.201502391. PubMed DOI

Butter K., Bomans P., Frederik P., Vroege G., Philipse A.. Direct Observation of Dipolar Chains in Iron Ferrofluids by Cryogenic Electron Microscopy. Nature Materials. 2003;2(2):88–91. doi: 10.1038/nmat811. PubMed DOI

Tripp S. L., Dunin-Borkowski R. E., Wei A.. Flux Closure in Self-Assembled Cobalt Nanoparticle Rings. Angewandte Chemie International Edition. 2003;115(45):5749–5751. doi: 10.1002/ange.200352825. PubMed DOI

Llacer-Wintle J., Rivas-Dapena A., Chen X.-Z., Pellicer E., Nelson B. J., Puigmartí-Luis J., Pané S.. Biodegradable Small-Scale Swimmers for Biomedical Applications. Advanced Materials. 2021;33(42):2102049. doi: 10.1002/adma.202102049. PubMed DOI

Liu M., Ishida Y., Ebina Y., Sasaki T., Hikima T., Takata M., Aida T.. An Anisotropic Hydrogel with Electrostatic Repulsion between Cofacially Aligned Nanosheets. Nature. 2015;517(7532):68–72. doi: 10.1038/nature14060. PubMed DOI

Kostiainen M. A., Hiekkataipale P., Laiho A., Lemieux V., Seitsonen J., Ruokolainen J., Ceci P.. Electrostatic Assembly of Binary Nanoparticle Superlattices Using Protein Cages. Nature Nanotechnology. 2013;8(1):52–56. doi: 10.1038/nnano.2012.220. PubMed DOI

Liljeström V., Mikkilä J., Kostiainen M. A.. Self-Assembly and Modular Functionalization of Three-Dimensional Crystals from Oppositely Charged Proteins. Nature Communications. 2014;5(1):4445. doi: 10.1038/ncomms5445. PubMed DOI PMC

Zehavi M., Sofer D., Miloh T., Velev O. D., Yossifon G.. Optically Modulated Propulsion of Electric-Field-Powered Photoconducting Janus Particles. Physical Review Applied. 2022;18(2):024060. doi: 10.1103/PhysRevApplied.18.024060. DOI

Hoop M., Chen X.-Z., Ferrari A., Mushtaq F., Ghazaryan G., Tervoort T., Poulikakos D., Nelson B., Pané S.. Ultrasound-Mediated Piezoelectric Differentiation of Neuron-Like Pc12 Cells on Pvdf Membranes. Scientific Reports. 2017;7(1):4028. doi: 10.1038/s41598-017-03992-3. PubMed DOI PMC

Mushtaq F., Torlakcik H., Vallmajo-Martin Q., Siringil E. C., Zhang J., Röhrig C., Shen Y., Yu Y., Chen X.-Z., Müller R.. et al. Magnetoelectric 3D Scaffolds for Enhanced Bone Cell Proliferation. Applied Materials Today. 2019;16:290–300. doi: 10.1016/j.apmt.2019.06.004. DOI

Chen X.-Z., Liu J.-H., Dong M., Müller L., Chatzipirpiridis G., Hu C., Terzopoulou A., Torlakcik H., Wang X., Mushtaq F.. et al. Magnetically Driven Piezoelectric Soft Microswimmers for Neuron-Like Cell Delivery and Neuronal Differentiation. Materials Horizons. 2019;6(7):1512–1516. doi: 10.1039/C9MH00279K. DOI

Chen X.-Z., Hoop M., Shamsudhin N., Huang T., Ozkale B., Li Q., Siringil E., Mushtaq F., Di Tizio L., Nelson B. J., Pane S.. Hybrid Magnetoelectric Nanowires for Nanorobotic Applications: Fabrication, Magnetoelectric Coupling, and Magnetically Assisted in Vitro Targeted Drug Delivery. Advanced Materials. 2017;29(8):1605458. doi: 10.1002/adma.201605458. PubMed DOI

Mushtaq F., Torlakcik H., Hoop M., Jang B., Carlson F., Grunow T., Laubli N., Ferreira A., Chen X.-Z., Nelson B. J., Pane S.. Motile Piezoelectric Nanoeels for Targeted Drug Delivery. Advanced Functional Materials. 2019;29(12):1808135. doi: 10.1002/adfm.201808135. DOI

Chen X.-Z., Shamsudhin N., Hoop M., Pieters R., Siringil E., Sakar M. S., Nelson B. J., Pané S.. Magnetoelectric Micromachines with Wirelessly Controlled Navigation and Functionality. Materials Horizons. 2016;3(2):113–118. doi: 10.1039/C5MH00259A. DOI

Ashkin A., Dziedzic J. M., Bjorkholm J. E., Chu S.. Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles. Optics Letters. 1986;11(5):288–290. doi: 10.1364/OL.11.000288. PubMed DOI

Fan D., Zhu F., Cammarata R., Chien C.. Electric Tweezers. Nano Today. 2011;6(4):339–354. doi: 10.1016/j.nantod.2011.05.003. PubMed DOI PMC

Grier D. G.. A Revolution in Optical Manipulation. Nature. 2003;424(6950):810–816. doi: 10.1038/nature01935. PubMed DOI

Curtis J. E., Koss B. A., Grier D. G.. Dynamic Holographic Optical Tweezers. Optics Communications. 2002;207(1-6):169–175. doi: 10.1016/S0030-4018(02)01524-9. DOI

Simon P., Dupuis R., Costentin J.. Thigmotaxis as an Index of Anxiety in Mice. Influence of Dopaminergic Transmissions. Behavioural Brain Research. 1994;61(1):59–64. doi: 10.1016/0166-4328(94)90008-6. PubMed DOI

Treit D., Fundytus M.. Thigmotaxis as a Test for Anxiolytic Activity in Rats. Pharmacol. Biochem. Behav. 1988;31(4):959–962. doi: 10.1016/0091-3057(88)90413-3. PubMed DOI

de la Asunción-Nadal V., Franco C., Veciana A., Ning S., Terzopoulou A., Sevim S., Chen X.-Z., Gong D., Cai J., Wendel-Garcia P. D.. et al. MoSBOTS: Magnetically Driven Biotemplated MoS2-Based Microrobots for Biomedical Applications. Small. 2022;18(33):2203821. doi: 10.1002/smll.202203821. PubMed DOI

Ding S., O'Banion C. P., Welfare J. G., Lawrence D. S.. Cellular Cyborgs: On the Precipice of a Drug Delivery Revolution. Cell Chemical Biology. 2018;25(6):648–658. doi: 10.1016/j.chembiol.2018.03.003. PubMed DOI

Gao S., Hou J., Zeng J., Richardson J. J., Gu Z., Gao X., Li D., Gao M., Wang D.-W., Chen P.. et al. Superassembled Biocatalytic Porous Framework Micromotors with Reversible and Sensitive pH-Speed Regulation at Ultralow Physiological H2O2 Concentration. Advanced Functional Materials. 2019;29(18):1808900. doi: 10.1002/adfm.201808900. DOI

Tu Y. F., Peng F., Sui X. F., Men Y. J., White P. B., van Hest J. C. M., Wilson D. A.. Self-Propelled Supramolecular Nanomotors with Temperature-Responsive Speed Regulation. Nature Chemistry. 2017;9(5):480–486. doi: 10.1038/nchem.2674. PubMed DOI

Ma X., Wang X., Hahn K., Sánchez S.. Motion Control of Urea-Powered Biocompatible Hollow Microcapsules. ACS Nano. 2016;10(3):3597–3605. doi: 10.1021/acsnano.5b08067. PubMed DOI

Singh D. P., Choudhury U., Fischer P., Mark A. G.. Non-Equilibrium Assembly of Light-Activated Colloidal Mixtures. Advanced Materials. 2017;29(32):1701328. doi: 10.1002/adma.201701328. PubMed DOI

Yuan S. R., Lin X. K., He Q.. Reconfigurable Assembly of Colloidal Motors Towards Interactive Soft Materials and Systems. Journal of Colloid and Interface Science. 2022;612:43–56. doi: 10.1016/j.jcis.2021.12.135. PubMed DOI

Chen M. L., Lin Z. H., Xuan M. J., Lin X. K., Yang M. C., Dai L. R., He Q.. Programmable Synamic Shapes with a Swarm of Light-Powered Colloidal Motors. Angewandte Chemie International Edition. 2021;60(30):16674–16679. doi: 10.1002/anie.202105746. PubMed DOI

Wang Q. Q., Yang L. D., Wang B., Yu E., Yu J. F., Zhang L.. Collective Behavior of Reconfigurable Magnetic Droplets via Dynamic Self-Assembly. ACS Applied Materials & Interfaces. 2019;11(1):1630–1637. doi: 10.1021/acsami.8b17402. PubMed DOI

Wang Q. Q., Yu J. F., Yuan K., Yang L. D., Jin D. D., Zhang L.. Disassembly and Spreading of Magnetic Nanoparticle Clusters on Uneven Surfaces. Applied Materials Today. 2020;18:100489. doi: 10.1016/j.apmt.2019.100489. DOI

Zhang S., Scott E. Y., Singh J., Chen Y., Zhang Y., Elsayed M., Chamberlain M. D., Shakiba N., Adams K., Yu S.. et al. The Optoelectronic Microrobot: A Versatile Toolbox for Micromanipulation. Proceedings of the National Academy of Sciences. 2019;116(30):14823–14828. doi: 10.1073/pnas.1903406116. PubMed DOI PMC

Das S. S., Yossifon G.. Optoelectronic Trajectory Reconfiguration and Directed Self-Assembly of Self-Propelling Electrically Powered Active Particles. Advanced Science. 2023;10(16):2206183. doi: 10.1002/advs.202206183. PubMed DOI PMC

Wu Z. G., Lin X. K., Si T. Y., He Q.. Recent Progress on Bioinspired Self-Propelled Micro/Nanomotors via Controlled Molecular Self-Assembly. Small. 2016;12(23):3080–3093. doi: 10.1002/smll.201503969. PubMed DOI

Zhang Q. H., Yan Y. W., Liu J., Wu Y. J., He Q.. Supramolecular Colloidal Motors via Chemical Self-Assembly. Current Opinion in Colloid & Interface Science. 2022;62:101642. doi: 10.1016/j.cocis.2022.101642. DOI

Wu Y., Wu Z., Lin X., He Q., Li J.. Autonomous Movement of Controllable Assembled Janus Capsule Motors. ACS Nano. 2012;6(12):10910–10916. doi: 10.1021/nn304335x. PubMed DOI

Wu Z. G., Lin X. K., Wu Y. J., Si T. Y., Sun J. M., He Q.. Near-Infrared Light-Triggered "on/Off" Motion of Polymer Multi Layer Rockets. ACS Nano. 2014;8(6):6097–6105. doi: 10.1021/nn501407r. PubMed DOI

Wu Y. J., Si T. Y., Lin X. K., He Q.. Near Infrared-Modulated Propulsion of Catalytic Janus Polymer Multilayer Capsule Motors. Chemical Communications. 2015;51(3):511–514. doi: 10.1039/C4CC07182D. PubMed DOI

Lin Z. H., Wu Z. G., Lin X. K., He Q.. Catalytic Polymer Multilayer Shell Motors for Separation of Organics. Chemistry-a European Journal. 2016;22(5):1587–1591. doi: 10.1002/chem.201503892. PubMed DOI

Wu Y. J., Si T. Y., Shao J. X., Wu Z. G., He Q.. Near-Infrared Light-Driven Janus Capsule Motors: Fabrication, Propulsion, and Simulation. Nano Research. 2016;9(12):3747–3756. doi: 10.1007/s12274-016-1245-0. DOI

Ji Y. X., Lin X. K., Wang D. L., Zhou C., Wu Y. J., He Q.. Continuously Variable Regulation of the Speed of Bubble-Propelled Janus Microcapsule Motors Based on Salt-Responsive Polyelectrolyte Brushes. Chemistry-an Asian Journal. 2019;14(14):2450–2455. doi: 10.1002/asia.201801716. PubMed DOI

Si T. Y., Zou X., Wu Z. G., Li T. L., Wang X., Ivanovich K. I., He Q.. A Bubble-Dragged Catalytic Polymer Microrocket. Chemistry-an Asian Journal. 2019;14(14):2460–2464. doi: 10.1002/asia.201900277. PubMed DOI

Wang W., Wu Z. G., Lin X. K., Si T. Y., He Q.. Gold-Nanoshell-Functionalized Polymer Nanoswimmer for Photomechanical Poration of Single-Cell Membrane. Journal of the American Chemical Society. 2019;141(16):6601–6608. doi: 10.1021/jacs.8b13882. PubMed DOI

Yuan Y., Gao C. Y., Wang D. L., Zhou C., Zhu B. H., He Q.. Janus-Micromotor-Based on-Off Luminescence Sensor for Active Tnt Detection. Beilstein Journal of Nanotechnology. 2019;10:1324–1331. doi: 10.3762/bjnano.10.131. PubMed DOI PMC

Gai M. Y., Frueh J., Hu N. R. S., Si T. Y., Sukhorukov G. B., He Q.. Self-Propelled Two Dimensional Polymer Multilayer Plate Micromotors. Physical Chemistry Chemical Physics. 2016;18(5):3397–3401. doi: 10.1039/C5CP07697H. PubMed DOI

Yang S. H., Ren J. Y., Wang H.. Injectable Micromotor@Hydrogel System for Antibacterial Therapy. Chemistry-a European Journal. 2022;28(7):e202103867. doi: 10.1002/chem.202103867. PubMed DOI

Ren J., Hu P., Ma E., Zhou X., Wang W., Zheng S., Wang H.. Enzyme-Powered Nanomotors with Enhanced Cell Uptake and Lysosomal Escape for Combined Therapy of Cancer. Applied Materials Today. 2022;27:101445. doi: 10.1016/j.apmt.2022.101445. DOI

Jurado-Sánchez B., Escarpa A., Wang J.. Lighting up Micromotors with Quantum Dots for Smart Chemical Sensing. Chemical Communications. 2015;51(74):14088–14091. doi: 10.1039/C5CC04726A. PubMed DOI

Xuan M., Shao J., Lin X., Dai L., He Q.. Light-Activated Janus Self-Assembled Capsule Micromotors. Colloids and Surfaces a-Physicochemical and Engineering Aspects. 2015;482:92–97. doi: 10.1016/j.colsurfa.2015.04.032. DOI

Hu N. R. S., Sun M. M., Lin X. K., Gao C. Y., Zhang B., Zheng C., Xie H., He Q.. Self-Propelled Rolled-up Polyelectrolyte Multilayer Microrockets. Advanced Functional Materials. 2018;28(25):1705684. doi: 10.1002/adfm.201705684. DOI

Lin X. K., Wu Z. G., Wu Y. J., Xuan M. J., He Q.. Self-Propelled Micro-/Nanomotors Based on Controlled Assembled Architectures. Advanced Materials. 2016;28(6):1060–1072. doi: 10.1002/adma.201502583. PubMed DOI

Wang W., Wu Z. G., Yang L., Si T. Y., He Q.. Rational Design of Polymer Conical Nanoswimmers with Upstream Motility. ACS Nano. 2022;16(6):9317–9328. doi: 10.1021/acsnano.2c01979. PubMed DOI

Itel F., Schattling P. S., Zhang Y., Städler B.. Enzymes as Key Features in Therapeutic Cell Mimicry. Advanced Drug Delivery Reviews. 2017;118:94–108. doi: 10.1016/j.addr.2017.09.006. PubMed DOI

Shao J. X., Abdelghani M., Shen G. Z., Cao S. P., Williams D. S., van Hest J. C. M.. Erythrocyte Membrane Modified Janus Polymeric Motors for Thrombus Therapy. ACS Nano. 2018;12(5):4877–4885. doi: 10.1021/acsnano.8b01772. PubMed DOI PMC

Wu Z. G., Lin X. K., Zou X., Sun J. M., He Q.. Biodegradable Protein-Based Rockets for Drug Transportation and Light-Triggered Release. ACS Applied Materials & Interfaces. 2015;7(1):250–255. doi: 10.1021/am507680u. PubMed DOI

Liu J., Wu Y. J., Li Y., Yang L., Wu H., He Q.. Rotary Biomolecular Motor-Powered Supramolecular Colloidal Motor. Science Advances. 2023;9(8):eabg3015. doi: 10.1126/sciadv.abg3015. PubMed DOI PMC

Wilson D. A., Nolte R. J. M., van Hest J. C. M.. Autonomous Movement of Platinum-Loaded Stomatocytes. Nature Chemistry. 2012;4(4):268–274. doi: 10.1038/nchem.1281. PubMed DOI

Peng F., Tu Y. F., van Hest J. C. M., Wilson D. A.. Self-Guided Supramolecular Cargo-Loaded Nanomotors with Chemotactic Behavior Towards Cells. Angewandte Chemie International Edition. 2015;54(40):11662–11665. doi: 10.1002/anie.201504186. PubMed DOI PMC

Abdelmohsen L., Nijemeisland M., Pawar G. M., Janssen G. J. A., Nolte R. J. M., van Hest J. C. M., Wilson D. A.. Dynamic Loading and Unloading of Proteins in Polymeric Stomatocytes: Formation of an Enzyme-Loaded Supramolecular Nanomotor. ACS Nano. 2016;10(2):2652–2660. doi: 10.1021/acsnano.5b07689. PubMed DOI

Peng F., Tu Y. F., Men Y. J., van Hest J. C. M., Wilson D. A.. Supramolecular Adaptive Nanomotors with Magnetotaxis Behavior. Advanced Materials. 2017;29(6):1604996. doi: 10.1002/adma.201604996. PubMed DOI

Tu Y. F., Peng F., André A. A. M., Men Y. J., Srinivas M., Wilson D. A.. Biodegradable Hybrid Stomatocyte Nanomotors for Drug Delivery. ACS Nano. 2017;11(2):1957–1963. doi: 10.1021/acsnano.6b08079. PubMed DOI PMC

Sun J. W., Mathesh M., Li W., Wilson D. A.. Enzyme-Powered Nanomotors with Controlled Size for Biomedical Applications. ACS Nano. 2019;13(9):10191–10200. doi: 10.1021/acsnano.9b03358. PubMed DOI PMC

Zhang P., Wu G., Zhao C. M., Zhou L., Wang X. J., Wei S. H.. Magnetic Stomatocyte-Like Nanomotor as Photosensitizer Carrier for Photodynamic Therapy Based Cancer Treatment. Colloids and Surfaces B-Biointerfaces. 2020;194:111204. doi: 10.1016/j.colsurfb.2020.111204. PubMed DOI

Tu Y. F., Peng F., Heuvelmans J. M., Liu S. W., Nolte R. J. M., Wilson D. A.. Motion Control of Polymeric Nanomotors Based on Host-Guest Interactions. Angewandte Chemie International Edition. 2019;58(26):8687–8691. doi: 10.1002/anie.201900917. PubMed DOI

Shao J. X., Cao S. P., Williams D. S., Abdelmohsen L., van Hest J. C. M.. Photoactivated Polymersome Nanomotors: Traversing Biological Barriers. Angewandte Chemie International Edition. 2020;59(39):16918–16925. doi: 10.1002/anie.202003748. PubMed DOI PMC

Fu J. Y., Jiao J. Q., Ban W. H., Kong Y. Q., Gu Z. Y., Song H., Huang X. D., Yang Y. N., Yu C. Z.. Large Scale Synthesis of Self-Assembled Shuttlecock-Shaped Silica Nanoparticles with Minimized Drag as Advanced Catalytic Nanomotors. Chemical Engineering Journal. 2021;417:127971. doi: 10.1016/j.cej.2020.127971. DOI

Huang H., Li J., Yuan M. G., Yang H. W., Zhao Y., Ying Y. L., Wang S.. Large-Scale Self-Assembly of Mofs Colloidosomes for Bubble-Propelled Micromotors and Stirring-Free Environmental Remediation. Angewandte Chemie International Edition. 2022;61(46):e202211163. doi: 10.1002/anie.202211163. PubMed DOI

Liu M., Liu L. M., Gao W. L., Su M. D., Ge Y., Shi L. L., Zhang H., Dong B., Li C. Y.. A Micromotor Based on Polymer Single Crystals and Nanoparticles: Toward Functional Versatility. Nanoscale. 2014;6(15):8601–8605. doi: 10.1039/C4NR02593H. PubMed DOI

Ji Y. X., Lin X. K., Zhang H. Y., Wu Y. J., Li J. B., He Q.. Thermoresponsive Polymer Brush Modulation on the Direction of Motion of Phoretically Driven Janus Micromotors. Angewandte Chemie International Edition. 2019;58(13):4184–4188. doi: 10.1002/anie.201812860. PubMed DOI

Gao C. Y., Lin Z. H., Lin X. K., He Q.. Cell Membrane-Camouflaged Colloid Motors for Biomedical Applications. Advanced Therapeutics. 2018;1(5):1800056. doi: 10.1002/adtp.201800056. DOI

Hu C. M. J., Zhang L., Aryal S., Cheung C., Fang R. H., Zhang L. F.. Erythrocyte Membrane-Camouflaged Polymeric Nanoparticles as a Biomimetic Delivery Platform. Proceedings of the National Academy of Sciences. 2011;108(27):10980–10985. doi: 10.1073/pnas.1106634108. PubMed DOI PMC

Zhang H. Y., Li Z. S., He Q.. Medical Swimming Cellbots. Advanced Nanobiomed Research. 2022;2(10):2200094. doi: 10.1002/anbr.202270101. DOI

Shao J. X., Xuan M. J., Zhang H. Y., Lin X. K., Wu Z. G., He Q.. Chemotaxis-Guided Hybrid Neutrophil Micromotors for Targeted Drug Transport. Angewandte Chemie International Edition. 2017;56(42):12935–12939. doi: 10.1002/anie.201706570. PubMed DOI

Gao C. Y., Lin Z. H., Wang D. L., Wu Z. G., Xie H., He Q.. Red Blood Cell-Mimicking Micromotor for Active Photodynamic Cancer Therapy. ACS Applied Materials & Interfaces. 2019;11(26):23392–23400. doi: 10.1021/acsami.9b07979. PubMed DOI

Zhang F. Y., Zhuang J., Esteban-Fernández de Ávila B., Tang S. S., Zhang Q. Z., Fang R. H., Zhang L. F., Wang J.. A Nanomotor-Based Active Delivery System for Intracellular Oxygen Transport. ACS Nano. 2019;13(10):11996–12005. doi: 10.1021/acsnano.9b06127. PubMed DOI PMC

Hou K., Zhang Y., Bao M., Xin C., Wei Z., Lin G., Wang Z.. A Multifunctional Magnetic Red Blood Cell-Mimetic Micromotor for Drug Delivery and Image-Guided Therapy. ACS Applied Materials & Interfaces. 2022;14(3):3825–3837. doi: 10.1021/acsami.1c21331. PubMed DOI

Li J. X., Angsantikul P., Liu W. J., Esteban-Fernández de Ávila B., Chang X. C., Sandraz E., Liang Y. Y., Zhu S. Y., Zhang Y., Chen C. R.. et al. Biomimetic Platelet-Camouflaged Nanorobots for Binding and Isolation of Biological Threats. Advanced Materials. 2018;30(2):1704800. doi: 10.1002/adma.201704800. PubMed DOI

Xuan M. J., Shao J. X., Gao C. Y., Wang W., Dai L. R., He Q.. Self-Propelled Nanomotors for Thermomechanically Percolating Cell Membranes. Angewandte Chemie International Edition. 2018;57(38):12463–12467. doi: 10.1002/anie.201806759. PubMed DOI

Zhang H. Y., Li Z. S., Wu Z. G., He Q.. Cancer Cell Membrane-Camouflaged Micromotor. Advanced Therapeutics. 2019;2(12):1900096. doi: 10.1002/adtp.201900096. DOI

Zhou M. Y., Xing Y., Li X. Y., Du X., Xu T. L., Zhang X. J.. Cancer Cell Membrane Camouflaged Semi-Yolk@Spiky-Shell Nanomotor for Enhanced Cell Adhesion and Synergistic Therapy. Small. 2020;16(39):2003834. doi: 10.1002/smll.202003834. PubMed DOI

