Technology Roadmap of Micro/Nanorobots
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
R01 EB017742
NIBIB NIH HHS - United States
PubMed
40577644
PubMed Central
PMC12269370
DOI
10.1021/acsnano.5c03911
Knihovny.cz E-zdroje
- Klíčová slova
- collective behavior, functionality, intelligence, micro/nanorobots, nanotechnology, propulsion, smart materials, technological translation,
- MeSH
- lidé MeSH
- nanotechnologie * metody MeSH
- robotika * přístrojové vybavení MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Inspired by Richard Feynman's 1959 lecture and the 1966 film Fantastic Voyage, the field of micro/nanorobots has evolved from science fiction to reality, with significant advancements in biomedical and environmental applications. Despite the rapid progress, the deployment of functional micro/nanorobots remains limited. This review of the technology roadmap identifies key challenges hindering their widespread use, focusing on propulsion mechanisms, fundamental theoretical aspects, collective behavior, material design, and embodied intelligence. We explore the current state of micro/nanorobot technology, with an emphasis on applications in biomedicine, environmental remediation, analytical sensing, and other industrial technological aspects. Additionally, we analyze issues related to scaling up production, commercialization, and regulatory frameworks that are crucial for transitioning from research to practical applications. We also emphasize the need for interdisciplinary collaboration to address both technical and nontechnical challenges, such as sustainability, ethics, and business considerations. Finally, we propose a roadmap for future research to accelerate the development of micro/nanorobots, positioning them as essential tools for addressing grand challenges and enhancing the quality of life.
Australian Centre for NanoMedicine The University of New South Wales Sydney NSW 2052 Australia
Catalan Institute for Research and Advanced Studies Passeig Lluis Companys 23 Barcelona 08010 Spain
Center for Nanomedicine Institute for Basic Science Seoul 560012 Republic of Korea
Centre for Nano Science and Engineering Indian Institute of Science Bangalore 560012 India
Chair of Micro NanoSystems Center for Molecular Bioengineering Dresden 01307 Germany
CIC nanoGUNE BRTA Tolosa Hiribidea 76 E 20018 Donostia San Sebastian Spain
CNR IMM via S Sofia 64 Catania 95123 Italy
College of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518060 China
Department of Biomedical Engineering National University of Singapore Singapore 117583 Singapore
Department of Chemical Engineering Technion Israel Institute of Technology Haifa 32000 Israel
Department of Chemistry The University of Hong Kong Hong Kong 999077 China
Department of Computer Science University of Toronto Toronto ON M5S 1A1 Canada
Department of Electrical and Computer Engineering University of Toronto Toronto ON M5S 1A1 Canada
Department of Materials Science and Physical Chemistry University of Barcelona 08028 Barcelona Spain
Department of Mechanical Engineering George Mason University Manassas Virginia 20110 United States
Department of Physics Indian Institute of Science Bangalore 560012 India
Department of Surgery The Chinese University of Hong Kong Shatin Hong Kong 999077 China
DGIST ETH Microrobotics Research Center DGIST Daegu 42988 South Korea
HKU CAS Joint Laboratory on New Materials and Department of Chemistry Hong Kong 999077 China
Ikerbasque Basque Foundation for Science Plaza Euskadi 5 48009 Bilbao Spain
Institute for Bioengineering of Catalonia Baldiri i Reixac 10 12 Barcelona 08028 Spain
Institute for Biomaterials and Biomolecular Systems University of Stuttgart 70569 Stuttgart Germany
Institute of Biomaterials and Biomedical Engineering University of Toronto Toronto ON M5S 1A1 Canada
Institute of Chemical Research of Catalonia Av Països Catalans 16 Tarragona E 43007 Spain
Institute of Robotics and Intelligent Systems Dalian University of Technology Dalian 116024 China
Institute of Science and Technology Austria Klosterneuburg 3400 Austria
Interdisciplinary Nanoscience Center Aarhus University Gustav Wieds Vej 14 Aarhus 8000 Denmark
Key Laboratory of Microsystems and Microstructures Manufacturing Harbin 15001 China
Max Planck Institute for Dynamics and Self Organization 37077 Göttingen Germany
Max Planck Institute for Medical Research Universität Heidelberg Heidelberg 69120 Germany
Mechanical Engineering Department Virginia Tech Blacksburg Virginia 24061 United States
Multi Scale Medical Robotics Center Hong Kong Science Park Shatin NT Hong Kong 999077 China
Pure and Applied Chemistry University of Strathclyde Cathedral Street Glasgow G1 1BX United Kingdom
Robotics Institute University of Toronto Toronto ON M5S 3G8 Canada
Rudolf Peierls Centre for Theoretical Physics University of Oxford Oxford OX1 3PU United Kingdom
School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
School of Materials Science and Engineering Sun Yat Sen University Guangzhou 510275 China
School of Medicine and College of Engineering Koç University 34450 Istanbul Turkey
School of Medicine and Health Harbin Institute of Technology Harbin 150080 China
Shanghai Clinical Research and Trial Center Shanghai 201210 China
State Key Laboratory of Photovoltaic Science and Technology Fudan University Shanghai 200438 China
State Key Laboratory of Robotics and System Harbin Institute of Technology Harbin 150080 China
State Key Laboratory of Synthetic Chemistry The University of Hong Kong Hong Kong 999077 China
T Stone Robotics Institute The Chinese University of Hong Kong Shatin Hong Kong 999077 China
University Bordeaux CNRS Bordeaux INP ISM UMR 5255 33607 Pessac France
Yiwu Research Institute of Fudan University Yiwu 322000 Zhejiang China
Zobrazit více v PubMed
Feynman, R. P. Plenty of Room at the Bottom. In APS annual meeting, 1959; Little Brown Boston, MA, United States: pp 1-7.
Li J., Esteban-Fernández de Ávila B., Gao W., Zhang L., Wang J.. Micro/Nanorobots for Biomedicine: Delivery, Surgery, Sensing, and Detoxification. Science Robotics. 2017;2(4):eaam6431. doi: 10.1126/scirobotics.aam6431. PubMed DOI PMC
Wang, J. Nanomachines: Fundamentals and Applications; John Wiley & Sons, 2013.
Katuri J., Ma X., Stanton M. M., Sánchez S.. Designing Micro- and Nanoswimmers for Specific Applications. Accounts of Chemical Research. 2017;50(1):2–11. doi: 10.1021/acs.accounts.6b00386. PubMed DOI PMC
Nelson B. J., Kaliakatsos I. K., Abbott J. J.. Microrobots for Minimally Invasive Medicine. Annual Review of Biomedical Engineering. 2010;12(1):55–85. doi: 10.1146/annurev-bioeng-010510-103409. PubMed DOI
Chen C., Ding S., Wang J.. Materials Consideration for the Design, Fabrication and Operation of Microscale Robots. Nature Reviews Materials. 2024;9:159–172. doi: 10.1038/s41578-023-00641-2. DOI
Dong Y., Wang L., Iacovacci V., Wang X., Zhang L., Nelson B. J.. Magnetic Helical Micro-/Nanomachines: Recent Progress and Perspective. Matter. 2022;5(1):77–109. doi: 10.1016/j.matt.2021.10.010. DOI
Villa K., Pumera M.. Fuel-Free Light-Driven Micro/Nanomachines: Artificial Active Matter Mimicking Nature. Chemical Society Reviews. 2019;48(19):4966–4978. doi: 10.1039/C9CS00090A. PubMed DOI
Wang J., Xiong Z., Zheng J., Zhan X., Tang J.. Light-Driven Micro/Nanomotor for Promising Biomedical Tools: Principle, Challenge, and Prospect. Accounts of Chemical Research. 2018;51(9):1957–1965. doi: 10.1021/acs.accounts.8b00254. PubMed DOI
Sánchez S., Soler L., Katuri J.. Chemically Powered Micro- and Nanomotors. Angewandte Chemie International Edition. 2015;54(5):1414–1444. doi: 10.1002/anie.201406096. PubMed DOI
Patiño T., Arqué X., Mestre R., Palacios L., Sánchez S.. Fundamental Aspects of Enzyme-Powered Micro- and Nanoswimmers. Accounts of Chemical Research. 2018;51(11):2662–2671. doi: 10.1021/acs.accounts.8b00288. PubMed DOI
Xu T., Gao W., Xu L.-P., Zhang X., Wang S.. Fuel-Free Synthetic Micro-/Nanomachines. Advanced Materials. 2017;29(9):1603250. doi: 10.1002/adma.201603250. PubMed DOI
Wang H., Pumera M.. Fabrication of Micro/Nanoscale Motors. Chemical Reviews. 2015;115(16):8704–8735. doi: 10.1021/acs.chemrev.5b00047. PubMed DOI
Gao W., Wang J.. The Environmental Impact of Micro/Nanomachines: A Review. ACS Nano. 2014;8(4):3170–3180. doi: 10.1021/nn500077a. PubMed DOI
Safdar M., Khan S. U., Jänis J.. Progress toward Catalytic Micro- and Nanomotors for Biomedical and Environmental Applications. Advanced Materials. 2018;30(24):1703660. doi: 10.1002/adma.201703660. PubMed DOI
Zhang L., Peyer K. E., Nelson B. J.. Artificial Bacterial Flagella for Micromanipulation. Lab on a Chip. 2010;10(17):2203–2215. doi: 10.1039/c004450b. PubMed DOI
Dewdney A. K.. Nanotechnology - Wherein Molecular Computers Control Tiny Circulatory Submarines. Scientific American. 1988;258(1):100. doi: 10.1038/scientificamerican0188-100. DOI
Drexler, K. E. Nanosystems: Molecular Machinery, Manufacturing, and Computation; Wiley, 1992.
Freitas R. A.. Nanodentistry. The Journal of the American Dental Association. 2000;131(11):1559–1565. doi: 10.14219/jada.archive.2000.0084. PubMed DOI
Lauga E., Powers T. R.. The Hydrodynamics of Swimming Microorganisms. Reports on Progress in Physics. 2009;72(9):096601. doi: 10.1088/0034-4885/72/9/096601. DOI
Golestanian R., Liverpool T. B., Ajdari A.. Designing Phoretic Micro- and Nano-Swimmers. New Journal of Physics. 2007;9(5):126. doi: 10.1088/1367-2630/9/5/126. DOI
Howse J. R., Jones R. A. L., Ryan A. J., Gough T., Vafabakhsh R., Golestanian R.. Self-Motile Colloidal Particles: From Directed Propulsion to Random Walk. Physical Review Letters. 2007;99(4):048102. doi: 10.1103/PhysRevLett.99.048102. PubMed DOI
Najafi A., Golestanian R.. Simple Swimmer at Low Reynolds Number: Three Linked Spheres. Physical Review E. 2004;69(6):062901. doi: 10.1103/PhysRevE.69.062901. PubMed DOI
Wang J.. Can Man-Made Nanomachines Compete with Nature Biomotors? ACS Nano. 2009;3(1):4–9. doi: 10.1021/nn800829k. PubMed DOI
Ismagilov R. F., Schwartz A., Bowden N., Whitesides G. M.. Autonomous Movement and Self-Assembly. Angewandte Chemie International Edition. 2002;41(4):652–654. doi: 10.1002/1521-3773(20020215)41:4<652::AID-ANIE652>3.0.CO;2-U. DOI
Paxton W. F., Kistler K. C., Olmeda C. C., Sen A., St. Angelo S. K., Cao Y., Mallouk T. E., Lammert P. E., Crespi V. H.. Catalytic Nanomotors: Autonomous Movement of Striped Nanorods. Journal of the American Chemical Society. 2004;126(41):13424–13431. doi: 10.1021/ja047697z. PubMed DOI
Fournier-Bidoz S., Arsenault A. C., Manners I., Ozin G. A.. Synthetic Self-Propelled Nanorotors. Chemical Communications. 2005;(4):441–443. doi: 10.1039/b414896g. PubMed DOI
Mei Y., Huang G., Solovev A. A., Ureña E. B., Mönch I., Ding F., Reindl T., Fu R. K. Y., Chu P. K., Schmidt O. G.. Versatile Approach for Integrative and Functionalized Tubes by Strain Engineering of Nanomembranes on Polymers. Advanced Materials. 2008;20(21):4085–4090. doi: 10.1002/adma.200801589. DOI
Li J., Rozen I., Wang J.. Rocket Science at the Nanoscale. ACS Nano. 2016;10(6):5619–5634. doi: 10.1021/acsnano.6b02518. PubMed DOI
Mei Y., Solovev A. A., Sanchez S., Schmidt O. G.. Rolled-up Nanotech on Polymers: From Basic Perception to Self-Propelled Catalytic Microengines. Chemical Society Reviews. 2011;40(5):2109–2119. doi: 10.1039/c0cs00078g. PubMed DOI
Gao W., Sattayasamitsathit S., Orozco J., Wang J.. Highly Efficient Catalytic Microengines: Template Electrosynthesis of Polyaniline/Platinum Microtubes. Journal of the American Chemical Society. 2011;133(31):11862–11864. doi: 10.1021/ja203773g. PubMed DOI
Gao W., Uygun A., Wang J.. Hydrogen-Bubble-Propelled Zinc-Based Microrockets in Strongly Acidic Media. Journal of the American Chemical Society. 2012;134(2):897–900. doi: 10.1021/ja210874s. PubMed DOI
Sanchez S., Solovev A. A., Mei Y., Schmidt O. G.. Dynamics of Biocatalytic Microengines Mediated by Variable Friction Control. Journal of the American Chemical Society. 2010;132(38):13144–13145. doi: 10.1021/ja104362r. PubMed DOI
Wang H., Zhao G., Pumera M.. Beyond Platinum: Bubble-Propelled Micromotors Based on Ag and MnO2 Catalysts. Journal of the American Chemical Society. 2014;136(7):2719–2722. doi: 10.1021/ja411705d. PubMed DOI
Ma X., Jannasch A., Albrecht U.-R., Hahn K., Miguel-López A., Schäffer E., Sánchez S.. Enzyme-Powered Hollow Mesoporous Janus Nanomotors. Nano Letters. 2015;15(10):7043–7050. doi: 10.1021/acs.nanolett.5b03100. PubMed DOI
Tang S., Zhang F., Gong H., Wei F., Zhuang J., Karshalev E., Esteban-Fernández de Ávila B., Huang C., Zhou Z., Li Z.. et al. Enzyme-Powered Janus Platelet Cell Robots for Active and Targeted Drug Delivery. Science Robotics. 2020;5(43):eaba6137. doi: 10.1126/scirobotics.aba6137. PubMed DOI
Simó C., Serra-Casablancas M., Hortelao A. C., Di Carlo V., Guallar-Garrido S., Plaza-García S., Rabanal R. M., Ramos-Cabrer P., Yagüe B., Aguado L.. et al. Urease-Powered Nanobots for Radionuclide Bladder Cancer Therapy. Nature Nanotechnology. 2024;19(4):554–564. doi: 10.1038/s41565-023-01577-y. PubMed DOI PMC
Somasundar A., Ghosh S., Mohajerani F., Massenburg L. N., Yang T., Cremer P. S., Velegol D., Sen A.. Positive and Negative Chemotaxis of Enzyme-Coated Liposome Motors. Nature Nanotechnology. 2019;14(12):1129–1134. doi: 10.1038/s41565-019-0578-8. PubMed DOI
Tang S., Tang D., Zhou H., Li Y., Zhou D., Peng X., Ren C., Su Y., Zhang S., Zheng H.. et al. Bacterial Outer Membrane Vesicle Nanorobot. Proceedings of the National Academy of Sciences. 2024;121(30):e2403460121. doi: 10.1073/pnas.2403460121. PubMed DOI PMC
Choi H., Cho S. H., Hahn S. K.. Urease-Powered Polydopamine Nanomotors for Intravesical Therapy of Bladder Diseases. ACS Nano. 2020;14(6):6683–6692. doi: 10.1021/acsnano.9b09726. PubMed DOI
Peyer K. E., Tottori S., Qiu F., Zhang L., Nelson B. J.. Magnetic Helical Micromachines. Chemistry - A European Journal. 2013;19(1):28–38. doi: 10.1002/chem.201203364. PubMed DOI
Pawashe C., Floyd S., Sitti M.. Modeling and Experimental Characterization of an Untethered Magnetic Micro-Robot. The International Journal of Robotics Research. 2009;28(8):1077–1094. doi: 10.1177/0278364909341413. DOI
Behkam, B. ; Sitti, M. . DOI
Yesin, K. B. ; Vollmers, K. ; Nelson, B. J. . Actuation, Sensing, and Fabrication for in Vivo Magnetic Microrobots. In Experimental Robotics IX, Berlin, Heidelberg, 2006, 2006; Ang, M. H. ; Khatib, O. , Eds.; Springer Berlin Heidelberg: pp 321-330.
Yesin, K. B. ; Vollmers, K. ; Nelson, B. J. . Analysis and Design of Wireless Magnetically Guided Microrobots in Body Fluids. In 2004 IEEE International Conference on Robotics and Automation, 2004; Vol. 1-5, pp 1333-1338.