Wang Z. F., Yan Y., Li C., Yu Y., Cheng S., Chen S., Zhu X. J., Sun L. P., Tao W., Liu J. W.. et al. Fluidity-Guided Assembly of Au@Pt on Liposomes as a Catalase-Powered Nanomotor for Effective Cell Uptake in Cancer Cells and Plant Leaves. ACS Nano. 2022;16(6):9019–9030. doi: 10.1021/acsnano.2c00327. PubMed DOI

Gao C. Y., Lin Z. H., Zhou C., Wang D. L., He Q.. Acoustophoretic Motion of Erythrocyte-Mimicking Hemoglobin Micromotors. Chinese Journal of Chemistry. 2020;38(12):1589–1594. doi: 10.1002/cjoc.202000347. DOI

de Gennes P. G.. Weiche Materie. (Nobel-Vortrag) Angewandte Chemie International Edition. 1992;104(7):856–859. doi: 10.1002/ange.19921040707. DOI

Ye Y., Luan J., Wang M., Chen Y., Wilson D. A., Peng F., Tu Y.. Fabrication of Self-Propelled Micro- and Nanomotors Based on Janus Structures. Chemistry - A European Journal. 2019;25(37):8663–8680. doi: 10.1002/chem.201900840. PubMed DOI

Nourhani A., Brown D., Pletzer N., Gibbs J. G.. Engineering Contactless Particle-Particle Interactions in Active Microswimmers. Advanced Materials. 2017;29(47):1703910. doi: 10.1002/adma.201703910. PubMed DOI

Chen C., Karshalev E., Li J., Soto F., Castillo R., Campos I., Mou F., Guan J., Wang J.. Transient Micromotors That Disappear When No Longer Needed. ACS Nano. 2016;10(11):10389–10396. doi: 10.1021/acsnano.6b06256. PubMed DOI

Xuan M., Shao J., Gao C., Wang W., Dai L., He Q.. Self-Propelled Nanomotors for Thermomechanically Percolating Cell Membranes. Angewandte Chemie International Edition. 2018;130(38):12643–12647. doi: 10.1002/ange.201806759. PubMed DOI

Baranova N. B., Zel'dovich B. Y.. Separation of Mirror Isomeric Molecules by Radio-Frequency Electric Field of Rotating Polarization. Chemical Physics Letters. 1978;57(3):435–437. doi: 10.1016/0009-2614(78)85543-2. DOI

Ishiyama K., Sendoh M., Yamazaki A., Arai K. I.. Swimming Micro-Machine Driven by Magnetic Torque. Sensors and Actuators A: Physical. 2001;91(1):141–144. doi: 10.1016/S0924-4247(01)00517-9. DOI

Hawkeye M. M., Brett M. J.. Glancing Angle Deposition: Fabrication, Properties, and Applications of Micro- and Nanostructured Thin Films. Journal of Vacuum Science & Technology A. 2007;25(5):1317–1335. doi: 10.1116/1.2764082. DOI

Turner L., Ryu W. S., Berg H. C.. Real-Time Imaging of Fluorescent Flagellar Filaments. Journal of Bacteriology. 2000;182(10):2793–2801. doi: 10.1128/JB.182.10.2793-2801.2000. PubMed DOI PMC

Fischer P., Ghosh A.. Magnetically Actuated Propulsion at Low Reynolds Numbers: Towards Nanoscale Control. Nanoscale. 2011;3(2):557–563. doi: 10.1039/C0NR00566E. PubMed DOI

Schamel D., Pfeifer M., Gibbs J. G., Miksch B., Mark A. G., Fischer P.. Chiral Colloidal Molecules and Observation of the Propeller Effect. Journal of the American Chemical Society. 2013;135(33):12353–12359. doi: 10.1021/ja405705x. PubMed DOI PMC

Ghosh A., Paria D., Rangarajan G., Ghosh A.. Velocity Fluctuations in Helical Propulsion: How Small Can a Propeller Be. The Journal of Physical Chemistry Letters. 2014;5(1):62–68. doi: 10.1021/jz402186w. PubMed DOI

Mark A. G., Gibbs J. G., Lee T.-C., Fischer P.. Hybrid Nanocolloids with Programmed Three-Dimensional Shape and Material Composition. Nature Materials. 2013;12(9):802–807. doi: 10.1038/nmat3685. PubMed DOI

Ramachandran R. V., Barman A., Modak P., Bhat R., Ghosh A., Saini D. K.. How Safe Are Magnetic Nanomotors: From Cells to Animals. Biomaterials Advances. 2022;140:213048. doi: 10.1016/j.bioadv.2022.213048. PubMed DOI PMC

Peter F., Kadiri V. M., Goyal R., Hurst J., Schnichels S., Avital A., Sela M., Mora-Raimundo P., Schroeder A., Alarcon-Correa M., Fischer P.. Degradable and Biocompatible Magnesium Zinc Structures for Nanomedicine: Magnetically Actuated Liposome Microcarriers with Tunable Release. Advanced Functional Materials. 2024;34(23):2314265. doi: 10.1002/adfm.202314265. DOI

Kadiri V. M., Bussi C., Holle A. W., Son K., Kwon H., Schütz G., Gutierrez M. G., Fischer P.. Biocompatible Magnetic Micro- and Nanodevices: Fabrication of FePt Nanopropellers and Cell Transfection. Advanced Materials. 2020;32(25):2001114. doi: 10.1002/adma.202001114. PubMed DOI

Jeong H.-H., Mark A. G., Alarcón-Correa M., Kim I., Oswald P., Lee T.-C., Fischer P.. Dispersion and Shape Engineered Plasmonic Nanosensors. Nature Communications. 2016;7(1):11331. doi: 10.1038/ncomms11331. PubMed DOI PMC

Jeong H.-H., Mark A. G., Lee T.-C., Alarcón-Correa M., Eslami S., Qiu T., Gibbs J. G., Fischer P.. Active Nanorheology with Plasmonics. Nano Letters. 2016;16(8):4887–4894. doi: 10.1021/acs.nanolett.6b01404. PubMed DOI

Ghosh S., Ghosh A.. Mobile Nanotweezers for Active Colloidal Manipulation. Science Robotics. 2018;3(14):eaaq0076. doi: 10.1126/scirobotics.aaq0076. PubMed DOI

Venugopalan P. L., Jain S., Shivashankar S., Ghosh A.. Single Coating of Zinc Ferrite Renders Magnetic Nanomotors Therapeutic and Stable against Agglomeration. Nanoscale. 2018;10(5):2327–2332. doi: 10.1039/C7NR08291F. PubMed DOI

Dasgupta D., Pally D., Saini D. K., Bhat R., Ghosh A.. Nanomotors Sense Local Physicochemical Heterogeneities in Tumor Microenvironments. Angewandte Chemie International Edition. 2020;59(52):23690–23696. doi: 10.1002/anie.202008681. PubMed DOI PMC

Ghosh A., Dasgupta D., Pal M., Morozov K. I., Leshansky A. M., Ghosh A.. Helical Nanomachines as Mobile Viscometers. Advanced Functional Materials. 2018;28(25):1705687. doi: 10.1002/adfm.201705687. DOI

Ghosh A., Ghosh A.. Mapping Viscoelastic Properties Using Helical Magnetic Nanopropellers. Transactions of the Indian National Academy of Engineering. 2021;6(2):429–438. doi: 10.1007/s41403-021-00212-3. PubMed DOI PMC

Pal M., Fouxon I., Leshansky A. M., Ghosh A.. Fluid Flow Induced by Helical Microswimmers in Bulk and near Walls. Physical Review Research. 2022;4(3):033069. doi: 10.1103/PhysRevResearch.4.033069. PubMed DOI PMC

Patil G., Vashist E., Kakoty H., Behera J., Ghosh A.. Magnetic Nanohelices Swimming in an Optical Bowl. Applied Physics Letters. 2021;119(1):012406. doi: 10.1063/5.0058848. DOI

Ghosh A., Paria D., Singh H. J., Venugopalan P. L., Ghosh A.. Dynamical Configurations and Bistability of Helical Nanostructures under External Torque. Physical Review E. 2012;86(3):031401. doi: 10.1103/PhysRevE.86.031401. PubMed DOI

Mandal P., Ghosh A.. Observation of Enhanced Diffusivity in Magnetically Powered Reciprocal Swimmers. Physical Review Letters. 2013;111(24):248101. doi: 10.1103/PhysRevLett.111.248101. PubMed DOI

Patil G., Mandal P., Ghosh A.. Using the Thermal Ratchet Mechanism to Achieve Net Motility in Magnetic Microswimmers. Physical Review Letters. 2022;129(19):198002. doi: 10.1103/PhysRevLett.129.198002. PubMed DOI

Pal M., Somalwar N., Singh A., Bhat R., Eswarappa S. M., Saini D. K., Ghosh A.. Maneuverability of Magnetic Nanomotors inside Living Cells. Advanced Materials. 2018;30(22):1800429. doi: 10.1002/adma.201800429. PubMed DOI

Pal M., Dasgupta D., Somalwar N., Vr R., Tiwari M., Teja D., Narayana S. M., Katke A., Rs J., Bhat R.. et al. Helical Nanobots as Mechanical Probes of Intra- and Extracellular Environments. Journal of Physics: Condensed Matter. 2020;32(22):224001. doi: 10.1088/1361-648X/ab6f89. PubMed DOI

Dasgupta D., Peddi S., Saini D. K., Ghosh A.. Mobile Nanobots for Prevention of Root Canal Treatment Failure. Advanced Healthcare Materials. 2022;11(14):2200232. doi: 10.1002/adhm.202270085. PubMed DOI PMC

Gao W., Sattayasamitsathit S., Manesh K. M., Weihs D., Wang J.. Magnetically-Powered-Flexible-Metal-Nanowire-Motors. Journal of the American Chemical Society. 2010;132:14403–14405. doi: 10.1021/ja1072349. PubMed DOI

Zhou D., Ren L., Li Y. C., Xu P., Gao Y., Zhang G., Wang W., Mallouk T. E., Li L.. Visible Light-Driven, Magnetically Steerable Gold/Iron Oxide Nanomotors. Chemical Communications. 2017;53(83):11465–11468. doi: 10.1039/C7CC06327J. PubMed DOI

Loget G., Zigah D., Bouffier L., Sojic N., Kuhn A.. Bipolar Electrochemistry: From Materials Science to Motion and Beyond. Accounts of Chemical Research. 2013;46(11):2513–2523. doi: 10.1021/ar400039k. PubMed DOI

Loget G., Roche J., Kuhn A.. True Bulk Synthesis of Janus Objects by Bipolar Electrochemistry. Advanced Materials. 2012;24(37):5111–5116. doi: 10.1002/adma.201201623. PubMed DOI

Tiewcharoen S., Warakulwit C., Lapeyre V., Garrigue P., Fourier L., Elissalde C., Buffière S., Legros P., Gayot M., Limtrakul J.. et al. Anisotropic Metal Deposition on TiO2 Particles by Electric-Field-Induced Charge Separation. Angewandte Chemie International Edition. 2017;56(38):11431–11435. doi: 10.1002/anie.201704393. PubMed DOI

Chassagne P., Garrigue P., Kuhn A.. Bulk Electrosynthesis of Patchy Particles with Highly Controlled Asymmetric Features. Advanced Materials. 2024;36(6):2307539. doi: 10.1002/adma.202307539. PubMed DOI

Gao R., Beladi-Mousavi S. M., Salinas G., Garrigue P., Zhang L., Kuhn A.. Spatial Precision Tailoring the Catalytic Activity of Graphene Monolayers for Designing Janus Swimmers. Nano Letters. 2023;23(17):8180–8185. doi: 10.1021/acs.nanolett.3c02314. PubMed DOI

Gao R., Beladi-Mousavi M., Salinas G., Zhang L., Kuhn A.. Synthesis of Multi-Functional Graphene Monolayers via Bipolar Electrochemistry. ChemPhysChem. 2024;25(16):e202400257. doi: 10.1002/cphc.202400257. PubMed DOI

Fattah Z. A., Bouffier L., Kuhn A.. Indirect Bipolar Electrodeposition of Polymers for the Controlled Design of Zinc Microswimmers. Applied Materials Today. 2017;9:259–265. doi: 10.1016/j.apmt.2017.08.005. DOI

Wang L., Hortelão A. C., Huang X., Sánchez S.. Lipase-Powered Mesoporous Silica Nanomotors for Triglyceride Degradation. Angewandte Chemie International Edition. 2019;58(24):7992–7996. doi: 10.1002/anie.201900697. PubMed DOI

Wang L., Marciello M., Estévez-Gay M., Soto Rodriguez P. E. D., Luengo Morato Y., Iglesias-Fernández J., Huang X., Osuna S., Filice M., Sánchez S.. Enzyme Conformation Influences the Performance of Lipase-Powered Nanomotors. Angewandte Chemie International Edition. 2020;59(47):21080–21087. doi: 10.1002/anie.202008339. PubMed DOI

Arque X., Andres X., Mestre R., Ciraulo B., Ortega Arroyo J., Quidant R., Patino T., Sanchez S.. Ionic Species Affect the Self-Propulsion of Urease-Powered Micromotors. Research. 2020;2020:2424972. doi: 10.34133/2020/2424972. PubMed DOI PMC

Valles M., Pujals S., Albertazzi L., Sánchez S.. Enzyme Purification Improves the Enzyme Loading, Self-Propulsion, and Endurance Performance of Micromotors. ACS Nano. 2022;16(4):5615–5626. doi: 10.1021/acsnano.1c10520. PubMed DOI PMC

Patiño T., Llacer-Wintle J., Pujals S., Albertazzi L., Sánchez S.. Unveiling Protein Corona Formation around Self-Propelled Enzyme Nanomotors by Nanoscopy. Nanoscale. 2024;16(6):2904–2912. doi: 10.1039/D3NR03749E. PubMed DOI

Yang Y. H., Arqué X., Patiño T., Guillerm V., Blersch P. R., Pérez-Carvajal J., Imaz I., Maspoch D., Sánchez S.. Enzyme-Powered Porous Micromotors Built from a Hierarchical Micro- and Mesoporous Uio-Type Metal-Organic Framework. Journal of the American Chemical Society. 2020;142(50):20962–20967. doi: 10.1021/jacs.0c11061. PubMed DOI

Ye Z. H., Che Y. N., Dai D. H., Jin D. D., Yang Y. W., Yan X. H., Ma X.. Supramolecular Modular Assembly of Imaging-Trackable Enzymatic Nanomotors. Angewandte Chemie International Edition. 2024;63(16):e202401209. doi: 10.1002/anie.202401209. PubMed DOI

Ma X., Sánchez S.. Bio-Catalytic Mesoporous Janus Nano-Motors Powered by Catalase Enzyme. Tetrahedron. 2017;73(33):4883–4886. doi: 10.1016/j.tet.2017.06.048. DOI

Ma X., Sanchez S.. A Bio-Catalytically Driven Janus Mesoporous Silica Cluster Motor with Magnetic Guidance. Chemical Communications. 2015;51(25):5467–5470. doi: 10.1039/C4CC08285K. PubMed DOI PMC

Serra-Casablancas M., Di Carlo V., Esporrín-Ubieto D., Prado-Morales C., Bakenecker A. C., Sánchez S.. Catalase-Powered Nanobots for Overcoming the Mucus Barrier. ACS Nano. 2024;18(26):16701–16714. doi: 10.1021/acsnano.4c01760. PubMed DOI PMC

Zhou C., Gao C., Wu Y., Si T., Yang M., He Q.. Torque-Driven Orientation Motion of Chemotactic Colloidal Motors. Angewandte Chemie International Edition. 2022;61(10):e202116013. doi: 10.1002/anie.202116013. PubMed DOI

Pimpin A., Srituravanich W.. Review on Micro- and Nanolithography Techniques and Their Applications. Engineering Journal. 2012;16(1):37–56. doi: 10.4186/ej.2012.16.1.37. DOI

Traub M. C., Longsine W., Truskett V. N.. Advances in Nanoimprint Lithography. Annual Review of Chemical and Biomolecular Engineering. 2016;7:583–604. doi: 10.1146/annurev-chembioeng-080615-034635. PubMed DOI

Gangnaik A. S., Georgiev Y. M., Holmes J. D.. New Generation Electron Beam Resists: A Review. Chemistry of Materials. 2017;29(5):1898–1917. doi: 10.1021/acs.chemmater.6b03483. DOI

Huh J. S., Shepard M. I., Melngailis J.. Focused Ion Beam Lithography. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena. 1991;9(1):173–175. doi: 10.1116/1.585282. DOI

Aassime, A. ; Hamouda, F. . Conventional and Un-Conventional Lithography for Fabricating Thin Film Functional Devices. In Modern Technologies for Creating the Thin-Film Systems and Coatings; IntechOpen, 2017. 10.5772/66028 DOI

Bowden N., Brittain S., Evans A. G., Hutchinson J. W., Whitesides G. M.. Spontaneous Formation of Ordered Structures in Thin Films of Metals Supported on an Elastomeric Polymer. Nature. 1998;393(6681):146–149. doi: 10.1038/30193. DOI

Ha D., Hong J., Shin H., Kim T.. Unconventional Micro-/Nanofabrication Technologies for Hybrid-Scale Lab-on-a-Chip. Lab on a Chip. 2016;16(22):4296–4312. doi: 10.1039/C6LC01058J. PubMed DOI

Odom T. W., Love J. C., Wolfe D. B., Paul K. E., Whitesides G. M.. Improved Pattern Transfer in Soft Lithography Using Composite Stamps. Langmuir. 2002;18(13):5314–5320. doi: 10.1021/la020169l. DOI

Fischer U. C., Zingsheim H. P.. Submicroscopic Pattern Replication with Visible Light. Journal of Vacuum Science and Technology. 1981;19(4):881–885. doi: 10.1116/1.571227. DOI

Rekstyte S., Paipulas D., Malinauskas M., Mizeikis V.. Microactuation and Sensing Using Reversible Deformations of Laser-Written Polymeric Structures. Nanotechnology. 2017;28(12):124001. doi: 10.1088/1361-6528/aa5d4d. PubMed DOI

Laura Jáuregui A., Siller H. R., Rodriguez C. A., Elías-Zúñiga A.. Evaluation of Manufacturing Processes for Microfluidic Devices. AIP Conference Proceedings. 2009;1181(1):222–230. doi: 10.1063/1.3273635. DOI

Vijayanandh V., Pradeep A., Suneesh P. V., Satheesh Babu T. G.. Design and Simulation of Passive Micromixers with Ridges for Enhanced Efficiency. IOP Conference Series: Materials Science and Engineering. 2019;577(1):012106. doi: 10.1088/1757-899X/577/1/012106. DOI

Aidelberg G., Goldshmidt Y., Nachman I.. A Microfluidic Device for Studying Multiple Distinct Strains. Journal of Visualized Experiments. 2012;9(69):4257. doi: 10.3791/4257. PubMed DOI PMC

Asmatulu R., Zhang B., Nuraje N.. A Ferrofluid Guided System for the Rapid Separation of the Non-Magnetic Particles in a Microfluidic Device. Journal of Nanoscience and Nanotechnology. 2010;10(10):6383–6387. doi: 10.1166/jnn.2010.2643. PubMed DOI

Xi Y., Zhang W., Fan Z., Ma Q., Wang S., Ma D., Jiang Z., Li H., Zhang Y.. A Facile Synthesis of Silicon Nanowires/Micropillars Structure Using Lithography and Metal-Assisted Chemical Etching Method. Journal of Solid State Chemistry. 2018;258:181–190. doi: 10.1016/j.jssc.2017.07.034. DOI

Fok, L. M. ; Liu, Y. H. ; Li, W. J. . Fabrication and Characterization of Nanowires by Atomic Force Microscope Lithography. In 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 9-15 Oct. 2006, 2006; pp 1927-1932. 10.1109/IROS.2006.282320. DOI

Yan X. M., Kwon S., Contreras A. M., Bokor J., Somorjai G. A.. Fabrication of Large Number Density Platinum Nanowire Arrays by Size Reduction Lithography and Nanoimprint Lithography. Nano Letters. 2005;5(4):745–748. doi: 10.1021/nl050228q. PubMed DOI

Wu S., Zhao D., Qiu M.. 3D Nanoprinting by Electron-Beam with an Ice Resist. ACS Applied Materials & Interfaces. 2022;14(1):1652–1658. doi: 10.1021/acsami.1c18356. PubMed DOI

Wang Y., Zhang M., Lai Y., Chi L.. Advanced Colloidal Lithography: From Patterning to Applications. Nano Today. 2018;22:36–61. doi: 10.1016/j.nantod.2018.08.010. DOI

Song P., Fu H., Wang Y., Chen C., Ou P., Rashid R. T., Duan S., Song J., Mi Z., Liu X.. A Microfluidic Field-Effect Transistor Biosensor with Rolled-up Indium Nitride Microtubes. Biosens Bioelectron. 2021;190:113264. doi: 10.1016/j.bios.2021.113264. PubMed DOI

Chen Y., Xu B., Mei Y.. Design and Fabrication of Tubular Micro/Nanomotors via 3D Laser Lithography. Chem Asian J. 2019;14(14):2472–2478. doi: 10.1002/asia.201900300. PubMed DOI

Bley K., Sinatra N., Vogel N., Landfester K., Weiss C. K.. Switching Light with Light - Advanced Functional Colloidal Monolayers. Nanoscale. 2014;6(1):492–502. doi: 10.1039/C3NR04897G. PubMed DOI

Bognár J., Szücs J., Dorkó Z., Horváth V., Gyurcsányi R. E.. Nanosphere Lithography as a Versatile Method to Generate Surface-Imprinted Polymer Films for Selective Protein Recognition. Advanced Functional Materials. 2013;23(37):4703–4709. doi: 10.1002/adfm.201300113. DOI

Cox L. M., Killgore J. P., Li Z., Zhang Z., Hurley D. C., Xiao J., Ding Y.. Morphing Metal-Polymer Janus Particles. Advanced Materials. 2014;26(6):899–904. doi: 10.1002/adma.201304079. PubMed DOI

Hu N., Ding L., Liu Y., Wang K., Zhang B., Yin R., Zhou W., Bi Z., Zhang W.. Development of 3D-Printed Magnetic Micro-Nanorobots for Targeted Therapeutics: The State of Art. Advanced Nanobiomed Research. 2023;3(10):2300018. doi: 10.1002/anbr.202300018. DOI

Lee S., Kim S., Kim S., Kim J.-Y., Moon C., Nelson B. J., Choi H.. A Capsule-Type Microrobot with Pick-and-Drop Motion for Targeted Drug and Cell Delivery. Advanced Healthcare Materials. 2018;7(9):1700985. doi: 10.1002/adhm.201700985. PubMed DOI

Kim S., Qiu F., Kim S., Ghanbari A., Moon C., Zhang L., Nelson B. J., Choi H.. Fabrication and Characterization of Magnetic Microrobots for Three-Dimensional Cell Culture and Targeted Transportation. Advanced Materials. 2013;25(41):5863–5868. doi: 10.1002/adma.201301484. PubMed DOI PMC

Xing J.-F., Zheng M.-L., Duan X.-M.. Two-Photon Polymerization Microfabrication of Hydrogels: An Advanced 3D Printing Technology for Tissue Engineering and Drug Delivery. Chemical Society Reviews. 2015;44(15):5031–5039. doi: 10.1039/C5CS00278H. PubMed DOI

Huang H. W., Chao Q., Sakar M. S., Nelson B. J.. Optimization of Tail Geometry for the Propulsion of Soft Microrobots. IEEE Robotics and Automation Letters. 2017;2(2):727–732. doi: 10.1109/LRA.2017.2651167. DOI

Zakeri S., Vippola M., Levänen E.. A Comprehensive Review of the Photopolymerization of Ceramic Resins Used in Stereolithography. Additive Manufacturing. 2020;35:101177. doi: 10.1016/j.addma.2020.101177. DOI

Park J., Jin C., Lee S., Kim J.-Y., Choi H.. Magnetically Actuated Degradable Microrobots for Actively Controlled Drug Release and Hyperthermia Therapy. Advanced Healthcare Materials. 2019;8(16):1900213. doi: 10.1002/adhm.201900213. PubMed DOI

Park J., Kim J.-y., Pané S., Nelson B. J., Choi H.. Acoustically Mediated Controlled Drug Release and Targeted Therapy with Degradable 3D Porous Magnetic Microrobots. Advanced Healthcare Materials. 2021;10(2):2001096. doi: 10.1002/adhm.202001096. PubMed DOI

Li T., Li J., Zhang H., Chang X., Song W., Hu Y., Shao G., Sandraz E., Zhang G., Li L.. et al. Nanorobots: Magnetically Propelled Fish-Like Nanoswimmers (Small 44/2016) Small. 2016;12(44):6045–6045. doi: 10.1002/smll.201670227. PubMed DOI

Li J., Sattayasamitsathit S., Dong R., Gao W., Tam R., Feng X., Ai S., Wang J.. Template Electrosynthesis of Tailored-Made Helical Nanoswimmers. Nanoscale. 2014;6(16):9415–9420. doi: 10.1039/C3NR04760A. PubMed DOI

Ren M., Guo W., Guo H., Ren X.. Microfluidic Fabrication of Bubble-Propelled Micromotors for Wastewater Treatment. ACS Applied Materials & Interfaces. 2019;11(25):22761–22767. doi: 10.1021/acsami.9b05925. PubMed DOI

Hussain M., Xie J., Wang K., Wang H., Tan Z., Liu Q., Geng Z., Shezad K., Noureen L., Jiang H.. et al. Biodegradable Polymer Microparticles with Tunable Shapes and Surface Textures for Enhancement of Dendritic Cell Maturation. ACS Applied Materials & Interfaces. 2019;11(45):42734–42743. doi: 10.1021/acsami.9b14286. PubMed DOI

Huang W., Manjare M., Zhao Y.. Catalytic Nanoshell Micromotors. The Journal of Physical Chemistry C. 2013;117(41):21590–21596. doi: 10.1021/jp4080288. DOI

Soto F., Wagner G. L., Garcia-Gradilla V., Gillespie K. T., Lakshmipathy D. R., Karshalev E., Angell C., Chen Y., Wang J.. Acoustically Propelled Nanoshells. Nanoscale. 2016;8(41):17788–17793. doi: 10.1039/C6NR06603H. PubMed DOI

Sun M., Liu Q., Fan X., Wang Y., Chen W., Tian C., Sun L., Xie H.. Autonomous Biohybrid Urchin-Like Microperforator for Intracellular Payload Delivery. Small. 2020;16(23):1906701. doi: 10.1002/smll.201906701. PubMed DOI

Dong Y., Wang L., Yuan K., Ji F., Gao J., Zhang Z., Du X., Tian Y., Wang Q., Zhang L.. Magnetic Microswarm Composed of Porous Nanocatalysts for Targeted Elimination of Biofilm Occlusion. ACS Nano. 2021;15(3):5056–5067. doi: 10.1021/acsnano.0c10010. PubMed DOI

Kiristi M., Singh V. V., Esteban-Fernández de Ávila B., Uygun M., Soto F., AktaşUygun D., Wang J.. Lysozyme-Based Antibacterial Nanomotors. ACS Nano. 2015;9(9):9252–9259. doi: 10.1021/acsnano.5b04142. PubMed DOI

Zhang B., Huang G., Wang L., Wang T., Liu L., Di Z., Liu X., Mei Y.. Rolled-up Monolayer Graphene Tubular Micromotors: Enhanced Performance and Antibacterial Property. Chemistry - An Asian Journal. 2019;14(14):2479–2484. doi: 10.1002/asia.201900301. PubMed DOI

Zhang Y., Zhang L., Yang L., Vong C. I., Chan K. F., Wu W. K., Kwong T. N., Lo N. W., Ip M., Wong S. H.. et al. Real-Time Tracking of Fluorescent Magnetic Spore-Based Microrobots for Remote Detection of C. Diff Toxins. Science Advances. 2019;5(1):eaau9650. doi: 10.1126/sciadv.aau9650. PubMed DOI PMC

Erin O., Gilbert H. B., Tabak A. F., Sitti M.. Elevation and Azimuth Rotational Actuation of an Untethered Millirobot by Mri Gradient Coils. IEEE Transactions on Robotics. 2019;35(6):1323–1337. doi: 10.1109/TRO.2019.2934712. DOI

Martel S., Felfoul O., Mathieu J.-B., Chanu A., Tamaz S., Mohammadi M., Mankiewicz M., Tabatabaei N.. Mri-Based Medical Nanorobotic Platform for the Control of Magnetic Nanoparticles and Flagellated Bacteria for Target Interventions in Human Capillaries. The International Journal of Robotics Research. 2009;28(9):1169–1182. doi: 10.1177/0278364908104855. PubMed DOI PMC

Vilela D., Cossío U., Parmar J., Martínez-Villacorta A. M., Gómez-Vallejo V., Llop J., Sánchez S.. Medical Imaging for the Tracking of Micromotors. ACS Nano. 2018;12(2):1220–1227. doi: 10.1021/acsnano.7b07220. PubMed DOI

Liu W., Liu Y., Li H., Nie H. M., Tian M. Y., Long W.. Biomedical Micro-/Nanomotors: Design, Imaging, and Disease Treatment. Advanced Functional Materials. 2023;33(15):2212452. doi: 10.1002/adfm.202212452. DOI

Zanzonico P.. Principles of Nuclear Medicine Imaging: Planar, Spect, Pet, Multi-Modality, and Autoradiography Systems. Radiation Research. 2012;177(4):349–364. doi: 10.1667/RR2577.1. PubMed DOI

Hasan S., Prelas M. A.. Molybdenum-99 Production Pathways and the Sorbents for 99mo/99mtc Generator Systems Using (N, Γ) 99mo: A Review. Sn Applied Sciences. 2020;2(11):1782. doi: 10.1007/s42452-020-03524-1. DOI

Chen D. Q., Yang D. Z., Dougherty C. A., Lu W. F., Wu H. W., He X. R., Cai T., Van Dort M. E., Ross B. D., Hong H.. In Vivo Targeting and Positron Emission Tomography Imaging of Tumor with Intrinsically Radioactive Metal-Organic Frameworks Nanomaterials. ACS Nano. 2017;11(4):4315–4327. doi: 10.1021/acsnano.7b01530. PubMed DOI PMC

Chen J. W., Liang C., Song X. J., Yi X., Yang K., Feng L. Z., Liu Z.. Hybrid Protein Nano-Reactors Enable Simultaneous Increments of Tumor Oxygenation and Iodine-131 Delivery for Enhanced Radionuclide Therapy. Small. 2019;15(46):1903628. doi: 10.1002/smll.201903628. PubMed DOI

Nallathamby P. D., Mortensen N. P., Palko H. A., Malfatti M., Smith C., Sonnett J., Doktycz M. J., Gu B. H., Roeder R. K., Wang W.. et al. New Surface Radiolabeling Schemes of Super Paramagnetic Iron Oxide Nanoparticles (Spions) for Biodistribution Studies. Nanoscale. 2015;7(15):6545–6555. doi: 10.1039/C4NR06441K. PubMed DOI PMC

Soubaneh Y. D., Pelletier E., Desbiens I., Rouleau C.. Radiolabeling of Amide Functionalized Multi-Walled Carbon Nanotubes for Bioaccumulation Study in Fish Bone Using Whole-Body Autoradiography. Environmental Science and Pollution Research. 2020;27(4):3756–3767. doi: 10.1007/s11356-019-05794-8. PubMed DOI

Du Y., Liang X. L., Li Y., Sun T., Jin Z. Y., Xue H. D., Tian J.. Nuclear and Fluorescent Labeled Pd-1-Liposome-Dox-64Cu/Irdye800cw Allows Improved Breast Tumor Targeted Imaging and Therapy. Molecular Pharmaceutics. 2017;14(11):3978–3986. doi: 10.1021/acs.molpharmaceut.7b00649. PubMed DOI

Alnaaimi M., Sulieman A., Alkhorayef M., Salah H., Alduaij M., Algaily M., Alomair O., Alashban Y., Almohammad H. I., Bradley D.. et al. Organs Dosimetry in Targeted Radionuclide Therapy. Radiation Physics and Chemistry. 2021;188:109668. doi: 10.1016/j.radphyschem.2021.109668. DOI

Marenco M., Canziani L., De Matteis G., Cavenaghi G., Aprile C., Lodola L.. Chemical and Physical Characterisation of Human Serum Albumin Nanocolloids: Kinetics, Strength and Specificity of Bonds with 99mtc and 68ga. Nanomaterials. 2021;11(7):1776. doi: 10.3390/nano11071776. PubMed DOI PMC

Thakor A. S., Jokerst J. V., Ghanouni P., Campbell J. L., Mittra E., Gambhir S. S.. Clinically Approved Nanoparticle Imaging Agents. Journal of Nuclear Medicine. 2016;57(12):1833–1837. doi: 10.2967/jnumed.116.181362. PubMed DOI PMC

d'Abadie P., Hesse M., Louppe A., Lhommel R., Walrand S., Jamar F.. Microspheres Used in Liver Radioembolization: From Conception to Clinical Effects. Molecules. 2021;26(13):3966. doi: 10.3390/molecules26133966. PubMed DOI PMC

Pijeira M. S. O., Viltres H., Kozempel J., Sakmár M., Vlk M., Ilem-Özdemir D., Ekinci M., Srinivasan S., Rajabzadeh A. R., Ricci-Junior E.. et al. Radiolabeled Nanomaterials for Biomedical Applications: Radiopharmacy in the Era of Nanotechnology. Ejnmmi Radiopharmacy and Chemistry. 2022;7:8. doi: 10.1186/s41181-022-00161-4. PubMed DOI PMC

Gao C. Y., Wang Y., Ye Z. H., Lin Z. H., Ma X., He Q.. Biomedical Micro-/Nanomotors: From Overcoming Biological Barriers to in vivo Imaging. Advanced Materials. 2021;33(6):2000512. doi: 10.1002/adma.202000512. PubMed DOI

Liu X., Jing Y., Xu C., Wang X., Xie X., Zhu Y., Dai L., Wang H., Wang L., Yu S.. Medical Imaging Technology for Micro/Nanorobots. Nanomaterials. 2023;13(21):2872. doi: 10.3390/nano13212872. PubMed DOI PMC

Doan V. H. M., Nguyen V. T., Mondal S., Vo T. M. T., Ly C. D., Vu D. D., Ataklti G. Y., Park S., Choi J., Oh J.. Fluorescence/Photoacoustic Imaging-Guided Nanomaterials for Highly Efficient Cancer Theragnostic Agent. Scientific Reports. 2021;11:15943. doi: 10.1038/s41598-021-95660-w. PubMed DOI PMC

Li D., Zhang Y., Liu C., Chen J., Sun D., Wang L.. Review of Photoacoustic Imaging for Microrobots Tracking in vivo. Chinese Optics Letters. 2021;19:111701. doi: 10.3788/COL202119.111701. DOI

Soto F., Wang J., Ahmed R., Demirci U.. Medical Micro/Nanorobots in Precision Medicine. Advanced Science. 2020;7(21):2002203. doi: 10.1002/advs.202002203. PubMed DOI PMC

Graham M., Assis F., Allman D., Wiacek A., Gonzalez E., Gubbi M., Dong J., Hou H., Beck S., Chrispin J.. et al. In Vivo Demonstration of Photoacoustic Image Guidance and Robotic Visual Servoing for Cardiac Catheter-Based Interventions. IEEE Transactions on Medical Imaging. 2020;39(4):1015–1029. doi: 10.1109/TMI.2019.2939568. PubMed DOI

Lin L., Hu P., Shi J., Appleton C. M., Maslov K., Li L., Zhang R., Wang L. V.. Single-Breath-Hold Photoacoustic Computed Tomography of the Breast. Nature Communications. 2018;9(1):2352. doi: 10.1038/s41467-018-04576-z. PubMed DOI PMC

Wrede P., Degtyaruk O., Kalva S. K., Deán-Ben X. L., Bozuyuk U., Aghakhani A., Akolpoglu B., Sitti M., Razansky D.. Real-Time 3D Optoacoustic Tracking of Cell-Sized Magnetic Microrobots Circulating in the Mouse Brain Vasculature. Science Advances. 2022;8(19):eabm9132. doi: 10.1126/sciadv.abm9132. PubMed DOI PMC

Aziz A., Holthof J., Meyer S., Schmidt O. G., Medina-Sánchez M.. Dual Ultrasound and Photoacoustic Tracking of Magnetically Driven Micromotors: From in vitro to in vivo. Advanced Healthcare Materials. 2021;10(22):2101077. doi: 10.1002/adhm.202101077. PubMed DOI PMC

Su H., Li S., Yang G. Z., Qian K.. Janus Micro/Nanorobots in Biomedical Applications. Advanced Healthcare Materials. 2023;12(16):2202391. doi: 10.1002/adhm.202202391. PubMed DOI

Li D., Liu C., Yang Y., Wang L., Shen Y.. Micro-Rocket Robot with All-Optic Actuating and Tracking in Blood. Light: Science & Applications. 2020;9:84. doi: 10.1038/s41377-020-0323-y. PubMed DOI PMC

Li L., Zhu L., Ma C., Lin L., Yao J., Wang L., Maslov K., Zhang R., Chen W., Shi J., Wang L. V.. Single-Impulse Panoramic Photoacoustic Computed Tomography of Small-Animal Whole-Body Dynamics at High Spatiotemporal Resolution. Nature Biomedical Engineering. 2017;1(5):0071. doi: 10.1038/s41551-017-0071. PubMed DOI PMC

Chen J., Zhang Y., He L., Liang Y., Wang L.. Wide-Field Polygon-Scanning Photoacoustic Microscopy of Oxygen Saturation at 1-Mhz a-Line Rate. Photoacoustics. 2020;20:100195. doi: 10.1016/j.pacs.2020.100195. PubMed DOI PMC

Yan Y., Jing W., Mehrmohammadi M.. Photoacoustic Imaging to Track Magnetic-Manipulated Micro-Robots in Deep Tissue. Sensors. 2020;20:2816. doi: 10.3390/s20102816. PubMed DOI PMC

Song X., Qian R., Li T., Fu W., Fang L., Cai Y., Guo H., Xi L., Cheang U. K.. Imaging-Guided Biomimetic M1 Macrophage Membrane-Camouflaged Magnetic Nanorobots for Photothermal Immunotargeting Cancer Therapy. ACS Applied Materials & Interfaces. 2022;14(51):56548–56559. doi: 10.1021/acsami.2c16457. PubMed DOI

Zhong D., Li W., Qi Y., He J., Zhou M.. Photosynthetic Biohybrid Nanoswimmers System to Alleviate Tumor Hypoxia for Fl/Pa/Mr Imaging-Guided Enhanced Radio-Photodynamic Synergetic Therapy. Advanced Functional Materials. 2020;30(17):1910395. doi: 10.1002/adfm.202070110. DOI

Xie L., Pang X., Yan X., Dai Q., Lin H., Ye J., Cheng Y., Zhao Q., Ma X., Zhang X.. et al. Photoacoustic Imaging-Trackable Magnetic Microswimmers for Pathogenic Bacterial Infection Treatment. ACS Nano. 2020;14(3):2880–2893. doi: 10.1021/acsnano.9b06731. PubMed DOI

Wang Q., Dai Y., Xu J., Cai J., Niu X., Zhang L., Chen R., Shen Q., Huang W., Fan Q.. All-in-One Phototheranostics: Single Laser Triggers NIR-Ii Fluorescence/Photoacoustic Imaging Guided Photothermal/Photodynamic/Chemo Combination Therapy. Advanced Functional Materials. 2019;29(31):1901480. doi: 10.1002/adfm.201901480. DOI

Wang L. V., Hu S.. Photoacoustic Tomography: in vivo Imaging from Organelles to Organs. Science. 2012;335(6075):1458–1462. doi: 10.1126/science.1216210. PubMed DOI PMC

Pané S., Puigmartí-Luis J., Bergeles C., Chen X. Z., Pellicer E., Sort J., Počepcová V., Ferreira A., Nelson B. J.. Imaging Technologies for Biomedical Micro- and Nanoswimmers. Advanced Materials Technologies. 2019;4(4):1800575. doi: 10.1002/admt.201800575. DOI

Olson E. S., Orozco J., Wu Z., Malone C. D., Yi B., Gao W., Eghtedari M., Wang J., Mattrey R. F.. Toward In vivo Detection of Hydrogen Peroxide with Ultrasound Molecular Imaging. Biomaterials. 2013;34(35):8918–8924. doi: 10.1016/j.biomaterials.2013.06.055. PubMed DOI PMC

Sánchez, A. ; Magdanz, V. ; Schmidt, O. G. ; Misra, S. . Magnetic Control of Self-Propelled Microjets under Ultrasound Image Guidance. In 2014 5th EEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics (Biorob), 2014; pp 169-174.

Xu D., Hu J., Pan X., Sánchez S., Yan X., Ma X.. Enzyme-Powered Liquid Metal Nanobots Endowed with Multiple Biomedical Functions. ACS Nano. 2021;15(7):11543–11554. doi: 10.1021/acsnano.1c01573. PubMed DOI

Han H., Ma X., Deng W., Zhang J., Tang S., Pak O. S., Zhu L., Criado-Hidalgo E., Gong C., Karshalev E.. et al. Imaging-Guided Bioresorbable Acoustic Hydrogel Microrobots. Science Robotics. 2024;9(97):eadp3593. doi: 10.1126/scirobotics.adp3593. PubMed DOI

Khalil I. S. M., Dijkslag H. C., Abelmann L., Misra S.. Magnetosperm: A Microrobot That Navigates Using Weak Magnetic Fields. Applied Physics Letters. 2014;104(22):223701. doi: 10.1063/1.4880035. DOI

Chen H., Zhang H., Xu T., Yu J.. An Overview of Micronanoswarms for Biomedical Applications. ACS Nano. 2021;15(10):15625–15644. doi: 10.1021/acsnano.1c07363. PubMed DOI

Wang J., Dong Y., Ma P., Wang Y., Zhang F., Cai B., Chen P., Liu B. F.. Intelligent Micro-/Nanorobots for Cancer Theragnostic. Advanced Materials. 2022;34(52):2201051. doi: 10.1002/adma.202201051. PubMed DOI

Medina-Sanchez M., Schmidt O. G.. Medical Microbots Need Better Imaging and Control. Nature. 2017;545(7655):406–408. doi: 10.1038/545406a. PubMed DOI

Shapiro E. M., Skrtic S., Sharer K., Hill J. M., Dunbar C. E., Koretsky A. P.. Mri Detection of Single Particles for Cellular Imaging. Proceedings of the National Academy of Sciences. 2004;101(30):10901–10906. doi: 10.1073/pnas.0403918101. PubMed DOI PMC

Martel S., Mathieu J.-B., Felfoul O., Chanu A., Aboussouan E., Tamaz S., Pouponneau P., Yahia L., Beaudoin G., Soulez G., Mankiewicz M.. Automatic Navigation of an Untethered Device in the Artery of a Living Animal Using a Conventional Clinical Magnetic Resonance Imaging System. Applied Physics Letters. 2007;90(11):114105. doi: 10.1063/1.2713229. DOI

Zheng S., Wang Y., Pan S., Ma E., Jin S., Jiao M., Wang W., Li J., Xu K., Wang H.. Biocompatible Nanomotors as Active Diagnostic Imaging Agents for Enhanced Magnetic Resonance Imaging of Tumor Tissues in vivo. Advanced Functional Materials. 2021;31(24):2100936. doi: 10.1002/adfm.202100936. DOI

Aziz A., Pane S., Iacovacci V., Koukourakis N., Czarske J., Menciassi A., Medina-Sánchez M., Schmidt O. G.. Medical Imaging of Microrobots: Toward in vivo Applications. ACS Nano. 2020;14(9):10865–10893. doi: 10.1021/acsnano.0c05530. PubMed DOI

Makela A. V., Gaudet J. M., Schott M. A., Sehl O. C., Contag C. H., Foster P. J.. Magnetic Particle Imaging of Macrophages Associated with Cancer: Filling the Voids Left by Iron-Based Magnetic Resonance Imaging. Molecular Imaging and Biology. 2020;22(4):958–968. doi: 10.1007/s11307-020-01473-0. PubMed DOI

Makela A. V., Gaudet J. M., Murrell D. H., Mansfield J. R., Wintermark M., Contag C. H.. Mind over Magnets - How Magnetic Particle Imaging Is Changing the Way We Think About the Future of Neuroscience. Neuroscience. 2021;474:100–109. doi: 10.1016/j.neuroscience.2020.10.036. PubMed DOI

Irfan M., Dogan N.. Comprehensive Evaluation of Magnetic Particle Imaging (Mpi) Scanners for Biomedical Applications. IEEE Access. 2022;10:86718–86732. doi: 10.1109/ACCESS.2022.3197586. DOI

Bakenecker A. C., von Gladiss A., Friedrich T., Heinen U., Lehr H., Lüdtke-Buzug K., Buzug T. M.. Actuation and Visualization of a Magnetically Coated Swimmer with Magnetic Particle Imaging. Journal of Magnetism and Magnetic Materials. 2019;473:495–500. doi: 10.1016/j.jmmm.2018.10.056. DOI

Bakenecker A. C., von Gladiss A., Schwenke H., Behrends A., Friedrich T., Lüdtke-Buzug K., Neumann A., Barkhausen J., Wegner F., Buzug T. M.. Navigation of a Magnetic Micro-Robot through a Cerebral Aneurysm Phantom with Magnetic Particle Imaging. Scientific Reports. 2021;11(1):14082. doi: 10.1038/s41598-021-93323-4. PubMed DOI PMC

Zhu X., Li J., Peng P., Hosseini Nassab N., Smith B. R.. Quantitative Drug Release Monitoring in Tumors of Living Subjects by Magnetic Particle Imaging Nanocomposite. Nano Letters. 2019;19(10):6725–6733. doi: 10.1021/acs.nanolett.9b01202. PubMed DOI

Li J. W. J., Tan W. H.. A Single DNA Molecule Nanomotor. Nano Letters. 2002;2(4):315–318. doi: 10.1021/nl015713+. PubMed DOI PMC

Wang J. H., Luo Y. T., Wu H. L., Cao S. P., Abdelmohsen L., Shao J. X., van Hest J. C. M.. Inherently Fluorescent Peanut-Shaped Polymersomes for Active Cargo Transportation. Pharmaceutics. 2023;15(7):1986. doi: 10.3390/pharmaceutics15071986. PubMed DOI PMC

Cao S. P., Shao J. X., Wu H. L., Song S. D., De Martino M. T., Pijpers I. A. B., Friedrich H., Abdelmohsen L., Williams D. S., van Hest J. C. M.. Photoactivated Nanomotors via Aggregation Induced Emission for Enhanced Phototherapy. Nature Communications. 2021;12(1):10. doi: 10.1038/s41467-021-22279-w. PubMed DOI PMC

Liu L. T., Li S. Q., Yang K. Q., Chen Z. X., Li Q. Q., Zheng L. T., Wu Z. S., Zhang X., Su L. C., Wu Y.. et al. Drug-Free Antimicrobial Nanomotor for Precise Treatment of Multidrug-Resistant Bacterial Infections. Nano Letters. 2023;23(9):3929–3938. doi: 10.1021/acs.nanolett.3c00632. PubMed DOI

Alivisatos A. P.. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science. 1996;271(5251):933–937. doi: 10.1126/science.271.5251.933. DOI

Lee J., Kim J., Kim S., Min D. H.. Biosensors Based on Graphene Oxide and Its Biomedical Application. Advanced Drug Delivery Reviews. 2016;105:275–287. doi: 10.1016/j.addr.2016.06.001. PubMed DOI PMC

Donaldson L.. Autofluorescence in Plants. Molecules. 2020;25(10):2393. doi: 10.3390/molecules25102393. PubMed DOI PMC