Abbott J. J., Peyer K. E., Lagomarsino M. C., Zhang L., Dong L., Kaliakatsos I. K., Nelson B. J.. How Should Microrobots Swim? The International Journal of Robotics Research. 2009;28(11-12):1434–1447. doi: 10.1177/0278364909341658. DOI
Honda T., Arai K., Ishiyama K.. Micro Swimming Mechanisms Propelled by External Magnetic Fields. IEEE Transactions on Magnetics. 1996;32(5):5085–5087. doi: 10.1109/20.539498. DOI
Zhang L., Ruh E., Grützmacher D., Dong, Bell D. J., Nelson B. J., Schönenberger C.. Anomalous Coiling of Sige/Si and Sige/Si/Cr Helical Nanobelts. Nano Letters. 2006;6(7):1311–1317. doi: 10.1021/nl052340u. PubMed DOI
Bell, D. J. ; Leutenegger, S. ; Hammar, K. M. ; Dong, L. X. ; Nelson, B. J. . Flagella-Like Propulsion for Microrobots Using a Nanocoil and a Rotating Electromagnetic Field. In Proceedings 2007 IEEE International Conference on Robotics and Automation, 10-14 April 2007, 2007; pp 1128-1133. 10.1109/ROBOT.2007.363136. DOI
Zhang L., Abbott J. J., Dong L., Peyer K. E., Kratochvil B. E., Zhang H., Bergeles C., Nelson B. J.. Characterizing the Swimming Properties of Artificial Bacterial Flagella. Nano Letters. 2009;9(10):3663–3667. doi: 10.1021/nl901869j. PubMed DOI
Ghosh A., Fischer P.. Controlled Propulsion of Artificial Magnetic Nanostructured Propellers. Nano Letters. 2009;9(6):2243–2245. doi: 10.1021/nl900186w. PubMed DOI
Venugopalan P. L., Sai R., Chandorkar Y., Basu B., Shivashankar S., Ghosh A.. Conformal Cytocompatible Ferrite Coatings Facilitate the Realization of a Nanovoyager in Human Blood. Nano Letters. 2014;14(4):1968–1975. doi: 10.1021/nl404815q. PubMed DOI
Ullrich F., Bergeles C., Pokki J., Ergeneman O., Erni S., Chatzipirpiridis G., Pané S., Framme C., Nelson B. J.. Mobility Experiments with Microrobots for Minimally Invasive Intraocular Surgery. Investigative ophthalmology & visual science. 2013;54(4):2853–2863. doi: 10.1167/iovs.13-11825. PubMed DOI
Wu Z., Troll J., Jeong H.-H., Wei Q., Stang M., Ziemssen F., Wang Z., Dong M., Schnichels S., Qiu T., Fischer P.. A Swarm of Slippery Micropropellers Penetrates the Vitreous Body of the Eye. Science Advances. 2018;4(11):eaat4388. doi: 10.1126/sciadv.aat4388. PubMed DOI PMC
Rufo J., Zhang P., Zhong R., Lee L. P., Huang T. J.. A Sound Approach to Advancing Healthcare Systems: The Future of Biomedical Acoustics. Nature Communications. 2022;13(1):3459. doi: 10.1038/s41467-022-31014-y. PubMed DOI PMC
Yang S., Tian Z., Wang Z., Rufo J., Li P., Mai J., Xia J., Bachman H., Huang P.-H., Wu M.. et al. Harmonic Acoustics for Dynamic and Selective Particle Manipulation. Nature Materials. 2022;21(5):540–546. doi: 10.1038/s41563-022-01210-8. PubMed DOI PMC
Ahmed D., Ozcelik A., Bojanala N., Nama N., Upadhyay A., Chen Y., Hanna-Rose W., Huang T. J.. Rotational Manipulation of Single Cells and Organisms Using Acoustic Waves. Nature Communications. 2016;7(1):11085. doi: 10.1038/ncomms11085. PubMed DOI PMC
Kagan D., Benchimol M. J., Claussen J. C., Chuluun-Erdene E., Esener S., Wang J.. Acoustic Droplet Vaporization and Propulsion of Perfluorocarbon-Loaded Microbullets for Targeted Tissue Penetration and Deformation. Angewandte Chemie International Edition. 2012;51(30):7519–7522. doi: 10.1002/anie.201201902. PubMed DOI PMC
Wang W., Castro L. A., Hoyos M., Mallouk T. E.. Autonomous Motion of Metallic Microrods Propelled by Ultrasound. ACS Nano. 2012;6(7):6122–6132. doi: 10.1021/nn301312z. PubMed DOI
Ahmed S., Wang W., Bai L., Gentekos D. T., Hoyos M., Mallouk T. E.. Density and Shape Effects in the Acoustic Propulsion of Bimetallic Nanorod Motors. ACS Nano. 2016;10(4):4763–4769. doi: 10.1021/acsnano.6b01344. PubMed DOI
Nadal F., Lauga E.. Asymmetric Steady Streaming as a Mechanism for Acoustic Propulsion of Rigid Bodies. Physics of Fluids. 2014;26(8):082001. doi: 10.1063/1.4891446. DOI
Wang W., Li S., Mair L., Ahmed S., Huang T. J., Mallouk T. E.. Acoustic Propulsion of Nanorod Motors inside Living Cells. Angewandte Chemie International Edition. 2014;53(12):3201–3204. doi: 10.1002/anie.201309629. PubMed DOI PMC
Esteban-Fernández de Ávila B., Angell C., Soto F., Lopez-Ramirez M. A., Báez D. F., Xie S., Wang J., Chen Y.. Acoustically Propelled Nanomotors for Intracellular siRNA Delivery. ACS Nano. 2016;10(5):4997–5005. doi: 10.1021/acsnano.6b01415. PubMed DOI
Xu L., Mou F., Gong H., Luo M., Guan J.. Light-Driven Micro/Nanomotors: From Fundamentals to Applications. Chemical Society Reviews. 2017;46(22):6905–6926. doi: 10.1039/C7CS00516D. PubMed DOI
Villa K.. Exploring Innovative Designs and Heterojunctions in Photocatalytic Micromotors. Chemical Communications. 2023;59(54):8375–8383. doi: 10.1039/D3CC01634J. PubMed DOI PMC
Ibele M., Mallouk T. E., Sen A.. Schooling Behavior of Light-Powered Autonomous Micromotors in Water. Angewandte Chemie International Edition. 2009;48(18):3308–3312. doi: 10.1002/anie.200804704. PubMed DOI
Hong Y., Diaz M., Córdova-Figueroa U. M., Sen A.. Light-Driven Titanium-Dioxide-Based Reversible Microfireworks and Micromotor/Micropump Systems. Advanced Functional Materials. 2010;20(10):1568–1576. doi: 10.1002/adfm.201000063. DOI
Palacci J., Sacanna S., Vatchinsky A., Chaikin P. M., Pine D. J.. Photoactivated Colloidal Dockers for Cargo Transportation. Journal of the American Chemical Society. 2013;135(43):15978–15981. doi: 10.1021/ja406090s. PubMed DOI
Villa K., Novotný F., Zelenka J., Browne M. P., Ruml T., Pumera M.. Visible-Light-Driven Single-Component BiVO4 Micromotors with the Autonomous Ability for Capturing Microorganisms. ACS Nano. 2019;13(7):8135–8145. doi: 10.1021/acsnano.9b03184. PubMed DOI
Wang J., Xiong Z., Zhan X., Dai B., Zheng J., Liu J., Tang J.. A Silicon Nanowire as a Spectrally Tunable Light-Driven Nanomotor. Advanced Materials. 2017;29(30):1701451. doi: 10.1002/adma.201701451. PubMed DOI
María Hormigos R., Jurado Sánchez B., Escarpa A.. Multi-Light-Responsive Quantum Dot Sensitized Hybrid Micromotors with Dual-Mode Propulsion. Angewandte Chemie International Edition. 2019;58(10):3128–3132. doi: 10.1002/anie.201811050. PubMed DOI
Jang B., Hong A., Kang H. E., Alcantara C., Charreyron S., Mushtaq F., Pellicer E., Büchel R., Sort J., Lee S. S.. et al. Multiwavelength Light-Responsive Au/B-TiO2 Janus Micromotors. ACS Nano. 2017;11(6):6146–6154. doi: 10.1021/acsnano.7b02177. PubMed DOI
Liang Z., Joh H., Lian B., Fan D. E.. Light-Stimulated Micromotor Swarms in an Electric Field with Accurate Spatial, Temporal, and Mode Control. Science Advances. 2023;9(43):eadi9932. doi: 10.1126/sciadv.adi9932. PubMed DOI PMC
Dong R., Zhang Q., Gao W., Pei A., Ren B.. Highly Efficient Light-Driven TiO2-Au Janus Micromotors. ACS Nano. 2016;10(1):839–844. doi: 10.1021/acsnano.5b05940. PubMed DOI
Chang S. T., Paunov V. N., Petsev D. N., Velev O. D.. Remotely Powered Self-Propelling Particles and Micropumps Based on Miniature Diodes. Nature Materials. 2007;6(3):235–240. doi: 10.1038/nmat1843. PubMed DOI
Gangwal S., Cayre O. J., Bazant M. Z., Velev O. D.. Induced-Charge Electrophoresis of Metallodielectric Particles. Physical Review Letters. 2008;100(5):058302. doi: 10.1103/PhysRevLett.100.058302. PubMed DOI
Calvo-Marzal P., Sattayasamitsathit S., Balasubramanian S., Windmiller J. R., Dao C., Wang J.. Propulsion of Nanowire Diodes. Chemical Communications. 2010;46(10):1623–1624. doi: 10.1039/b925568k. PubMed DOI
Loget G., Kuhn A.. Propulsion of Microobjects by Dynamic Bipolar Self-Regeneration. Journal of the American Chemical Society. 2010;132(45):15918–15919. doi: 10.1021/ja107644x. PubMed DOI
Loget G., Kuhn A.. Electric Field-Induced Chemical Locomotion of Conducting Objects. Nature Communications. 2011;2(1):535. doi: 10.1038/ncomms1550. PubMed DOI
Boymelgreen A. M., Balli T., Miloh T., Yossifon G.. Active Colloids as Mobile Microelectrodes for Unified Label-Free Selective Cargo Transport. Nature Communications. 2018;9(1):760. doi: 10.1038/s41467-018-03086-2. PubMed DOI PMC
Boymelgreen A., Yossifon G., Miloh T.. Propulsion of Active Colloids by Self-Induced Field Gradients. Langmuir. 2016;32(37):9540–9547. doi: 10.1021/acs.langmuir.6b01758. PubMed DOI
Boymelgreen A. M., Kunti G., Garcia-Sanchez P., Ramos A., Yossifon G., Miloh T.. The Role of Particle-Electrode Wall Interactions in Mobility of Active Janus Particles Driven by Electric Fields. Journal of Colloid and Interface Science. 2022;616:465–475. doi: 10.1016/j.jcis.2022.02.017. PubMed DOI
Bricard A., Caussin J.-B., Desreumaux N., Dauchot O., Bartolo D.. Emergence of Macroscopic Directed Motion in Populations of Motile Colloids. Nature. 2013;503(7474):95–98. doi: 10.1038/nature12673. PubMed DOI
Chen C., Soto F., Karshalev E., Li J., Wang J.. Hybrid Nanovehicles: One Machine, Two Engines. Advanced Functional Materials. 2019;29(2):1806290. doi: 10.1002/adfm.201806290. DOI
Ren L., Wang W., Mallouk T. E.. Two Forces Are Better Than One: Combining Chemical and Acoustic Propulsion for Enhanced Micromotor Functionality. Accounts of Chemical Research. 2018;51(9):1948–1956. doi: 10.1021/acs.accounts.8b00248. PubMed DOI
Gao W., Manesh K. M., Hua J., Sattayasamitsathit S., Wang J.. Hybrid Nanomotor: A Catalytically/Magnetically Powered Adaptive Nanowire Swimmer. Small. 2011;7(14):2047–2051. doi: 10.1002/smll.201100213. PubMed DOI
Li J., Li T., Xu T., Kiristi M., Liu W., Wu Z., Wang J.. Magneto-Acoustic Hybrid Nanomotor. Nano Letters. 2015;15(7):4814–4821. doi: 10.1021/acs.nanolett.5b01945. PubMed DOI
Salinas G., Tieriekhov K., Garrigue P., Sojic N., Bouffier L., Kuhn A.. Lorentz Force-Driven Autonomous Janus Swimmers. Journal of the American Chemical Society. 2021;143(32):12708–12714. doi: 10.1021/jacs.1c05589. PubMed DOI
Soong R. K., Bachand G. D., Neves H. P., Olkhovets A. G., Craighead H. G., Montemagno C. D.. Powering an Inorganic Nanodevice with a Biomolecular Motor. Science. 2000;290(5496):1555–1558. doi: 10.1126/science.290.5496.1555. PubMed DOI
Xi J., Schmidt J. J., Montemagno C. D.. Self-Assembled Microdevices Driven by Muscle. Nature Materials. 2005;4(2):180–184. doi: 10.1038/nmat1308. PubMed DOI
Hiratsuka Y., Miyata M., Tada T., Uyeda T. Q. P.. A Microrotary Motor Powered by Bacteria. Proceedings of the National Academy of Sciences. 2006;103(37):13618–13623. doi: 10.1073/pnas.0604122103. PubMed DOI PMC
Behkam B., Sitti M.. Bacterial Flagella-Based Propulsion and on/Off Motion Control of Microscale Objects. Applied Physics Letters. 2007;90(2):1400023. doi: 10.1063/1.2431454. DOI
Martel S., Tremblay C. C., Ngakeng S., Langlois G.. Controlled Manipulation and Actuation of Micro-Objects with Magnetotactic Bacteria. Applied Physics Letters. 2006;89(23):233904. doi: 10.1063/1.2402221. DOI
Weibel D. B., Garstecki P., Ryan D., DiLuzio W. R., Mayer M., Seto J. E., Whitesides G. M.. Microoxen: Microorganisms to Move Microscale Loads. Proceedings of the National Academy of Sciences. 2005;102(34):11963–11967. doi: 10.1073/pnas.0505481102. PubMed DOI PMC
Magdanz V., Sanchez S., Schmidt O. G.. Development of a Sperm-Flagella Driven Micro-Bio-Robot. Advanced Materials. 2013;25(45):6581–6588. doi: 10.1002/adma.201302544. PubMed DOI
Wang J., Manesh K. M.. Motion Control at the Nanoscale. Small. 2010;6(3):338–345. doi: 10.1002/smll.200901746. PubMed DOI
Balasubramanian S., Kagan D., Manesh K. M., Calvo-Marzal P., Flechsig G.-U., Wang J.. Thermal Modulation of Nanomotor Movement. Small. 2009;5(13):1569–1574. doi: 10.1002/smll.200900023. PubMed DOI
Magdanz V., Stoychev G., Ionov L., Sanchez S., Schmidt O. G.. Stimuli-Responsive Microjets with Reconfigurable Shape. Angewandte Chemie International Edition. 2014;53(10):2673–2677. doi: 10.1002/anie.201308610. PubMed DOI PMC
Mou F., Xie Q., Liu J., Che S., Bahmane L., You M., Guan J.. ZnO-Based Micromotors Fueled by CO2: The First Example of Self-Reorientation-Induced Biomimetic Chemotaxis. National Science Review. 2021;8(11):nwab066. doi: 10.1093/nsr/nwab066. PubMed DOI PMC
Kline T. R., Paxton W. F., Mallouk T. E., Sen A.. Catalytic Nanomotors: Remote-Controlled Autonomous Movement of Striped Metallic Nanorods. Angewandte Chemie International Edition. 2005;44(5):744–746. doi: 10.1002/anie.200461890. PubMed DOI
Burdick J., Laocharoensuk R., Wheat P. M., Posner J. D., Wang J.. Synthetic Nanomotors in Microchannel Networks: Directional Microchip Motion and Controlled Manipulation of Cargo. Journal of the American Chemical Society. 2008;130(26):8164–8165. doi: 10.1021/ja803529u. PubMed DOI
Li T., Chang X., Wu Z., Li J., Shao G., Deng X., Qiu J., Guo B., Zhang G., He Q.. et al. Autonomous Collision-Free Navigation of Microvehicles in Complex and Dynamically Changing Environments. ACS Nano. 2017;11(9):9268–9275. doi: 10.1021/acsnano.7b04525. PubMed DOI
Li J., Gao W., Dong R., Pei A., Sattayasamitsathit S., Wang J.. Nanomotor Lithography. Nature Communications. 2014;5(1):5026. doi: 10.1038/ncomms6026. PubMed DOI
You M., Chen C., Xu L., Mou F., Guan J.. Intelligent Micro/Nanomotors with Taxis. Accounts of Chemical Research. 2018;51(12):3006–3014. doi: 10.1021/acs.accounts.8b00291. PubMed DOI
Ji F., Wu Y., Pumera M., Zhang L.. Collective Behaviors of Active Matter Learning from Natural Taxes across Scales. Advanced Materials. 2023;35(8):2203959. doi: 10.1002/adma.202203959. PubMed DOI
Gao C., Feng Y., Wilson D. A., Tu Y., Peng F.. Micro-Nano Motors with Taxis Behavior: Principles, Designs, and Biomedical Applications. Small. 2022;18(15):2106263. doi: 10.1002/smll.202106263. PubMed DOI
Dai B., Wang J., Xiong Z., Zhan X., Dai W., Li C.-C., Feng S.-P., Tang J.. Programmable Artificial Phototactic Microswimmer. Nature Nanotechnology. 2016;11(12):1087–1092. doi: 10.1038/nnano.2016.187. PubMed DOI
Kagan D., Laocharoensuk R., Zimmerman M., Clawson C., Balasubramanian S., Kang D., Bishop D., Sattayasamitsathit S., Zhang L., Wang J.. Rapid Delivery of Drug Carriers Propelled and Navigated by Catalytic Nanoshuttles. Small. 2010;6(23):2741–2747. doi: 10.1002/smll.201001257. PubMed DOI
Tottori S., Zhang L., Qiu F., Krawczyk K. K., Franco-Obregón A., Nelson B. J.. Magnetic Helical Micromachines: Fabrication, Controlled Swimming, and Cargo Transport. Advanced Materials. 2012;24(6):811–816. doi: 10.1002/adma.201103818. PubMed DOI
Gao W., Kagan D., Pak O. S., Clawson C., Campuzano S., Chuluun-Erdene E., Shipton E., Fullerton E. E., Zhang L., Lauga E.. et al. Cargo-Towing Fuel-Free Magnetic Nanoswimmers for Targeted Drug Delivery. Small. 2012;8(3):460–467. doi: 10.1002/smll.201101909. PubMed DOI
Wang W., Duan W., Ahmed S., Sen A., Mallouk T. E.. From One to Many: Dynamic Assembly and Collective Behavior of Self-Propelled Colloidal Motors. Accounts of Chemical Research. 2015;48(7):1938–1946. doi: 10.1021/acs.accounts.5b00025. PubMed DOI
Hong Y., Blackman N. M. K., Kopp N. D., Sen A., Velegol D.. Chemotaxis of Nonbiological Colloidal Rods. Physical Review Letters. 2007;99(17):178103. doi: 10.1103/PhysRevLett.99.178103. PubMed DOI
Mou F., Zhang J., Wu Z., Du S., Zhang Z., Xu L., Guan J.. Phototactic Flocking of Photochemical Micromotors. iScience. 2019;19:415–424. doi: 10.1016/j.isci.2019.07.050. PubMed DOI PMC
Wang Y., Chen H., Xie L., Liu J., Zhang L., Yu J.. Swarm Autonomy: From Agent Functionalization to Machine Intelligence. Advanced Materials. 2025;37(2):2312956. doi: 10.1002/adma.202312956. PubMed DOI PMC
Solovev A. A., Sanchez S., Schmidt O. G.. Collective Behaviour of Self-Propelled Catalytic Micromotors. Nanoscale. 2013;5(4):1284–1293. doi: 10.1039/c2nr33207h. PubMed DOI
Pavel I.-A., Salinas G., Mierzwa M., Arnaboldi S., Garrigue P., Kuhn A.. Cooperative Chemotaxis of Magnesium Microswimmers for Corrosion Spotting. ChemPhysChem. 2021;22(13):1321–1325. doi: 10.1002/cphc.202100236. PubMed DOI
Kagan D., Balasubramanian S., Wang J.. Chemically Triggered Swarming of Gold Microparticles. Angewandte Chemie International Edition. 2011;50(2):503–506. doi: 10.1002/anie.201005078. PubMed DOI
Xu T., Soto F., Gao W., Dong R., Garcia-Gradilla V., Magaña E., Zhang X., Wang J.. Reversible Swarming and Separation of Self-Propelled Chemically Powered Nanomotors under Acoustic Fields. Journal of the American Chemical Society. 2015;137(6):2163–2166. doi: 10.1021/ja511012v. PubMed DOI
Gao W., Pei A., Feng X., Hennessy C., Wang J.. Organized Self-Assembly of Janus Micromotors with Hydrophobic Hemispheres. Journal of the American Chemical Society. 2013;135(3):998–1001. doi: 10.1021/ja311455k. PubMed DOI
Martel, S. ; Mohammadi, M. . Using a Swarm of Self-Propelled Natural Microrobots in the Form of Flagellated Bacteria to Perform Complex Micro-Assembly Tasks. In 2010 IEEE International Conference on Robotics and Automation, 3-7 May 2010, 2010; pp 500-505. 10.1109/ROBOT.2010.5509752. DOI
Traoré M. A., Sahari A., Behkam B.. Computational and Experimental Study of Chemotaxis of an Ensemble of Bacteria Attached to a Microbead. Physical Review E. 2011;84(6):061908. doi: 10.1103/PhysRevE.84.061908. PubMed DOI
Leaman, E. J. ; Geuther, B. Q. ; Behkam, B. . Hybrid Centralized/Decentralized Control of Bacteria-Based Bio-Hybrid Microrobots. In 2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), 4-8 July 2018, 2018; pp 1-6. 10.1109/MARSS.2018.8481144. DOI
Wang B., Kostarelos K., Nelson B. J., Zhang L.. Trends in Micro-/Nanorobotics: Materials Development, Actuation, Localization, and System Integration for Biomedical Applications. Advanced Materials. 2021;33(4):2002047. doi: 10.1002/adma.202002047. PubMed DOI
Bozuyuk U., Wrede P., Yildiz E., Sitti M.. Roadmap for Clinical Translation of Mobile Microrobotics. Advanced Materials. 2024;36(23):2311462. doi: 10.1002/adma.202311462. PubMed DOI
Wang T., Wu Y., Yildiz E., Kanyas S., Sitti M.. Clinical Translation of Wireless Soft Robotic Medical Devices. Nature Reviews Bioengineering. 2024;2(6):470–485. doi: 10.1038/s44222-024-00156-7. DOI
Gao W., Dong R., Thamphiwatana S., Li J., Gao W., Zhang L., Wang J.. Artificial Micromotors in the Mouse’s Stomach: A Step toward in vivo Use of Synthetic Motors. ACS Nano. 2015;9(1):117–123. doi: 10.1021/nn507097k. PubMed DOI PMC
Esteban-Fernández de Ávila B., Angsantikul P., Li J., Angel Lopez-Ramirez M., Ramírez-Herrera D. E., Thamphiwatana S., Chen C., Delezuk J., Samakapiruk R., Ramez V.. et al. Micromotor-Enabled Active Drug Delivery for in vivo Treatment of Stomach Infection. Nature Communications. 2017;8(1):272. doi: 10.1038/s41467-017-00309-w. PubMed DOI PMC
Felfoul O., Mohammadi M., Taherkhani S., de Lanauze D., Zhong Xu Y., Loghin D., Essa S., Jancik S., Houle D., Lafleur M.. et al. Magneto-Aerotactic Bacteria Deliver Drug-Containing Nanoliposomes to Tumour Hypoxic Regions. Nature Nanotechnology. 2016;11(11):941–947. doi: 10.1038/nnano.2016.137. PubMed DOI PMC
Chatzipirpiridis G., Ergeneman O., Pokki J., Ullrich F., Fusco S., Ortega J. A., Sivaraman K. M., Nelson B. J., Pané S.. Electroforming of Implantable Tubular Magnetic Microrobots for Wireless Ophthalmologic Applications. Advanced Healthcare Materials. 2015;4(2):209–214. doi: 10.1002/adhm.201400256. PubMed DOI
Choi H., Jeong S.-h., Simo C., Bakenecker A., Liop J., Lee H. S., Kim T. Y., Kwak C., Koh G. Y., Sanchez S., Hahn S. K.. et al. Urease-Powered Nanomotor Containing Sting Agonist for Bladder Cancer Immunotherapy. Nature Communications. 2024;15(1):9934. doi: 10.1038/s41467-024-54293-z. PubMed DOI PMC
Zhang F., Zhuang J., Li Z., Gong H., Esteban-Fernández de Ávila B., Duan Y., Zhang Q., Zhou J., Yin L., Karshalev E.. et al. Nanoparticle-Modified Microrobots for in vivo Antibiotic Delivery to Treat Acute Bacterial Pneumonia. Nature Materials. 2022;21(11):1324–1332. doi: 10.1038/s41563-022-01360-9. PubMed DOI PMC
Del Campo Fonseca A., Glück C., Droux J., Ferry Y., Frei C., Wegener S., Weber B., El Amki M., Ahmed D.. Ultrasound Trapping and Navigation of Microrobots in the Mouse Brain Vasculature. Nature Communications. 2023;14(1):5889. doi: 10.1038/s41467-023-41557-3. PubMed DOI PMC
Karshalev E., Esteban-Fernández de Ávila B., Beltrán-Gastélum M., Angsantikul P., Tang S., Mundaca-Uribe R., Zhang F., Zhao J., Zhang L., Wang J.. Micromotor Pills as a Dynamic Oral Delivery Platform. ACS Nano. 2018;12(8):8397–8405. doi: 10.1021/acsnano.8b03760. PubMed DOI
Mundaca-Uribe R., Karshalev E., Esteban-Fernández de Ávila B., Wei X., Nguyen B., Litvan I., Fang R. H., Zhang L., Wang J.. A Microstirring Pill Enhances Bioavailability of Orally Administered Drugs. Advanced Science. 2021;8(12):2100389. doi: 10.1002/advs.202100389. PubMed DOI PMC
Srinivasan S. S., Alshareef A., Hwang A. V., Kang Z., Kuosmanen J., Ishida K., Jenkins J., Liu S., Madani W. A. M., Lennerz J.. et al. Robocap: Robotic Mucus-Clearing Capsule for Enhanced Drug Delivery in the Gastrointestinal Tract. Science Robotics. 2022;7(70):eabp9066. doi: 10.1126/scirobotics.abp9066. PubMed DOI PMC
Mundaca-Uribe R., Askarinam N., Fang R. H., Zhang L., Wang J.. Towards Multifunctional Robotic Pills. Nature Biomedical Engineering. 2024;8:1334–1346. doi: 10.1038/s41551-023-01090-6. PubMed DOI
Venugopalan P. L., Esteban-Fernández de Ávila B., Pal M., Ghosh A., Wang J.. Fantastic Voyage of Nanomotors into the Cell. ACS Nano. 2020;14(8):9423–9439. doi: 10.1021/acsnano.0c05217. PubMed DOI
Esteban-Fernández de Ávila B., Martín A., Soto F., Lopez-Ramirez M. A., Campuzano S., Vásquez-Machado G. M., Gao W., Zhang L., Wang J.. Single Cell Real-Time miRNAs Sensing Based on Nanomotors. ACS Nano. 2015;9(7):6756–6764. doi: 10.1021/acsnano.5b02807. PubMed DOI
Wu J., Balasubramanian S., Kagan D., Manesh K. M., Campuzano S., Wang J.. Motion-Based DNA Detection Using Catalytic Nanomotors. Nature Communications. 2010;1(1):36. doi: 10.1038/ncomms1035. PubMed DOI
Kagan D., Calvo-Marzal P., Balasubramanian S., Sattayasamitsathit S., Manesh K. M., Flechsig G.-U., Wang J.. Chemical Sensing Based on Catalytic Nanomotors: Motion-Based Detection of Trace Silver. Journal of the American Chemical Society. 2009;131(34):12082–12083. doi: 10.1021/ja905142q. PubMed DOI PMC
Balasubramanian S., Kagan D., Jack Hu C.-M., Campuzano S., Lobo-Castañon M. J., Lim N., Kang D. Y., Zimmerman M., Zhang L., Wang J.. Micromachine-Enabled Capture and Isolation of Cancer Cells in Complex Media. Angewandte Chemie International Edition. 2011;50(18):4161–4164. doi: 10.1002/anie.201100115. PubMed DOI PMC
Campuzano S., Kagan D., Orozco J., Wang J.. Motion-Driven Sensing and Biosensing Using Electrochemically Propelled Nanomotors. Analyst. 2011;136(22):4621–4630. doi: 10.1039/c1an15599g. PubMed DOI
Jurado-Sánchez B., Escarpa A.. Milli, Micro, and Nanomotors: Novel Analytical Tools for Real-World Applications. TrAC Trends in Analytical Chemistry. 2016;84:48–59. doi: 10.1016/j.trac.2016.03.009. DOI
Suh S., Jo A., Traore M. A., Zhan Y., Coutermarsh-Ott S. L., Ringel-Scaia V. M., Allen I. C., Davis R. M., Behkam B.. Nanoscale Bacteria-Enabled Autonomous Drug Delivery System (Nanobeads) Enhances Intratumoral Transport of Nanomedicine. Advanced Science. 2019;6(3):1801309. doi: 10.1002/advs.201801309. PubMed DOI PMC
Urso M., Ussia M., Pumera M.. Smart Micro- and Nanorobots for Water Purification. Nature Reviews Bioengineering. 2023;1(4):236–251. doi: 10.1038/s44222-023-00025-9. PubMed DOI PMC
Parmar J., Vilela D., Villa K., Wang J., Sánchez S.. Micro- and Nanomotors as Active Environmental Microcleaners and Sensors. Journal of the American Chemical Society. 2018;140(30):9317–9331. doi: 10.1021/jacs.8b05762. PubMed DOI
Guix M., Orozco J., García M., Gao W., Sattayasamitsathit S., Merkoçi A., Escarpa A., Wang J.. Superhydrophobic Alkanethiol-Coated Microsubmarines for Effective Removal of Oil. ACS Nano. 2012;6(5):4445–4451. doi: 10.1021/nn301175b. PubMed DOI
Soler L., Magdanz V., Fomin V. M., Sanchez S., Schmidt O. G.. Self-Propelled Micromotors for Cleaning Polluted Water. ACS Nano. 2013;7(11):9611–9620. doi: 10.1021/nn405075d. PubMed DOI PMC
Orozco J., Cheng G., Vilela D., Sattayasamitsathit S., Vazquez-Duhalt R., Valdés-Ramírez G., Pak O. S., Escarpa A., Kan C., Wang J.. Micromotor-Based High-Yielding Fast Oxidative Detoxification of Chemical Threats. Angewandte Chemie International Edition. 2013;52(50):13276–13279. doi: 10.1002/anie.201308072. PubMed DOI
Villa K., Děkanovský L., Plutnar J., Kosina J., Pumera M.. Swarming of Perovskite-Like Bi2 wo6 Microrobots Destroy Textile Fibers under Visible Light. Advanced Functional Materials. 2020;30(51):2007073. doi: 10.1002/adfm.202007073. DOI
Urso M., Ussia M., Novotný F., Pumera M.. Trapping and Detecting Nanoplastics by Mxene-Derived Oxide Microrobots. Nature Communications. 2022;13(1):3573. doi: 10.1038/s41467-022-31161-2. PubMed DOI PMC
Li H., Sun Z., Jiang S., Lai X., Böckler A., Huang H., Peng F., Liu L., Chen Y.. Tadpole-Like Unimolecular Nanomotor with Sub-100 Nm Size Swims in a Tumor Microenvironment Model. Nano Letters. 2019;19(12):8749–8757. doi: 10.1021/acs.nanolett.9b03456. PubMed DOI
Arqué X., Romero-Rivera A., Feixas F., Patiño T., Osuna S., Sánchez S.. Intrinsic Enzymatic Properties Modulate the Self-Propulsion of Micromotors. Nature Communications. 2019;10(1):2826. doi: 10.1038/s41467-019-10726-8. PubMed DOI PMC
Baylis J. R., Yeon J. H., Thomson M. H., Kazerooni A., Wang X., St. John A. E., Lim E. B., Chien D., Lee A., Zhang J. Q.. et al. Self-Propelled Particles That Transport Cargo through Flowing Blood and Halt Hemorrhage. Science Advances. 2015;1(9):e1500379. doi: 10.1126/sciadv.1500379. PubMed DOI PMC
Gao W., Sattayasamitsathit S., Uygun A., Pei A., Ponedal A., Wang J.. Polymer-Based Tubular Microbots: Role of Composition and Preparation. Nanoscale. 2012;4(7):2447–2453. doi: 10.1039/c2nr30138e. PubMed DOI
Hortelao A. C., Patiño T., Perez-Jiménez A., Blanco A., Sánchez S.. Enzyme-Powered Nanobots Enhance Anticancer Drug Delivery. Advanced Functional Materials. 2018;28(25):1705086. doi: 10.1002/adfm.201705086. DOI
Ebbens S. J.. Active Colloids: Progress and Challenges Towards Realising Autonomous Applications. Current Opinion in Colloid & Interface Science. 2016;21:14–23. doi: 10.1016/j.cocis.2015.10.003. DOI
Doherty R. P., Varkevisser T., Teunisse M., Hoecht J., Ketzetzi S., Ouhajji S., Kraft D. J.. Catalytically Propelled 3D Printed Colloidal Microswimmers. Soft Matter. 2020;16(46):10463–10469. doi: 10.1039/D0SM01320J. PubMed DOI
Campbell A. I., Ebbens S. J.. Gravitaxis in Spherical Janus Swimming Devices. Langmuir. 2013;29(46):14066–14073. doi: 10.1021/la403450j. PubMed DOI PMC
Lauga E.. Bacterial Hydrodynamics. Annual Review of Fluid Mechanics. 2016;48:105–130. doi: 10.1146/annurev-fluid-122414-034606. DOI
Purcell E. M.. Life at Low Reynolds Number. American Journal of Physics. 1977;45(1):3–11. doi: 10.1119/1.10903. DOI
Becker L. E., Koehler S. A., Stone H. A.. On Self-Propulsion of Micro-Machines at Low Reynolds Number: Purcell's Three-Link Swimmer. Journal of Fluid Mechanics. 2003;490:15–35. doi: 10.1017/S0022112003005184. DOI
Giraldi L., Martinon P., Zoppello M.. Optimal Design of Purcell's Three-Link Swimmer. Physical Review E. 2015;91(2):023012. doi: 10.1103/PhysRevE.91.023012. PubMed DOI
Wiezel O., Or Y.. Optimization and Small-Amplitude Analysis of Purcell's Three-Link Microswimmer Model. Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences. 2016;472(2192):20160425. doi: 10.1098/rspa.2016.0425. PubMed DOI PMC
Wiezel, O. ; Or, Y. . Using Optimal Control to Obtain Maximum Displacement Gait for Purcell’s Three-Link Swimmer. In 2016 Ieee 55th Conference on Decision and Control (Cdc), 2016; pp 4463-4468.
Tam D., Hosoi A. E.. Optimal Stroke Patterns for Purcell's Three-Link Swimmer. Physical Review Letters. 2007;98(6):068105. doi: 10.1103/PhysRevLett.98.068105. PubMed DOI
Leshansky A. M., Kenneth O.. Surface Tank Treading: Propulsion of Purcell's Toroidal Swimmer. Physics of Fluids. 2008;20(6):063104. doi: 10.1063/1.2939069. DOI
Grosjean G., Hubert M., Lagubeau G., Vandewalle N.. Realization of the Najafi-Golestanian Microswimmer. Physical Review E. 2016;94(2):021101. doi: 10.1103/PhysRevE.94.021101. PubMed DOI
Avron J. E., Kenneth O., Oaknin D. H.. Pushmepullyou: An Efficient Micro-Swimmer. New Journal of Physics. 2005;7:234. doi: 10.1088/1367-2630/7/1/234. DOI
Lanzaro, A. ; Gentile, L. . Rheology of Active Fluids. In Out-of-Equilibrium Soft Matter; Kurzthaler, C. ; Gentile, L. ; Stone, H. A. Eds.; The Royal Society of Chemistry, 2023.
Nishiguchi D., Sano M.. Mesoscopic Turbulence and Local Order in Janus Particles Self-Propelling under an Ac Electric Field. Physical Review E. 2015;92(5):052309. doi: 10.1103/PhysRevE.92.052309. PubMed DOI
Mair L. O., Superfine R.. Single Particle Tracking Reveals Biphasic Transport During Nanorod Magnetophoresis through Extracellular Matrix. Soft Matter. 2014;10(23):4118–4125. doi: 10.1039/C4SM00611A. PubMed DOI PMC
Dreyfus R., Baudry J., Roper M. L., Fermigier M., Stone H. A., Bibette J.. Microscopic Artificial Swimmers. Nature. 2005;437(7060):862–865. doi: 10.1038/nature04090. PubMed DOI
Schamel D., Mark A. G., Gibbs J. G., Miksch C., Morozov K. I., Leshansky A. M., Fischer P.. Nanopropellers and Their Actuation in Complex Viscoelastic Media. ACS Nano. 2014;8(9):8794–8801. doi: 10.1021/nn502360t. PubMed DOI
Solis K. J., Martin J. E.. Multiaxial Fields Drive the Thermal Conductivity Switching of a Magneto-Responsive Platelet Suspension. Soft Matter. 2013;9(38):9182–9188. doi: 10.1039/c3sm50820j. DOI
Golestanian R., Liverpool T. B., Ajdari A.. Propulsion of a Molecular Machine by Asymmetric Distribution of Reaction Products. Physical Review Letters. 2005;94(22):220801. doi: 10.1103/PhysRevLett.94.220801. PubMed DOI
Batchelor, G. K. An Introduction to Fluid Dynamics; Cambridge University Press, 2000. 10.1017/CBO9780511800955. DOI
Karrila, S. K. S. J. In Microhydrodynamics: Principles and Selected Applications, Kim, S. ; Karrila, S. J. Eds.; Butterworth-Heinemann, 1991; p ii.
Brennen C., Winet H.. Fluid Mechanics of Propulsion by Cilia and Flagella. Annual Review of Fluid Mechanics. 1977;9(1):339–398. doi: 10.1146/annurev.fl.09.010177.002011. DOI
Gaffney E. A., Gadêlha H., Smith D. J., Blake J. R., Kirkman-Brown J. C.. Mammalian Sperm Motility: Observation and Theory. Annual Review of Fluid Mechanics. 2011;43:501–528. doi: 10.1146/annurev-fluid-121108-145442. DOI
Lauga, E. The Fluid Dynamics of Cell Motility; Cambridge University Press, 2020. 10.1017/9781316796047. DOI
Qiu T., Lee T. C., Mark A. G., Morozov K. I., Münster R., Mierka O., Turek S., Leshansky A. M., Fischer P.. Swimming by Reciprocal Motion at Low Reynolds Number. Nature Communications. 2014;5:5119. doi: 10.1038/ncomms6119. PubMed DOI PMC
Li G., Lauga E., Ardekani A. M.. Microswimming in Viscoelastic Fluids. Journal of Non-Newtonian Fluid Mechanics. 2021;297:104655. doi: 10.1016/j.jnnfm.2021.104655. DOI
Wang Y., Hernandez R. M., Bartlett D. J., Bingham J. M., Kline T. R., Sen A., Mallouk T. E.. Bipolar Electrochemical Mechanism for the Propulsion of Catalytic Nanomotors in Hydrogen Peroxide Solutions. Langmuir. 2006;22(25):10451–10456. doi: 10.1021/la0615950. PubMed DOI
Solovev A. A., Mei Y., Bermúdez Ureña E., Huang G., Schmidt O. G.. Catalytic Microtubular Jet Engines Self-Propelled by Accumulated Gas Bubbles. Small. 2009;5(14):1688–1692. doi: 10.1002/smll.200900021. PubMed DOI
Ma X., Hahn K., Sanchez S.. Catalytic Mesoporous Janus Nanomotors for Active Cargo Delivery. Journal of the American Chemical Society. 2015;137(15):4976–4979. doi: 10.1021/jacs.5b02700. PubMed DOI PMC
Lee T.-C., Alarcón-Correa M., Miksch C., Hahn K., Gibbs J. G., Fischer P.. Self-Propelling Nanomotors in the Presence of Strong Brownian Forces. Nano Letters. 2014;14(5):2407–2412. doi: 10.1021/nl500068n. PubMed DOI PMC
Katuri J., Caballero D., Voituriez R., Samitier J., Sanchez S.. Directed Flow of Micromotors through Alignment Interactions with Micropatterned Ratchets. ACS Nano. 2018;12(7):7282–7291. doi: 10.1021/acsnano.8b03494. PubMed DOI
Simmchen J., Katuri J., Uspal W. E., Popescu M. N., Tasinkevych M., Sánchez S.. Topographical Pathways Guide Chemical Microswimmers. Nature Communications. 2016;7:10598. doi: 10.1038/ncomms10598. PubMed DOI PMC
Das S., Garg A., Campbell A. I., Howse J., Sen A., Velegol D., Golestanian R., Ebbens S. J.. Boundaries Can Steer Active Janus Spheres. Nature Communications. 2015;6(1):8999. doi: 10.1038/ncomms9999. PubMed DOI PMC
Pavlick R. A., Sengupta S., McFadden T., Zhang H., Sen A.. A Polymerization-Powered Motor. Angewandte Chemie International Edition. 2011;50(40):9374–9377. doi: 10.1002/anie.201103565. PubMed DOI
Gibbs J. G., Zhao Y.. Self-Organized Multiconstituent Catalytic Nanomotors. Small. 2010;6(15):1656–1662. doi: 10.1002/smll.201000415. PubMed DOI
Choudhury U., Soler L., Gibbs J. G., Sanchez S., Fischer P.. Surface Roughness-Induced Speed Increase for Active Janus Micromotors. Chemical Communications. 2015;51(41):8660–8663. doi: 10.1039/C5CC01607J. PubMed DOI PMC
Gibbs J. G., Zhao Y. P.. Autonomously Motile Catalytic Nanomotors by Bubble Propulsion. Applied Physics Letters. 2009;94(16):163104. doi: 10.1063/1.3122346. DOI
Nsamela A., Sharan P., Garcia-Zintzun A., Heckel S., Chattopadhyay P., Wang L., Wittmann M., Gemming T., Saenz J., Simmchen J.. Effect of Viscosity on Microswimmers: A Comparative Study. ChemNanoMat. 2021;7(9):1042–1050. doi: 10.1002/cnma.202100119. DOI
Solovev A. A., Xi W., Gracias D. H., Harazim S. M., Deneke C., Sanchez S., Schmidt O. G.. Self-Propelled Nanotools. ACS Nano. 2012;6(2):1751–1756. doi: 10.1021/nn204762w. PubMed DOI
Solovev A. A., Sanchez S., Pumera M., Mei Y. F., Schmidt O. G.. Magnetic Control of Tubular Catalytic Microbots for the Transport, Assembly, and Delivery of Micro-Objects. Advanced Functional Materials. 2010;20(15):2430–2435. doi: 10.1002/adfm.200902376. DOI
Villa K., Parmar J., Vilela D., Sánchez S.. Metal-Oxide-Based Microjets for the Simultaneous Removal of Organic Pollutants and Heavy Metals. ACS Applied Materials & Interfaces. 2018;10(24):20478–20486. doi: 10.1021/acsami.8b04353. PubMed DOI
Vilela D., Parmar J., Zeng Y., Zhao Y., Sánchez S.. Graphene-Based Microbots for Toxic Heavy Metal Removal and Recovery from Water. Nano Letters. 2016;16(4):2860–2866. doi: 10.1021/acs.nanolett.6b00768. PubMed DOI PMC
Mano N., Heller A.. Bioelectrochemical Propulsion. Journal of the American Chemical Society. 2005;127(33):11574–11575. doi: 10.1021/ja053937e. PubMed DOI
Pantarotto D., Browne W. R., Feringa B. L.. Autonomous Propulsion of Carbon Nanotubes Powered by a Multienzyme Ensemble. Chemical Communications. 2008;(13):1533–1535. doi: 10.1039/B715310D. PubMed DOI