Yang M., Guo X., Mou F., Guan J.. Lighting up Micro-/Nanorobots with Fluorescence. Chemical Reviews. 2023;123(7):3944–3975. doi: 10.1021/acs.chemrev.2c00062. PubMed DOI

Downes A., Mouras R., Elfick A.. A Versatile Cars Microscope for Biological Imaging. Journal of Raman Spectroscopy. 2009;40(7):757–762. doi: 10.1002/jrs.2249. DOI

Molinero-Fernández Á., Moreno-Guzmán M., Arruza L., López M. Á., Escarpa A.. Polymer-Based Micromotor Fluorescence Immunoassay for on-the-Move Sensitive Procalcitonin Determination in Very Low Birth Weight Infants’ Plasma. ACS Sensors. 2020;5(5):1336–1344. doi: 10.1021/acssensors.9b02515. PubMed DOI

Maric T., Beladi-Mousavi S. M., Khezri B., Sturala J., Nasir M. Z. M., Webster R. D., Sofer Z. k., Pumera M.. Functional 2D Germanene Fluorescent Coating of Microrobots for Micromachines Multiplexing. Small. 2020;16(27):1902365. doi: 10.1002/smll.201902365. PubMed DOI

Krafft C., Ramoji A. A., Bielecki C., Vogler N., Meyer T., Akimov D., Rösch P., Schmitt M., Dietzek B., Petersen I.. et al. A Comparative Raman and Cars Imaging Study of Colon Tissue. Journal of Biophotonics. 2009;2(5):303–312. doi: 10.1002/jbio.200810063. PubMed DOI

Maric T., Atladóttir S., Thamdrup L. H. E., Ilchenko O., Ghavami M., Boisen A.. Self-Propelled Janus Micromotors for pH-Responsive Release of Small Molecule Drug. Applied Materials Today. 2022;27:101418. doi: 10.1016/j.apmt.2022.101418. DOI

Maric T., Adamakis V., Zhang Z., Milián-Guimerá C., Thamdrup L. H. E., Stamate E., Ghavami M., Boisen A.. Microscopic Cascading Devices for Boosting Mucus Penetration in Oral Drug DeliveryMicromotors Nesting inside Microcontainers. Small. 2023;19(15):2206330. doi: 10.1002/smll.202206330. PubMed DOI

Maric T., Løvind A., Zhang Z., Geng J., Boisen A.. Near-Infrared Light-Driven Mesoporous SiO2/Au Nanomotors for Eradication of Pseudomonas Aeruginosa Biofilm. Advanced Healthcare Materials. 2023;12(13):2203018. doi: 10.1002/adhm.202203018. PubMed DOI PMC

Mitchell M. J., Billingsley M. M., Haley R. M., Wechsler M. E., Peppas N. A., Langer R.. Engineering Precision Nanoparticles for Drug Delivery. Nature Reviews Drug Discovery. 2021;20(2):101–124. doi: 10.1038/s41573-020-0090-8. PubMed DOI PMC

Shields C. W., Velev O. D.. The Evolution of Active Particles: Toward Externally Powered Self-Propelling and Self-Reconfiguring Particle Systems. Chem. 2017;3(4):539–559. doi: 10.1016/j.chempr.2017.09.006. DOI

Wilhelm S., Tavares A. J., Dai Q., Ohta S., Audet J., Dvorak H. F., Chan W. C. W.. Analysis of Nanoparticle Delivery to Tumours. Nature Reviews Materials. 2016;1(5):16014. doi: 10.1038/natrevmats.2016.14. DOI

Darquenne C.. Aerosol Deposition in Health and Disease. Journal of Aerosol Medicine and Pulmonary Drug Delivery. 2012;25(3):140–147. doi: 10.1089/jamp.2011.0916. PubMed DOI PMC

Tanjeem N., Minnis M. B., Hayward R. C., Shields IV C. W.. Shape-Changing Particles: From Materials Design and Mechanisms to Implementation. Advanced Materials. 2022;34(3):2105758. doi: 10.1002/adma.202105758. PubMed DOI PMC

Lee J. G., Raj R. R., Day N. B., Shields C. W. I. V.. Microrobots for Biomedicine: Unsolved Challenges and Opportunities for Translation. ACS Nano. 2023;17(15):14196–14204. doi: 10.1021/acsnano.3c03723. PubMed DOI PMC

Bush L. M., Healy C. P., Javdan S. B., Emmons J. C., Deans T. L.. Biological Cells as Therapeutic Delivery Vehicles. Trends in Pharmacological Sciences. 2021;42(2):106–118. doi: 10.1016/j.tips.2020.11.008. PubMed DOI PMC

Evans M. A., Shields IV C. W., Krishnan V., Wang L. L.-W., Zhao Z., Ukidve A., Lewandowski M., Gao Y., Mitragotri S.. Macrophage-Mediated Delivery of Hypoxia-Activated Prodrug Nanoparticles. Advanced Therapeutics. 2020;3(2):2000183. doi: 10.1002/adtp.201900162. DOI

Tang L., He S., Yin Y., Liu H., Hu J., Cheng J., Wang W.. Combination of Nanomaterials in Cell-Based Drug Delivery Systems for Cancer Treatment. Pharmaceutics. 2021;13(11):1888. doi: 10.3390/pharmaceutics13111888. PubMed DOI PMC

Wang L. L.-W., Gao Y., Chandran Suja V., Boucher M. L., Shaha S., Kapate N., Liao R., Sun T., Kumbhojkar N., Prakash S.. et al. Preclinical Characterization of Macrophage-Adhering Gadolinium Micropatches for Mri Contrast after Traumatic Brain Injury in Pigs. Science Translational Medicine. 2024;16(728):eadk5413. doi: 10.1126/scitranslmed.adk5413. PubMed DOI

Day N. B., Orear C. R., Velazquez-Albino A. C., Good H. J., Melnyk A., Rinaldi-Ramos C. M., Shields C. W. IV. Magnetic Cellular Backpacks for Spatial Targeting, Imaging, and Immunotherapy. ACS Applied Bio Materials. 2024;7(8):4843–4855. doi: 10.1021/acsabm.3c00720. PubMed DOI PMC

Shields C. W., Evans M. A., Wang L. L.-W., Baugh N., Iyer S., Wu D., Zhao Z., Pusuluri A., Ukidve A., Pan D. C.. et al. Cellular Backpacks for Macrophage Immunotherapy. Science Advances. 2020;6(18):eaaz6579. doi: 10.1126/sciadv.aaz6579. PubMed DOI PMC

Liao X., Gong G., Dai M., Xiang Z., Pan J., He X., Shang J., Blocki A. M., Zhao Z., Shields C. W., Guo J.. Systemic Tumor Suppression via Macrophage-Driven Automated Homing of Metal-Phenolic-Gated Nanosponges for Metastatic Melanoma. Advanced Science. 2023;10(18):2207488. doi: 10.1002/advs.202207488. PubMed DOI PMC

Zhao Z., Pan D. C., Qi Q. M., Kim J., Kapate N., Sun T., Shields IV, C W., Wang L. L.-W., Wu D., Kwon C. J.. et al. Engineering of Living Cells with Polyphenol-Functionalized Biologically Active Nanocomplexes. Advanced Materials. 2020;32(49):2003492. doi: 10.1002/adma.202003492. PubMed DOI

Kapate N., Liao R., Sodemann R. L., Stinson T., Prakash S., Kumbhojkar N., Suja V. C., Wang L. L.-W., Flanz M., Rajeev R.. et al. Backpack-Mediated Anti-Inflammatory Macrophage Cell Therapy for the Treatment of Traumatic Brain Injury. PNAS Nexus. 2023;3(1):pgad434. doi: 10.1093/pnasnexus/pgad434. PubMed DOI PMC

Akin D., Sturgis J., Ragheb K., Sherman D., Burkholder K., Robinson J. P., Bhunia A. K., Mohammed S., Bashir R.. Bacteria-Mediated Delivery of Nanoparticles and Cargo into Cells. Nature Nanotechnology. 2007;2(7):441–449. doi: 10.1038/nnano.2007.149. PubMed DOI

Stephan M. T., Moon J. J., Um S. H., Bershteyn A., Irvine D. J.. Therapeutic Cell Engineering with Surface-Conjugated Synthetic Nanoparticles. Nature Medicine. 2010;16(9):1035–1041. doi: 10.1038/nm.2198. PubMed DOI PMC

de Lanauze D., Felfoul O., Turcot J.-P., Mohammadi M., Martel S.. Three-Dimensional Remote Aggregation and Steering of Magnetotactic Bacteria Microrobots for Drug Delivery Applications. The International Journal of Robotics Research. 2014;33(3):359–374. doi: 10.1177/0278364913500543. DOI

Mirkhani N., Christiansen M. G., Gwisai T., Menghini S., Schuerle S.. Spatially Selective Delivery of Living Magnetic Microrobots through Torque-Focusing. Nature Communications. 2024;15(1):2160. doi: 10.1038/s41467-024-46407-4. PubMed DOI PMC

Abedi M. H., Yao M. S., Mittelstein D. R., Bar-Zion A., Swift M. B., Lee-Gosselin A., Barturen-Larrea P., Buss M. T., Shapiro M. G.. Ultrasound-Controllable Engineered Bacteria for Cancer Immunotherapy. Nature Communications. 2022;13(1):1585. doi: 10.1038/s41467-022-29065-2. PubMed DOI PMC

Chen M., Xia L., Wu C., Wang Z., Ding L., Xie Y., Feng W., Chen Y.. Microbe-Material Hybrids for Therapeutic Applications. Chemical Society Reviews. 2024;53(16):8306–8378. doi: 10.1039/D3CS00655G. PubMed DOI

Zheng J. H., Nguyen V. H., Jiang S.-N., Park S.-H., Tan W., Hong S. H., Shin M. G., Chung I.-J., Hong Y., Bom H.-S.. et al. Two-Step Enhanced Cancer Immunotherapy with Engineered Salmonella typhimurium Secreting Heterologous Flagellin. Science Translational Medicine. 2017;9(376):eaak9537. doi: 10.1126/scitranslmed.aak9537. PubMed DOI

Luo C.-H., Huang C.-T., Su C.-H., Yeh C.-S.. Bacteria-Mediated Hypoxia-Specific Delivery of Nanoparticles for Tumors Imaging and Therapy. Nano Letters. 2016;16(6):3493–3499. doi: 10.1021/acs.nanolett.6b00262. PubMed DOI

Chen W., Wang Y., Qin M., Zhang X., Zhang Z., Sun X., Gu Z.. Bacteria-Driven Hypoxia Targeting for Combined Biotherapy and Photothermal Therapy. ACS Nano. 2018;12(6):5995–6005. doi: 10.1021/acsnano.8b02235. PubMed DOI

Pan P., Dong X., Chen Y., Zeng X., Zhang X.-Z.. Engineered Bacteria for Enhanced Radiotherapy against Breast Carcinoma. ACS Nano. 2022;16(1):801–812. doi: 10.1021/acsnano.1c08350. PubMed DOI

Yang Y., Wang Y., Zeng F., Chen Y., Chen Z., Yan F.. Ultrasound-Visible Engineered Bacteria for Tumor Chemo-Immunotherapy. Cell Reports Medicine. 2024;5(5):101512. doi: 10.1016/j.xcrm.2024.101512. PubMed DOI PMC

Zhang F., Guo Z., Li Z., Luan H., Yu Y., Zhu A. T., Ding S., Gao W., Fang R. H., Zhang L., Wang J.. Biohybrid Microrobots Locally and Actively Deliver Drug-Loaded Nanoparticles to Inhibit the Progression of Lung Metastasis. Science Advances. 2024;10(24):eadn6157. doi: 10.1126/sciadv.adn6157. PubMed DOI PMC

Prakash S., Kumbhojkar N., Lu A., Kapate N., Suja V. C., Park K. S., Wang L. L.-W., Mitragotri S.. Polymer Micropatches as Natural Killer Cell Engagers for Tumor Therapy. ACS Nano. 2023;17(16):15918–15930. doi: 10.1021/acsnano.3c03980. PubMed DOI

Kumbhojkar N., Prakash S., Fukuta T., Adu-Berchie K., Kapate N., An R., Darko S., Chandran Suja V., Park K. S., Gottlieb A. P.. et al. Neutrophils Bearing Adhesive Polymer Micropatches as a Drug-Free Cancer Immunotherapy. Nature Biomedical Engineering. 2024;8(5):579–592. doi: 10.1038/s41551-024-01180-z. PubMed DOI

Shields C. W. I. V.. Biohybrid Microrobots for Enhancing Adoptive Cell Transfers. Accounts of Materials Research. 2023;4(7):566–569. doi: 10.1021/accountsmr.3c00061. PubMed DOI PMC

Jeon S., Kim S., Ha S., Lee S., Kim E., Kim S. Y., Park S. H., Jeon J. H., Kim S. W., Moon C.. et al. Magnetically Actuated Microrobots as a Platform for Stem Cell Transplantation. Science Robotics. 2019;4(30):eaav4317. doi: 10.1126/scirobotics.aav4317. PubMed DOI

Kim E., Jeon S., An H.-K., Kianpour M., Yu S.-W., Kim J.-y., Rah J.-C., Choi H.. A Magnetically Actuated Microrobot for Targeted Neural Cell Delivery and Selective Connection of Neural Networks. Science Advances. 2020;6(39):eabb5696. doi: 10.1126/sciadv.abb5696. PubMed DOI PMC

Joshi S., Allabun S., Ojo S., Alqahtani M. S., Shukla P. K., Abbas M., Wechtaisong C., Almohiy H. M.. Enhanced Drug Delivery System Using Mesenchymal Stem Cells and Membrane-Coated Nanoparticles. Molecules. 2023;28(5):2130. doi: 10.3390/molecules28052130. PubMed DOI PMC

Xu H. F., Medina-Sánchez M., Magdanz V., Schwarz L., Hebenstreit F., Schmidt O. G.. Sperm-Hybrid Micromotor for Targeted Drug Delivery. ACS Nano. 2018;12(1):327–337. doi: 10.1021/acsnano.7b06398. PubMed DOI

Ridzewski C., Li M., Dong B., Magdanz V.. Gelatin Microcartridges for Onboard Activation and Antioxidant Protection of Sperm. ACS Applied Bio Materials. 2020;3(3):1616–1627. doi: 10.1021/acsabm.9b01188. PubMed DOI

Rajabasadi F., Moreno S., Fichna K., Aziz A., Appelhans D., Schmidt O. G., Medina-Sánchez M.. Multifunctional 4d-Printed Sperm-Hybrid Microcarriers for Assisted Reproduction. Advanced Materials. 2022;34(50):2204257. doi: 10.1002/adma.202270346. PubMed DOI

Magdanz V., Khalil I. S. M., Simmchen J., Furtado G. P., Mohanty S., Gebauer J., Xu H., Klingner A., Aziz A., Medina-Sánchez M.. et al. IRONSperm: Sperm-Templated Soft Magnetic Microrobots. Science Advances. 2020;6(28):eaba5855. doi: 10.1126/sciadv.aba5855. PubMed DOI PMC

Ribeiro C., Striggow F., Hebenstreit F., Nauber R., Schoen J., Medina-Sanchez M.. P-260in Vitro Fertilization (Ivf) Using Magnetotactic Sperm Cells and Their Prospects for Assisted in vivo Reproduction. Human Reproduction. 2024;39:deae108.630. doi: 10.1093/humrep/deae108.630. DOI

Xu H. F., Medina-Sánchez M., Schmidt O. G.. Magnetic Micromotors for Multiple Motile Sperm Cells Capture, Transport, and Enzymatic Release. Angewandte Chemie International Edition. 2020;59(35):15029–15037. doi: 10.1002/anie.202005657. PubMed DOI PMC

Wang S., Liu K., Zhou Q., Xu C., Gao J., Wang Z., Wang F., Chen B., Ye Y., Ou J.. et al. Hydrogen-Powered Microswimmers for Precise and Active Hydrogen Therapy Towards Acute Ischemic Stroke. Advanced Functional Materials. 2021;31(19):2009475. doi: 10.1002/adfm.202009475. DOI

Wan M., Chen H., Wang Q., Niu Q., Xu P., Yu Y., Zhu T., Mao C., Shen J.. Bio-Inspired Nitric-Oxide-Driven Nanomotor. Nature Communications. 2019;10(1):966. doi: 10.1038/s41467-019-08670-8. PubMed DOI PMC

Tian H., Ou J., Wang Y., Sun J., Gao J., Ye Y., Zhang R., Chen B., Wang F., Huang W.. et al. Bladder Microenvironment Actuated Proteomotors with Ammonia Amplification for Enhanced Cancer Treatment. Acta Pharmaceutica Sinica B. 2023;13(9):3862–3875. doi: 10.1016/j.apsb.2023.02.016. PubMed DOI PMC

Wu Z. G., Si T. Y., Gao W., Lin X. K., Wang J., He Q.. Superfast near-Infrared Light-Driven Polymer Multilayer Rockets. Small. 2016;12(5):577–582. doi: 10.1002/smll.201502605. PubMed DOI

Chen B., Ding M., Tan H., Wang S., Liu L., Wang F., Tian H., Gao J., Ye Y., Fu D.. et al. Visible-Light-Driven TiO2@N-Au Nanorobot Penetrating the Vitreous. Applied Materials Today. 2022;27:101455. doi: 10.1016/j.apmt.2022.101455. DOI

Srivastava S. K., Medina-Sánchez M., Koch B., Schmidt O. G.. Medibots: Dual-Action Biogenic Microdaggers for Single-Cell Surgery and Drug Release. Advanced Materials. 2016;28(5):832–837. doi: 10.1002/adma.201504327. PubMed DOI

Beasley R. A.. Medical Robots: Current Systems and Research Directions. Journal of Robotics. 2012;2012(1):401613. doi: 10.1155/2012/401613. DOI

Diller E., Sitti M.. Three-Dimensional Programmable Assembly by Untethered Magnetic Robotic Micro-Grippers. Advanced Functional Materials. 2014;24(28):4397–4404. doi: 10.1002/adfm.201400275. DOI

Wang X., Gong Z., Wang T., Law J., Chen X., Wanggou S., Wang J., Ying B., Francisco M., Dong W.. et al. Mechanical Nanosurgery of Chemoresistant Glioblastoma Using Magnetically Controlled Carbon Nanotubes. Science Advances. 2023;9(13):eade5321. doi: 10.1126/sciadv.ade5321. PubMed DOI PMC

Maier C. M., Huergo M. A., Milosevic S., Pernpeintner C., Li M., Singh D. P., Walker D., Fischer P., Feldmann J., Lohmüller T.. Optical and Thermophoretic Control of Janus Nanopen Injection into Living Cells. Nano Letters. 2018;18(12):7935–7941. doi: 10.1021/acs.nanolett.8b03885. PubMed DOI

Fan D., Yin Z., Cheong R., Zhu F. Q., Cammarata R. C., Chien C. L., Levchenko A.. Subcellular-Resolution Delivery of a Cytokine through Precisely Manipulated Nanowires. Nature Nanotechnology. 2010;5(7):545–551. doi: 10.1038/nnano.2010.104. PubMed DOI PMC

Fields, A. P. ; Cohen, A. E. . Chapter Seven - Anti-Brownian Traps for Studies on Single Molecules. In Methods in Enzymology; Walter, N. G. Ed.; Vol. 475; Academic Press, 2010; pp 149-174. PubMed

Li H., Teal D., Liang Z., Kwon H., Huo D., Jin A., Fischer P., Fan D. E.. Precise Electrokinetic Position and Three-Dimensional Orientation Control of a Nanowire Bioprobe in Solution. Nature Nanotechnology. 2023;18(10):1213–1221. doi: 10.1038/s41565-023-01439-7. PubMed DOI

Rivkin B., Becker C., Singh B., Aziz A., Akbar F., Egunov A., Karnaushenko D. D., Naumann R., Schäfer R., Medina-Sánchez M.. et al. Electronically Integrated Microcatheters Based on Self-Assembling Polymer Films. Science Advances. 2021;7(51):eabl5408. doi: 10.1126/sciadv.abl5408. PubMed DOI PMC

Liu X., Wang L., Xiang Y., Liao F., Li N., Li J., Wang J., Wu Q., Zhou C., Yang Y.. et al. Magnetic Soft Microfiberbots for Robotic Embolization. Science Robotics. 2024;9(87):eadh2479. doi: 10.1126/scirobotics.adh2479. PubMed DOI

Wang B., Wang Q., Chan K. F., Ning Z., Wang Q., Ji F., Yang H., Jiang S., Zhang Z., Ip B. Y. M.. et al. Tpa-Anchored Nanorobots for in vivo Arterial Recanalization at Submillimeter-Scale Segments. Science Advances. 2024;10(5):eadk8970. doi: 10.1126/sciadv.adk8970. PubMed DOI PMC

Wang Q., Jin D., Wang B., Xia N., Ko H., Ip B. Y. M., Leung T. W. H., Yu S. C. H., Zhang L.. Reconfigurable Magnetic Microswarm for Accelerating Tpa-Mediated Thrombolysis under Ultrasound Imaging. IEEE/ASME Transactions on Mechatronics. 2022;27(4):2267–2277. doi: 10.1109/TMECH.2021.3103994. DOI

Tang X., Manamanchaiyaporn L., Zhou Q., Huang C., Li L., Li Z., Wang L., Wang J., Ren L., Xu T.. et al. Synergistic Integration and Pharmacomechanical Function of Enzyme-Magnetite Nanoparticle Swarms for Low-Dose Fast Thrombolysis. Small. 2022;18(34):2202848. doi: 10.1002/smll.202202848. PubMed DOI

Wan M., Wang Q., Wang R., Wu R., Li T., Fang D., Huang Y., Yu Y., Fang L., Wang X.. et al. Platelet-Derived Porous Nanomotor for Thrombus Therapy. Science Advances. 2020;6(22):eaaz9014. doi: 10.1126/sciadv.aaz9014. PubMed DOI PMC

Wang L., Wang J., Hao J., Dong Z., Wu J., Shen G., Ying T., Feng L., Cai X., Liu Z., Zheng Y.. Guiding Drug through Interrupted Bloodstream for Potentiated Thrombolysis by C-Shaped Magnetic Actuation System in vivo. Advanced Materials. 2021;33(51):2105351. doi: 10.1002/adma.202105351. PubMed DOI

Xie M., Zhang W., Fan C., Wu C., Feng Q., Wu J., Li Y., Gao R., Li Z., Wang Q.. et al. Bioinspired Soft Microrobots with Precise Magneto-Collective Control for Microvascular Thrombolysis. Advanced Materials. 2020;32(26):2000366. doi: 10.1002/adma.202000366. PubMed DOI

Flemming H.-C., Wingender J.. The Biofilm Matrix. Nature Reviews Microbiology. 2010;8(9):623–633. doi: 10.1038/nrmicro2415. PubMed DOI

Stoica, P. ; Chifiriuc, M. C. ; Rapa, M. ; Lazăr, V. . 1 - Overview of Biofilm-Related Problems in Medical Devices. In Biofilms and Implantable Medical Devices; Deng, Y. ; Lv, W. Eds.; Woodhead Publishing, 2017; pp 3-23.