Arqué X., Patiño T., Sánchez S.. Enzyme-Powered Micro- and Nano-Motors: Key Parameters for an Application-Oriented Design. Chemical Science. 2022;13(32):9128–9146. doi: 10.1039/D2SC01806C. PubMed DOI PMC
Wang N. Y., Marcelino T. F., Ade C., Pendlmayr S., Docampo M. A. R., Städler B.. Collagenase Motors in Gelatine-Based Hydrogels. Nanoscale. 2024;16(20):9935–9943. doi: 10.1039/D3NR05712G. PubMed DOI
Joseph A., Contini C., Cecchin D., Nyberg S., Ruiz-Perez L., Gaitzsch J., Fullstone G., Tian X., Azizi J., Preston J.. et al. Chemotactic Synthetic Vesicles: Design and Applications in Blood-Brain Barrier Crossing. Science Advances. 2017;3(8):e1700362. doi: 10.1126/sciadv.1700362. PubMed DOI PMC
Schattling P. S., Ramos-Docampo M. A., Salgueirino V., Städler B.. Double-Fueled Janus Swimmers with Magnetotactic Behavior. ACS Nano. 2017;11(4):3973–3983. doi: 10.1021/acsnano.7b00441. PubMed DOI
Yang Y., Arqué X., Patiño T., Guillerm V., Blersch P.-R., Pérez-Carvajal J., Imaz I., Maspoch D., Sánchez S.. Enzyme-Powered Porous Micromotors Built from a Hierarchical Micro- and Mesoporous Uio-Type Metal-Organic Framework. Journal of the American Chemical Society. 2020;142(50):20962–20967. doi: 10.1021/jacs.0c11061. PubMed DOI
Liu X. X., Wang Y., Wang L. Y., Chen W. J., Ma X.. Enzymatic Nanomotors Surviving Harsh Conditions Enabled by Metal Organic Frameworks Encapsulation. Small. 2024;20(14):2305800. doi: 10.1002/smll.202305800. PubMed DOI
Song S., Mason A. F., Post R. A. J., De Corato M., Mestre R., Yewdall N. A., Cao S., van der Hofstad R. W., Sanchez S., Abdelmohsen L.. et al. Engineering Transient Dynamics of Artificial Cells by Stochastic Distribution of Enzymes. Nature Communications. 2021;12(1):6897. doi: 10.1038/s41467-021-27229-0. PubMed DOI PMC
Hortelao A. C., Garcia-Jimeno S., Cano-Sarabia M., Patiño T., Maspoch D., Sanchez S.. Lipobots: Using Liposomal Vesicles as Protective Shell of Urease-Based Nanomotors. Advanced Functional Materials. 2020;30(42):2002767. doi: 10.1002/adfm.202002767. DOI
Fraire J. C., Guix M., Hortelao A. C., Ruiz-González N., Bakenecker A. C., Ramezani P., Hinnekens C., Sauvage F., De Smedt S. C., Braeckmans K.. et al. Light-Triggered Mechanical Disruption of Extracellular Barriers by Swarms of Enzyme-Powered Nanomotors for Enhanced Delivery. ACS Nano. 2023;17(8):7180–7193. doi: 10.1021/acsnano.2c09380. PubMed DOI PMC
Dey K. K., Zhao X., Tansi B. M., Méndez-Ortiz W. J., Córdova-Figueroa U. M., Golestanian R., Sen A.. Micromotors Powered by Enzyme Catalysis. Nano Letters. 2015;15(12):8311–8315. doi: 10.1021/acs.nanolett.5b03935. PubMed DOI
Lammert P. E., Crespi V. H., Nourhani A.. Bypassing Slip Velocity: Rotational and Translational Velocities of Autophoretic Colloids in Terms of Surface Flux. Journal of Fluid Mechanics. 2016;802:294–304. doi: 10.1017/jfm.2016.460. DOI
Nourhani A., Lammert P. E.. Geometrical Performance of Self-Phoretic Colloids and Microswimmers. Physical Review Letters. 2016;116(17):178302. doi: 10.1103/PhysRevLett.116.178302. PubMed DOI
Schnitzer O., Yariv E.. Osmotic Self-Propulsion of Slender Particles. Physics of Fluids. 2015;27(3):031701. doi: 10.1063/1.4914417. DOI
Dukhin S. S., Ul'berg Z. R., Dvornichenko G. L., Deryagin B. V.. Diffusiophoresis in Electrolyte Solutions and Its Application to the Formation of Surface Coatings. Bulletin of the Academy of Sciences of the USSR, Division of chemical science. 1982;31(8):1535–1544. doi: 10.1007/BF00956888. DOI
Derjaguin B. V., Sidorenkov G., Zubashchenko E., Kiseleva E.. Kinetic Phenomena in the Boundary Layers of Liquids 1. The Capillary Osmosis. Progress in Surface Science. 1993;43(1):138–152. doi: 10.1016/0079-6816(93)90023-O. DOI
Ebel J. P., Anderson J. L., Prieve D. C.. Diffusiophoresis of Latex Particles in Electrolyte Gradients. Langmuir. 1988;4(2):396–406. doi: 10.1021/la00080a024. DOI
Anderson J. L., Lowell M. E., Prieve D. C.. Motion of a Particle Generated by Chemical Gradients.1. Non-Electrolytes. Journal of Fluid Mechanics. 1982;117:107–121. doi: 10.1017/S0022112082001542. DOI
Moran J. L., Posner J. D.. Phoretic Self-Propulsion. Annual Review of Fluid Mechanics. 2017;49:511–540. doi: 10.1146/annurev-fluid-122414-034456. DOI
Wang W., Duan W. T., Ahmed S., Mallouk T. E., Sen A.. Small Power: Autonomous Nano- and Micromotors Propelled by Self-Generated Gradients. Nano Today. 2013;8(5):531–554. doi: 10.1016/j.nantod.2013.08.009. DOI
Shah Z. H., Wang S., Xian L. B., Zhou X. M., Chen Y., Lin G. H., Gao Y. X.. Highly Efficient Chemically-Driven Micromotors with Controlled Snowman-Like Morphology. Chemical Communications. 2020;56(97):15301–15304. doi: 10.1039/D0CC06812H. PubMed DOI
Gao Y., Dullens R. P. A., Aarts D. G. A. L.. Bulk Synthesis of Silver-Head Colloidal Rodlike Micromotors. Soft Matter. 2018;14(35):7119–7125. doi: 10.1039/C8SM00832A. PubMed DOI
Hong Y., Velegol D., Chaturvedi N., Sen A.. Biomimetic Behavior of Synthetic Particles: From Microscopic Randomness to Macroscopic Control. Physical Chemistry Chemical Physics. 2010;12(7):1423–1435. doi: 10.1039/B917741H. PubMed DOI
Guix M., Meyer A. K., Koch B., Schmidt O. G.. Carbonate-Based Janus Micromotors Moving in Ultra-Light Acidic Environment Generated by Hela Cells in situ. Scientific Reports. 2016;6(1):21701. doi: 10.1038/srep21701. PubMed DOI PMC
McDermott J. J., Kar A., Daher M., Klara S., Wang G., Sen A., Velegol D.. Self-Generated Diffusioosmotic Flows from Calcium Carbonate Micropumps. Langmuir. 2012;28(44):15491–15497. doi: 10.1021/la303410w. PubMed DOI
Zhou C., Zhang H., Tang J., Wang W.. Photochemically Powered AgCl Janus Micromotors as a Model System to Understand Ionic Self-Diffusiophoresis. Langmuir. 2018;34(10):3289–3295. doi: 10.1021/acs.langmuir.7b04301. PubMed DOI
Velegol D., Garg A., Guha R., Kar A., Kumar M.. Origins of Concentration Gradients for Diffusiophoresis. Soft Matter. 2016;12(21):4686–4703. doi: 10.1039/C6SM00052E. PubMed DOI
Zhou X., Wang S., Xian L., Shah Z. H., Li Y., Lin G., Gao Y.. Ionic Effects in Ionic Diffusiophoresis in Chemically Driven Active Colloids. Physical Review Letters. 2021;127(16):168001. doi: 10.1103/PhysRevLett.127.168001. PubMed DOI
Hortelao A. C., Simó C., Guix M., Guallar-Garrido S., Julián E., Vilela D., Rejc L., Ramos-Cabrer P., Cossío U., Gómez-Vallejo V.. et al. Swarming Behavior and in vivo Monitoring of Enzymatic Nanomotors within the Bladder. Science Robotics. 2021;6(52):eabd2823. doi: 10.1126/scirobotics.abd2823. PubMed DOI
Ye Z. H., Wang Y., Liu S. H., Xu D. D., Wang W., Ma X.. Construction of Nanomotors with Replaceable Engines by Supramolecular Machine-Based Host-Guest Assembly and Disassembly. Journal of the American Chemical Society. 2021;143(37):15063–15072. doi: 10.1021/jacs.1c04836. PubMed DOI
Mathesh M., Sun J. W., Wilson D. A.. Enzyme Catalysis Powered Micro/Nanomotors for Biomedical Applications. Journal of Materials Chemistry B. 2020;8(33):7319–7334. doi: 10.1039/D0TB01245A. PubMed DOI
Zhao X., Gentile K., Mohajerani F., Sen A.. Powering Motion with Enzymes. Accounts of Chemical Research. 2018;51(10):2373–2381. doi: 10.1021/acs.accounts.8b00286. PubMed DOI
Yuan H., Liu X., Wang L., Ma X.. Fundamentals and Applications of Enzyme Powered Micro/Nano-Motors. Bioactive Materials. 2021;6(6):1727–1749. doi: 10.1016/j.bioactmat.2020.11.022. PubMed DOI PMC
Katuri J., Uspal W. E., Popescu M. N., Sánchez S.. Inferring Non-Equilibrium Interactions from Tracer Response near Confined Active Janus Particles. Science Advances. 2021;7(18):eabd0719. doi: 10.1126/sciadv.abd0719. PubMed DOI PMC
Cui J. Y., Jin H., Zhan W.. Enzyme-Free Liposome Active Motion via Asymmetrical Lipid Efflux. Langmuir. 2022;38(37):11468–11477. doi: 10.1021/acs.langmuir.2c01866. PubMed DOI
Toebes B. J., Cao F., Wilson D. A.. Spatial Control over Catalyst Positioning on Biodegradable Polymeric Nanomotors. Nature Communications. 2019;10:5308. doi: 10.1038/s41467-019-13288-x. PubMed DOI PMC
Wang W.. Open Questions of Chemically Powered Nano- and Micromotors. Journal of the American Chemical Society. 2023;145(50):27185–27197. doi: 10.1021/jacs.3c09223. PubMed DOI
Kuron M., Kreissl P., Holm C.. Toward Understanding of Self-Electrophoretic Propulsion under Realistic Conditions: From Bulk Reactions to Confinement Effects. Accounts of Chemical Research. 2018;51(12):2998–3005. doi: 10.1021/acs.accounts.8b00285. PubMed DOI
Paxton W. F., Sen A., Mallouk T. E.. Motility of Catalytic Nanoparticles through Self-Generated Forces. Chemistry-a European Journal. 2005;11(22):6462–6470. doi: 10.1002/chem.200500167. PubMed DOI
Moran J. L., Wheat P. M., Posner J. D.. Locomotion of Electrocatalytic Nanomotors Due to Reaction Induced Charge Autoelectrophoresis. Physical Review E. 2010;81(6):065302. doi: 10.1103/PhysRevE.81.065302. PubMed DOI
Moran J. L., Posner J. D.. Electrokinetic Locomotion Due to Reaction-Induced Charge Auto-Electrophoresis. Journal of Fluid Mechanics. 2011;680:31–66. doi: 10.1017/jfm.2011.132. DOI
Esplandiu M. J., Afshar Farniya A., Reguera D.. Key Parameters Controlling the Performance of Catalytic Motors. The Journal of Chemical Physics. 2016;144(12):124702. doi: 10.1063/1.4944319. PubMed DOI
Zhang J., Song J., Mou F., Guan J., Sen A.. Titania-Based Micro/Nanomotors: Design Principles, Biomimetic Collective Behavior, and Applications. Trends in Chemistry. 2021;3(5):387–401. doi: 10.1016/j.trechm.2021.02.001. DOI
Maric T., Nasir M. Z. M., Webster R. D., Pumera M.. Tailoring Metal/TiO2 Interface to Influence Motion of Light-Activated Janus Micromotors. Advanced Functional Materials. 2020;30(9):1908614. doi: 10.1002/adfm.201908614. DOI
Mou F., Kong L., Chen C., Chen Z., Xu L., Guan J.. Light-Controlled Propulsion, Aggregation and Separation of Water-Fuelled TiO2/Pt Janus Submicromotors and Their “on-the-fly” Photocatalytic Activities. Nanoscale. 2016;8(9):4976–4983. doi: 10.1039/C5NR06774J. PubMed DOI
Peng Y. X., Xu P. Z., Duan S. F., Liu J. Y., Moran J. L., Wang W.. Generic Rules for Distinguishing Autophoretic Colloidal Motors. Angewandte Chemie International Edition. 2022;61(12):e202116041. doi: 10.1002/anie.202116041. PubMed DOI
Sabass B., Seifert U.. Nonlinear, Electrocatalytic Swimming in the Presence of Salt. The Journal of Chemical Physics. 2012;136(21):214507. doi: 10.1063/1.4719538. PubMed DOI
Rey M., Volpe G., Volpe G.. Light, Matter, Action: Shining Light on Active Matter. ACS Photonics. 2023;10(5):1188–1201. doi: 10.1021/acsphotonics.3c00140. PubMed DOI PMC
Wang Q. L., Wang C., Dong R. F., Pang Q. Q., Cai Y. P.. Steerable Light-Driven TiO-Fe Janus Micromotor. Inorganic Chemistry Communications. 2018;91:1–4. doi: 10.1016/j.inoche.2018.02.020. DOI
Zhan X., Wang J., Xiong Z., Zhang X., Zhou Y., Zheng J., Chen J., Feng S.-P., Tang J.. Enhanced Ion Tolerance of Electrokinetic Locomotion in Polyelectrolyte-Coated Microswimmer. Nature Communications. 2019;10(1):3921. doi: 10.1038/s41467-019-11907-1. PubMed DOI PMC
Zhou D. K., Li Y. C. G., Xu P. T., Ren L. Q., Zhang G. Y., Mallouk T. E., Li L. Q.. Visible-Light Driven Si-Au Micromotors in Water and Organic Solvents. Nanoscale. 2017;9(32):11434–11438. doi: 10.1039/C7NR04161F. PubMed DOI
Lin X., Si T., Wu Z., He Q.. Self-Thermophoretic Motion of Controlled Assembled Micro-/Nanomotors. Physical Chemistry Chemical Physics. 2017;19(35):23606–23613. doi: 10.1039/C7CP02561K. PubMed DOI
Colberg P. H., Kapral R.. Nanoconfined Catalytic Ångström-Size Motors. The Journal of Chemical Physics. 2015;143(18):184906. doi: 10.1063/1.4935173. PubMed DOI
Reigh S. Y., Kapral R.. Catalytic Dimer Nanomotors: Continuum Theory and Microscopic Dynamics. Soft Matter. 2015;11(16):3149–3158. doi: 10.1039/C4SM02857K. PubMed DOI
Succi, S. The Lattice Boltzmann Equation: For Complex States of Flowing Matter; Oxford University Press, 2018. 10.1093/oso/9780199592357.001.0001. DOI
Lugli F., Brini E., Zerbetto F.. Shape Governs the Motion of Chemically Propelled Janus Swimmers. The Journal of Physical Chemistry C. 2012;116(1):592–598. doi: 10.1021/jp205018u. DOI
de Buyl P.. Mesoscopic Simulations of Anisotropic Chemically Powered Nanomotors. Physical Review E. 2019;100(2):022603. doi: 10.1103/PhysRevE.100.022603. PubMed DOI
Wang J., Huang M.-J., Baker-Sediako R. D., Kapral R., Aranson I. S.. Forces That Control Self-Organization of Chemically-Propelled Janus Tori. Communications Physics. 2022;5(1):176. doi: 10.1038/s42005-022-00953-9. DOI
Lüsebrink D., Yang M., Ripoll M.. Thermophoresis of Colloids by Mesoscale Simulations. Journal of Physics: Condensed Matter. 2012;24(28):284132. doi: 10.1088/0953-8984/24/28/284132. PubMed DOI
Avital E. J., Miloh T.. Self-Thermophoresis of Laser-Heated Spherical Janus Particles. The European Physical Journal E. 2021;44(11):139. doi: 10.1140/epje/s10189-021-00128-4. PubMed DOI PMC
Jiang H.-R., Yoshinaga N., Sano M.. Active Motion of a Janus Particle by Self-Thermophoresis in a Defocused Laser Beam. Physical Review Letters. 2010;105(26):268302. doi: 10.1103/PhysRevLett.105.268302. PubMed DOI
Ahn J. O., Lee H. W., Seo K. W., Kang S. K., Ra J. C., Youn H. Y.. Anti-Tumor Effect of Adipose Tissue Derived-Mesenchymal Stem Cells Expressing Interferon-Β and Treatment with Cisplatin in a Xenograft Mouse Model for Canine Melanoma. Plos One. 2013;8(9):e74897. doi: 10.1371/journal.pone.0074897. PubMed DOI PMC
Wu Z., Chen Y., Mukasa D., Pak O. S., Gao W.. Medical Micro/Nanorobots in Complex Media. Chemical Society Reviews. 2020;49(22):8088–8112. doi: 10.1039/D0CS00309C. PubMed DOI
Lin Z., Gao C., Wang D., He Q.. Bubble-Propelled Janus Gallium/Zinc Micromotors for the Active Treatment of Bacterial Infections. Angewandte Chemie International Edition. 2021;60(16):8750–8754. doi: 10.1002/anie.202016260. PubMed DOI
Huang D., Cai L., Li N., Zhao Y.. Ultrasound-Trigged Micro/Nanorobots for Biomedical Applications. Smart Medicine. 2023;2(2):e20230003. doi: 10.1002/SMMD.20230003. PubMed DOI PMC
Wang J. J., Li L., Wei R. Y., Dong R. F.. Quantum Dot-Based Micromotors with NIR-I Light Photocatalytic Propulsion and NIR-Ii Fluorescence. ACS Applied Materials & Interfaces. 2022;14:48967. doi: 10.1021/acsami.2c13254. PubMed DOI
Wang D., Gao C., Si T., Li Z., Guo B., He Q.. Near-Infrared Light Propelled Motion of Needlelike Liquid Metal Nanoswimmers. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021;611:125865. doi: 10.1016/j.colsurfa.2020.125865. DOI
Xie L., Yan M., Liu T., Gong K., Luo X., Qiu B., Zeng J., Liang Q., Zhou S., He Y.. et al. Kinetics-Controlled Super-Assembly of Asymmetric Porous and Hollow Carbon Nanoparticles as Light-Sensitive Smart Nanovehicles. Journal of the American Chemical Society. 2022;144(4):1634–1646. doi: 10.1021/jacs.1c10391. PubMed DOI
Baraban L., Streubel R., Makarov D., Han L., Karnaushenko D., Schmidt O. G., Cuniberti G.. Fuel-Free Locomotion of Janus Motors: Magnetically Induced Thermophoresis. ACS Nano. 2013;7(2):1360–1367. doi: 10.1021/nn305726m. PubMed DOI
Xing Y., Zhou M., Liu X., Qiao M., Zhou L., Xu T., Zhang X., Du X.. Bioinspired Jellyfish-Like Carbon/Manganese Nanomotors with H2O2 and NIR Light Dual-Propulsion for Enhanced Tumor Penetration and Chemodynamic Therapy. Chemical Engineering Journal. 2023;461:142142. doi: 10.1016/j.cej.2023.142142. DOI
Xing Y., Du X., Xu T., Zhang X.. Janus Dendritic Silica/Carbon@Pt Nanomotors with Multiengines for H2O2, near-Infrared Light and Lipase Powered Propulsion. Soft Matter. 2020;16(41):9553–9558. doi: 10.1039/D0SM01355B. PubMed DOI
Han X., Chen Z., Liu Y., Song B., Zhang H., Dong B.. Light Driven ZnO/Aunp Micro/Nanomotor with Controlled Rotation and Phototaxis. ChemistrySelect. 2023;8(5):e202203888. doi: 10.1002/slct.202203888. DOI
Zhao G., Ambrosi A., Pumera M.. Self-Propelled Nanojets via Template Electrodeposition. Nanoscale. 2013;5(4):1319–1324. doi: 10.1039/C2NR31566A. PubMed DOI
Wang J. Z., Xiong Z., Tang J. Y.. The Encoding of Light-Driven Micro/Nanorobots: From Single to Swarming Systems. Advanced Intelligent Systems. 2021;3(4):2000170. doi: 10.1002/aisy.202000170. DOI
Villa K., Manzanares Palenzuela C. L., Sofer Z., Matějková S., Pumera M.. Metal-Free Visible-Light Photoactivated C3n4 Bubble-Propelled Tubular Micromotors with Inherent Fluorescence and on/Off Capabilities. ACS Nano. 2018;12(12):12482–12491. doi: 10.1021/acsnano.8b06914. PubMed DOI
Ye Z. R., Sun Y. Y., Zhang H., Song B., Dong B.. A Phototactic Micromotor Based on Platinum Nanoparticle Decorated Carbon Nitride. Nanoscale. 2017;9(46):18516–18522. doi: 10.1039/C7NR05896A. PubMed DOI
Pourrahimi A. M., Villa K., Palenzuela C. L. M., Ying Y. L., Sofer Z., Pumera M.. Catalytic and Light-Driven ZnO/Pt Janus Nano/Micromotors: Switching of Motion Mechanism via Interface Roughness and Defect Tailoring at the Nanoscale. Advanced Functional Materials. 2019;29(22):1808678. doi: 10.1002/adfm.201808678. DOI
Dong R., Hu Y., Wu Y., Gao W., Ren B., Wang Q., Cai Y.. Visible-Light-Driven BiOI-Based Janus Micromotor in Pure Water. Journal of the American Chemical Society. 2017;139(5):1722–1725. doi: 10.1021/jacs.6b09863. PubMed DOI
Zhou D. K., Li Y. G. C., Xu P. T., McCool N. S., Li L. Q., Wang W., Mallouk T. E.. Visible-Light Controlled Catalytic Cu2O-Au Micromotors. Nanoscale. 2017;9(1):75–78. doi: 10.1039/C6NR08088J. PubMed DOI
Li J., He X., Jiang H., Xing Y., Fu B., Hu C.. Enhanced and Robust Directional Propulsion of Light-Activated Janus Micromotors by Magnetic Spinning and the Magnus Effect. ACS Applied Materials & Interfaces. 2022;14(31):36027–36037. doi: 10.1021/acsami.2c08464. PubMed DOI
Ferrer Campos R., Bakenecker A. C., Chen Y., Spadaro M. C., Fraire J., Arbiol J., Sánchez S., Villa K.. Boosting the Efficiency of Photoactive Rod-Shaped Nanomotors via Magnetic Field-Induced Charge Separation. ACS Applied Materials & Interfaces. 2024;16(23):30077–30087. doi: 10.1021/acsami.4c03905. PubMed DOI PMC
O'Neel-Judy É., Nicholls D., Castañeda J., Gibbs J. G.. Light-Activated, Multi-Semiconductor Hybrid Microswimmers. Small. 2018;14(32):1801860. doi: 10.1002/smll.201801860. PubMed DOI
Sridhar V., Park B. W., Guo S. R., van Aken P. A., Sitti M.. Multiwavelength-Steerable Visible-Light-Driven Magnetic CoO-TiO Microswimmers. ACS Applied Materials & Interfaces. 2020;12(21):24149–24155. doi: 10.1021/acsami.0c06100. PubMed DOI PMC
Zhan X. J., Zheng J., Zhao Y., Zhu B. R., Cheng R., Wang J. Z., Liu J., Tang J., Tang J. Y.. From Strong Dichroic Nanomotor to Polarotactic Microswimmer. Advanced Materials. 2019;31(48):1903329. doi: 10.1002/adma.201903329. PubMed DOI
Wolff N., Ciobanu V., Enachi M., Kamp M., Braniste T., Duppel V., Shree S., Raevschi S., Medina-Sánchez M., Adelung R.. et al. Advanced Hybrid GaN/ZnO Nanoarchitectured Microtubes for Fluorescent Micromotors Driven by UV Light. Small. 2020;16(2):1905141. doi: 10.1002/smll.201905141. PubMed DOI
Ying Y. L., Plutnar J., Pumera M.. Six-Degree-of-Freedom Steerable Visible-Light-Driven Microsubmarines Using Water as a Fuel: Application for Explosives Decontamination. Small. 2021;17(23):2100294. doi: 10.1002/smll.202100294. PubMed DOI
Wang J. Z., Xiong Z., Liu M., Li X. M., Zheng J., Zhan X. J., Ding W. T., Chen J. N., Li X. C., Li X. D.. et al. Rational Design of Reversible Redox Shuttle for Highly Efficient Light-Driven Microswimmer. ACS Nano. 2020;14(3):3272–3280. doi: 10.1021/acsnano.9b08799. PubMed DOI
Mitchell P.. Coupling of Phosphorylation to Electron and Hydrogen Transfer by a Chemi-Osmotic Type of Mechanism. Nature. 1961;191(4784):144–148. doi: 10.1038/191144a0. PubMed DOI
Mitchell P.. Self-Electrophoretic Locomotion in Microorganisms - Bacterial Flagella as Giant Ionophores. Febs Letters. 1972;28(1):1–4. doi: 10.1016/0014-5793(72)80661-6. PubMed DOI
Anderson J. L.. Colloid Transport by Interfacial Forces. Annual Review of Fluid Mechanics. 1989;21:61–99. doi: 10.1146/annurev.fl.21.010189.000425. DOI
De Corato M., Arqué X., Patiño T., Arroyoe M., Sánchez S., Pagonabarraga I.. Self-Propulsion of Active Colloids via Ion Release: Theory and Experiments. Physical Review Letters. 2020;124(10):108001. doi: 10.1103/PhysRevLett.124.108001. PubMed DOI
Feuerstein L., Biermann C. G., Xiao Z. Y., Holm C., Simmchen J.. Highly Efficient Active Colloids Driven by Galvanic Exchange Reactions. Journal of the American Chemical Society. 2021;143(41):17015–17022. doi: 10.1021/jacs.1c06400. PubMed DOI
Xiao Z., Simmchen J., Pagonabarraga I., De Corato M.. Ionic Diffusiophoresis of Active Colloids via Galvanic Exchange Reactions. Nano Lett. 2025;25(19):7975–7980. doi: 10.1021/acs.nanolett.5c01567. PubMed DOI PMC
Brown A. T., Poon W. C. K., Holm C., de Graaf J.. Ionic Screening and Dissociation Are Crucial for Understanding Chemical Self-Propulsion in Polar Solvents. Soft Matter. 2017;13(6):1200–1222. doi: 10.1039/C6SM01867J. PubMed DOI
Bouffier L., Zigah D., Sojic N., Kuhn A.. Bipolar Electrochemistry. Encyclopedia of Electrochemistry. 2021:1–53. doi: 10.1002/9783527610426.bard030112. DOI
Jiang J.-Z., Guo M.-H., Yao F.-Z., Li J., Sun J.-J.. Propulsion of Copper Microswimmers in Folded Fluid Channels by Bipolar Electrochemistry. RSC Advances. 2017;7(11):6297–6302. doi: 10.1039/C6RA25162E. DOI
Loget G., Kuhn A.. Bipolar Electrochemistry for Cargo-Lifting in Fluid Channels. Lab on a Chip. 2012;12(11):1967–1971. doi: 10.1039/c2lc21301j. PubMed DOI
Sentic M., Loget G., Manojlovic D., Kuhn A., Sojic N.. Light-Emitting Electrochemical "Swimmers". Angewandte Chemie International Edition. 2012;51(45):11284. doi: 10.1002/anie.201206227. PubMed DOI
Bouffier L., Zigah D., Adam C., Sentic M., Fattah Z., Manojlovic D., Kuhn A., Sojic N.. Lighting up Redox Propulsion with Luminol Electrogenerated Chemiluminescence. Chemelectrochem. 2014;1(1):95–98. doi: 10.1002/celc.201300042. DOI
Roche J., Carrara S., Sanchez J., Lannelongue J., Loget G., Bouffier L., Fischer P., Kuhn A.. Wireless Powering of E -Swimmers. Scientific Reports. 2014;4(1):6705. doi: 10.1038/srep06705. PubMed DOI PMC
Gupta B., Goudeau B., Garrigue P., Kuhn A.. Bipolar Conducting Polymer Crawlers Based on Triple Symmetry Breaking. Advanced Functional Materials. 2018;28(25):1705825. doi: 10.1002/adfm.201705825. DOI
Gupta B., Afonso M. C., Zhang L., Ayela C., Garrigue P., Goudeau B., Kuhn A.. Wireless Coupling of Conducting Polymer Actuators with Light Emission. ChemPhysChem. 2019;20(7):941–945. doi: 10.1002/cphc.201900116. PubMed DOI
Esplandiu M. J., Reguera D., Fraxedas J.. Electrophoretic Origin of Long-Range Repulsion of Colloids near Water/Nafion Interfaces. Soft Matter. 2020;16(15):3717–3726. doi: 10.1039/D0SM00170H. PubMed DOI
Wu C. J., Dai J., Li X. F., Gao L., Wang J. Z., Liu J., Zheng J., Zhan X. J., Chen J. W., Cheng X.. et al. Ion-Exchange Enabled Synthetic Swarm. Nature Nanotechnology. 2021;16(3):288–295. doi: 10.1038/s41565-020-00825-9. PubMed DOI
Niu R., Fischer A., Palberg T., Speck T.. Dynamics of Binary Active Clusters Driven by Ion-Exchange Particles. ACS Nano. 2018;12(11):10932–10938. doi: 10.1021/acsnano.8b04221. PubMed DOI
Esplandiu M. J., Reguera D., Romero-Guzmán D., Gallardo-Moreno A. M., Fraxedas J.. From Radial to Unidirectional Water Pumping in Zeta-Potential Modulated Nafion Nanostructures. Nature Communications. 2022;13(1):2812. doi: 10.1038/s41467-022-30554-7. PubMed DOI PMC
Esplandiu M. J., Zhang K., Fraxedas J., Sepulveda B., Reguera D.. Unraveling the Operational Mechanisms of Chemically Propelled Motors with Micropumps. Accounts of Chemical Research. 2018;51(9):1921–1930. doi: 10.1021/acs.accounts.8b00241. PubMed DOI
Fraxedas J., Reguera D., Esplandiu M. J.. Collective Motion of Nafion-Based Micromotors in Water. Faraday Discussions. 2024;249(0):424–439. doi: 10.1039/D3FD00098B. PubMed DOI
Cameron L. A., Footer M. J., van Oudenaarden A., Theriot J. A.. Motility of Acta Protein-Coated Microspheres Driven by Actin Polymerization. Proceedings of the National Academy of Sciences. 1999;96(9):4908–4913. doi: 10.1073/pnas.96.9.4908. PubMed DOI PMC
Wang D., Han X., Dong B., Shi F.. Stimuli Responsiveness, Propulsion and Application of the Stimuli-Responsive Polymer Based Micromotor. Applied Materials Today. 2021;25:101250. doi: 10.1016/j.apmt.2021.101250. DOI
Ramos-Docampo M. A., Brodszkij E., Ceccato M., Foss M., Folkjær M., Lock N., Städler B.. Surface Polymerization Induced Locomotion. Nanoscale. 2021;13(22):10035–10043. doi: 10.1039/D1NR01465J. PubMed DOI
Zhang H., Yeung K., Robbins J. S., Pavlick R. A., Wu M., Liu R., Sen A., Phillips S. T.. Self-Powered Microscale Pumps Based on Analyte-Initiated Depolymerization/ Degradation Reactions. Angewandte Chemie. 2012;124:2450. doi: 10.1002/ange.201107787. PubMed DOI
Ramos Docampo M. A., Nieto S., de Dios Andres P., Qian X., Städler B.. Self-Immolative Polymers to Initiate Locomotion in Motors. ChemNanoMat. 2023;9(5):e202300016. doi: 10.1002/cnma.202300016. DOI
Fernández-Medina M., Qian X., Hovorka O., Städler B.. Disintegrating Polymer Multilayers to Jump-Start Colloidal Micromotors. Nanoscale. 2019;11(2):733–741. doi: 10.1039/C8NR08071B. PubMed DOI
Ramos Docampo M. A., Wang N., Pendlmayr S., Stadler B.. Self-Propelled Collagenase-Powered Nano/Micromotors. ACS Applied Nano Materials. 2022;5(10):14622–14629. doi: 10.1021/acsanm.2c02989. DOI
Ramos-Docampo M. A., Fernández-Medina M., Taipaleenmäki E., Hovorka O., Salgueiriño V., Städler B.. Microswimmers with Heat Delivery Capacity for 3D Cell Spheroid Penetration. ACS Nano. 2019;13(10):12192–12205. doi: 10.1021/acsnano.9b06869. PubMed DOI
Scriven L. E., Sternling C. V.. The Marangoni Effects. Nature. 1960;187(4733):186–188. doi: 10.1038/187186a0. DOI
Pena-Francesch A., Giltinan J., Sitti M.. Multifunctional and Biodegradable Self-Propelled Protein Motors. Nature Communications. 2019;10(1):3188. doi: 10.1038/s41467-019-11141-9. PubMed DOI PMC
Bassik N., Abebe B. T., Gracias D. H.. Solvent Driven Motion of Lithographically Fabricated Gels. Langmuir. 2008;24(21):12158–12163. doi: 10.1021/la801329g. PubMed DOI
Thomson J.. Xlii. On Certain Curious Motions Observable at the Surfaces of Wine and Other Alcoholic Liquors. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1855;10(67):330–333. doi: 10.1080/14786445508641982. DOI
Strutt R. J.. IV. Measurements of the Amount of Oil Necessary Iu Order to Check the Motions of Camphor Upon Water. Proceedings of the Royal Society of London. 1890;47(286-291):364–367. doi: 10.1098/rspl.1889.0099. DOI
Dietrich K., Jaensson N., Buttinoni I., Volpe G., Isa L.. Microscale Marangoni Surfers. Physical Review Letters. 2020;125(9):098001. doi: 10.1103/PhysRevLett.125.098001. PubMed DOI
Lv C., Varanakkottu S. N., Baier T., Hardt S.. Controlling the Trajectories of Nano/Micro Particles Using Light-Actuated Marangoni Flow. Nano Letters. 2018;18(11):6924–6930. doi: 10.1021/acs.nanolett.8b02814. PubMed DOI
Maass C. C., Krüger C., Herminghaus S., Bahr C.. Swimming Droplets. Annual Review of Condensed Matter Physics. 2016;7:171–193. doi: 10.1146/annurev-conmatphys-031115-011517. DOI
Birrer S., Cheon S. I., Zarzar L. D.. We the Droplets: A Constitutional Approach to Active and Self-Propelled Emulsions. Current Opinion in Colloid & Interface Science. 2022;61:101623. doi: 10.1016/j.cocis.2022.101623. DOI
Čejková J., Banno T., Hanczyc M. M., Štěpánek F.. Droplets as Liquid Robots. Artificial Life. 2017;23(4):528–549. doi: 10.1162/ARTL_a_00243. PubMed DOI
Dwivedi P., Pillai D., Mangal R.. Self-Propelled Swimming Droplets. Current Opinion in Colloid & Interface Science. 2022;61:101614. doi: 10.1016/j.cocis.2022.101614. DOI
Schatz M. F., Neitzel G. P.. Experiments on Thermocapillary Instabilities. Annual Review of Fluid Mechanics. 2001;33:93–127. doi: 10.1146/annurev.fluid.33.1.93. DOI
Lovass P., Branicki M., Tóth R., Braun A., Suzuno K., Ueyama D., Lagzi I.. Maze Solving Using Temperature-Induced Marangoni Flow. RSC Advances. 2015;5(60):48563–48568. doi: 10.1039/C5RA08207B. DOI
Rybalko S., Magome N., Yoshikawa K.. Forward and Backward Laser-Guided Motion of an Oil Droplet. Physical Review E. 2004;70(4):046301. doi: 10.1103/PhysRevE.70.046301. PubMed DOI
Namura K., Nakajima K., Kimura K., Suzuki M.. Photothermally Controlled Marangoni Flow around a Micro Bubble. Applied Physics Letters. 2015;106(4):043101. doi: 10.1063/1.4906929. DOI
Michelin S.. Self-Propulsion of Chemically Active Droplets. Annual Review of Fluid Mechanics. 2023;55:77–101. doi: 10.1146/annurev-fluid-120720-012204. DOI
Toyota T., Maru N., Hanczyc M. M., Ikegami T., Sugawara T.. Self-Propelled Oil Droplets Consuming “Fuel” Surfactant. Journal of the American Chemical Society. 2009;131(14):5012–5013. doi: 10.1021/ja806689p. PubMed DOI
Thutupalli S., Seemann R., Herminghaus S.. Swarming Behavior of Simple Model Squirmers. New Journal of Physics. 2011;13(7):073021. doi: 10.1088/1367-2630/13/7/073021. DOI
Banno T., Kuroha R., Toyota T.. pH-Sensitive Self-Propelled Motion of Oil Droplets in the Presence of Cationic Surfactants Containing Hydrolyzable Ester Linkages. Langmuir. 2012;28(2):1190–1195. doi: 10.1021/la2045338. PubMed DOI
Kasuo Y., Kitahata H., Koyano Y., Takinoue M., Asakura K., Banno T.. Start of Micrometer-Sized Oil Droplet Motion through Generation of Surfactants. Langmuir. 2019;35(41):13351–13355. doi: 10.1021/acs.langmuir.9b01722. PubMed DOI
Suematsu N. J., Saikusa K., Nagata T., Izumi S.. Interfacial Dynamics in the Spontaneous Motion of an Aqueous Droplet. Langmuir. 2019;35(35):11601–11607. doi: 10.1021/acs.langmuir.9b01866. PubMed DOI
Wentworth C. M., Castonguay A. C., Moerman P. G., Meredith C. H., Balaj R. V., Cheon S. I., Zarzar L. D.. Chemically Tuning Attractive and Repulsive Interactions between Solubilizing Oil Droplets. Angewandte Chemie International Edition. 2022;61(32):e202204510. doi: 10.1002/anie.202204510. PubMed DOI
Peña A. A., Miller C. A.. Solubilization Rates of Oils in Surfactant Solutions and Their Relationship to Mass Transport in Emulsions. Advances in Colloid and Interface Science. 2006;123-126:241–257. doi: 10.1016/j.cis.2006.05.005. PubMed DOI
Adler J.. Chemotaxis in Bacteria. Annual Review of Biochemistry. 1975;44:341–356. doi: 10.1146/annurev.bi.44.070175.002013. PubMed DOI
Luster, A. D. Chemotaxis: Role in Immune Response. In Encyclopedia of Life Sciences, Wiley, 2001. 10.1038/npg.els.0000507 DOI
Kaupp U. B., Kashikar N. D., Weyand I.. Mechanisms of Sperm Chemotaxis. Annual Review of Physiology. 2008;70:93–117. doi: 10.1146/annurev.physiol.70.113006.100654. PubMed DOI
Jin C., Krüger C., Maass C. C.. Chemotaxis and Autochemotaxis of Self-Propelling Droplet Swimmers. Proceedings of the National Academy of Sciences. 2017;114(20):5089–5094. doi: 10.1073/pnas.1619783114. PubMed DOI PMC
Ma X., Hortelao A. C., Patiño T., Sánchez S.. Enzyme Catalysis to Power Micro/Nanomachines. ACS Nano. 2016;10(10):9111–9122. doi: 10.1021/acsnano.6b04108. PubMed DOI PMC
Ghosh S., Somasundar A., Sen A.. Enzymes as Active Matter. Annual Review of Condensed Matter Physics. 2021;12:177–200. doi: 10.1146/annurev-conmatphys-061020-053036. DOI
Mandal N. S., Sen A.. Relative Diffusivities of Bound and Unbound Protein Can Control Chemotactic Directionality. Langmuir. 2021;37(42):12263–12270. doi: 10.1021/acs.langmuir.1c01360. PubMed DOI
Agudo-Canalejo J., Illien P., Golestanian R.. Phoresis and Enhanced Diffusion Compete in Enzyme Chemotaxis. Nano Letters. 2018;18(4):2711–2717. doi: 10.1021/acs.nanolett.8b00717. PubMed DOI
Wilkinson P. C.. Random Locomotion; Chemotaxis and Chemokinesis. A Guide to Terms Defining Cell Locomotion. Immunol Today. 1985;6(9):273–278. doi: 10.1016/0167-5699(85)90066-0. PubMed DOI
Brown S., Poole P. S., Jeziorska W., Armitage J. P.. Chemokinesis in Rhodobacter Sphaeroides Is the Result of a Long Term Increase in the Rate of Flagellar Rotation. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1993;1141(2):309–312. doi: 10.1016/0005-2728(93)90058-N. DOI
D’Orsogna M. R., Suchard M. A., Chou T.. Interplay of Chemotaxis and Chemokinesis Mechanisms in Bacterial Dynamics. Physical Review E. 2003;68(2):021925. doi: 10.1103/PhysRevE.68.021925. PubMed DOI
Ralt D., Manor M., Cohen-Dayag A., Tur-Kaspa I., Ben-Shlomo I., Makler A., Yuli I., Dor J., Blumberg S., Mashiach S.. et al. Chemotaxis and Chemokinesis of Human Spermatozoa to Follicular Factors. Biology of Reproduction. 1994;50(4):774–785. doi: 10.1095/biolreprod50.4.774. PubMed DOI
Wilkinson P. C.. Assays of Leukocyte Locomotion and Chemotaxis. Journal of Immunological Methods. 1998;216(1):139–153. doi: 10.1016/S0022-1759(98)00075-1. PubMed DOI
Paxton W. F., Baker P. T., Kline T. R., Wang Y., Mallouk T. E., Sen A.. Catalytically Induced Electrokinetics for Motors and Micropumps. Journal of the American Chemical Society. 2006;128(46):14881–14888. doi: 10.1021/ja0643164. PubMed DOI
Popescu M. N., Uspal W. E., Bechinger C., Fischer P.. Chemotaxis of Active Janus Nanoparticles. Nano Letters. 2018;18(9):5345–5349. doi: 10.1021/acs.nanolett.8b02572. PubMed DOI
Moran J. L., Wheat P. M., Marine N. A., Posner J. D.. Chemokinesis-Driven Accumulation of Active Colloids in Low-Mobility Regions of Fuel Gradients. Scientific Reports. 2021;11(1):4785. doi: 10.1038/s41598-021-83963-x. PubMed DOI PMC
Archer R. A., Howse J. R., Fujii S., Kawashima H., Buxton G. A., Ebbens S. J.. pH-Responsive Catalytic Janus Motors with Autonomous Navigation and Cargo-Release Functions. Advanced Functional Materials. 2020;30(19):2000324. doi: 10.1002/adfm.202000324. DOI
Boedtkjer E., Pedersen S. F.. The Acidic Tumor Microenvironment as a Driver of Cancer. Annual Review of Physiology. 2020;82:103–126. doi: 10.1146/annurev-physiol-021119-034627. PubMed DOI
Hunter R. C., Beveridge T. J.. Application of a pH-Sensitive Fluoroprobe (C-Snarf-4) for pH Microenvironment Analysis in Pseudomonas Aeruginosa Biofilms. Applied and Environmental Microbiology. 2005;71(5):2501–2510. doi: 10.1128/AEM.71.5.2501-2510.2005. PubMed DOI PMC
Puigmartí-Luis, J. ; Pellicer, E. ; Jang, B. ; Chatzipirpiridis, G. ; Sevim, S. ; Chen, X.-Z. ; Nelson, B. J. ; Pané, S. . 26 - Magnetically and Chemically Propelled Nanowire-Based Swimmers. In Magnetic Nano- and Microwires, Second ed.; Vázquez, M. Ed.; Woodhead Publishing, 2020; pp 777-799.
Jiles, D. Introduction to Magnetism and Magnetic Materials; Chapman and Hall, 1991.
Cullity, B. D. ; Graham, C. D. . Introduction to Magnetic Materials; IEEE/Wiley, 2009.