Davies D.. Understanding Biofilm Resistance to Antibacterial Agents. Nature Reviews Drug Discovery. 2003;2(2):114–122. doi: 10.1038/nrd1008. PubMed DOI

Li J., Shen H., Zhou H., Shi R., Wu C., Chu P. K.. Antimicrobial Micro/Nanorobotic Materials Design: From Passive Combat to Active Therapy. Materials Science and Engineering: R: Reports. 2023;152:100712. doi: 10.1016/j.mser.2022.100712. DOI

Zhang Z., Wang L., Chan T. K. F., Chen Z., Ip M., Chan P. K. S., Sung J. J. Y., Zhang L.. Micro-/Nanorobots in Antimicrobial Applications: Recent Progress, Challenges, and Opportunities. Advanced Healthcare Materials. 2022;11(6):2101991. doi: 10.1002/adhm.202101991. PubMed DOI

Percival S. L., Emanuel C., Cutting K. F., Williams D. W.. Microbiology of the Skin and the Role of Biofilms in Infection. International Wound Journal. 2012;9(1):14–32. doi: 10.1111/j.1742-481X.2011.00836.x. PubMed DOI PMC

Xie S., Huang K., Peng J., Liu Y., Cao W., Zhang D., Li X.. Self-Propelling Nanomotors Integrated with Biofilm Microenvironment-Activated No Release to Accelerate Healing of Bacteria-Infected Diabetic Wounds. Advanced Healthcare Materials. 2022;11(19):2201323. doi: 10.1002/adhm.202201323. PubMed DOI

Peng J., Xie S., Huang K., Ran P., Wei J., Zhang Z., Li X.. Nitric Oxide-Propelled Nanomotors for Bacterial Biofilm Elimination and Endotoxin Removal to Treat Infected Burn Wounds. Journal of Materials Chemistry B. 2022;10(22):4189–4202. doi: 10.1039/D2TB00555G. PubMed DOI

Zheng J., Wang W., Gao X., Zhao S., Chen W., Li J., Liu Y.-N.. Cascade Catalytically Released Nitric Oxide-Driven Nanomotor with Enhanced Penetration for Antibiofilm. Small. 2022;18(52):2205252. doi: 10.1002/smll.202205252. PubMed DOI

Guo W., Wang Y., Zhang K., Dai X., Qiao Z., Liu Z., Yu B., Zhao N., Xu F.-J.. Near-Infrared Light-Propelled MOF@Au Nanomotors for Enhanced Penetration and Sonodynamic Therapy of Bacterial Biofilms. Chemistry of Materials. 2023;35(17):6853–6864. doi: 10.1021/acs.chemmater.3c01140. DOI

Yuan X., Suárez-García S., De Corato M., Muñoz A. C., Pagonabarraga I., Ruiz-Molina D., Villa K.. Self-Degradable Photoactive Micromotors for Inactivation of Resistant Bacteria. Advanced Optical Materials. 2024;12(16):2303137. doi: 10.1002/adom.202303137. DOI

Oh M. J., Yoon S., Babeer A., Liu Y., Ren Z., Xiang Z., Miao Y., Cormode D. P., Chen C., Steager E., Koo H.. Nanozyme-Based Robotics Approach for Targeting Fungal Infection. Advanced Materials. 2024;36(10):2300320. doi: 10.1002/adma.202300320. PubMed DOI PMC

Arciola C. R., Campoccia D., Montanaro L.. Implant Infections: Adhesion, Biofilm Formation and Immune Evasion. Nature Reviews Microbiology. 2018;16(7):397–409. doi: 10.1038/s41579-018-0019-y. PubMed DOI

Sánchez M. C., Llama-Palacios A., Fernández E., Figuero E., Marín M. J., León R., Blanc V., Herrera D., Sanz M.. An in vitro Biofilm Model Associated to Dental Implants: Structural and Quantitative Analysis of in vitro Biofilm Formation on Different Dental Implant Surfaces. Dental Materials. 2014;30(10):1161–1171. doi: 10.1016/j.dental.2014.07.008. PubMed DOI

Mayorga-Martinez C. C., Zelenka J., Klima K., Mayorga-Burrezo P., Hoang L., Ruml T., Pumera M.. Swarming Magnetic Photoactive Microrobots for Dental Implant Biofilm Eradication. ACS Nano. 2022;16(6):8694–8703. doi: 10.1021/acsnano.2c02516. PubMed DOI

Ussia M., Urso M., Kment S., Fialova T., Klima K., Dolezelikova K., Pumera M.. Light-Propelled Nanorobots for Facial Titanium Implants Biofilms Removal. Small. 2022;18(22):2200708. doi: 10.1002/smll.202200708. PubMed DOI

Cui T., Wu S., Sun Y., Ren J., Qu X.. Self-Propelled Active Photothermal Nanoswimmer for Deep-Layered Elimination of Biofilm in vivo. Nano Letters. 2020;20(10):7350–7358. doi: 10.1021/acs.nanolett.0c02767. PubMed DOI

Dong Y., Wang L., Zhang Z., Ji F., Chan T. K. F., Yang H., Chan C. P. L., Yang Z., Chen Z., Chang W. T.. et al. Endoscope-Assisted Magnetic Helical Micromachine Delivery for Biofilm Eradication in Tympanostomy Tube. Science Advances. 2022;8(40):eabq8573. doi: 10.1126/sciadv.abq8573. PubMed DOI PMC

Sun M., Chan K. F., Zhang Z., Wang L., Wang Q., Yang S., Chan S. M., Chiu P. W. Y., Sung J. J. Y., Zhang L.. Magnetic Microswarm and Fluoroscopy-Guided Platform for Biofilm Eradication in Biliary Stents. Advanced Materials. 2022;34(34):2201888. doi: 10.1002/adma.202201888. PubMed DOI

Villa K., Viktorova J., Plutnar J., Ruml T., Hoang L., Pumera M.. Chemical Microrobots as Self-Propelled Microbrushes against Dental Biofilm. Cell Reports Physical Science. 2020;1(9):100181. doi: 10.1016/j.xcrp.2020.100181. DOI

Oh M. J., Babeer A., Liu Y., Ren Z., Wu J., Issadore D. A., Stebe K. J., Lee D., Steager E., Koo H.. Surface Topography-Adaptive Robotic Superstructures for Biofilm Removal and Pathogen Detection on Human Teeth. ACS Nano. 2022;16(8):11998–12012. doi: 10.1021/acsnano.2c01950. PubMed DOI PMC

Hwang G., Paula A. J., Hunter E. E., Liu Y., Babeer A., Karabucak B., Stebe K., Kumar V., Steager E., Koo H.. Catalytic Antimicrobial Robots for Biofilm Eradication. Science Robotics. 2019;4(29):eaaw2388. doi: 10.1126/scirobotics.aaw2388. PubMed DOI PMC

Xu H., Wu S., Liu Y., Wang X., Efremov A. K., Wang L., McCaskill J. S., Medina-Sánchez M., Schmidt O. G.. 3D Nanofabricated Soft Microrobots with Super-Compliant Picoforce Springs as Onboard Sensors and Actuators. Nature Nanotechnology. 2024;19(4):494–503. doi: 10.1038/s41565-023-01567-0. PubMed DOI PMC

Schuerle S., Erni S., Flink M., Kratochvil B. E., Nelson B. J.. Three-Dimensional Magnetic Manipulation of Micro- and Nanostructures for Applications in Life Sciences. IEEE Transactions on Magnetics. 2013;49(1):321–330. doi: 10.1109/TMAG.2012.2224693. DOI

Tang W., Chen X., Wang X., Zhu M., Shan G., Wang T., Dou W., Wang J., Law J., Gong Z.. et al. Indentation Induces Instantaneous Nuclear Stiffening and Unfolding of Nuclear Envelope Wrinkles. Proceedings of the National Academy of Sciences. 2023;120(36):e2307356120. doi: 10.1073/pnas.2307356120. PubMed DOI PMC

Schuerle S., Vizcarra I. A., Moeller J., Sakar M. S., Ozkale B., Lindo A. M., Mushtaq F., Schoen I., Pane S., Vogel V., Nelson B. J.. Robotically Controlled Microprey to Resolve Initial Attack Modes Preceding Phagocytosis. Science Robotics. 2017;2(2):eaah6094. doi: 10.1126/scirobotics.aah6094. PubMed DOI

Yasa I. C., Ceylan H., Bozuyuk U., Wild A.-M., Sitti M.. Elucidating the Interaction Dynamics between Microswimmer Body and Immune System for Medical Microrobots. Science Robotics. 2020;5(43):eaaz3867. doi: 10.1126/scirobotics.aaz3867. PubMed DOI

Huang H.-W., Uslu F. E., Katsamba P., Lauga E., Sakar M. S., Nelson B. J.. Adaptive Locomotion of Artificial Microswimmers. Science Advances. 2019;5(1):eaau1532. doi: 10.1126/sciadv.aau1532. PubMed DOI PMC

Serwane F., Mongera A., Rowghanian P., Kealhofer D. A., Lucio A. A., Hockenbery Z. M., Campàs O.. In Vivo Quantification of Spatially Varying Mechanical Properties in Developing Tissues. Nature Methods. 2017;14(2):181–186. doi: 10.1038/nmeth.4101. PubMed DOI PMC

Mohagheghian E., Luo J., Yavitt F. M., Wei F., Bhala P., Amar K., Rashid F., Wang Y., Liu X., Ji C.. et al. Quantifying Stiffness and Forces of Tumor Colonies and Embryos Using a Magnetic Microrobot. Science Robotics. 2023;8(74):eadc9800. doi: 10.1126/scirobotics.adc9800. PubMed DOI PMC

Uslu F. E., Davidson C. D., Mailand E., Bouklas N., Baker B. M., Sakar M. S.. Engineered Extracellular Matrices with Integrated Wireless Microactuators to Study Mechanobiology. Advanced Materials. 2021;33(40):2102641. doi: 10.1002/adma.202102641. PubMed DOI PMC

Asgeirsson D. O., Mehta A., Scheeder A., Li F., Wang X., Christiansen M. G., Hesse N., Ward R., De Micheli A. J., Ildiz E. S.. et al. Magnetically Controlled Cyclic Microscale Deformation of in vitro Cancer Invasion Models. Biomaterials Science. 2023;11(23):7541–7555. doi: 10.1039/D3BM00583F. PubMed DOI

Rios B., Bu A., Sheehan T., Kobeissi H., Kohli S., Shah K., Lejeune E., Raman R.. Mechanically Programming Anisotropy in Engineered Muscle with Actuating Extracellular Matrices. Device. 2023;1(4):100097. doi: 10.1016/j.device.2023.100097. DOI

Kress H., Park J.-G., Mejean C. O., Forster J. D., Park J., Walse S. S., Zhang Y., Wu D., Weiner O. D., Fahmy T. M.. et al. Cell Stimulation with Optically Manipulated Microsources. Nature Methods. 2009;6(12):905–909. doi: 10.1038/nmeth.1400. PubMed DOI PMC

Gou X., Yang H., Fahmy T. M., Wang Y., Sun D.. Direct Measurement of Cell Protrusion Force Utilizing a Robot-Aided Cell Manipulation System with Optical Tweezers for Cell Migration Control. The International Journal of Robotics Research. 2014;33(14):1782–1792. doi: 10.1177/0278364914546536. DOI

Johansen P. L., Fenaroli F., Evensen L., Griffiths G., Koster G.. Optical Micromanipulation of Nanoparticles and Cells inside Living Zebrafish. Nature Communications. 2016;7(1):10974. doi: 10.1038/ncomms10974. PubMed DOI PMC

Pastoriza-Santos I., Kinnear C., Pérez-Juste J., Mulvaney P., Liz-Marzán L. M.. Plasmonic Polymer Nanocomposites. Nature Reviews Materials. 2018;3(10):375–391. doi: 10.1038/s41578-018-0050-7. DOI

Liu Z., Liu Y., Chang Y., Seyf H. R., Henry A., Mattheyses A. L., Yehl K., Zhang Y., Huang Z., Salaita K.. Nanoscale Optomechanical Actuators for Controlling Mechanotransduction in Living Cells. Nature Methods. 2016;13(2):143–146. doi: 10.1038/nmeth.3689. PubMed DOI PMC

Sutton A., Shirman T., Timonen J. V. I., England G. T., Kim P., Kolle M., Ferrante T., Zarzar L. D., Strong E., Aizenberg J.. Photothermally Triggered Actuation of Hybrid Materials as a New Platform for in vitro Cell Manipulation. Nature Communications. 2017;8(1):14700. doi: 10.1038/ncomms14700. PubMed DOI PMC

Özkale B., Parreira R., Bekdemir A., Pancaldi L., Özelçi E., Amadio C., Kaynak M., Stellacci F., Mooney D. J., Sakar M. S.. Modular Soft Robotic Microdevices for Dexterous Biomanipulation. Lab on a Chip. 2019;19(5):778–788. doi: 10.1039/C8LC01200H. PubMed DOI PMC

Chandorkar Y., Castro Nava A., Schweizerhof S., Van Dongen M., Haraszti T., Kohler J., Zhang H., Windoffer R., Mourran A., Moller M., De Laporte L.. Cellular Responses to Beating Hydrogels to Investigate Mechanotransduction. Nature Communications. 2019;10(1):4027. doi: 10.1038/s41467-019-11475-4. PubMed DOI PMC

Özkale B., Lou J., Özelçi E., Elosegui-Artola A., Tringides C. M., Mao A. S., Sakar M. S., Mooney D. J.. Actuated 3D Microgels for Single Cell Mechanobiology. Lab on a Chip. 2022;22(10):1962–1970. doi: 10.1039/D2LC00203E. PubMed DOI PMC

Talà L., Fineberg A., Kukura P., Persat A.. Pseudomonas Aeruginosa Orchestrates Twitching Motility by Sequential Control of Type Iv Pili Movements. Nature Microbiology. 2019;4(5):774–780. doi: 10.1038/s41564-019-0378-9. PubMed DOI PMC

Zhang F. Y., Li Z. X., Duan Y. o., Luan H., Yin L., Guo Z. Y., Chen C. R., Xu M. Y., Gao W. W., Fang R. H.. et al. Extremophile-Based Biohybrid Micromotors for Biomedical Operations in Harsh Acidic Environments. Science Advances. 2022;8(51):eade6455. doi: 10.1126/sciadv.ade6455. PubMed DOI PMC

Li J., Angsantikul P., Liu W., Esteban-Fernández de Ávila B., Thamphiwatana S., Xu M., Sandraz E., Wang X., Delezuk J., Gao W.. et al. Micromotors Spontaneously Neutralize Gastric Acid for pH-Responsive Payload Release. Angewandte Chemie International Edition. 2017;56(8):2156–2161. doi: 10.1002/anie.201611774. PubMed DOI PMC

Karshalev E., Zhang Y., Esteban-Fernández de Ávila B., Beltrán-Gastélum M., Chen Y., Mundaca-Uribe R., Zhang F., Nguyen B., Tong Y., Fang R. H.. et al. Micromotors for Active Delivery of Minerals toward the Treatment of Iron Deficiency Anemia. Nano Letters. 2019;19(11):7816–7826. doi: 10.1021/acs.nanolett.9b02832. PubMed DOI PMC

Ying B., Huang H., Su Y., Howarth J. G., Gu Z., Nan K.. Theranostic Gastrointestinal Residence Systems. Device. 2023;1(2):100053. doi: 10.1016/j.device.2023.100053. DOI

Liu X., Yang Y., Inda M. E., Lin S., Wu J., Kim Y., Chen X., Ma D., Lu T. K., Zhao X.. Magnetic Living Hydrogels for Intestinal Localization, Retention, and Diagnosis. Advanced Functional Materials. 2021;31(27):2010918. doi: 10.1002/adfm.202010918. PubMed DOI PMC

Li Z., Duan Y., Zhang F., Luan H., Shen W.-T., Yu Y., Xian N., Guo Z., Zhang E., Yin L.. et al. Biohybrid Microrobots Regulate Colonic Cytokines and the Epithelium Barrier in Inflammatory Bowel Disease. Science Robotics. 2024;9(91):eadl2007. doi: 10.1126/scirobotics.adl2007. PubMed DOI

Yang M., Zhang Y., Mou F., Cao C., Yu L., Li Z., Guan J.. Swarming Magnetic Nanorobots Bio-Interfaced by Heparinoid-Polymer Brushes for in vivo Safe Synergistic Thrombolysis. Science Advances. 2023;9(48):eadk7251. doi: 10.1126/sciadv.adk7251. PubMed DOI PMC

Wang Q., Wang Q., Ning Z., Chan K. F., Jiang J., Wang Y., Su L., Jiang S., Wang B., Ip B. Y. M.. et al. Tracking and Navigation of a Microswarm under Laser Speckle Contrast Imaging for Targeted Delivery. Science Robotics. 2024;9(87):eadh1978. doi: 10.1126/scirobotics.adh1978. PubMed DOI

Peng Q., Wang S., Han J., Huang C., Yu H., Li D., Qiu M., Cheng S., Wu C., Cai M.. et al. Thermal and Magnetic Dual-Responsive Catheter-Assisted Shape Memory Microrobots for Multistage Vascular Embolization. Research. 2024;7:0339. doi: 10.34133/research.0339. PubMed DOI PMC

Tang L., Yin Y., Cao Y., Fu C., Liu H., Feng J., Wang W., Liang X.-J.. Extracellular Vesicles-Derived Hybrid Nanoplatforms for Amplified Cd47 Blockade-Based Cancer Immunotherapy. Advanced Materials. 2023;35(35):2303835. doi: 10.1002/adma.202303835. PubMed DOI

Eisenbach M., Giojalas L. C.. Sperm Guidance in Mammals  an Unpaved Road to the Egg. Nature Reviews Molecular Cell Biology. 2006;7(4):276–285. doi: 10.1038/nrm1893. PubMed DOI

Miki K., Clapham D. E.. Rheotaxis Guides Mammalian Sperm. Current Biology. 2013;23(6):443–452. doi: 10.1016/j.cub.2013.02.007. PubMed DOI PMC

Cong Z., Tang S., Xie L., Yang M., Li Y., Lu D., Li J., Yang Q., Chen Q., Zhang Z.. et al. Magnetic-Powered Janus Cell Robots Loaded with Oncolytic Adenovirus for Active and Targeted Virotherapy of Bladder Cancer. Advanced Materials. 2022;34(26):2201042. doi: 10.1002/adma.202201042. PubMed DOI

Schwarz L., Karnaushenko D. D., Hebenstreit F., Naumann R., Schmidt O. G., Medina-Sánchez M.. A Rotating Spiral Micromotor for Noninvasive Zygote Transfer. Advanced Science. 2020;7(18):2000843. doi: 10.1002/advs.202000843. PubMed DOI PMC

Ribeiro, C. ; Nauber, R. ; Aziz, A. ; Robles, D. C. ; Hebenstreit, F. ; Medina-Sánchez, M. . Microrobot's Performance in Cell-Lining Surfaces and Ex-Vivo Tissue. In 2024 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), 1-5 July 2024, 2024; pp 1-6. 10.1109/MARSS61851.2024.10612747. DOI

Nauber, R. ; Hoppe, J. ; Robles, D. C. ; Medina-Sánchez, M. . Photoacoustics-Guided Real-Time Closed-Loop Control of Magnetic Microrobots through Deep Learning. In 2024 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), 1-5 July 2024, 2024; pp 1-5. 10.1109/MARSS61851.2024.10612756. DOI

Schmidt C. K., Medina-Sánchez M., Edmondson R. J., Schmidt O. G.. Engineering Microrobots for Targeted Cancer Therapies from a Medical Perspective. Nature Communications. 2020;11(1):5618. doi: 10.1038/s41467-020-19322-7. PubMed DOI PMC

Xu H., Medina-Sánchez M., Zhang W., Seaton M. P. H., Brison D. R., Edmondson R. J., Taylor S. S., Nelson L., Zeng K., Bagley S.. et al. Human Spermbots for Patient-Representative 3D Ovarian Cancer Cell Treatment. Nanoscale. 2020;12(39):20467–20481. doi: 10.1039/D0NR04488A. PubMed DOI

Go G., Jeong S.-G., Yoo A., Han J., Kang B., Kim S., Nguyen K. T., Jin Z., Kim C.-S., Seo Y. R.. Human Adipose-Derived Mesenchymal Stem Cell-Based Medical Microrobot System for Knee Cartilage Regeneration in vivo. Science Robotics. 2020;5(38):eaay6626. doi: 10.1126/scirobotics.aay6626. PubMed DOI

Ahuja C. S., Wilson J. R., Nori S., Kotter M. R. N., Druschel C., Curt A., Fehlings M. G.. Traumatic Spinal Cord Injury. Nature Reviews Disease Primers. 2017;3(1):17018. doi: 10.1038/nrdp.2017.18. PubMed DOI

Sadekar S. S., Bowen M., Cai H., Jamalian S., Rafidi H., Shatz-Binder W., Lafrance-Vanasse J., Chan P., Meilandt W. J., Oldendorp A.. et al. Translational Approaches for Brain Delivery of Biologics via Cerebrospinal Fluid. Clinical Pharmacology & Therapeutics. 2022;111(4):826–834. doi: 10.1002/cpt.2531. PubMed DOI PMC

Ye, H. ; Zang, J. ; Zhu, J. ; Arx, D. v. ; Pustovalov, V. ; Mao, M. ; Tang, Q. ; Veciana, A. ; Torlakcik, H. ; Zhang, E. . Magnetoelectric Microrobots for Spinal Cord Injury Regeneration. bioRxiv Preprint, 2024. 10.1101/2024.08.06.606378. DOI

Bao T., Li N., Chen H., Zhao Z., Fan J., Tao Y., Chen C., Wan M., Yin G., Mao C.. Drug-Loaded Zwitterion-Based Nanomotors for the Treatment of Spinal Cord Injury. ACS Applied Materials & Interfaces. 2023;15(27):32762–32771. doi: 10.1021/acsami.3c05866. PubMed DOI

Shen J., Wang Y., Yao M., Liu S., Guo Z., Zhang L., Wang B.. Long-Span Delivery of Differentiable Hybrid Robots for Restoration of Neural Connections. Matter. 2025;8:101942. doi: 10.1016/j.matt.2024.101942. DOI

Quon H., Jiang S.. Decision Making for Implementing Non-Traditional Water Sources: A Review of Challenges and Potential Solutions. npj Clean Water. 2023;6(1):56. doi: 10.1038/s41545-023-00273-7. DOI

Vardhan K. H., Kumar P. S., Panda R. C.. A Review on Heavy Metal Pollution, Toxicity and Remedial Measures: Current Trends and Future Perspectives. Journal of Molecular Liquids. 2019;290:111197. doi: 10.1016/j.molliq.2019.111197. DOI

Sun B., Li Q., Zheng M., Su G., Lin S., Wu M., Li C., Wang Q., Tao Y., Dai L.. et al. Recent Advances in the Removal of Persistent Organic Pollutants (Pops) Using Multifunctional Materials:A Review. Environmental Pollution. 2020;265:114908. doi: 10.1016/j.envpol.2020.114908. PubMed DOI

Singh S., Kumar Naik T. S. S., Anil A. G., Dhiman J., Kumar V., Dhanjal D. S., Aguilar-Marcelino L., Singh J., Ramamurthy P. C.. Micro (Nano) Plastics in Wastewater: A Critical Review on Toxicity Risk Assessment, Behaviour, Environmental Impact and Challenges. Chemosphere. 2022;290:133169. doi: 10.1016/j.chemosphere.2021.133169. PubMed DOI

Dhaka A., Chattopadhyay P.. A Review on Physical Remediation Techniques for Treatment of Marine Oil Spills. Journal of Environmental Management. 2021;288:112428. doi: 10.1016/j.jenvman.2021.112428. PubMed DOI

Islam M. M. M., Iqbal M. S., D'Souza N., Islam M. A.. A Review on Present and Future Microbial Surface Water Quality Worldwide. Environmental Nanotechnology, Monitoring & Management. 2021;16:100523. doi: 10.1016/j.enmm.2021.100523. DOI

Jing D., Li Z., Yan W., Zhang J., Guo Y.. Application of Micro/Nanomotors in Environmental Remediation. New Journal of Chemistry. 2024;48(3):1036–1056. doi: 10.1039/D3NJ04873J. DOI

Wang K., Ma E., Cui H., Hu Z., Wang H.. Bioinspired Self-Propelled Micromotors with Improved Transport Efficiency in the Subsurface Environment for Soil Decontamination. Advanced Functional Materials. 2023;33(52):2307632. doi: 10.1002/adfm.202307632. DOI

Ma W., Wang K., Pan S., Wang H.. Iron-Exchanged Zeolite Micromotors for Enhanced Degradation of Organic Pollutants. Langmuir. 2020;36(25):6924–6929. doi: 10.1021/acs.langmuir.9b02137. PubMed DOI

Xiong K., Lin J., Chen Q., Gao T., Xu L., Guan J.. An Axis-Asymmetric Self-Driven Micromotor That Can Perform Precession Multiplying “on-the-fly” Mass Transfer. Matter. 2023;6(3):907–924. doi: 10.1016/j.matt.2023.01.005. DOI