Kim Y., Zhao X.. Magnetic Soft Materials and Robots. Chemical Reviews. 2022;122(5):5317–5364. doi: 10.1021/acs.chemrev.1c00481. PubMed DOI PMC
Rikken R. S. M., Nolte R. J. M., Maan J. C., van Hest J. C. M., Wilson D. A., Christianen P. C. M.. Manipulation of Micro- and Nanostructure Motion with Magnetic Fields. Soft Matter. 2014;10(9):1295–1308. doi: 10.1039/C3SM52294F. PubMed DOI
Zhou H., Mayorga-Martinez C. C., Pané S., Zhang L., Pumera M.. Magnetically Driven Micro and Nanorobots. Chemical Reviews. 2021;121(8):4999–5041. doi: 10.1021/acs.chemrev.0c01234. PubMed DOI PMC
Yasa O., Toshimitsu Y., Michelis M. Y., Jones L. S., Filippi M., Buchner T., Katzschmann R. K.. An Overview of Soft Robotics. Annual Review of Control, Robotics, and Autonomous Systems. 2023;6(1):1–29. doi: 10.1146/annurev-control-062322-100607. DOI
Wang Q., Zhang L.. External Power-Driven Microrobotic Swarm: From Fundamental Understanding to Imaging-Guided Delivery. ACS Nano. 2021;15(1):149–174. doi: 10.1021/acsnano.0c07753. PubMed DOI
Wang X., Qin X.-H., Hu C., Terzopoulou A., Chen X.-Z., Huang T.-Y., Maniura-Weber K., Pané S., Nelson B. J.. 3D Printed Enzymatically Biodegradable Soft Helical Microswimmers. Advanced Functional Materials. 2018;28(45):1804107. doi: 10.1002/adfm.201804107. DOI
Alcântara C. C. J., Kim S., Lee S., Jang B., Thakolkaran P., Kim J.-Y., Choi H., Nelson B. J., Pané S.. 3D Fabrication of Fully Iron Magnetic Microrobots. Small. 2019;15(16):1805006. doi: 10.1002/smll.201805006. PubMed DOI
Landers F. C., Gantenbein V., Hertle L., Veciana A., Llacer-Wintle J., Chen X.-Z., Ye H., Franco C., Puigmartí-Luis J., Kim M.. et al. On-Command Disassembly of Microrobotic Superstructures for Transport and Delivery of Magnetic Micromachines. Advanced Materials. 2024;36(18):2310084. doi: 10.1002/adma.202310084. PubMed DOI
Alcântara C. C. J., Landers F. C., Kim S., De Marco C., Ahmed D., Nelson B. J., Pané S.. Mechanically Interlocked 3D Multi-Material Micromachines. Nature Communications. 2020;11(1):5957. doi: 10.1038/s41467-020-19725-6. PubMed DOI PMC
Spaldin N. A., Ramesh R.. Advances in Magnetoelectric Multiferroics. Nature Materials. 2019;18(3):203–212. doi: 10.1038/s41563-018-0275-2. PubMed DOI
Choi J., Kim D.-i., Kim J.-y., Pané S., Nelson B. J., Chang Y.-T., Choi H.. Magnetically Enhanced Intracellular Uptake of Superparamagnetic Iron Oxide Nanoparticles for Antitumor Therapy. ACS Nano. 2023;17(16):15857–15870. doi: 10.1021/acsnano.3c03780. PubMed DOI
Yu J., Jin D., Chan K.-F., Wang Q., Yuan K., Zhang L.. Active Generation and Magnetic Actuation of Microrobotic Swarms in Bio-Fluids. Nature Communications. 2019;10(1):5631. doi: 10.1038/s41467-019-13576-6. PubMed DOI PMC
Yu J., Yang L., Du X., Chen H., Xu T., Zhang L.. Adaptive Pattern and Motion Control of Magnetic Microrobotic Swarms. IEEE Transactions on Robotics. 2022;38(3):1552–1570. doi: 10.1109/TRO.2021.3130432. DOI
Kim D., Kim M., Reidt S., Han H., Baghizadeh A., Zeng P., Choi H., Puigmartí-Luis J., Trassin M., Nelson B. J.. et al. Shape-Memory Effect in Twisted Ferroic Nanocomposites. Nature Communications. 2023;14(1):750. doi: 10.1038/s41467-023-36274-w. PubMed DOI PMC
Yan X., Zhou Q., Vincent M., Deng Y., Yu J., Xu J., Xu T., Tang T., Bian L., Wang Y.-X. J.. et al. Multifunctional Biohybrid Magnetite Microrobots for Imaging-Guided Therapy. Science Robotics. 2017;2(12):eaaq1155. doi: 10.1126/scirobotics.aaq1155. PubMed DOI
Suter M., Zhang L., Siringil E. C., Peters C., Luehmann T., Ergeneman O., Peyer K. E., Nelson B. J., Hierold C.. Superparamagnetic Microrobots: Fabrication by Two-Photon Polymerization and Biocompatibility. Biomedical Microdevices. 2013;15(6):997–1003. doi: 10.1007/s10544-013-9791-7. PubMed DOI
Berry M. V., Geim A. K.. Of Flying Frogs and Levitrons. European Journal of Physics. 1997;18(4):307. doi: 10.1088/0143-0807/18/4/012. DOI
Nguyen J., Conca D. V., Stein J., Bovo L., Howard C. A., Llorente Garcia I.. Magnetic Control of Graphitic Microparticles in Aqueous Solutions. Proceedings of the National Academy of Sciences. 2019;116(7):2425–2434. doi: 10.1073/pnas.1817989116. PubMed DOI PMC
Zhang M., Xie X., Tang M., Criddle C. S., Cui Y., Wang S. X.. Magnetically Ultraresponsive Nanoscavengers for Next-Generation Water Purification Systems. Nature Communications. 2013;4(1):1866. doi: 10.1038/ncomms2892. PubMed DOI PMC
Kummer M. P., Abbott J. J., Kratochvil B. E., Borer R., Sengul A., Nelson B. J.. Octomag: An Electromagnetic System for 5-Dof Wireless Micromanipulation. IEEE Transactions on Robotics. 2010;26(6):1006–1017. doi: 10.1109/TRO.2010.2073030. DOI
Abbott J. J., Diller E., Petruska A. J.. Magnetic Methods in Robotics. Annual Review of Control, Robotics, and Autonomous Systems. 2020;3:57–90. doi: 10.1146/annurev-control-081219-082713. DOI
Chen X.-Z., Hoop M., Mushtaq F., Siringil E., Hu C., Nelson B. J., Pané S.. Recent Developments in Magnetically Driven Micro- and Nanorobots. Applied Materials Today. 2017;9:37–48. doi: 10.1016/j.apmt.2017.04.006. DOI
Elbuken C., Khamesee M. B., Yavuz M.. Design and Implementation of a Micromanipulation System Using a Magnetically Levitated Mems Robot. IEEE/ASME Transactions on Mechatronics. 2009;14(4):434–445. doi: 10.1109/TMECH.2009.2023648. DOI
Keuning, J. D. ; Vriesy, J. d. ; Abelmanny, L. ; Misra, S. . Image-Based Magnetic Control of Paramagnetic Microparticles in Water. In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, 25-30 Sept. 2011, 2011; pp 421-426. 10.1109/IROS.2011.6095011. DOI
Wang X., Ho C., Tsatskis Y., Law J., Zhang Z., Zhu M., Dai C., Wang F., Tan M., Hopyan S.. et al. Intracellular Manipulation and Measurement with Multipole Magnetic Tweezers. Science Robotics. 2019;4(28):eaav6180. doi: 10.1126/scirobotics.aav6180. PubMed DOI
Gervasoni S., Pedrini N., Rifai T., Fischer C., Landers F. C., Mattmann M., Dreyfus R., Viviani S., Veciana A., Masina E.. et al. A Human-Scale Clinically Ready Electromagnetic Navigation System for Magnetically Responsive Biomaterials and Medical Devices. Advanced Materials. 2024;36(31):2310701. doi: 10.1002/adma.202310701. PubMed DOI
Erin O., Boyvat M., Tiryaki M. E., Phelan M., Sitti M.. Magnetic Resonance Imaging System-Driven Medical Robotics. Advanced Intelligent Systems. 2020;2(2):1900110. doi: 10.1002/aisy.201900110. DOI
Li N., Fei P., Tous C., Rezaei Adariani M., Hautot M.-L., Ouedraogo I., Hadjadj A., Dimov I. P., Zhang Q., Lessard S.. et al. Human-Scale Navigation of Magnetic Microrobots in Hepatic Arteries. Science Robotics. 2024;9(87):eadh8702. doi: 10.1126/scirobotics.adh8702. PubMed DOI
Zhang L., Abbott J. J., Dong L., Kratochvil B. E., Bell D., Nelson B. J.. Artificial Bacterial Flagella: Fabrication and Magnetic Control. Applied Physics Letters. 2009;94(6):064107. doi: 10.1063/1.3079655. DOI
Morozov K. I., Leshansky A. M.. The Chiral Magnetic Nanomotors. Nanoscale. 2014;6(3):1580–1588. doi: 10.1039/C3NR04853E. PubMed DOI
Smith E. J., Makarov D., Sanchez S., Fomin V. M., Schmidt O. G.. Magnetic Microhelix Coil Structures. Physical Review Letters. 2011;107(9):097204. doi: 10.1103/PhysRevLett.107.097204. PubMed DOI
Gao W., Feng X., Pei A., Kane C. R., Tam R., Hennessy C., Wang J.. Bioinspired Helical Microswimmers Based on Vascular Plants. Nano Letters. 2014;14(1):305–310. doi: 10.1021/nl404044d. PubMed DOI
Peters C., Ergeneman O., García P. D. W., Müller M., Pané S., Nelson B. J., Hierold C.. Superparamagnetic Twist-Type Actuators with Shape-Independent Magnetic Properties and Surface Functionalization for Advanced Biomedical Applications. Advanced Functional Materials. 2014;24(33):5269–5276. doi: 10.1002/adfm.201400596. DOI
Yu Y., Shang L., Gao W., Zhao Z., Wang H., Zhao Y.. Microfluidic Lithography of Bioinspired Helical Micromotors. Angewandte Chemie International Edition. 2017;56(40):12127–12131. doi: 10.1002/anie.201705667. PubMed DOI
Ghosh A., Mandal P., Karmakar S., Ghosh A.. Analytical Theory and Stability Analysis of an Elongated Nanoscale Object under External Torque. Physical Chemistry Chemical Physics. 2013;15(26):10817–10823. doi: 10.1039/c3cp50701g. PubMed DOI
Morozov K. I., Leshansky A. M.. Dynamics and Polarization of Superparamagnetic Chiral Nanomotors in a Rotating Magnetic Field. Nanoscale. 2014;6(20):12142–12150. doi: 10.1039/C4NR02953D. PubMed DOI
Yan X., Zhou Q., Yu J., Xu T., Deng Y., Tang T., Feng Q., Bian L., Zhang Y., Ferreira A.. et al. Magnetite Nanostructured Porous Hollow Helical Microswimmers for Targeted Delivery. Advanced Functional Materials. 2015;25(33):5333–5342. doi: 10.1002/adfm.201502248. DOI
Peyer, K. E. ; Siringil, E. C. ; Zhang, L. ; Suter, M. ; Nelson, B. J. . Bacteria-Inspired Magnetic Polymer Composite Microrobots. In Biomimetic and Biohybrid Systems; Lepora, N. F. ; Mura, A. ; Krapp, H. G. ; Verschure, P. F. M. J. ; Prescott, T. J. , Eds.; Springer Berlin Heidelberg, 2013; pp 216-227.
Leshansky A. M., Morozov K. I., Rubinstein B. Y.. Shape-Controlled Anisotropy of Superparamagnetic Micro-/Nanohelices. Nanoscale. 2016;8(29):14127–14138. doi: 10.1039/C6NR01803C. PubMed DOI
Walker D., Kübler M., Morozov K. I., Fischer P., Leshansky A. M.. Optimal Length of Low Reynolds Number Nanopropellers. Nano Letters. 2015;15(7):4412–4416. doi: 10.1021/acs.nanolett.5b01925. PubMed DOI
Cheang U. K., Meshkati F., Kim D., Kim M. J., Fu H. C.. Minimal Geometric Requirements for Micropropulsion via Magnetic Rotation. Physical Review E. 2014;90(3):033007. doi: 10.1103/PhysRevE.90.033007. PubMed DOI
Cheang U. K., Kim M. J.. Self-Assembly of Robotic Micro- and Nanoswimmers Using Magnetic Nanoparticles. Journal of Nanoparticle Research. 2015;17(3):145. doi: 10.1007/s11051-014-2737-z. DOI
Morozov K. I., Mirzae Y., Kenneth O., Leshansky A. M.. Dynamics of Arbitrary Shaped Propellers Driven by a Rotating Magnetic Field. Physical Review Fluids. 2017;2(4):044202. doi: 10.1103/PhysRevFluids.2.044202. DOI
Sachs J., Morozov K. I., Kenneth O., Qiu T., Segreto N., Fischer P., Leshansky A. M.. Role of Symmetry in Driven Propulsion at Low Reynolds Number. Physical Review E. 2018;98(6):063105. doi: 10.1103/PhysRevE.98.063105. DOI
Tottori S., Nelson B. J.. Controlled Propulsion of Two-Dimensional Microswimmers in a Precessing Magnetic Field. Small. 2018;14(24):1800722. doi: 10.1002/smll.201800722. PubMed DOI
Cohen K.-J., Rubinstein B. Y., Kenneth O., Leshansky A. M.. Unidirectional Propulsion of Planar Magnetic Nanomachines. Physical Review Applied. 2019;12(1):014025. doi: 10.1103/PhysRevApplied.12.014025. DOI
Duygu Y. C., Cheang U. K., Leshansky A. M., Kim M. J.. Propulsion of Planar V-Shaped Microswimmers in a Conically Rotating Magnetic Field. Advanced Intelligent Systems. 2024;6(1):2300496. doi: 10.1002/aisy.202300496. DOI
Gao W., Sattayasamitsathit S., Manesh K. M., Weihs D., Wang J.. Magnetically Powered Flexible Metal Nanowire Motors. Journal of the American Chemical Society. 2010;132(41):14403–14405. doi: 10.1021/ja1072349. PubMed DOI
Pak O. S., Gao W., Wang J., Lauga E.. High-Speed Propulsion of Flexible Nanowire Motors: Theory and Experiments. Soft Matter. 2011;7(18):8169–8181. doi: 10.1039/c1sm05503h. DOI
Mirzae Y., Rubinstein B. Y., Morozov K. I., Leshansky A. M.. Modeling Propulsion of Soft Magnetic Nanowires. Frontiers in Robotics and AI. 2020;7:na. doi: 10.3389/frobt.2020.595777. PubMed DOI PMC
Vach P. J., Fratzl P., Klumpp S., Faivre D.. Fast Magnetic Micropropellers with Random Shapes. Nano Letters. 2015;15(10):7064–7070. doi: 10.1021/acs.nanolett.5b03131. PubMed DOI PMC
Vach P. J., Brun N., Bennet M., Bertinetti L., Widdrat M., Baumgartner J., Klumpp S., Fratzl P., Faivre D.. Selecting for Function: Solution Synthesis of Magnetic Nanopropellers. Nano Letters. 2013;13(11):5373–5378. doi: 10.1021/nl402897x. PubMed DOI PMC
Mirzae Y., Dubrovski O., Kenneth O., Morozov K. I., Leshansky A. M.. Geometric Constraints and Optimization in Externally Driven Propulsion. Science Robotics. 2018;3(17):eaas8713. doi: 10.1126/scirobotics.aas8713. PubMed DOI
Morozov K. I., Leshansky A. M.. Towards Focusing of a Swarm of Magnetic Micro/Nanomotors. Physical Chemistry Chemical Physics. 2020;22(28):16407–16420. doi: 10.1039/D0CP01514H. PubMed DOI
Gutman E., Or Y.. Simple Model of a Planar Undulating Magnetic Microswimmer. Physical Review E. 2014;90(1):013012. doi: 10.1103/PhysRevE.90.013012. PubMed DOI
Jang B., Gutman E., Stucki N., Seitz B. F., Wendel-Garcia P. D., Newton T., Pokki J., Ergeneman O., Pane S., Or Y., Nelson B. J.. Undulatory Locomotion of Magnetic Multilink Nanoswimmers. Nano Letters. 2015;15(7):4829–4833. doi: 10.1021/acs.nanolett.5b01981. PubMed DOI
Li T., Li J., Morozov K. I., Wu Z., Xu T., Rozen I., Leshansky A. M., Li L., Wang J.. Highly Efficient Freestyle Magnetic Nanoswimmer. Nano Letters. 2017;17(8):5092–5098. doi: 10.1021/acs.nanolett.7b02383. PubMed DOI
Wang M., Wu T., Liu R., Zhang Z., Liu J.. Selective and Independent Control of Microrobots in a Magnetic Field: A Review. Engineering. 2023;24:21–38. doi: 10.1016/j.eng.2023.02.011. DOI
Zhou J., Li M., Li N., Zhou Y., Wang J., Jiao N.. System Integration of Magnetic Medical Microrobots: From Design to Control. Frontiers in Robotics and AI. 2023;10:na. doi: 10.3389/frobt.2023.1330960. PubMed DOI PMC
Son D., Dong X., Sitti M.. A Simultaneous Calibration Method for Magnetic Robot Localization and Actuation Systems. IEEE Transactions on Robotics. 2019;35(2):343–352. doi: 10.1109/TRO.2018.2885218. DOI
Shao Y., Fahmy A., Li M., Li C., Zhao W., Sienz J.. Study on Magnetic Control Systems of Micro-Robots. Frontiers in Neuroscience. 2021;15:na. doi: 10.3389/fnins.2021.736730. PubMed DOI PMC
McCaslin M. F.. An Improved Hand Electromagnet for Eye Surgery. Transactions of the American Ophthalmological Society. 1958;56:571–605. PubMed PMC
Ginsberg D. M., Melchner M. J.. Optimum Geometry of Saddle Shaped Coils for Generating a Uniform Magnetic Field. Review of Scientific Instruments. 1970;41(1):122–123. doi: 10.1063/1.1684235. DOI
Ha Y. H., Han B. H., Lee S. Y.. Magnetic Propulsion of a Magnetic Device Using Three Square-Helmholtz Coils and a Square-Maxwell Coil. Medical & Biological Engineering & Computing. 2010;48(2):139–145. doi: 10.1007/s11517-009-0574-5. PubMed DOI
Petruska, A. J. ; Brink, J. B. ; Abbott, J. J. . First Demonstration of a Modular and Reconfigurable Magnetic-Manipulation System. In 2015 IEEE International Conference on Robotics and Automation (ICRA), 26-30 May 2015, 2015; pp 149-155. 10.1109/ICRA.2015.7138993. DOI
Mahoney A. W., Abbott J. J.. Five-Degree-of-Freedom Manipulation of an Untethered Magnetic Device in Fluid Using a Single Permanent Magnet with Application in Stomach Capsule Endoscopy. The International Journal of Robotics Research. 2016;35(1-3):129–147. doi: 10.1177/0278364914558006. DOI
Salmanipour, S. ; Diller, E. . Eight-Degrees-of-Freedom Remote Actuation of Small Magnetic Mechanisms. In 2018 IEEE International Conference on Robotics and Automation (ICRA), 21-25 May 2018, 2018; pp 3608-3613. 10.1109/ICRA.2018.8461026. DOI
Ryan P., Diller E.. Magnetic Actuation for Full Dexterity Microrobotic Control Using Rotating Permanent Magnets. IEEE Transactions on Robotics. 2017;33(6):1398–1409. doi: 10.1109/TRO.2017.2719687. DOI
Grady M. S., Howard M. A., Dacey R. G., Blume W., Lawson M., Werp P., Ritter R. C.. Experimental Study of the Magnetic Stereotaxis System for Catheter Manipulation within the Brain. Journal of Neurosurgery. 2000;93(2):282–288. doi: 10.3171/jns.2000.93.2.0282. PubMed DOI
Sikorski J., Denasi A., Bucchi G., Scheggi S., Misra S.. Vision-Based 3-D Control of Magnetically Actuated Catheter Using Bigmagan Array of Mobile Electromagnetic Coils. IEEE/ASME Transactions on Mechatronics. 2019;24(2):505–516. doi: 10.1109/TMECH.2019.2893166. DOI
Yang, L. ; Du, X. ; Yu, E. ; Jin, D. ; Zhang, L. . Deltamag: An Electromagnetic Manipulation System with Parallel Mobile Coils. In 2019 International Conference on Robotics and Automation (ICRA), 20-24 May 2019, 2019; pp 9814-9820. 10.1109/ICRA.2019.8793543. DOI
Boehler Q., Gervasoni S., Charreyron S. L., Chautems C., Nelson B. J.. On the Workspace of Electromagnetic Navigation Systems. IEEE Transactions on Robotics. 2023;39(1):791–807. doi: 10.1109/TRO.2022.3197107. DOI
Lee H., Purdon A.M., Westervelt R.M.. Micromanipulation of Biological Systems with Microelectromagnets. IEEE Transactions on Magnetics. 2004;40(4):2991–2993. doi: 10.1109/TMAG.2004.829179. DOI
Choi H., Choi J., Jang G., Park J.-o., Park S.. Two-Dimensional Actuation of a Microrobot with a Stationary Two-Pair Coil system. Smart Materials and Structures. 2009;18(5):055007. doi: 10.1088/0964-1726/18/5/055007. DOI
Wissner E., Kuck K.-H.. Catheter Ablation of Atrial Fibrillation: An Update for 2011. Interventional Cardiology. 2011;3(4):493–502. doi: 10.2217/ica.11.47. DOI
Keller, H. ; Juloski, A. ; Kawano, H. ; Bechtold, M. ; Kimura, A. ; Takizawa, H. ; Kuth, R. . Method for Navigation and Control of a Magnetically Guided Capsule Endoscope in the Human Stomach. In 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), 24-27 June 2012, 2012; pp 859-865. 10.1109/BioRob.2012.6290795. DOI
Choi H., Cha K., Choi J., Jeong S., Jeon S., Jang G., Park J.-o., Park S.. Ema System with Gradient and Uniform Saddle Coils for 3D Locomotion of Microrobot. Sensors and Actuators A: Physical. 2010;163(1):410–417. doi: 10.1016/j.sna.2010.08.014. DOI
Kratochvil, B. E. ; Kummer, M. P. ; Erni, S. ; Borer, R. ; Frutiger, D. R. ; Schürle, S. ; Nelson, B. J. . Minimag: A Hemispherical Electromagnetic System for 5-Dof Wireless Micromanipulation. In Experimental Robotics: The 12th International Symposium on Experimental Robotics, Khatib, O. ; Kumar, V. ; Sukhatme, G. Eds.; Springer Berlin Heidelberg, 2014; pp 317-329.