Urso M., Ussia M., Pumera M.. Breaking Polymer Chains with Self-Propelled Light-Controlled Navigable Hematite Microrobots. Advanced Functional Materials. 2021;31(28):2101510. doi: 10.1002/adfm.202101510. DOI

Wang L., Kaeppler A., Fischer D., Simmchen J.. Photocatalytic TiO2 Micromotors for Removal of Microplastics and Suspended Matter. ACS Applied Materials & Interfaces. 2019;11(36):32937–32944. doi: 10.1021/acsami.9b06128. PubMed DOI

Wang Q., Ji F., Wang S., Zhang L.. Accelerating the Fenton Reaction with a Magnetic Microswarm for Enhanced Water Remediation. ChemNanoMat. 2021;7(6):600–606. doi: 10.1002/cnma.202100108. DOI

Hu K., Li J., Han Y., Ng D. H. L., Xing N., Lyu Y.. A Colorimetric Detection Strategy and Micromotor-Assisted Photo-Fenton Like Degradation for Hydroquinone Based on the Peroxidase-Like Activity of Co3o4-CeO2 Nanocages. Catalysis Science & Technology. 2022;12(23):7161–7170. doi: 10.1039/D2CY01192A. DOI

Ma E., Wang K., Hu Z., Wang H.. Dual-Stimuli-Responsive Cus-Based Micromotors for Efficient Photo-Fenton Degradation of Antibiotics. Journal of Colloid and Interface Science. 2021;603:685–694. doi: 10.1016/j.jcis.2021.06.142. PubMed DOI

Feng K., Zhang L., Gong J., Qu J., Niu R.. Visible Light Triggered Exfoliation of COF Micro/Nanomotors for Efficient Photocatalysis. Green Energy & Environment. 2023;8(2):567–578. doi: 10.1016/j.gee.2021.09.002. DOI

Ghanbari F., Moradi M.. Application of Peroxymonosulfate and Its Activation Methods for Degradation of Environmental Organic Pollutants: Review. Chemical Engineering Journal. 2017;310:41–62. doi: 10.1016/j.cej.2016.10.064. DOI

Vaghasiya J. V., Mayorga-Martinez C. C., Matějková S., Pumera M.. Pick up and Dispose of Pollutants from Water via Temperature-Responsive Micellar Copolymers on Magnetite Nanorobots. Nature Communications. 2022;13(1):1026. doi: 10.1038/s41467-022-28406-5. PubMed DOI PMC

Uygun D. A., Jurado-Sánchez B., Uygun M., Wang J.. Self-Propelled Chelation Platforms for Efficient Removal of Toxic Metals. Environmental Science: Nano. 2016;3(3):559–566. doi: 10.1039/C6EN00043F. DOI

Han Y., Lyu Y., Xing N., Zhang X., Hu K., Luo H., Ng D. H. L., Li J.. Ion-Imprinted MnO2/CoFe2O4 Janus Magnetic Micromotors Synthesized by a Lotus Pollen Template for Highly Selective Recognition and Capture of Pb­(Ii) Ions. Journal of Materials Chemistry C. 2022;10(41):15524–15531. doi: 10.1039/D2TC02458F. DOI

Hou T., Yu S., Zhou M., Wu M., Liu J., Zheng X., Li J., Wang J., Wang X.. Effective Removal of Inorganic and Organic Heavy Metal Pollutants with Poly­(Amino Acid)-Based Micromotors. Nanoscale. 2020;12(8):5227–5232. doi: 10.1039/C9NR09813E. PubMed DOI

Yang J., Liu Y., Li J., Zuo M., Li W., Xing N., Wang C., Li T.. Γ-Fe2O3@Ag-mSiO2NH2 Magnetic Janus Micromotor for Active Water Remediation. Applied Materials Today. 2021;25:101190. doi: 10.1016/j.apmt.2021.101190. DOI

Urso M., Ussia M., Peng X., Oral C. M., Pumera M.. Reconfigurable Self-Assembly of Photocatalytic Magnetic Microrobots for Water Purification. Nature Communications. 2023;14(1):6969. doi: 10.1038/s41467-023-42674-9. PubMed DOI PMC

Liu M., Jiang J., Tan H., Chen B., Ou J., Wang H., Sun J., Liu L., Wang F., Gao J.. et al. Light-Driven Au-ZnO Nanorod Motors for Enhanced Photocatalytic Degradation of Tetracycline. Nanoscale. 2022;14(35):12804–12813. doi: 10.1039/D2NR02441A. PubMed DOI

Tesař J., Ussia M., Alduhaish O., Pumera M.. Autonomous Self-Propelled MnO2 Micromotors for Hormones Removal and Degradation. Applied Materials Today. 2022;26:101312. doi: 10.1016/j.apmt.2021.101312. DOI

Kochergin Y. S., Villa K., Nemeškalová A., Kuchař M., Pumera M.. Hybrid Inorganic-Organic Visible-Light-Driven Microrobots Based on Donor-Acceptor Organic Polymer for Degradation of Toxic Psychoactive Substances. ACS Nano. 2021;15(11):18458–18468. doi: 10.1021/acsnano.1c08136. PubMed DOI

Uygun M., Asunción-Nadal V. d. l., Evli S., Uygun D. A., Jurado-Sánchez B., Escarpa A.. Dye Removal by Laccase-Functionalized Micromotors. Applied Materials Today. 2021;23:101045. doi: 10.1016/j.apmt.2021.101045. DOI

Yang W., Xu C., Lyu Y., Lan Z., Li J., Ng D. H. L.. Hierarchical Hollow Α-Fe2O3/ZnFe2O4/Mn2O3 Janus Micromotors as Dynamic and Efficient Microcleaners for Enhanced Photo-Fenton Elimination of Organic Pollutants. Chemosphere. 2023;338:139530. doi: 10.1016/j.chemosphere.2023.139530. PubMed DOI

Zheng C., Song X., Gan Q., Lin J.. High-Efficiency Removal of Organic Pollutants by Visible-Light-Driven Tubular Heterogeneous Micromotors through a Photocatalytic Fenton Process. Journal of Colloid and Interface Science. 2023;630:121–133. doi: 10.1016/j.jcis.2022.10.021. PubMed DOI

Oral C. M., Ussia M., Pumera M.. Self-Propelled Activated Carbon Micromotors for “on-the-Fly” Capture of Nitroaromatic Explosives. The Journal of Physical Chemistry C. 2021;125(32):18040–18045. doi: 10.1021/acs.jpcc.1c05136. DOI

Soto F., Lopez-Ramirez M. A., Jeerapan I., Esteban-Fernandez de Avila B., Mishra R. K., Lu X., Chai I., Chen C., Kupor D., Nourhani A., Wang J.. et al. Rotibot: Use of Rotifers as Self-Propelling Biohybrid Microcleaners. Advanced Functional Materials. 2019;29(22):1900658. doi: 10.1002/adfm.201900658. DOI

Li J., Ji F., Ng D. H. L., Liu J., Bing X., Wang P.. Bioinspired Pt-Free Molecularly Imprinted Hydrogel-Based Magnetic Janus Micromotors for Temperature-Responsive Recognition and Adsorption of Erythromycin in Water. Chemical Engineering Journal. 2019;369:611–620. doi: 10.1016/j.cej.2019.03.101. DOI

Peng X., Urso M., Pumera M.. Metal Oxide Single-Component Light-Powered Micromotors for Photocatalytic Degradation of Nitroaromatic Pollutants. npj Clean Water. 2023;6(1):21. doi: 10.1038/s41545-023-00235-z. DOI

Urso M., Pumera M.. Nano/Microplastics Capture and Degradation by Autonomous Nano/Microrobots: A Perspective. Advanced Functional Materials. 2022;32(20):2112120. doi: 10.1002/adfm.202112120. DOI

Li W., Wang J., Xiong Z., Li D.. Micro/Nanorobots for Efficient Removal and Degradation of Micro/Nanoplastics. Cell Reports Physical Science. 2023;4(11):101639. doi: 10.1016/j.xcrp.2023.101639. DOI

Li W., Wu C., Xiong Z., Liang C., Li Z., Liu B., Cao Q., Wang J., Tang J., Li D.. Self-Driven Magnetorobots for Recyclable and Scalable Micro/Nanoplastic Removal from Nonmarine Waters. Science Advances. 2022;8(45):eade1731. doi: 10.1126/sciadv.ade1731. PubMed DOI PMC

Chattopadhyay P., Ariza-Tarazona M. C., Cedillo-González E. I., Siligardi C., Simmchen J.. Combining Photocatalytic Collection and Degradation of Microplastics Using Self-Asymmetric Pac-Man TiO2 . Nanoscale. 2023;15(36):14774–14781. doi: 10.1039/D3NR01512B. PubMed DOI

Ye H., Wang Y., Liu X., Xu D., Yuan H., Sun H., Wang S., Ma X.. Magnetically Steerable Iron Oxides-Manganese Dioxide Core-Shell Micromotors for Organic and Microplastic Removals. Journal of Colloid and Interface Science. 2021;588:510–521. doi: 10.1016/j.jcis.2020.12.097. PubMed DOI

Beladi-Mousavi S. M., Hermanová S., Ying Y., Plutnar J., Pumera M.. A Maze in Plastic Wastes: Autonomous Motile Photocatalytic Microrobots against Microplastics. ACS Applied Materials & Interfaces. 2021;13(21):25102–25110. doi: 10.1021/acsami.1c04559. PubMed DOI

Khairudin K., Abu Bakar N. F., Osman M. S.. Magnetically Recyclable Flake-Like BiOI-Fe3O4 Microswimmers for Fast and Efficient Degradation of Microplastics. Journal of Environmental Chemical Engineering. 2022;10(5):108275. doi: 10.1016/j.jece.2022.108275. DOI

Jancik-Prochazkova A., Jašek V., Figalla S., Pumera M.. Photocatalytic Microplastics “on-the-Fly” Degradation via Motile Quantum Materials-Based Microrobots. Advanced Optical Materials. 2023;11(22):2300782. doi: 10.1002/adom.202300782. DOI

Ullattil S. G., Pumera M.. Light-Powered Self-Adaptive Mesostructured Microrobots for Simultaneous Microplastics Trapping and Fragmentation via in situ Surface Morphing. Small. 2023;19(38):2301467. doi: 10.1002/smll.202301467. PubMed DOI

Urso M., Bruno L., Dattilo S., Carroccio S. C., Mirabella S.. Band Engineering Versus Catalysis: Enhancing the Self-Propulsion of Light-Powered Mxene-Derived Metal-TiO2 Micromotors to Degrade Polymer Chains. ACS Applied Materials & Interfaces. 2024;16(1):1293–1307. doi: 10.1021/acsami.3c13470. PubMed DOI PMC

Peng X., Urso M., Ussia M., Pumera M.. Shape-Controlled Self-Assembly of Light-Powered Microrobots into Ordered Microchains for Cells Transport and Water Remediation. ACS Nano. 2022;16(5):7615–7625. doi: 10.1021/acsnano.1c11136. PubMed DOI

Zhou H., Mayorga-Martinez C. C., Pumera M.. Microplastic Removal and Degradation by Mussel-Inspired Adhesive Magnetic/Enzymatic Microrobots. Small Methods. 2021;5(9):2100230. doi: 10.1002/smtd.202100230. PubMed DOI

Wang D., Zhao G., Chen C., Zhang H., Duan R., Zhang D., Li M., Dong B.. One-Step Fabrication of Dual Optically/Magnetically Modulated Walnut-Like Micromotor. Langmuir. 2019;35(7):2801–2807. doi: 10.1021/acs.langmuir.8b02904. PubMed DOI

Su Y.-Y., Zhang M.-J., Wang W., Deng C.-F., Peng J., Liu Z., Faraj Y., Ju X.-J., Xie R., Chu L.-Y.. Bubble-Propelled Hierarchical Porous Micromotors from Evolved Double Emulsions. Industrial & Engineering Chemistry Research. 2019;58(4):1590–1600. doi: 10.1021/acs.iecr.8b05791. DOI

Wang X., Lin D., Zhou Y., Jiao N., Tung S., Liu L.. Multistimuli-Responsive Hydroplaning Superhydrophobic Microrobots with Programmable Motion and Multifunctional Applications. ACS Nano. 2022;16(9):14895–14906. doi: 10.1021/acsnano.2c05783. PubMed DOI

Jancik-Prochazkova A., Mayorga-Martinez C. C., Vyskočil J., Pumera M.. Swarming Magnetically Navigated Indigo-Based Hydrophobic Microrobots for Oil Removal. ACS Applied Materials & Interfaces. 2022;14(40):45545–45552. doi: 10.1021/acsami.2c09527. PubMed DOI

Ge Y., Liu M., Liu L., Sun Y., Zhang H., Dong B.. Dual-Fuel-Driven Bactericidal Micromotor. Nano-Micro Letters. 2016;8(2):157–164. doi: 10.1007/s40820-015-0071-3. PubMed DOI PMC

Huang H., Zhao Y., Yang H., Li J., Ying Y., Li J., Wang S.. Light-Driven MOF-Based Micromotors with Self-Floating Characteristics for Water Sterilization. Nanoscale. 2023;15(34):14165–14174. doi: 10.1039/D3NR02299D. PubMed DOI

Zhang F., Li Z., Yin L., Zhang Q., Askarinam N., Mundaca-Uribe R., Tehrani F., Karshalev E., Gao W., Zhang L.. et al. Ace2 Receptor-Modified Algae-Based Microrobot for Removal of Sars-Cov-2 in Wastewater. Journal of the American Chemical Society. 2021;143(31):12194–12201. doi: 10.1021/jacs.1c04933. PubMed DOI

Peng X., Urso M., Pumera M.. Photo-Fenton Degradation of Nitroaromatic Explosives by Light-Powered Hematite Microrobots: When Higher Speed Is Not What We Go For. Small Methods. 2021;5(10):2100617. doi: 10.1002/smtd.202100617. PubMed DOI

Moran J. L., Posner J. D.. Role of Solution Conductivity in Reaction Induced Charge Auto-Electrophoresis. Physics of Fluids. 2014;26(4):042001. doi: 10.1063/1.4869328. DOI

Mayorga-Burrezo P., Mayorga-Martinez C. C., Kim J., Pumera M.. Hybrid Magneto-Photocatalytic Microrobots for Sunscreens Pollutants Decontamination. Chemical Engineering Journal. 2022;446:137139. doi: 10.1016/j.cej.2022.137139. DOI

Feng K., Gong J., Qu J., Niu R.. Dual-Mode-Driven Micromotor Based on Foam-Like Carbon Nitride and Fe3O4 with Improved Manipulation and Photocatalytic Performance. ACS Applied Materials & Interfaces. 2022;14(39):44271–44281. doi: 10.1021/acsami.2c10590. PubMed DOI

Kim J., Mayorga-Martinez C. C., Pumera M.. Magnetically Boosted 1D Photoactive Microswarm for Covid-19 Face Mask Disruption. Nature Communications. 2023;14(1):935. doi: 10.1038/s41467-023-36650-6. PubMed DOI PMC

Mayorga-Burrezo P., Mayorga-Martinez C. C., Pumera M.. Photocatalysis Dramatically Influences Motion of Magnetic Microrobots: Application to Removal of Microplastics and Dyes. Journal of Colloid and Interface Science. 2023;643:447–454. doi: 10.1016/j.jcis.2023.04.019. PubMed DOI

Xue J., Zhang M., Yong J., Chen Q., Wang J., Xu J., Liang K.. Light-Switchable Biocatalytic Covalent-Organic Framework Nanomotors for Aqueous Contaminants Removal. Nano Letters. 2023;23(23):11243–11251. doi: 10.1021/acs.nanolett.3c03766. PubMed DOI

Wu J., Yu H., Liu W., Dong C., Wu M., Zhang C.. Enhanced Degradation of Organic Pollutant by Bimetallic Catalysts Decorated Micromotor in Advanced Oxidation Processes. Journal of Environmental Chemical Engineering. 2022;10(1):107034. doi: 10.1016/j.jece.2021.107034. DOI

Terzopoulou A., Palacios-Corella M., Franco C., Sevim S., Dysli T., Mushtaq F., Romero-Angel M., Martí-Gastaldo C., Gong D., Cai J.. et al. Biotemplating of Metal-Organic Framework Nanocrystals for Applications in Small-Scale Robotics. Advanced Functional Materials. 2022;32(13):2107421. doi: 10.1002/adfm.202107421. DOI

Yang W., Qiang Y., Du M., Cao Y., Wang Y., Zhang X., Yue T., Huang J., Li Z.. Self-Propelled Nanomotors Based on Hierarchical Metal-Organic Framework Composites for the Removal of Heavy Metal Ions. Journal of Hazardous Materials. 2022;435:128967. doi: 10.1016/j.jhazmat.2022.128967. PubMed DOI

Ye H., Wang S., Wang Y., Guo P., Wang L., Zhao C., Chen S., Chen Y., Sun H., Wang S.. et al. Atomic H* Mediated Fast Decontamination of Antibiotics by Bubble-Propelled Magnetic Iron-Manganese Oxides Core-Shell Micromotors. Applied Catalysis B: Environmental. 2022;314:121484. doi: 10.1016/j.apcatb.2022.121484. DOI

Oral C. M., Ussia M., Pumera M.. Hybrid Enzymatic/Photocatalytic Degradation of Antibiotics via Morphologically Programmable Light-Driven ZnO Microrobots. Small. 2022;18(39):2202600. doi: 10.1002/smll.202202600. PubMed DOI

Shang Y., Cai L., Liu R., Zhang D., Zhao Y., Sun L.. Self-Propelled Structural Color Cylindrical Micromotors for Heavy Metal Ions Adsorption and Screening. Small. 2022;18(46):2204479. doi: 10.1002/smll.202204479. PubMed DOI

Zhang X., Liu B., Wei T., Liu Z., Li J.. Self-Propelled Janus Magnetic Micromotors as Peroxidase-Like Nanozyme for Colorimetric Detection and Removal of Hydroquinone. Environmental Science: Nano. 2023;10(2):476–488. doi: 10.1039/D2EN00990K. DOI

Xing N., Lyu Y., Li J., Ng D. H. L., Zhang X., Zhao W.. 3D Hierarchical Ldhs-Based Janus Micro-Actuator for Detection and Degradation of Catechol. Journal of Hazardous Materials. 2023;442:129914. doi: 10.1016/j.jhazmat.2022.129914. PubMed DOI

Yang W., Lyu Y., Lan Z., Li J., Ng D. H. L.. Biomass-Derived 3D Hierarchical Zr-Based Tubular Magnetomotors with Peroxidase-Like Properties for Selective Colorimetric Detection and Specific Decontamination of Glyphosate at Neutral pH. Environmental Science: Nano. 2023;10(6):1676–1688. doi: 10.1039/D3EN00167A. DOI

Yang J., Li J., Yan X., Lyu Y., Xing N., Yang P., Song P., Zuo M.. Three-Dimensional Hierarchical Hrp-Mil-100­(Fe)@TiO2@Fe3O4 Janus Magnetic Micromotor as a Smart Active Platform for Detection and Degradation of Hydroquinone. ACS Applied Materials & Interfaces. 2022;14(5):6484–6498. doi: 10.1021/acsami.1c18086. PubMed DOI

Xing N., Lyu Y., Yang J., Zhang X., Han Y., Zhao W., Ng D. H. L., Li J.. Motion-Based Phenol Detection and Degradation Using 3D Hierarchical AA-NiMn-CLDHs@HNTs-Ag Nanomotors. Environmental Science: Nano. 2022;9(8):2815–2826. doi: 10.1039/D2EN00322H. DOI

Wang J.. Will Future Microbots Be Task-Specific Customized Machines or Multi-Purpose “All in One” Vehicles? Nature Communications. 2021;12(1):7125. doi: 10.1038/s41467-021-26675-0. PubMed DOI PMC

Song S.-J., Mayorga-Martinez C. C., Vyskočil J., Častorálová M., Ruml T., Pumera M.. Precisely Navigated Biobot Swarms of Bacteria Magnetospirillum Magneticum for Water Decontamination. ACS Applied Materials & Interfaces. 2023;15(5):7023–7029. doi: 10.1021/acsami.2c16592. PubMed DOI PMC

Peng X., Urso M., Kolackova M., Huska D., Pumera M.. Biohybrid Magnetically Driven Microrobots for Sustainable Removal of Micro/Nanoplastics from the Aquatic Environment. Advanced Functional Materials. 2024;34(3):2307477. doi: 10.1002/adfm.202307477. DOI

Singh A. K., Basireddy T., Moran J. L.. Eliminating Waste with Waste: Transforming Spent Coffee Grounds into Microrobots for Water Treatment. Nanoscale. 2023;15(43):17494–17507. doi: 10.1039/D3NR03592A. PubMed DOI

Pan Y., Liu R., Luo L., Song Z., Pan J., Li H.. Rapid and Selective Gold Stripping from Electronic Waste with Yolk-Shell-Structured Ion-Imprinted Magnetic Mesoporous Nanorobots for Efficient Water Decontamination. ACS Sustainable Chemistry & Engineering. 2023;11(40):14723–14733. doi: 10.1021/acssuschemeng.3c02969. DOI

Yang Y., Hu K., Zhu Z.-S., Yao Y., Zhang P., Zhou P., Huo P., Duan X., Sun H., Wang S.. Catalytic Pollutant Upgrading to Dual-Asymmetric MnO2@Polymer Nanotubes as Self-Propelled and Controlled Micromotors for H2O2 Decomposition. Small Methods. 2023;7(10):2300588. doi: 10.1002/smtd.202300588. PubMed DOI

Wang L., Huang Y., Xu H., Chen S., Chen H., Lin Y., Wang X., Liu X., Sánchez S., Huang X.. Contaminants-Fueled Laccase-Powered Fe3O4@SiO2 Nanomotors for Synergistical Degradation of Multiple Pollutants. Materials Today Chemistry. 2022;26:101059. doi: 10.1016/j.mtchem.2022.101059. DOI

Ferrer Campos R., Bachimanchi H., Volpe G., Villa K.. Bubble-Propelled Micromotors for Ammonia Generation. Nanoscale. 2023;15(38):15785–15793. doi: 10.1039/D3NR03804A. PubMed DOI PMC

Wei K.-H., Ma J., Xi B.-D., Yu M.-D., Cui J., Chen B.-L., Li Y., Gu Q.-B., He X.-S.. Recent Progress on in-situ Chemical Oxidation for the Remediation of Petroleum Contaminated Soil and Groundwater. Journal of Hazardous Materials. 2022;432:128738. doi: 10.1016/j.jhazmat.2022.128738. PubMed DOI

Wang J.. Self-Propelled Affinity Biosensors: Moving the Receptor around the Sample. Biosensors and Bioelectronics. 2016;76:234–242. doi: 10.1016/j.bios.2015.04.095. PubMed DOI

Russell S. M., Alba-Patiño A., Borges M., de la Rica R.. Multifunctional Motion-to-Color Janus Transducers for the Rapid Detection of Sepsis Biomarkers in Whole Blood. Biosensors and Bioelectronics. 2019;140:111346. doi: 10.1016/j.bios.2019.111346. PubMed DOI

Gordón Pidal J. M., Molinero-Fernández Á., Moreno-Guzmán M., López M. Á., Escarpa A.. Analytical Micro and Nano Technologies Meet Sepsis Diagnosis. TrAC Trends in Analytical Chemistry. 2024;173:117615. doi: 10.1016/j.trac.2024.117615. DOI

Gordón Pidal J. M., Moreno-Guzmán M., Montero-Calle A., Valverde A., Pingarrón J. M., Campuzano S., Calero M., Barderas R., López M. Á., Escarpa A.. Micromotor-Based Electrochemical Immunoassays for Reliable Determination of Amyloid-Β (1-42) in Alzheimer's Diagnosed Clinical Samples. Biosensors and Bioelectronics. 2024;249:115988. doi: 10.1016/j.bios.2023.115988. PubMed DOI