Liao Z., Hou X., Lin-Hu E.-Q., Sheng J.-Q., Ge Z.-Z., Jiang B., Hou X.-H., Liu J.-Y., Li Z., Huang Q.-Y.. et al. Accuracy of Magnetically Controlled Capsule Endoscopy, Compared with Conventional Gastroscopy, in Detection Of gastric Diseases. Clinical Gastroenterology and Hepatology. 2016;14(9):1266–1273. doi: 10.1016/j.cgh.2016.05.013. PubMed DOI
Chautems, C. ; Nelson, B. J. . The Tethered Magnet: Force and 5-Dof Pose Control for Cardiac Ablation. In 2017 IEEE International Conference on Robotics and Automation (ICRA), 29 May-3 June 2017, 2017; pp 4837-4842. 10.1109/ICRA.2017.7989562. DOI
Hwang J., Kim J.-y., Choi H.. A Review of Magnetic Actuation Systems and Magnetically Actuated Guidewire- and Catheter-Based Microrobots for Vascular Interventions. Intelligent Service Robotics. 2020;13(1):1–14. doi: 10.1007/s11370-020-00311-0. DOI
Ibsen S., Tong A., Schutt C., Esener S., Chalasani S. H.. Sonogenetics Is a Non-Invasive Approach to Activating Neurons in Caenorhabditis Elegans. Nature Communications. 2015;6(1):8264. doi: 10.1038/ncomms9264. PubMed DOI PMC
Hahmann J., Ishaqat A., Lammers T., Herrmann A.. Sonogenetics for Monitoring and Modulating Biomolecular Function by Ultrasound. Angewandte Chemie International Edition. 2024;63(13):e202317112. doi: 10.1002/anie.202317112. PubMed DOI
Pokhrel N., Vabbina P. K., Pala N.. Sonochemistry: Science and Engineering. Ultrasonics Sonochemistry. 2016;29:104–128. doi: 10.1016/j.ultsonch.2015.07.023. PubMed DOI
Brugger M. S., Baumgartner K., Mauritz S. C. F., Gerlach S. C., Röder F., Schlosser C., Fluhrer R., Wixforth A., Westerhausen C.. Vibration Enhanced Cell Growth Induced by Surface Acoustic Waves as in vitro Wound-Healing Model. Proceedings of the National Academy of Sciences. 2020;117(50):31603–31613. doi: 10.1073/pnas.2005203117. PubMed DOI PMC
Rwei A. Y., Paris J. L., Wang B., Wang W., Axon C. D., Vallet-Regí M., Langer R., Kohane D. S.. Ultrasound-Triggered Local Anaesthesia. Nature Biomedical Engineering. 2017;1(8):644–653. doi: 10.1038/s41551-017-0117-6. PubMed DOI PMC
Christensen-Jeffries K., Browning R. J., Tang M. X., Dunsby C., Eckersley R. J.. In Vivo Acoustic Super-Resolution and Super-Resolved Velocity Mapping Using Microbubbles. IEEE Transactions on Medical Imaging. 2015;34(2):433–440. doi: 10.1109/TMI.2014.2359650. PubMed DOI
Carpentier A., Canney M., Vignot A., Reina V., Beccaria K., Horodyckid C., Karachi C., Leclercq D., Lafon C., Chapelon J.-Y.. et al. Clinical Trial of Blood-Brain Barrier Disruption by Pulsed Ultrasound. Science Translational Medicine. 2016;8(343):343re342. doi: 10.1126/scitranslmed.aaf6086. PubMed DOI
Ozcelik A., Rufo J., Guo F., Gu Y., Li P., Lata J., Huang T. J.. Acoustic Tweezers for the Life Sciences. Nature Methods. 2018;15(12):1021–1028. doi: 10.1038/s41592-018-0222-9. PubMed DOI PMC
Maeng S. K., Sharma S. K., Lekkerkerker-Teunissen K., Amy G. L.. Occurrence and Fate of Bulk Organic Matter and Pharmaceutically Active Compounds in Managed Aquifer Recharge: A Review. Water Research. 2011;45(10):3015–3033. doi: 10.1016/j.watres.2011.02.017. PubMed DOI
Voß J., Wittkowski R.. Orientation-Dependent Propulsion of Triangular Nano- and Microparticles by a Traveling Ultrasound Wave. ACS Nano. 2022;16(3):3604–3612. doi: 10.1021/acsnano.1c02302. PubMed DOI
Voß J., Wittkowski R.. Dependence of the Acoustic Propulsion of Nano- and Microcones on Their Orientation and Aspect Ratio. Scientific Reports. 2023;13(1):12858. doi: 10.1038/s41598-023-39231-1. PubMed DOI PMC
Wu Z., Li T., Li J., Gao W., Xu T., Christianson C., Gao W., Galarnyk M., He Q., Zhang L.. et al. Turning Erythrocytes into Functional Micromotors. ACS Nano. 2014;8(12):12041–12048. doi: 10.1021/nn506200x. PubMed DOI PMC
Balk A. L., Mair L. O., Mathai P. P., Patrone P. N., Wang W., Ahmed S., Mallouk T. E., Liddle J. A., Stavis S. M.. Kilohertz Rotation of Nanorods Propelled by Ultrasound, Traced by Microvortex Advection of Nanoparticles. ACS Nano. 2014;8(8):8300–8309. doi: 10.1021/nn502753x. PubMed DOI
Collis J. F., Chakraborty D., Sader J. E.. Autonomous Propulsion of Nanorods Trapped in an Acoustic Field. Journal of Fluid Mechanics. 2017;825:29–48. doi: 10.1017/jfm.2017.381. DOI
Voß J., Wittkowski R.. Acoustically Propelled Nano- and Microcones: Fast Forward and Backward Motion. Nanoscale Advances. 2021;4(1):281–293. doi: 10.1039/D1NA00655J. PubMed DOI PMC
Voß J., Wittkowski R.. On the Shape-Dependent Propulsion of Nano- and Microparticles by Traveling Ultrasound Waves. Nanoscale Advances. 2020;2(9):3890–3899. doi: 10.1039/D0NA00099J. PubMed DOI PMC
Voß J., Wittkowski R.. Propulsion of Bullet- and Cup-Shaped Nano- and Microparticles by Traveling Ultrasound Waves. Physics of Fluids. 2022;34(5):052007. doi: 10.1063/5.0089367. DOI
Voß J., Wittkowski R.. Acoustic Propulsion of Nano- and Microcones: Dependence on the Viscosity of the Surrounding Fluid. Langmuir. 2022;38(35):10736–10748. doi: 10.1021/acs.langmuir.2c00603. PubMed DOI
Garcia-Gradilla V., Orozco J., Sattayasamitsathit S., Soto F., Kuralay F., Pourazary A., Katzenberg A., Gao W., Shen Y., Wang J.. Functionalized Ultrasound-Propelled Magnetically Guided Nanomotors: Toward Practical Biomedical Applications. ACS Nano. 2013;7(10):9232–9240. doi: 10.1021/nn403851v. PubMed DOI
Valdez-Garduño M., Leal-Estrada M., Oliveros-Mata E. S., Sandoval-Bojorquez D. I., Soto F., Wang J., Garcia-Gradilla V.. Density Asymmetry Driven Propulsion of Ultrasound-Powered Janus Micromotors. Advanced Functional Materials. 2020;30(50):2004043. doi: 10.1002/adfm.202004043. DOI
McNeill J. M., Choi Y. C., Cai Y.-Y., Guo J., Nadal F., Kagan C. R., Mallouk T. E.. Three-Dimensionally Complex Phase Behavior and Collective Phenomena in Mixtures of Acoustically Powered Chiral Microspinners. ACS Nano. 2023;17(8):7911–7919. doi: 10.1021/acsnano.3c01966. PubMed DOI
Janiak J., Li Y., Ferry Y., Doinikov A. A., Ahmed D.. Acoustic Microbubble Propulsion, Train-Like Assembly and Cargo Transport. Nature Communications. 2023;14(1):4705. doi: 10.1038/s41467-023-40387-7. PubMed DOI PMC
Esteban-Fernández de Ávila B., Ramírez-Herrera D. E., Campuzano S., Angsantikul P., Zhang L., Wang J.. Nanomotor-Enabled pH-Responsive Intracellular Delivery of Caspase-3: Toward Rapid Cell Apoptosis. ACS Nano. 2017;11(6):5367–5374. doi: 10.1021/acsnano.7b01926. PubMed DOI PMC
Jooss V. M., Bolten J. S., Huwyler J., Ahmed D.. In Vivo Acoustic Manipulation of Microparticles in Zebrafish Embryos. Science Advances. 2022;8(12):eabm2785. doi: 10.1126/sciadv.abm2785. PubMed DOI PMC
Doinikov A. A.. Translational Motion of a Bubble Undergoing Shape Oscillations. Journal of Fluid Mechanics. 1999;501:1–24. doi: 10.1017/S0022112003006220. DOI
Doinikov A. A.. Translational Motion of Two Interacting Bubbles in a Strong Acoustic Field. Physical Review E. 2001;64(2):026301. doi: 10.1103/PhysRevE.64.026301. PubMed DOI
Fan Z., Liu H., Mayer M., Deng C. X.. Spatiotemporally Controlled Single Cell Sonoporation. Proceedings of the National Academy of Sciences. 2012;109(41):16486–16491. doi: 10.1073/pnas.1208198109. PubMed DOI PMC
Shakya G., Cattaneo M., Guerriero G., Prasanna A., Fiorini S., Supponen O.. Ultrasound-Responsive Microbubbles and Nanodroplets: A Pathway to Targeted Drug Delivery. Advanced Drug Delivery Reviews. 2024;206:115178. doi: 10.1016/j.addr.2023.115178. PubMed DOI
Bertin N., Spelman T. A., Stephan O., Gredy L., Bouriau M., Lauga E., Marmottant P.. Propulsion of Bubble-Based Acoustic Microswimmers. Physical Review Applied. 2015;4(6):064012. doi: 10.1103/PhysRevApplied.4.064012. DOI
Aghakhani A., Yasa O., Wrede P., Sitti M.. Acoustically Powered Surface-Slipping Mobile Microrobots. Proceedings of the National Academy of Sciences. 2020;117(7):3469–3477. doi: 10.1073/pnas.1920099117. PubMed DOI PMC
Ren L., Nama N., McNeill J. M., Soto F., Yan Z., Liu W., Wang W., Wang J., Mallouk T. E.. 3D Steerable, Acoustically Powered Microswimmers for Single-Particle Manipulation. Science Advances. 2019;5(10):eaax3084. doi: 10.1126/sciadv.aax3084. PubMed DOI PMC
Ahmed D., Lu M., Nourhani A., Lammert P. E., Stratton Z., Muddana H. S., Crespi V. H., Huang T. J.. Selectively Manipulable Acoustic-Powered Microswimmers. Scientific Reports. 2015;5(1):9744. doi: 10.1038/srep09744. PubMed DOI PMC
Aghakhani A., Pena-Francesch A., Bozuyuk U., Cetin H., Wrede P., Sitti M.. High Shear Rate Propulsion of Acoustic Microrobots in Complex Biological Fluids. Science Advances. 2022;8(10):eabm5126. doi: 10.1126/sciadv.abm5126. PubMed DOI PMC
Qiu T., Palagi S., Mark A. G., Melde K., Adams F., Fischer P.. Wireless Actuation with Functional Acoustic Surfaces. Applied Physics Letters. 2016;109(19):191602. doi: 10.1063/1.4967194. DOI
Shi, Z. ; Zhang, Z. ; Ahmed, D. . Ultrasound-Driven Programmable Artificial Muscles; bioRxiv Preprint, 2024. 10.1101/2024.01.08.574699. DOI
Läubli N. F., Gerlt M. S., Wüthrich A., Lewis R. T. M., Shamsudhin N., Kutay U., Ahmed D., Dual J., Nelson B. J.. Embedded Microbubbles for Acoustic Manipulation of Single Cells and Microfluidic Applications. Analytical Chemistry. 2021;93(28):9760–9770. doi: 10.1021/acs.analchem.1c01209. PubMed DOI PMC
Dolev A., Kaynak M., Sakar M. S.. Dynamics of Entrapped Microbubbles with Multiple Openings. Physics of Fluids. 2022;34(1):012012. doi: 10.1063/5.0075876. DOI
Lo W.-C., Fan C.-H., Ho Y.-J., Lin C.-W., Yeh C.-K.. Tornado-Inspired Acoustic Vortex Tweezer for Trapping and Manipulating Microbubbles. Proceedings of the National Academy of Sciences. 2021;118(4):e2023188118. doi: 10.1073/pnas.2023188118. PubMed DOI PMC
Lee J. G., Raj R. R., Thome C. P., Day N. B., Martinez P., Bottenus N., Gupta A., Wyatt Shields IV C.. Bubble-Based Microrobots with Rapid Circular Motions for Epithelial Pinning and Drug Delivery. Small. 2023;19(32):2300409. doi: 10.1002/smll.202300409. PubMed DOI PMC
Fonseca A. D. C., Kohler T., Ahmed D.. Ultrasound-Controlled Swarmbots under Physiological Flow Conditions. Advanced Materials Interfaces. 2022;9(26):2200877. doi: 10.1002/admi.202200877. DOI
Yang Y., Yang Y., Liu D., Wang Y., Lu M., Zhang Q., Huang J., Li Y., Ma T., Yan F., Zheng H.. In-Vivo Programmable Acoustic Manipulation of Genetically Engineered Bacteria. Nature Communications. 2023;14(1):3297. doi: 10.1038/s41467-023-38814-w. PubMed DOI PMC
Ahmed D., Baasch T., Jang B., Pane S., Dual J., Nelson B. J.. Artificial Swimmers Propelled by Acoustically Activated Flagella. Nano Letters. 2016;16(8):4968–4974. doi: 10.1021/acs.nanolett.6b01601. PubMed DOI
Doinikov A. A., Gerlt M. S., Dual J.. Acoustic Radiation Forces Produced by Sharp-Edge Structures in Microfluidic Systems. Physical Review Letters. 2020;124(15):154501. doi: 10.1103/PhysRevLett.124.154501. PubMed DOI
Huang P.-H., Xie Y., Ahmed D., Rufo J., Nama N., Chen Y., Chan C. Y., Huang T. J.. An Acoustofluidic Micromixer Based on Oscillating Sidewall Sharp-Edges. Lab on a Chip. 2013;13(19):3847–3852. doi: 10.1039/c3lc50568e. PubMed DOI PMC
Kaynak M., Ozcelik A., Nourhani A., Lammert P. E., Crespi V. H., Huang T. J.. Acoustic Actuation of Bioinspired Microswimmers. Lab on a Chip. 2017;17(3):395–400. doi: 10.1039/C6LC01272H. PubMed DOI PMC
Dillinger C., Nama N., Ahmed D.. Ultrasound-Activated Ciliary Bands for Microrobotic Systems Inspired by Starfish. Nature Communications. 2021;12(1):6455. doi: 10.1038/s41467-021-26607-y. PubMed DOI PMC
Deng Y., Paskert A., Zhang Z., Wittkowski R., Ahmed D.. An Acoustically Controlled Helical Microrobot. Science Advances. 2023;9(38):eadh5260. doi: 10.1126/sciadv.adh5260. PubMed DOI PMC
Zhang Z., Shi Z., Ahmed D.. Sonotransformers: Transformable Acoustically Activated Wireless Microscale Machines. Proceedings of the National Academy of Sciences. 2024;121(6):e2314661121. doi: 10.1073/pnas.2314661121. PubMed DOI PMC
Bezares-Calderón L. A., Berger J., Jékely G.. Diversity of Cilia-Based Mechanosensory Systems and Their Functions in Marine Animal Behaviour. Philosophical Transactions of the Royal Society B: Biological Sciences. 2020;375(1792):20190376. doi: 10.1098/rstb.2019.0376. PubMed DOI PMC
Ahmed D., Baasch T., Blondel N., Läubli N., Dual J., Nelson B. J.. Neutrophil-Inspired Propulsion in a Combined Acoustic and Magnetic Field. Nature Communications. 2017;8(1):770. doi: 10.1038/s41467-017-00845-5. PubMed DOI PMC
Durrer J., Agrawal P., Ozgul A., Neuhauss S. C. F., Nama N., Ahmed D.. A Robot-Assisted Acoustofluidic End Effector. Nature Communications. 2022;13(1):6370. doi: 10.1038/s41467-022-34167-y. PubMed DOI PMC
Zhang Z., Cao Y., Caviglia S., Agrawal P., Neuhauss S. C. F., Ahmed D.. A Vibrating Capillary for Ultrasound Rotation Manipulation of Zebrafish Larvae. Lab on a Chip. 2024;24(4):764–775. doi: 10.1039/D3LC00817G. PubMed DOI PMC
Zhang Z., Allegrini L. K., Yanagisawa N., Deng Y., Neuhauss S. C. F., Ahmed D.. Sonorotor: An Acoustic Rotational Robotic Platform for Zebrafish Embryos and Larvae. IEEE Robotics and Automation Letters. 2023;8(5):2598–2605. doi: 10.1109/LRA.2023.3257683. DOI
Mohanty S., Paul A., Matos P. M., Zhang J., Sikorski J., Misra S.. Ceflowbot: A Biomimetic Flow-Driven Microrobot That Navigates under Magneto-Acoustic Fields. Small. 2022;18(9):2105829. doi: 10.1002/smll.202105829. PubMed DOI
Wang Q. Q., Chan K. F., Schweizer K., Du X. Z., Jin D. D., Yu S. C. H., Nelson B. J., Zhang L.. Ultrasound Doppler-Guided Real-Time Navigation of a Magnetic Microswarm for Active Endovascular Delivery. Science Advances. 2021;7(9):eabe5914. doi: 10.1126/sciadv.abe5914. PubMed DOI PMC
Ahmed D., Sukhov A., Hauri D., Rodrigue D., Maranta G., Harting J., Nelson B. J.. Bioinspired Acousto-Magnetic Microswarm Robots with Upstream Motility. Nature Machine Intelligence. 2021;3(2):116–124. doi: 10.1038/s42256-020-00275-x. PubMed DOI PMC
Ahmed D., Dillinger C., Hong A., Nelson B. J.. Artificial Acousto-Magnetic Soft Microswimmers. Advanced Materials Technologies. 2017;2(7):1700050. doi: 10.1002/admt.201700050. DOI
Zhang Z., Sukhov A., Harting J., Malgaretti P., Ahmed D.. Rolling Microswarms Along Acoustic Virtual Walls. Nature Communications. 2022;13(1):7347. doi: 10.1038/s41467-022-35078-8. PubMed DOI PMC
Dillinger C., Knipper J., Nama N., Ahmed D.. Steerable Acoustically Powered Starfish-Inspired Microrobot. Nanoscale. 2024;16(3):1125–1134. doi: 10.1039/D3NR03516F. PubMed DOI PMC
Kobatake S., Takami S., Muto H., Ishikawa T., Irie M.. Rapid and Reversible Shape Changes of Molecular Crystals on Photoirradiation. Nature. 2007;446(7137):778–781. doi: 10.1038/nature05669. PubMed DOI
Iamsaard S., Aßhoff S. J., Matt B., Kudernac T., Cornelissen J. J. L. M., Fletcher S. P., Katsonis N.. Conversion of Light into Macroscopic Helical Motion. Nature Chemistry. 2014;6(3):229–235. doi: 10.1038/nchem.1859. PubMed DOI
Hu Y., Wu G., Lan T., Zhao J., Liu Y., Chen W.. A Graphene-Based Bimorph Structure for Design of High Performance Photoactuators. Advanced Materials. 2015;27(47):7867–7873. doi: 10.1002/adma.201502777. PubMed DOI
Palagi S., Mark A. G., Reigh S. Y., Melde K., Qiu T., Zeng H., Parmeggiani C., Martella D., Sanchez-Castillo A., Kapernaum N.. et al. Structured Light Enables Biomimetic Swimming and Versatile Locomotion of Photoresponsive Soft Microrobots. Nature Materials. 2016;15(6):647–653. doi: 10.1038/nmat4569. PubMed DOI
Ashkin A., Dziedzic J. M., Yamane T.. Optical Trapping and Manipulation of Single Cells Using Infrared Laser Beams. Nature. 1987;330(6150):769–771. doi: 10.1038/330769a0. PubMed DOI
Terray A., Oakey J., Marr D. W. M.. Microfluidic Control Using Colloidal Devices. Science. 2002;296(5574):1841–1844. doi: 10.1126/science.1072133. PubMed DOI
Abbondanzieri E. A., Greenleaf W. J., Shaevitz J. W., Landick R., Block S. M.. Direct Observation of Base-Pair Stepping by RNA Polymerase. Nature. 2005;438(7067):460–465. doi: 10.1038/nature04268. PubMed DOI PMC
Grigorenko A. N., Roberts N. W., Dickinson M. R., Zhang Y.. Nanometric Optical Tweezers Based on Nanostructured Substrates. Nature Photonics. 2008;2(6):365–370. doi: 10.1038/nphoton.2008.78. DOI
Ashkin A.. Acceleration and Trapping of Particles by Radiation Pressure. Physical Review Letters. 1970;24(4):156–159. doi: 10.1103/PhysRevLett.24.156. DOI
Köhler J., Ksouri S. I., Esen C., Ostendorf A.. Optical Screw-Wrench for Microassembly. Microsystems & Nanoengineering. 2017;3(1):16083. doi: 10.1038/micronano.2016.83. PubMed DOI PMC
Iványi G. T., Nemes B., Gróf I., Fekete T., Kubacková J., Tomori Z., Bánó G., Vizsnyiczai G., Kelemen L.. Optically Actuated Soft Microrobot Family for Single-Cell Manipulation. Advanced Materials. 2024;36(32):2401115. doi: 10.1002/adma.202401115. PubMed DOI
Leach J., Mushfique H., di Leonardo R., Padgett M., Cooper J.. An Optically Driven Pump for Microfluidics. Lab on a Chip. 2006;6(6):735–739. doi: 10.1039/b601886f. PubMed DOI
Ladavac K., Grier D. G.. Microoptomechanical Pumps Assembled and Driven by Holographic Optical Vortex Arrays. Optics Express. 2004;12(6):1144–1149. doi: 10.1364/OPEX.12.001144. PubMed DOI
Aubret A., Martinet Q., Palacci J.. Metamachines of Pluripotent Colloids. Nature Communications. 2021;12(1):6398. doi: 10.1038/s41467-021-26699-6. PubMed DOI PMC
Martinet Q., Aubret A., Palacci J.. Rotation Control, Interlocking, and Self-Positioning of Active Cogwheels. Advanced Intelligent Systems. 2023;5(1):2200129. doi: 10.1002/aisy.202200129. DOI
Diwakar N. M., Kunti G., Miloh T., Yossifon G., Velev O. D.. Ac Electrohydrodynamic Propulsion and Rotation of Active Particles of Engineered Shape and Asymmetry. Current Opinion in Colloid & Interface Science. 2022;59:101586. doi: 10.1016/j.cocis.2022.101586. DOI
Yan J., Han M., Zhang J., Xu C., Luijten E., Granick S.. Reconfiguring Active Particles by Electrostatic imbalance. Nature Materials. 2016;15(10):1095–1099. doi: 10.1038/nmat4696. PubMed DOI
Huo X., Wu Y., Boymelgreen A., Yossifon G.. Analysis of Cargo Loading Modes and Capacity of an Electrically-Powered Active Carrier. Langmuir. 2020;36(25):6963–6970. doi: 10.1021/acs.langmuir.9b03036. PubMed DOI