Chen Q., Liang K.. Self-Propelled Nanoswimmers in Biomedical Sensing. Advanced Sensor Research. 2023;2(9):2300056. doi: 10.1002/adsr.202300056. DOI

Van Nguyen K., Minteer S. D.. DNA-Functionalized Pt Nanoparticles as Catalysts for Chemically Powered Micromotors: Toward Signal-on Motion-Based DNA Biosensor. Chemical Communications. 2015;51(23):4782–4784. doi: 10.1039/C4CC10250A. PubMed DOI

Draz M. S., Lakshminaraasimulu N. K., Krishnakumar S., Battalapalli D., Vasan A., Kanakasabapathy M. K., Sreeram A., Kallakuri S., Thirumalaraju P., Li Y.. et al. Motion-Based Immunological Detection of Zika Virus Using Pt-Nanomotors and a Cellphone. ACS Nano. 2018;12(6):5709–5718. doi: 10.1021/acsnano.8b01515. PubMed DOI PMC

Zhang X., Chen C., Wu J., Ju H.. Bubble-Propelled Jellyfish-Like Micromotors for DNA Sensing. ACS Applied Materials & Interfaces. 2019;11(14):13581–13588. doi: 10.1021/acsami.9b00605. PubMed DOI

Guo Z., Zhuang C., Song Y., Yong J., Li Y., Guo Z., Kong B., Whitelock J. M., Wang J., Liang K.. Biocatalytic Buoyancy-Driven Nanobots for Autonomous Cell Recognition and Enrichment. Nano-Micro Letters. 2023;15(1):236. doi: 10.1007/s40820-023-01207-1. PubMed DOI PMC

Thome C. P., Hoertdoerfer W. S., Bendorf J. R., Lee J. G., Shields C. W. I. V.. Electrokinetic Active Particles for Motion-Based Biomolecule Detection. Nano Letters. 2023;23(6):2379–2387. doi: 10.1021/acs.nanolett.3c00319. PubMed DOI PMC

Lee J. G., Thome C. P., Cruse Z. A., Ganguly A., Gupta A., Shields C. W.. Magnetically Locked Janus Particle Clusters with Orientation-Dependent Motion in Ac Electric Fields. Nanoscale. 2023;15(40):16268–16276. doi: 10.1039/D3NR03744D. PubMed DOI PMC

Orozco J., García-Gradilla V., D’Agostino M., Gao W., Cortés A., Wang J.. Artificial Enzyme-Powered Microfish for Water-Quality Testing. ACS Nano. 2013;7(1):818–824. doi: 10.1021/nn305372n. PubMed DOI

Singh V. V., Kaufmann K., Esteban-Fernández de Ávila B., Uygun M., Wang J.. Nanomotors Responsive to Nerve-Agent Vapor Plumes. Chemical Communications. 2016;52(16):3360–3363. doi: 10.1039/C5CC10670B. PubMed DOI

Maric T., Mayorga-Martinez C. C., Nasir M. Z. M., Pumera M.. Platinum-Halloysite Nanoclay Nanojets as Sensitive and Selective Mobile Nanosensors for Mercury Detection. Advanced Materials Technologies. 2019;4(2):1800502. doi: 10.1002/admt.201800502. DOI

Yuan K., Cuntín-Abal C., Jurado-Sánchez B., Escarpa A.. Smartphone-Based Janus Micromotors Strategy for Motion-Based Detection of Glutathione. Analytical Chemistry. 2021;93(49):16385–16392. doi: 10.1021/acs.analchem.1c02947. PubMed DOI PMC

Bujalance-Fernández J., Carro E., Jurado-Sánchez B., Escarpa A.. Biocatalytic Zif-8 Surface-Functionalized Micromotors Navigating in the Cerebrospinal Fluid: Toward Alzheimer Management. Nanoscale. 2024;16(45):20917–20924. doi: 10.1039/D4NR02044H. PubMed DOI

Campuzano S., Orozco J., Kagan D., Guix M., Gao W., Sattayasamitsathit S., Claussen J. C., Merkoçi A., Wang J.. Bacterial Isolation by Lectin-Modified Microengines. Nano Letters. 2012;12(1):396–401. doi: 10.1021/nl203717q. PubMed DOI PMC

García M., Orozco J., Guix M., Gao W., Sattayasamitsathit S., Escarpa A., Merkoçi A., Wang J.. Micromotor-Based Lab-on-Chip Immunoassays. Nanoscale. 2013;5(4):1325–1331. doi: 10.1039/C2NR32400H. PubMed DOI

Vilela D., Orozco J., Cheng G., Sattayasamitsathit S., Galarnyk M., Kan C., Wang J., Escarpa A.. Multiplexed Immunoassay Based on Micromotors and Microscale Tags. Lab on a Chip. 2014;14(18):3505–3509. doi: 10.1039/C4LC00596A. PubMed DOI

Park S., Yossifon G.. Micromotor-Based Biosensing Using Directed Transport of Functionalized Beads. ACS Sensors. 2020;5(4):936–942. doi: 10.1021/acssensors.9b02041. PubMed DOI PMC

Jurado-Sánchez B., Pacheco M., Rojo J., Escarpa A.. Magnetocatalytic Graphene Quantum Dots Janus Micromotors for Bacterial Endotoxin Detection. Angewandte Chemie International Edition. 2017;56(24):6957–6961. doi: 10.1002/anie.201701396. PubMed DOI

Jyoti, Muñoz J., Pumera M.. Quantum Material-Based Self-Propelled Microrobots for the Optical “on-the-Fly” Monitoring of DNA. ACS Applied Materials & Interfaces. 2023;15(50):58548–58555. doi: 10.1021/acsami.3c09920. PubMed DOI PMC

Esteban-Fernández de Ávila B., Lopez-Ramirez M. A., Báez D. F., Jodra A., Singh V. V., Kaufmann K., Wang J.. Aptamer-Modified Graphene-Based Catalytic Micromotors: Off-on Fluorescent Detection of Ricin. ACS Sensors. 2016;1(3):217–221. doi: 10.1021/acssensors.5b00300. DOI

Gordón Pidal J. M., Arruza L., Moreno-Guzmán M., López M. Á., Escarpa A.. Off-on on-the-fly Aptassay for Rapid and Accurate Determination of Procalcitonin in Very Low Birth Weight Infants with Sepsis Suspicion. Sensors and Actuators B: Chemical. 2023;378:133107. doi: 10.1016/j.snb.2022.133107. DOI

Gordón J., Arruza L., Ibáñez M. D., Moreno-Guzmán M., López M. Á., Escarpa A.. On the Move-Sensitive Fluorescent Aptassay on Board Catalytic Micromotors for the Determination of Interleukin-6 in Ultra-Low Serum Volumes for Neonatal Sepsis Diagnostics. ACS Sensors. 2022;7(10):3144–3152. doi: 10.1021/acssensors.2c01635. PubMed DOI PMC

Gordón Pidal J. M., Arruza L., Moreno-Guzmán M., López M. Á., Escarpa A.. Micromotor-Based Dual Aptassay for Early Cost-Effective Diagnosis of Neonatal Sepsis. Microchimica Acta. 2024;191(2):106. doi: 10.1007/s00604-023-06134-x. PubMed DOI PMC

la Asunción-Nadal V. d., Pacheco M., Jurado-Sánchez B., Escarpa A.. Chalcogenides-Based Tubular Micromotors in Fluorescent Assays. Analytical Chemistry. 2020;92(13):9188–9193. doi: 10.1021/acs.analchem.0c01541. PubMed DOI

Pacheco M., Asunción-Nadal V. d. l., Jurado-Sánchez B., Escarpa A.. Engineering Janus Micromotors with Ws2 and Affinity Peptides for Turn-on Fluorescent Sensing of Bacterial Lipopolysaccharides. Biosensors and Bioelectronics. 2020;165:112286. doi: 10.1016/j.bios.2020.112286. PubMed DOI

Orozco J., Cortés A., Cheng G., Sattayasamitsathit S., Gao W., Feng X., Shen Y., Wang J.. Molecularly Imprinted Polymer-Based Catalytic Micromotors for Selective Protein Transport. Journal of the American Chemical Society. 2013;135(14):5336–5339. doi: 10.1021/ja4018545. PubMed DOI

Bujalance-Fernández J., Jurado-Sánchez B., Escarpa A.. Molecular Memory Micromotors for Fast Snake Venom Toxin Dynamic Detection. Analytical Chemistry. 2024;96(26):10791–10799. doi: 10.1021/acs.analchem.4c01976. PubMed DOI PMC

Yuan K., de la Asunción-Nadal V., Cuntín-Abal C., Jurado-Sánchez B., Escarpa A.. On-Board Smartphone Micromotor-Based Fluorescence Assays. Lab on a Chip. 2022;22(5):928–935. doi: 10.1039/D1LC01106E. PubMed DOI

Esteban-Fernández de Ávila B., Zhao M., Campuzano S., Ricci F., Pingarrón J. M., Mascini M., Wang J.. Rapid Micromotor-Based Naked-Eye Immunoassay. Talanta. 2017;167:651–657. doi: 10.1016/j.talanta.2017.02.068. PubMed DOI

María-Hormigos R., Jurado-Sánchez B., Escarpa A.. Self-Propelled Micromotors for Naked-Eye Detection of Phenylenediamines Isomers. Analytical Chemistry. 2018;90(16):9830–9837. doi: 10.1021/acs.analchem.8b01860. PubMed DOI

María-Hormigos R., Molinero-Fernández Á., López M. Á., Jurado-Sánchez B., Escarpa A.. Prussian Blue/Chitosan Micromotors with Intrinsic Enzyme-Like Activity for (Bio)-Sensing Assays. Analytical Chemistry. 2022;94(14):5575–5582. doi: 10.1021/acs.analchem.1c05173. PubMed DOI PMC

Cuntín-Abal C., Bujalance-Fernández J., Yuan K., Arribi A., Jurado-Sánchez B., Escarpa A.. Magnetic Bacteriophage-Engineered Janus Micromotors for Selective Bacteria Capture and Detection. Advanced Functional Materials. 2024;34(16):2312257. doi: 10.1002/adfm.202312257. DOI

Wang Y., Zhou C., Wang W., Xu D., Zeng F., Zhan C., Gu J., Li M., Zhao W., Zhang J.. et al. Photocatalytically Powered Matchlike Nanomotor for Light-Guided Active Sers Sensing. Angewandte Chemie International Edition. 2018;57(40):13110–13113. doi: 10.1002/anie.201807033. PubMed DOI

de la Asunción-Nadal V., Perales-Rondon J. V., Colina A., Jurado-Sánchez B., Escarpa A.. Photoactive Au@MoS2 Micromotors for Dynamic Surface-Enhanced Raman Spectroscopy Sensing. ACS Applied Materials & Interfaces. 2023;15(47):54829–54837. doi: 10.1021/acsami.3c12895. PubMed DOI PMC

Cinti S., Valdés-Ramírez G., Gao W., Li J., Palleschi G., Wang J.. Microengine-Assisted Electrochemical Measurements at Printable Sensor Strips. Chemical Communications. 2015;51(41):8668–8671. doi: 10.1039/C5CC02222C. PubMed DOI

Rojas D., Jurado-Sánchez B., Escarpa A.. “Shoot and Sense” Janus Micromotors-Based Strategy for the Simultaneous Degradation and Detection of Persistent Organic Pollutants in Food and Biological Samples. Analytical Chemistry. 2016;88(7):4153–4160. doi: 10.1021/acs.analchem.6b00574. PubMed DOI

Kong L., Rohaizad N., Nasir M. Z. M., Guan J., Pumera M.. Micromotor-Assisted Human Serum Glucose Biosensing. Analytical Chemistry. 2019;91(9):5660–5666. doi: 10.1021/acs.analchem.8b05464. PubMed DOI

Molinero-Fernández Á., Arruza L., López M. Á., Escarpa A.. On-the-Fly Rapid Immunoassay for Neonatal Sepsis Diagnosis: C-Reactive Protein Accurate Determination Using Magnetic Graphene-Based Micromotors. Biosensors and Bioelectronics. 2020;158:112156. doi: 10.1016/j.bios.2020.112156. PubMed DOI

Molinero-Fernández Á., López M. Á., Escarpa A.. Electrochemical Microfluidic Micromotors-Based Immunoassay for C-Reactive Protein Determination in Preterm Neonatal Samples with Sepsis Suspicion. Analytical Chemistry. 2020;92(7):5048–5054. doi: 10.1021/acs.analchem.9b05384. PubMed DOI

Kim J., Mayorga-Martinez C. C., Vyskočil J., Ruzek D., Pumera M.. Plasmonic-Magnetic Nanorobots for Sars-Cov-2 RNA Detection through Electronic Readout. Applied Materials Today. 2022;27:101402. doi: 10.1016/j.apmt.2022.101402. PubMed DOI PMC

Gallo-Orive Á., Moreno-Guzmán M., Sanchez-Paniagua M., Montero-Calle A., Barderas R., Escarpa A.. Gold Nanoparticle-Decorated Catalytic Micromotor-Based Aptassay for Rapid Electrochemical Label-Free Amyloid-Β42 Oligomer Determination in Clinical Samples from Alzheimer’s Patients. Analytical Chemistry. 2024;96(14):5509–5518. doi: 10.1021/acs.analchem.3c05665. PubMed DOI PMC

Singh V. V., Martin A., Kaufmann K., D. S. de Oliveira S., Wang J.. Zirconia/Graphene Oxide Hybrid Micromotors for Selective Capture of Nerve Agents. Chemistry of Materials. 2015;27(23):8162–8169. doi: 10.1021/acs.chemmater.5b03960. DOI

Kim J., Mayorga-Martinez C. C., Pumera M.. Microrobotic Photocatalyst on-the-fly: 1D/2D Nanoarchitectonic Hybrid-Based Layered Metal Thiophosphate Magnetic Micromachines for Enhanced Photodegradation of Nerve Agent. Chemical Engineering Journal. 2022;446:137342. doi: 10.1016/j.cej.2022.137342. DOI

Molinero-Fernández Á., Jodra A., Moreno-Guzmán M., López M. Á., Escarpa A.. Magnetic Reduced Graphene Oxide/Nickel/Platinum Nanoparticles Micromotors for Mycotoxin Analysis. Chemistry - A European Journal. 2018;24(28):7172–7176. doi: 10.1002/chem.201706095. PubMed DOI

Maria-Hormigos R., Mayorga-Martinez C. C., Pumera M.. Magnetic Hydrogel Microrobots as Insecticide Carriers for in vivo Insect Pest Control in Plants. Small. 2023;19(51):2204887. doi: 10.1002/smll.202204887. PubMed DOI

Arnaboldi S., Salinas G., Bonetti G., Garrigue P., Cirilli R., Benincori T., Kuhn A.. Autonomous Chiral Microswimmers with Self-mixing Capabilities for Highly Efficient Enantioselective Synthesis. Angew. Chem. Int. Ed. 2022;61(40):e202209098. doi: 10.1002/anie.202209098. PubMed DOI

Salinas G., Arnaboldi S., Garrigue P., Bonetti G., Cirilli R., Benincori T., Kuhn A.. Magnetic Field-Enhanced Redox Chemistry on-the-fly for Enantioselective Synthesis. Faraday Discussions. 2023;247(0):34–44. doi: 10.1039/D3FD00041A. PubMed DOI

Li Q., Liu L., Huo H., Su L., Wu Y., Lin H., Ge X., Mu J., Zhang X., Zheng L.. et al. Nanosized Janus Aunr-Pt Motor for Enhancing NIR-Ii Photoacoustic Imaging of Deep Tumor and Pt2+ Ion-Based Chemotherapy. ACS Nano. 2022;16(5):7947–7960. doi: 10.1021/acsnano.2c00732. PubMed DOI

Goswami D., Munera J. C., Pal A., Sadri B., Scarpetti C. L. P. G., Martinez R. V.. Roll-to-Roll Nanoforming of Metals Using Laser-Induced Superplasticity. Nano Letters. 2018;18(6):3616–3622. doi: 10.1021/acs.nanolett.8b00714. PubMed DOI

Park S.-H., Lee S.-M., Ko E.-H., Kim T.-H., Nah Y.-C., Lee S.-J., Lee J. H., Kim H.-K.. Roll-to-Roll Sputtered Ito/Cu/Ito Multilayer Electrode for Flexible, Transparent Thin Film Heaters and Electrochromic Applications. Scientific Reports. 2016;6(1):33868. doi: 10.1038/srep33868. PubMed DOI PMC

Cho D., Jang J.-S., Nam S.-H., Ko K., Hwang W., Jung J.-W., Lee J., Choi M., Hong J.-W., Kim I.-D.. et al. Focused Electric-Field Polymer Writing: Toward Ultralarge, Multistimuli-Responsive Membranes. ACS Nano. 2020;14(9):12173–12183. doi: 10.1021/acsnano.0c05843. PubMed DOI

Wu W., Chi H., Zhang Q., Zheng C., Hu N., Wu Y., Liu J.. Self-Propelled Bioglass Janus Nanomotors for Dentin Hypersensitivity Treatment. Nanoscale. 2023;15(48):19681–19690. doi: 10.1039/D3NR03685E. PubMed DOI

Qiu B., Xie L., Zeng J., Liu T., Yan M., Zhou S., Liang Q., Tang J., Liang K., Kong B.. Interfacially Super-Assembled Asymmetric and H2O2 Sensitive Multilayer-Sandwich Magnetic Mesoporous Silica Nanomotors for Detecting and Removing Heavy Metal Ions. Advanced Functional Materials. 2021;31(21):2010694. doi: 10.1002/adfm.202010694. DOI

Lv H., Xing Y., Du X., Xu T., Zhang X.. Construction of Dendritic Janus Nanomotors with H2O2 and NIR Light Dual-Propulsion via a Pickering Emulsion. Soft Matter. 2020;16(21):4961–4968. doi: 10.1039/D0SM00552E. PubMed DOI

Dai J., Cheng X., Li X., Wang Z., Wang Y., Zheng J., Liu J., Chen J., Wu C., Tang J.. Solution-Synthesized Multifunctional Janus Nanotree Microswimmer. Advanced Functional Materials. 2021;31(48):2106204. doi: 10.1002/adfm.202106204. DOI

Liu S., Xu D., Chen J., Peng N., Ma T., Liang F.. Nanozymatic Magnetic Nanomotors for Enhancing Photothermal Therapy and Targeting Intracellular Sers Sensing. Nanoscale. 2023;15(31):12944–12953. doi: 10.1039/D3NR02739B. PubMed DOI

Yu L., Yang M., Guan J., Mou F.. Ultrasmall Fe2O3 Tubular Nanomotors: The First Example of Swarming Photocatalytic Nanomotors Operating in High-Electrolyte Media. Nanomaterials. 2023;13(8):1370. doi: 10.3390/nano13081370. PubMed DOI PMC

Chen C., Tang S., Teymourian H., Karshalev E., Zhang F., Li J., Mou F., Liang Y., Guan J., Wang J.. Chemical/Light-Powered Hybrid Micromotors with “on-the-Fly” Optical Brakes. Angewandte Chemie International Edition. 2018;57(27):8110–8114. doi: 10.1002/anie.201803457. PubMed DOI

Yang Z., Wang L., Gao Z., Hao X., Luo M., Yu Z., Guan J.. Ultrasmall Enzyme-Powered Janus Nanomotor Working in Blood Circulation System. ACS Nano. 2023;17(6):6023–6035. doi: 10.1021/acsnano.3c00548. PubMed DOI

He Y., Wu J., Zhao Y.. Designing Catalytic Nanomotors by Dynamic Shadowing Growth. Nano Letters. 2007;7(5):1369–1375. doi: 10.1021/nl070461j. PubMed DOI

Li J., Liu W., Wang J., Rozen I., He S., Chen C., Kim H. G., Lee H.-J., Lee H.-B.-R., Kwon S.-H.. et al. Nanoconfined Atomic Layer Deposition of TiO2/Pt Nanotubes: Toward Ultrasmall Highly Efficient Catalytic Nanorockets. Advanced Functional Materials. 2017;27(24):1700598. doi: 10.1002/adfm.201700598. DOI

Wen L., Xu R., Mi Y., Lei Y.. Multiple Nanostructures Based on Anodized Aluminium Oxide Templates. Nature Nanotechnology. 2017;12(3):244–250. doi: 10.1038/nnano.2016.257. PubMed DOI

Wu J., Lee W. L., Low H. Y.. Nanostructured Free-Form Objects via a Synergy of 3D Printing and Thermal Nanoimprinting. Global Challenges. 2019;3(5):1800083. doi: 10.1002/gch2.201800083. PubMed DOI PMC

Medina-Sánchez, M. ; Guix, M. ; Harazim, S. ; Schwarz, L. ; Schmidt, O. G. . Rapid 3D Printing of Complex Polymeric Tubular Catalytic Micromotors. In 2016 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), 18-22 July 2016, 2016; pp 1-6. 10.1109/MARSS.2016.7561721. DOI

Zhao G., Ambrosi A., Pumera M.. Clean Room-Free Rapid Fabrication of Roll-up Self-Powered Catalytic Microengines. Journal of Materials Chemistry A. 2014;2(5):1219–1223. doi: 10.1039/C3TA14318J. DOI

Zheng Y., Zhao H., Cai Y., Jurado-Sánchez B., Dong R.. Recent Advances in One-Dimensional Micro/Nanomotors: Fabrication, Propulsion and Application. Nano-Micro Letters. 2023;15(1):20. doi: 10.1007/s40820-022-00988-1. PubMed DOI PMC

Wang L., Hao X., Gao Z., Yang Z., Long Y., Luo M., Guan J.. Artificial Nanomotors: Fabrication, Locomotion Characterization, Motion Manipulation, and Biomedical Applications. Interdisciplinary Materials. 2022;1(2):256–280. doi: 10.1002/idm2.12021. DOI

Pieber B., Gilmore K., Seeberger P. H.. Integrated Flow Processing  Challenges in Continuous Multistep Synthesis. Journal of Flow Chemistry. 2017;7(3):129–136. doi: 10.1556/1846.2017.00016. DOI

Barcelos I. D., Moura L. G., Lacerda R. G., Malachias A.. Observation of Strain-Free Rolled-up CVD Graphene Single Layers: Toward Unstrained Heterostructures. Nano Letters. 2014;14(7):3919–3924. doi: 10.1021/nl5012068. PubMed DOI

Chao C.-H., Hsieh C.-T., Ke W.-J., Lee L.-W., Lin Y.-F., Liu H.-W., Gu S., Fu C.-C., Juang R.-S., Mallick B. C.. et al. Roll-to-Roll Atomic Layer Deposition of Titania Coating on Polymeric Separators for Lithium Ion Batteries. Journal of Power Sources. 2021;482:228896. doi: 10.1016/j.jpowsour.2020.228896. DOI

Ali K., Choi K.-H., Muhammad N. M.. Roll-to-Roll Atmospheric Atomic Layer Deposition of Al2O3 Thin Films on Pet Substrates. Chemical Vapor Deposition. 2014;20(10-11-12):380–387. doi: 10.1002/cvde.201407126. DOI

Song Y., Lee Y.-k., Lee Y., Hwang W.-T., Lee J., Park S., Park N., Song H., Kim H., Lee K. G.. et al. Anti-Viral, Anti-Bacterial, but Non-Cytotoxic Nanocoating for Reusable Face Mask with Efficient Filtration, Breathability, and Robustness in Humid Environment. Chemical Engineering Journal. 2023;470:144224. doi: 10.1016/j.cej.2023.144224. DOI

Lee J., Bae J., Youn D.-Y., Ahn J., Hwang W.-T., Bae H., Bae P. K., Kim I.-D.. Violacein-Embedded Nanofiber Filters with Antiviral and Antibacterial Activities. Chemical Engineering Journal. 2022;444:136460. doi: 10.1016/j.cej.2022.136460. PubMed DOI PMC

Jung J.-W., Youn D.-Y., Lee J., Cheong J. Y., Kang H. E., Kim I., Yun T. G., Kim I.-D.. Unveiling the Role of Strontium in 1D SrxRu1‑xO2‑x Compound Oxide Nanofibers for High-Performance Supercapacitor. Journal of Alloys and Compounds. 2023;945:169111. doi: 10.1016/j.jallcom.2023.169111. DOI

Park S., Lim Y., Oh D., Ahn J., Park C., Kim M., Jung W., Kim J., Kim I.-D.. Steering Selectivity in the Detection of Exhaled Biomarkers over Oxide Nanofibers Dispersed with Noble Metals. Journal of Materials Chemistry A. 2023;11(7):3535–3545. doi: 10.1039/D2TA07226B. DOI

Kim D.-H., Kim J. K., Oh D., Park S., Kim Y. B., Ko J., Jung W., Kim I.-D.. Ex-Solution Hybrids Functionalized on Oxide Nanofibers for Highly Active and Durable Catalytic Materials. ACS Nano. 2023;17(6):5842–5851. doi: 10.1021/acsnano.2c12580. PubMed DOI

Kim D.-H., Jang J.-S., Koo W.-T., Choi S.-J., Cho H.-J., Kim M.-H., Kim S.-J., Kim I.-D.. Bioinspired Cocatalysts Decorated WO3 Nanotube toward Unparalleled Hydrogen Sulfide Chemiresistor. ACS Sensors. 2018;3(6):1164–1173. doi: 10.1021/acssensors.8b00210. PubMed DOI

Jang J.-S., Kim S.-J., Choi S.-J., Kim N.-H., Hakim M., Rothschild A., Kim I.-D.. Thin-Walled SnO2 Nanotubes Functionalized with Pt and Au Catalysts via the Protein Templating Route and Their Selective Detection of Acetone and Hydrogen Sulfide Molecules. Nanoscale. 2015;7(39):16417–16426. doi: 10.1039/C5NR04487A. PubMed DOI

Cho Y., Son Y., Ahn J., Lim H., Ahn S., Lee J., Bae P. K., Kim I.-D.. Multifunctional Filter Membranes Based on Self-Assembled Core-Shell Biodegradable Nanofibers for Persistent Electrostatic Filtration through the Triboelectric Effect. ACS Nano. 2022;16(11):19451–19463. doi: 10.1021/acsnano.2c09165. PubMed DOI

Li R., Zhang R., Lou Z., Huang T., Jiang K., Chen D., Shen G.. Electrospraying Preparation of Metal Germanate Nanospheres for High-Performance Lithium-Ion Batteries and Room-Temperature Gas Sensors. Nanoscale. 2019;11(25):12116–12123. doi: 10.1039/C9NR03641E. PubMed DOI

Hezarkhani, M. ; Aliyeva, N. ; Menceloglu, Y. Z. ; Saner Okan, B. . Fabrication Methodologies of Multi-Layered and Multi-Functional Electrospun Structures by Co-Axial and Multi-Axial Electrospinning Techniques. In Electrospun Nanofibers: Principles, Technology and Novel Applications; Vaseashta, A. ; Bölgen, N. Eds.; Springer International Publishing, 2022; pp 35-66.

Wang M., Hou J., Yu D.-G., Li S., Zhu J., Chen Z.. Electrospun Tri-Layer Nanodepots for Sustained Release of Acyclovir. Journal of Alloys and Compounds. 2020;846:156471. doi: 10.1016/j.jallcom.2020.156471. DOI

Shin H., Jung W.-G., Kim D.-H., Jang J.-S., Kim Y. H., Koo W.-T., Bae J., Park C., Cho S.-H., Kim B. J.. et al. Single-Atom Pt Stabilized on One-Dimensional Nanostructure Support via Carbon Nitride/SnO2 Heterojunction Trapping. ACS Nano. 2020;14(9):11394–11405. doi: 10.1021/acsnano.0c03687. PubMed DOI

Bae J., Lee J., Hwang W.-T., Youn D.-Y., Song H., Ahn J., Nam J.-S., Jang J.-S., Kim D.-w., Jo W.. et al. Advancing Breathability of Respiratory Nanofilter by Optimizing Pore Structure and Alignment in Nanofiber Networks. ACS Nano. 2024;18(2):1371–1380. doi: 10.1021/acsnano.3c06060. PubMed DOI

Niu G., Zhou M., Yang X., Park J., Lu N., Wang J., Kim M. J., Wang L., Xia Y.. Synthesis of Pt-Ni Octahedra in Continuous-Flow Droplet Reactors for the Scalable Production of Highly Active Catalysts toward Oxygen Reduction. Nano Letters. 2016;16(6):3850–3857. doi: 10.1021/acs.nanolett.6b01340. PubMed DOI

Wang, J. ; Esteban-Fernández De Ávila, B. ; Yi, C. ; Angell, C. ; Soto, F. ; Zhang, L. ; Hansen-Bruhn, M. . Nano/Micromotors for Active and Dynamic Intracellular Payload Delivery. U.S. Patent 15939104, 2018.

Qiu, M. ; Li, Q. ; Lu, J. . Light-Driven Micro/Nanomotor System Based on Micro/Nanofiber in Air Environment. China Patent 107161943, 2017.

Sanchez Ordonez, S. ; Padial, T. P. ; Hortelão, C. L. . Functionalized Enzyme-Powered Nanomotors. Europe Patent 19817624, 2019.

Lee, I. S. ; Kwon, T. W. , Nitee, K. . Hybrid Metal Nanomotor for Glucose-Catalyzed Chemical Promotion and Enhanced Molecular Transport into Cells and Manufacturing Method Thereof. Korea Patent 102627437, 2022.

Shen Y., Zhang W., Li G., Ning P., Li Z., Chen H., Wei X., Pan X., Qin Y., He B.. et al. Adaptive Control of Nanomotor Swarms for Magnetic-Field-Programmed Cancer Cell Destruction. ACS Nano. 2021;15(12):20020–20031. doi: 10.1021/acsnano.1c07615. PubMed DOI

Cao Y., Liu S., Ma Y., Ma L., Zu M., Sun J., Dai F., Duan L., Xiao B.. Oral Nanomotor-Enabled Mucus Traverse and Tumor Penetration for Targeted Chemo-Sono-Immunotherapy against Colon Cancer. Small. 2022;18(42):2203466. doi: 10.1002/smll.202203466. PubMed DOI

Kutorglo E. M., Elashnikov R., Rimpelova S., Ulbrich P., ŘíhováAmbrožová J., Svorcik V., Lyutakov O.. Polypyrrole-Based Nanorobots Powered by Light and Glucose for Pollutant Degradation in Water. ACS Applied Materials & Interfaces. 2021;13(14):16173–16181. doi: 10.1021/acsami.0c20055. PubMed DOI

Kaissis G. A., Makowski M. R., Rückert D., Braren R. F.. Secure, Privacy-Preserving and Federated Machine Learning in Medical Imaging. Nature Machine Intelligence. 2020;2(6):305–311. doi: 10.1038/s42256-020-0186-1. DOI

Chen H., Li T., Liu Z., Tang S., Tong J., Tao Y., Zhao Z., Li N., Mao C., Shen J., Wan M.. A Nitric-Oxide Driven Chemotactic Nanomotor for Enhanced Immunotherapy of Glioblastoma. Nature Communications. 2023;14(1):941. doi: 10.1038/s41467-022-35709-0. PubMed DOI PMC

Fadeel B., Farcal L., Hardy B., Vázquez-Campos S., Hristozov D., Marcomini A., Lynch I., Valsami-Jones E., Alenius H., Savolainen K.. Advanced Tools for the Safety Assessment of Nanomaterials. Nature Nanotechnology. 2018;13(7):537–543. doi: 10.1038/s41565-018-0185-0. PubMed DOI

Nel A., Xia T., Mädler L., Li N.. Toxic Potential of Materials at the Nanolevel. Science. 2006;311(5761):622–627. doi: 10.1126/science.1114397. PubMed DOI

Valsami-Jones E., Lynch I.. How Safe Are Nanomaterials? Science. 2015;350(6259):388–389. doi: 10.1126/science.aad0768. PubMed DOI

Naahidi S., Jafari M., Edalat F., Raymond K., Khademhosseini A., Chen P.. Biocompatibility of Engineered Nanoparticles for Drug Delivery. Journal of Controlled Release. 2013;166(2):182–194. doi: 10.1016/j.jconrel.2012.12.013. PubMed DOI

Zhang F. Y., Mundaca-Uribe R., Askarinam N., Li Z. X., Gao W. W., Zhang L. F., Wang J.. Biomembrane-Functionalized Micromotors: Biocompatible Active Devices for Diverse Biomedical Applications. Advanced Materials. 2022;34(5):2107177. doi: 10.1002/adma.202107177. PubMed DOI

Dobrovolskaia M. A., Mcneil S. E.. Immunological Properties of Engineered Nanomaterials. Nature Nanotechnology. 2007;2(8):469–478. doi: 10.1038/nnano.2007.223. PubMed DOI

Alapan Y., Yasa O., Schauer O., Giltinan J., Tabak A. F., Sourjik V., Sitti M.. Soft Erythrocyte-Based Bacterial Microswimmers for Cargo Delivery. Science Robotics. 2018;3(17):eaar4423. doi: 10.1126/scirobotics.aar4423. PubMed DOI

Park B. W., Zhuang J., Yasa O., Sitti M.. Multifunctional Bacteria-Driven Microswimmers for Targeted Active Drug Delivery. ACS Nano. 2017;11(9):8910–8923. doi: 10.1021/acsnano.7b03207. PubMed DOI

Stanton M. M., Park B. W., Vilele D., Bente K., Faivre D., Sitti M., Sánchez S.. Magnetotactic Bacteria Powered Biohybrids Target E. Coli Biofilms. ACS Nano. 2017;11(10):9968–9978. doi: 10.1021/acsnano.7b04128. PubMed DOI

Stanton M. M., Park B. W., Miguel-López A., Ma X., Sitti M., Sánchez S.. Biohybrid Microtube Swimmers Driven by Single Captured Bacteria. Small. 2017;13(19):1603679. doi: 10.1002/smll.201603679. PubMed DOI

Chen C. R., Chang X. C., Angsantikul P., Li J. X., Esteban-Fernández de Ávila B., Karshalev E., Liu W. J., Mou F. Z., He S., Castillo R.. et al. Chemotactic Guidance of Synthetic Organic/Inorganic Payloads Functionalized Sperm Micromotors. Advanced Biosystems. 2018;2(1):1700160. doi: 10.1002/adbi.201700160. DOI

Stegemeier J. P., Schwab F., Colman B. P., Webb S. M., Newville M., Lanzirotti A., Winkler C., Wiesner M. R., Lowry G. V.. Speciation Matters: Bioavailability of Silver and Silver Sulfide Nanoparticles to Alfalfa (Medicago Sativa) Environmental Science & Technology. 2015;49(14):8451–8460. doi: 10.1021/acs.est.5b01147. PubMed DOI

Buck S.. Solving Reproducibility. Science. 2015;348(6242):1403–1403. doi: 10.1126/science.aac8041. PubMed DOI

Krittanawong C., Rogers A. J., Johnson K. W., Wang Z., Turakhia M. P., Halperin J. L., Narayan S. M.. Integration of Novel Monitoring Devices with Machine Learning Technology for Scalable Cardiovascular Management. Nature Reviews Cardiology. 2021;18(2):75–91. doi: 10.1038/s41569-020-00445-9. PubMed DOI PMC

Obidin N., Tasnim F., Dagdeviren C.. The Future of Neuroimplantable Devices: A Materials Science and Regulatory Perspective. Advanced Materials. 2020;32(15):1901482. doi: 10.1002/adma.201901482. PubMed DOI

Luo Y. F., Abidian M. R., Ahn J. H., Akinwande D., Andrews A. M., Antonietti M., Bao Z. N., Berggren M., Berkey C. A., Bettinger C. J.. et al. Technology Roadmap for Flexible Sensors. ACS Nano. 2023;17(6):5211–5295. doi: 10.1021/acsnano.2c12606. PubMed DOI PMC

Tettey F., Parupelli S. K., Desai S.. A Review of Biomedical Devices: Classification, Regulatory Guidelines, Human Factors, Software as a Medical Device, and Cybersecurity. Biomedical Materials & Devices. 2024;2:316–341. doi: 10.1007/s44174-023-00113-9. DOI

Ng, A. ; Nathwani, J. . Exploiting Financial and Technological Innovation for Sustainability Transformation. In Financial and Technological Innovation for Sustainability; Routledge, 2023; pp 3-20.

Linkov I., Bates M. E., Canis L. J., Seager T. P., Keisler J. M.. A Decision-Directed Approach for Prioritizing Research into the Impact of Nanomaterials on the Environment and Human Health. Nature Nanotechnology. 2011;6(12):784–787. doi: 10.1038/nnano.2011.163. PubMed DOI

Hochella M. F., Mogk D. W., Ranville J., Allen I. C., Luther G. W., Marr L. C., McGrail B. P., Murayama M., Qafoku N. P., Rosso K. M.. et al. Natural, Incidental, and Engineered Nanomaterials and Their Impacts on the Earth System. Science. 2019;363(6434):eaau8299. doi: 10.1126/science.aau8299. PubMed DOI

Schulte P. A., Salamanca-Buentello F.. Ethical and Scientific Issues of Nanotechnology in the Workplace. Environmental Health Perspectives. 2007;115(1):5–12. doi: 10.1289/ehp.9456. PubMed DOI PMC

Liu Y. X., Liu J., Chen S. C., Lei T., Kim Y., Niu S. M., Wang H. L., Wang X., Foudeh A. M., Tok J. B. H.. et al. Soft and Elastic Hydrogel-Based Microelectronics for Localized Low-Voltage Neuromodulation. Nature Biomedical Engineering. 2019;3(1):58–68. doi: 10.1038/s41551-018-0335-6. PubMed DOI

Gavanji S., Bakhtari A., Famurewa A. C., Othman E. M.. Cytotoxic Activity of Herbal Medicines as Assessed: A Review. Chemistry & Biodiversity. 2023;20(2):e202201098. doi: 10.1002/cbdv.202201098. PubMed DOI

Wan M. M., Chen H., Da Wang Z., Liu Z. Y., Yu Y. Q., Li L., Miao Z. Y., Wang X. W., Wang Q., Mao C., Shen J., Wei J.. Nitric Oxide-Driven Nanomotor for Deep Tissue Penetration and Multidrug Resistance Reversal in Cancer Therapy. Advanced Science. 2021;8(3):2002525. doi: 10.1002/advs.202002525. PubMed DOI PMC

Wan M. M., Wang Q., Li X. Y., Xu B., Fang D., Li T., Yu Y. Q., Fang L. Y., Wang Y., Wang M.. et al. Systematic Research and Evaluation Models of Nanomotors for Cancer Combined Therapy. Angewandte Chemie International Edition. 2020;59(34):14458–14465. doi: 10.1002/anie.202002452. PubMed DOI

Wu Y., Song Z. Y., Deng G. Y., Jiang K., Wang H. J., Zhang X. J., Han H. Y.. Gastric Acid Powered Nanomotors Release Antibiotics for in vivo Treatment of Helicobacter Pylori Infection. Small. 2021;17(11):2006877. doi: 10.1002/smll.202006877. PubMed DOI

Zhang F., Li Z., Duan Y., Abbas A., Mundaca-Uribe R., Yin L., Luan H., Gao W., Fang R. H., Zhang L., Wang J.. Gastrointestinal Tract Drug Delivery Using Algae Motors Embedded in a Degradable Capsule. Science Robotics. 2022;7(70):eabo4160. doi: 10.1126/scirobotics.abo4160. PubMed DOI PMC

Kwon T., Kumari N., Kumar A., Lim J., Son C. Y., Lee I. S.. Au/Pt-Egg-in-Nest Nanomotor for Glucose-Powered Catalytic Motion and Enhanced Molecular Transport to Living Cells. Angewandte Chemie International Edition. 2021;60(32):17579–17586. doi: 10.1002/anie.202103827. PubMed DOI

Lin M., Lee J. U., Kim Y., Kim G., Jung Y., Jo A., Park M., Lee S., Lah J. D., Park J.. et al. A Magnetically Powered Nanomachine with a DNA Clutch. Nature Nanotechnology. 2024;19:646–651. doi: 10.1038/s41565-023-01599-6. PubMed DOI

Wang W. D., Chen C., Ying Y., Lv S. R., Wang Y., Zhang X., Cai Z. H., Gu W. X., Li Z., Jiang G.. et al. Smart PdH@MnO Yolk-Shell Nanostructures for Spatiotemporally Synchronous Targeted Hydrogen Delivery and Oxygen-Elevated Phototherapy of Melanoma. ACS Nano. 2022;16(4):5597–5614. doi: 10.1021/acsnano.1c10450. PubMed DOI

Sridhar V., Podjaski F., Alapan Y., Kröger J., Grunenberg L., Kishore V., Lotsch B. V., Sitti M.. Light-Driven Carbon Nitride Microswimmers with Propulsion in Biological and Ionic Media and Responsive on-Demand Drug Delivery. Science Robotics. 2022;7(62):eabm1421. doi: 10.1126/scirobotics.abm1421. PubMed DOI PMC

Yu X., Li X., Chen Q., Wang S., Xu R., He Y., Qin X., Zhang J., Yang W., Shi L.. et al. High Intensity Focused Ultrasound-Driven Nanomotor for Effective Ferroptosis-Immunotherapy of Tnbc. Advanced Science. 2024;11(15):e2305546. doi: 10.1002/advs.202305546. PubMed DOI PMC

Sitti, M. Mobile Microrobotics; MIT Press, 2017.

Nadal F., Michelin S.. Acoustic Propulsion of a Small, Bottom-Heavy sphere. Journal of Fluid Mechanics. 2020;898:A10. doi: 10.1017/jfm.2020.401. DOI

Lyu X., Liu X., Zhou C., Duan S., Xu P., Dai J., Chen X., Peng Y., Cui D., Tang J.. Active, yet Little Mobility: Asymmetric Decomposition of H2O2 Is Not Sufficient in Propelling Catalytic Micromotors. Journal of the American Chemical Society. 2021;143(31):12154–12164. doi: 10.1021/jacs.1c04501. PubMed DOI

Ebbens S. J., Howse J. R.. Direct Observation of the Direction of Motion for Spherical Catalytic Swimmers. Langmuir. 2011;27(20):12293–12296. doi: 10.1021/la2033127. PubMed DOI

Liebchen B., Mukhopadhyay A. K.. Interactions in Active Colloids. Journal of Physics: Condensed Matter. 2022;34(8):083002. doi: 10.1088/1361-648X/ac3a86. PubMed DOI

Liebchen B., Löwen H.. Which Interactions Dominate in Active Colloids? The Journal of Chemical Physics. 2019;150(6):061102. doi: 10.1063/1.5082284. PubMed DOI

Yigit B., Alapan Y., Sitti M.. Programmable Collective Behavior in Dynamically Self-Assembled Mobile Microrobotic Swarms. Advanced Science. 2019;6(6):1801837. doi: 10.1002/advs.201801837. PubMed DOI PMC

Needleman D., Dogic Z.. Active Matter at the Interface between Materials Science and Cell Biology. Nature Reviews Materials. 2017;2(9):17048. doi: 10.1038/natrevmats.2017.48. DOI

Murphy R. R.. Swarm Robots in Science Fiction. Science Robotics. 2021;6(56):eabk0451. doi: 10.1126/scirobotics.abk0451. PubMed DOI

Jancik-Prochazkova A., Kmentova H., Ju X., Kment S., Zboril R., Pumera M.. Precision Engineering of Nanorobots: Toward Single Atom Decoration and Defect Control for Enhanced Microplastic Capture. Advanced Functional Materials. 2024;34(38):2402567. doi: 10.1002/adfm.202402567. DOI

Ju X., Pumera M.. Single Atom Engineering for Nanorobotics. ACS Nano. 2024;18(31):19907–19911. doi: 10.1021/acsnano.4c06880. PubMed DOI PMC

Ariga K.. Nanoarchitectonics: The Method for Everything in Materials Science. Bulletin of the Chemical Society of Japan. 2024;97(1):uoad001. doi: 10.1093/bulcsj/uoad001. DOI

Jancik-Prochazkova A., Ariga K.. Nano-/Microrobots for Environmental Remediation in the Eyes of Nanoarchitectonics: Toward Engineering on a Single-Atomic Scale. Research. 2025;8:0624. doi: 10.34133/research.0624. PubMed DOI PMC

Agrahari V., Agrahari V., Chou M.-L., Chew C. H., Noll J., Burnouf T.. Intelligent Micro-/Nanorobots as Drug and Cell Carrier Devices for Biomedical Therapeutic Advancement: Promising Development Opportunities and Translational Challenges. Biomaterials. 2020;260:120163. doi: 10.1016/j.biomaterials.2020.120163. PubMed DOI

Hadjidemetriou M., Kostarelos K.. Evolution of the Nanoparticle Corona. Nature Nanotechnology. 2017;12(4):288–290. doi: 10.1038/nnano.2017.61. PubMed DOI

Liu D., Guo R., Wang B., Hu J., Lu Y.. Magnetic Micro/Nanorobots: A New Age in Biomedicines. Advanced Intelligent Systems. 2022;4(12):2200208. doi: 10.1002/aisy.202200208. DOI

Pané S., Puigmartí-Luis J., Bergeles C., Chen X. Z., Pellicer E., Sort J., Počepcová V., Ferreira A., Nelson B. J.. Imaging Technologies for Biomedical Micro-and Nanoswimmers. Advanced Materials Technologies. 2019;4(4):1800575. doi: 10.1002/admt.201800575. DOI

Huaroto J. J., Capuano L., Kaya M., Hlukhau I., Assayag F., Mohanty S., Römer G.-w., Misra S.. Two-Photon Microscopy for Microrobotics: Visualization of Micro-Agents Below Fixed Tissue. Plos One. 2023;18(8):e0289725. doi: 10.1371/journal.pone.0289725. PubMed DOI PMC

Liu Y., Lin G., Bao G., Guan M., Yang L., Liu Y., Wang D., Zhang X., Liao J., Fang G.. et al. Stratified Disk Microrobots with Dynamic Maneuverability and Proton-Activatable Luminescence for in Vivo Imaging. ACS Nano. 2021;15(12):19924–19937. doi: 10.1021/acsnano.1c07431. PubMed DOI

Luu P., Fraser S. E., Schneider F.. More Than Double the Fun with Two-Photon Excitation Microscopy. Communications Biology. 2024;7(1):364. doi: 10.1038/s42003-024-06057-0. PubMed DOI PMC

Streich L., Boffi J. C., Wang L., Alhalaseh K., Barbieri M., Rehm R., Deivasigamani S., Gross C. T., Agarwal A., Prevedel R.. High-Resolution Structural and Functional Deep Brain Imaging Using Adaptive Optics Three-Photon Microscopy. Nature Methods. 2021;18(10):1253–1258. doi: 10.1038/s41592-021-01257-6. PubMed DOI PMC

Zhong J., Zhang Y., Chen X., Tong S., Deng X., Huang J., Li Z., Zhang C., Gao Z., Li J.. et al. In Vivo Deep Brain Multiphoton Fluorescence Imaging Emitting at NIR-I and NIR-Ii and Excited at NIR-Iv. Journal of Biophotonics. 2024;17(4):e202300422. doi: 10.1002/jbio.202300422. PubMed DOI

Luo M., Feng Y., Wang T., Guan J.. Micro-/Nanorobots at Work in Active Drug Delivery. Advanced Functional Materials. 2018;28(25):1706100. doi: 10.1002/adfm.201706100. DOI

Ruiz-González N., Esporrín-Ubieto D., Hortelao A. C., Fraire J. C., Bakenecker A. C., Guri-Canals M., Cugat R., Carrillo J. M., Garcia-Batlletbó M., Laiz P.. et al. Swarms of Enzyme-Powered Nanomotors Enhance the Diffusion of Macromolecules in Viscous Media. Small. 2024;20(11):2309387. doi: 10.1002/smll.202309387. PubMed DOI

McCaskill J. S., Karnaushenko D., Zhu M., Schmidt O. G.. Microelectronic Morphogenesis: Smart Materials with Electronics Assembling into Artificial Organisms. Advanced Materials. 2023;35(51):2306344. doi: 10.1002/adma.202306344. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...