Wu Y., Fu A., Yossifon G.. Active Particle Based Selective Transport and Release of Cell Organelles and Mechanical Probing of a Single Nucleus. Small. 2020;16(22):1906682. doi: 10.1002/smll.201906682. PubMed DOI
Wu Y., Fu A., Yossifon G.. Micromotor-Based Localized Electroporation and Gene Transfection of Mammalian Cells. Proceedings of the National Academy of Sciences. 2021;118(38):e2106353118. doi: 10.1073/pnas.2106353118. PubMed DOI PMC
Velev O. D., Gangwal S., Petsev D. N.. Particle-Localized Ac and Dc Manipulation and Electrokinetics. Annual Reports Section "C" (Physical Chemistry) 2009;105(0):213–246. doi: 10.1039/b803015b. DOI
Harraq A. A., Choudhury B. D., Bharti B.. Field-Induced Assembly and Propulsion of Colloids. Langmuir. 2022;38(10):3001–3016. doi: 10.1021/acs.langmuir.1c02581. PubMed DOI PMC
Bazant M. Z.. Electrokinetics meets Electrohydrodynamics. Journal of Fluid Mechanics. 2015;782:1–4. doi: 10.1017/jfm.2015.416. DOI
Ristenpart W. D., Aksay I. A., Saville D. A.. Electrohydrodynamic Flow around a Colloidal Particle near an Electrode with an Oscillating Potential. Journal of Fluid Mechanics. 2007;575:83–109. doi: 10.1017/S0022112006004368. DOI
Yang X., Wu N.. Change the Collective Behaviors of Colloidal Motors by Tuning Electrohydrodynamic Flow at the Subparticle Level. Langmuir. 2018;34(3):952–960. doi: 10.1021/acs.langmuir.7b02793. PubMed DOI
Shields IV C. W., Han K., Ma F., Miloh T., Yossifon G., Velev O. D.. Supercolloidal Spinners: Complex Active Particles for Electrically Powered and Switchable Rotation. Advanced Functional Materials. 2018;28(35):1803465. doi: 10.1002/adfm.201803465. DOI
Peng C., Lazo I., Shiyanovskii S. V., Lavrentovich O. D.. Induced-Charge Electro-Osmosis around Metal and Janus Spheres in Water: Patterns of Flow and Breaking Symmetries. Physical Review E. 2014;90(5):051002. doi: 10.1103/PhysRevE.90.051002. PubMed DOI
Squires T. M., Bazant M. Z.. Induced-Charge Electro-Osmosis. Journal of Fluid Mechanics. 1999;509:217–252. doi: 10.1017/S0022112004009309. DOI
Squires T. M., Bazant M. Z.. Breaking Symmetries in Induced-Charge Electro-Osmosis and Electrophoresis. Journal of Fluid Mechanics. 2006;560:65–101. doi: 10.1017/S0022112006000371. DOI
Ohiri U., Shields C. W., Han K., Tyler T., Velev O. D., Jokerst N.. Reconfigurable Engineered Motile Semiconductor Microparticles. Nature Communications. 2018;9(1):1791. doi: 10.1038/s41467-018-04183-y. PubMed DOI PMC
Demirörs A. F., Stauffer A., Lauener C., Cossu J., Ramakrishna S. N., de Graaf J., Alcantara C. C. J., Pané S., Spencer N., Studart A. R.. Magnetic Propulsion of Colloidal Microrollers Controlled by Electrically Modulated Friction. Soft Matter. 2021;17(4):1037–1047. doi: 10.1039/D0SM01449D. PubMed DOI
Wu Y., Yakov S., Fu A., Yossifon G.. A Magnetically and Electrically Powered Hybrid Micromotor in Conductive Solutions: Synergistic Propulsion Effects and Label-Free Cargo Transport and Sensing. Advanced Science. 2023;10(8):2204931. doi: 10.1002/advs.202204931. PubMed DOI PMC
Han K., Shields IV C. W., Velev O. D.. Engineering of Self-Propelling Microbots and Microdevices Powered by Magnetic and Electric Fields. Advanced Functional Materials. 2018;28(25):1705953. doi: 10.1002/adfm.201705953. DOI
Berg H. C.. Motile Behavior of Bacteria. Physics Today. 2000;53(1):24–29. doi: 10.1063/1.882934. DOI
Traore M. A., Damico C. M., Behkam B.. Biomanufacturing and Self-Propulsion Dynamics of Nanoscale Bacteria-Enabled Autonomous Delivery Systems. Applied Physics Letters. 2014;105(17):173702. doi: 10.1063/1.4900641. DOI
Zhan Y., Fergusson A., McNally L. R., Davis R. M., Behkam B.. Robust and Repeatable Biofabrication of Bacteria-Mediated Drug Delivery Systems: Effect of Conjugation Chemistry, Assembly Process Parameters, and Nanoparticle Size. Advanced Intelligent Systems. 2022;4(3):2100135. doi: 10.1002/aisy.202100135. DOI
Behkam B., Sitti M.. Effect of Quantity and Configuration of Attached Bacteria on Bacterial Propulsion of Microbeads. Applied Physics Letters. 2008;93(22):223901. doi: 10.1063/1.3040318. DOI
Sahari A., Headen D., Behkam B.. Effect of Body Shape on the Motile Behavior of Bacteria-Powered Swimming Microrobots (Bacteriabots) Biomedical Microdevices. 2012;14(6):999–1007. doi: 10.1007/s10544-012-9712-1. PubMed DOI
Johnson R. E., Brokaw C. J.. Flagellar Hydrodynamics. A Comparison between Resistive-Force Theory and Slender-Body Theory. Biophysical Journal. 1979;25(1):113–127. doi: 10.1016/S0006-3495(79)85281-9. PubMed DOI PMC
Leaman E. J., Sahari A., Traore M. A., Geuther B. Q., Morrow C. M., Behkam B.. Data-Driven Statistical Modeling of the Emergent Behavior of Biohybrid Microrobots. APL Bioengineering. 2020;4(1):016104. doi: 10.1063/1.5134926. PubMed DOI PMC
Li G., Ardekani A. M.. Collective Motion of Microorganisms in a Viscoelastic Fluid. Physical Review Letters. 2016;117(11):118001. doi: 10.1103/PhysRevLett.117.118001. PubMed DOI
Akolpoglu M. B., Alapan Y., Dogan N. O., Baltaci S. F., Yasa O., Aybar Tural G., Sitti M.. Magnetically Steerable Bacterial Microrobots Moving in 3D Biological Matrices for Stimuli-Responsive Cargo Delivery. Science Advances. 2022;8(28):eabo6163. doi: 10.1126/sciadv.abo6163. PubMed DOI PMC
Windes P., Tafti D. K., Behkam B.. A Computational Framework for Investigating Bacteria Transport in Microvasculature. Computer Methods in Biomechanics and Biomedical Engineering. 2023;26(4):438–449. doi: 10.1080/10255842.2022.2066473. PubMed DOI
Smith D. J., Gaffney E. A., Blake J. R., Kirkman-Brown J. C.. Human Sperm Accumulation near Surfaces: A Simulation Study. Journal of Fluid Mechanics. 2009;621:289–320. doi: 10.1017/S0022112008004953. DOI
Gray J., Hancock G. J.. The Propulsion of Sea-Urchin Spermatozoa. Journal of Experimental Biology. 1955;32(4):802–814. doi: 10.1242/jeb.32.4.802. DOI
Khalil I. S. M., Klingner A., Magdanz V., Striggow F., Medina-Sánchez M., Schmidt O. G., Misra S.. Modeling of Spermbots in a Viscous Colloidal Suspension. Advanced Theory and Simulations. 2019;2(8):1900072. doi: 10.1002/adts.201900072. DOI
Striggow F., Medina-Sánchez M., Auernhammer G. K., Magdanz V., Friedrich B. M., Schmidt O. G.. Sperm-Driven Micromotors Moving in Oviduct Fluid and Viscoelastic Media. Small. 2020;16(24):2000213. doi: 10.1002/smll.202000213. PubMed DOI
Striggow F., Nadporozhskaia L., Friedrich B. M., Schmidt O. G., Medina-Sánchez M.. Micromotor-Mediated Sperm Constrictions for Improved Swimming Performance. The European Physical Journal E. 2021;44(5):67. doi: 10.1140/epje/s10189-021-00050-9. PubMed DOI PMC
Magdanz V., Medina-Sánchez M., Schwarz L., Xu H., Elgeti J., Schmidt O. G.. Spermatozoa as Functional Components of Robotic Microswimmers. Advanced Materials. 2017;29(24):1606301. doi: 10.1002/adma.201606301. PubMed DOI
Khalil I. S. M., Magdanz V., Sanchez S., Schmidt O. G., Misra S.. Biocompatible, Accurate, and Fully Autonomous: A Sperm-Driven Micro-Bio-Robot. Journal of Micro-Bio Robotics. 2014;9(3):79–86. doi: 10.1007/s12213-014-0077-9. DOI
Magdanz V., Medina-Sánchez M., Chen Y., Guix M., Schmidt O. G.. How to Improve Spermbot Performance. Advanced Functional Materials. 2015;25(18):2763–2770. doi: 10.1002/adfm.201500015. DOI
Magdanz V., Guix M., Hebenstreit F., Schmidt O. G.. Dynamic Polymeric Microtubes for the Remote-Controlled Capture, Guidance, and Release of Sperm Cells. Advanced Materials. 2016;28(21):4084–4089. doi: 10.1002/adma.201505487. PubMed DOI
Ricotti L., Menciassi A.. Bio-Hybrid Muscle Cell-Based Actuators. Biomedical Microdevices. 2012;14(6):987–998. doi: 10.1007/s10544-012-9697-9. PubMed DOI
Cvetkovic C., Raman R., Chan V., Williams B. J., Tolish M., Bajaj P., Sakar M. S., Asada H. H., Saif M. T. A., Bashir R.. Three-Dimensionally Printed Biological Machines Powered by Skeletal Muscle. Proceedings of the National Academy of Sciences. 2014;111(28):10125–10130. doi: 10.1073/pnas.1401577111. PubMed DOI PMC
Guix M., Mestre R., Patiño T., De Corato M., Fuentes J., Zarpellon G., Sánchez S.. Biohybrid Soft Robots with Self-Stimulating Skeletons. Science Robotics. 2021;6(53):eabe7577. doi: 10.1126/scirobotics.abe7577. PubMed DOI
Nawroth J. C., Lee H., Feinberg A. W., Ripplinger C. M., McCain M. L., Grosberg A., Dabiri J. O., Parker K. K.. A Tissue-Engineered Jellyfish with Biomimetic Propulsion. Nature Biotechnology. 2012;30(8):792–797. doi: 10.1038/nbt.2269. PubMed DOI PMC
Park S.-J., Gazzola M., Park K. S., Park S., Di Santo V., Blevins E. L., Lind J. U., Campbell P. H., Dauth S., Capulli A. K.. et al. Phototactic Guidance of a Tissue-Engineered Soft-Robotic Ray. Science. 2016;353(6295):158–162. doi: 10.1126/science.aaf4292. PubMed DOI PMC
Lee K. Y., Park S.-J., Matthews D. G., Kim S. L., Marquez C. A., Zimmerman J. F., Ardoña H. A. M., Kleber A. G., Lauder G. V., Parker K. K.. An Autonomously Swimming Biohybrid Fish Designed with Human Cardiac Biophysics. Science. 2022;375(6581):639–647. doi: 10.1126/science.abh0474. PubMed DOI PMC
Kriegman S., Blackiston D., Levin M., Bongard J.. A Scalable Pipeline for Designing Reconfigurable Organisms. Proceedings of the National Academy of Sciences. 2020;117(4):1853–1859. doi: 10.1073/pnas.1910837117. PubMed DOI PMC
Blackiston D., Lederer E., Kriegman S., Garnier S., Bongard J., Levin M.. A Cellular Platform for the Development of Synthetic Living Machines. Science Robotics. 2021;6(52):eabf1571. doi: 10.1126/scirobotics.abf1571. PubMed DOI
Kriegman S., Blackiston D., Levin M., Bongard J.. Kinematic Self-Replication in Reconfigurable Organisms. Proceedings of the National Academy of Sciences. 2021;118(49):e2112672118. doi: 10.1073/pnas.2112672118. PubMed DOI PMC
Mirkovic T., Zacharia N. S., Scholes G. D., Ozin G. A.. Fuel for Thought: Chemically Powered Nanomotors out-Swim Nature’s Flagellated Bacteria. ACS Nano. 2010;4(4):1782–1789. doi: 10.1021/nn100669h. PubMed DOI
Patino T., Porchetta A., Jannasch A., Lladó A., Stumpp T., Schäffer E., Ricci F., Sánchez S.. Self-Sensing Enzyme-Powered Micromotors Equipped with pH-Responsive DNA Nanoswitches. Nano Letters. 2019;19(6):3440–3447. doi: 10.1021/acs.nanolett.8b04794. PubMed DOI
Alapan Y., Yigit B., Beker O., Demirörs A. F., Sitti M.. Shape-Encoded Dynamic Assembly of Mobile Micromachines. Nature Materials. 2019;18(11):1244–1251. doi: 10.1038/s41563-019-0407-3. PubMed DOI
Sridhar V., Podjaski F., Kröger J., Jiménez-Solano A., Park B.-W., Lotsch B. V., Sitti M.. Carbon Nitride-Based Light-Driven Microswimmers with Intrinsic Photocharging Ability. Proceedings of the National Academy of Sciences. 2020;117(40):24748–24756. doi: 10.1073/pnas.2007362117. PubMed DOI PMC
Sridhar V., Yildiz E., Rodriguez-Camargo A., Lyu X., Yao L., Wrede P., Aghakhani A., Akolpoglu B. M., Podjaski F., Lotsch B. V., Sitti M.. Designing Covalent Organic Framework-Based Light-Driven Microswimmers toward Therapeutic Applications. Advanced Materials. 2023;35(25):2301126. doi: 10.1002/adma.202301126. PubMed DOI PMC
Bunea A.-I., Martella D., Nocentini S., Parmeggiani C., Taboryski R., Wiersma D. S.. Light-Powered Microrobots: Challenges and Opportunities for Hard and Soft Responsive Microswimmers. Advanced Intelligent Systems. 2021;3(4):2000256. doi: 10.1002/aisy.202000256. DOI
Wrede P., Aghakhani A., Bozuyuk U., Yildiz E., Sitti M.. Acoustic Trapping and Manipulation of Hollow Microparticles under Fluid Flow Using a Single-Lens Focused Ultrasound Transducer. ACS Applied Materials & Interfaces. 2023;15(45):52224–52236. doi: 10.1021/acsami.3c11656. PubMed DOI PMC
Bozuyuk U., Aghakhani A., Alapan Y., Yunusa M., Wrede P., Sitti M.. Reduced Rotational Flows Enable the Translation of Surface-Rolling Microrobots in Confined Spaces. Nature Communications. 2022;13(1):6289. doi: 10.1038/s41467-022-34023-z. PubMed DOI PMC
Wang W., Mallouk T. E.. A Practical Guide to Analyzing and Reporting the Movement of Nanoscale Swimmers. ACS Nano. 2021;15(10):15446–15460. doi: 10.1021/acsnano.1c07503. PubMed DOI
Novotný F., Pumera M.. Nanomotor Tracking Experiments at the Edge of Reproducibility. Scientific Reports. 2019;9(1):13222. doi: 10.1038/s41598-019-49527-w. PubMed DOI PMC
Volpe G., Bechinger C., Cichos F., Golestanian R., Löwen H., Sperl M., Volpe G.. Active Matter in Space. npj Microgravity. 2022;8(1):54. doi: 10.1038/s41526-022-00230-7. PubMed DOI PMC
Gompper G., Winkler R. G., Speck T., Solon A., Nardini C., Peruani F., Löwen H., Golestanian R., Kaupp U. B., Alvarez L.. et al. The 2020 Motile Active Matter Roadmap. Journal of Physics: Condensed Matter. 2020;32(19):193001. doi: 10.1088/1361-648X/ab6348. PubMed DOI
Najafi A., Golestanian R.. Propulsion at Low Reynolds Number. Journal of Physics: Condensed Matter. 2005;17(14):S1203. doi: 10.1088/0953-8984/17/14/009. DOI
Ramaswamy S.. The Mechanics and Statistics of Active Matter. Annual Review of Condensed Matter Physics. 2010;1(1):323–345. doi: 10.1146/annurev-conmatphys-070909-104101. DOI
Araújo N. A. M., Janssen L. M. C., Barois T., Boffetta G., Cohen I., Corbetta A., Dauchot O., Dijkstra M., Durham W. M., Dussutour A.. et al. Steering Self-Organisation through Confinement. Soft Matter. 2023;19(9):1695–1704. doi: 10.1039/D2SM01562E. PubMed DOI PMC
Illien P., Golestanian R., Sen A.. ‘Fuelled’ Motion: Phoretic Motility and Collective Behaviour of Active Colloids. Chemical Society Reviews. 2017;46(18):5508–5518. doi: 10.1039/C7CS00087A. PubMed DOI
Golestanian, R. Phoretic Active Matter. In Active Matter and Nonequilibrium Statistical Physics: Lecture Notes of the Les Houches Summer School: Volume 112, September 2018, Tailleur, J. ; Gompper, G. ; Marchetti, M. C. ; Yeomans, J. M. ; Salomon, C. Eds.; Oxford University Press, 2022.
Golestanian R., Yeomans J. M., Uchida N.. Hydrodynamic Synchronization at Low Reynolds Number. Soft Matter. 2011;7(7):3074–3082. doi: 10.1039/c0sm01121e. DOI
Golestanian R.. Three-Sphere Low-Reynolds-Number Swimmer with a Cargo Container. The European Physical Journal E. 2008;25(1):1–4. doi: 10.1140/epje/i2007-10276-2. PubMed DOI
Golestanian R., Ajdari A.. Analytic Results for the Three-Sphere Swimmer at Low Reynolds Number. Physical Review E. 2008;77(3):036308. doi: 10.1103/PhysRevE.77.036308. PubMed DOI
Nasouri B., Golestanian R.. Exact Phoretic Interaction of Two Chemically Active Particles. Physical Review Letters. 2020;124(16):168003. doi: 10.1103/PhysRevLett.124.168003. PubMed DOI
Nasouri B., Golestanian R.. Exact Axisymmetric Interaction of Phoretically Active Janus Particles. Journal of Fluid Mechanics. 2020;905:A13. doi: 10.1017/jfm.2020.753. DOI
Bennett R. R., Golestanian R.. Emergent Run-and-Tumble Behavior in a Simple Model of Chlamydomonas with Intrinsic Noise. Physical Review Letters. 2013;110(14):148102. doi: 10.1103/PhysRevLett.110.148102. PubMed DOI
Bennett R. R., Golestanian R.. Phase-Dependent Forcing and Synchronization in the Three-Sphere Model of Chlamydomonas. New Journal of Physics. 2013;15(7):075028. doi: 10.1088/1367-2630/15/7/075028. DOI
Utada A. S., Bennett R. R., Fong J. C. N., Gibiansky M. L., Yildiz F. H., Golestanian R., Wong G. C. L.. Vibrio Cholerae Use Pili and Flagella Synergistically to Effect Motility Switching and Conditional Surface Attachment. Nature Communications. 2014;5(1):4913. doi: 10.1038/ncomms5913. PubMed DOI PMC
Bennett R. R., Golestanian R.. A Steering Mechanism for Phototaxis in <i>Chlamydomonas</i>. Journal of The Royal Society Interface. 2015;12(104):20141164. doi: 10.1098/rsif.2014.1164. PubMed DOI PMC
Nasouri B., Vilfan A., Golestanian R.. Efficiency Limits of the Three-Sphere Swimmer. Physical Review Fluids. 2019;4(7):073101. doi: 10.1103/PhysRevFluids.4.073101. DOI
Nasouri B., Vilfan A., Golestanian R.. Minimum Dissipation Theorem for Microswimmers. Physical Review Letters. 2021;126(3):034503. doi: 10.1103/PhysRevLett.126.034503. PubMed DOI
Daddi-Moussa-Ider A., Nasouri B., Vilfan A., Golestanian R.. Optimal Swimmers Can Be Pullers, Pushers or Neutral Depending on the Shape. Journal of Fluid Mechanics. 2021;922:R5. doi: 10.1017/jfm.2021.562. DOI
Daddi-Moussa-Ider A., Golestanian R., Vilfan A.. Minimum Entropy Production by Microswimmers with Internal Dissipation. Nature Communications. 2023;14(1):6060. doi: 10.1038/s41467-023-41280-z. PubMed DOI PMC
Piro L., Vilfan A., Golestanian R., Mahault B.. Energetic Cost of Microswimmer Navigation: The Role of Body Shape. Physical Review Research. 2024;6(1):013274. doi: 10.1103/PhysRevResearch.6.013274. DOI
Daddi-Moussa-Ider A., Golestanian R., Vilfan A.. Hydrodynamic Efficiency Limit on a Marangoni Surfer. Journal of Fluid Mechanics. 2024;986:A32. doi: 10.1017/jfm.2024.363. DOI
Piro L., Tang E., Golestanian R.. Optimal Navigation Strategies for Microswimmers on Curved Manifolds. Physical Review Research. 2021;3(2):023125. doi: 10.1103/PhysRevResearch.3.023125. DOI
Ouazan-Reboul V., Golestanian R., Agudo-Canalejo J.. Interaction-Motif-Based Classification of Self-Organizing Metabolic Cycles. New Journal of Physics. 2023;25(10):103013. doi: 10.1088/1367-2630/acfdc2. DOI
Piro L., Golestanian R., Mahault B.. Efficiency of Navigation Strategies for Active Particles in Rugged Landscapes. Frontiers in Physics. 2022;10:na. doi: 10.3389/fphy.2022.1034267. DOI
Spagnolie S. E., Underhill P. T.. Swimming in Complex Fluids. Annual Review of Condensed Matter Physics. 2023;14:381–415. doi: 10.1146/annurev-conmatphys-040821-112149. DOI
Riley E. E., Lauga E.. Enhanced Active Swimming in Viscoelastic Fluids. Europhysics Letters. 2014;108(3):34003. doi: 10.1209/0295-5075/108/34003. DOI
Hosaka Y., Golestanian R., Daddi-Moussa-Ider A.. Hydrodynamics of an Odd Active Surfer in a Chiral Fluid. New Journal of Physics. 2023;25(8):083046. doi: 10.1088/1367-2630/aceea4. DOI
Hosaka Y., Golestanian R., Vilfan A.. Lorentz Reciprocal Theorem in Fluids with Odd Viscosity. Physical Review Letters. 2023;131(17):178303. doi: 10.1103/PhysRevLett.131.178303. PubMed DOI
Ebbens S., Jones R. A. L., Ryan A. J., Golestanian R., Howse J. R.. Self-Assembled Autonomous Runners and Tumblers. Physical Review E. 2010;82(1):015304. doi: 10.1103/PhysRevE.82.015304. PubMed DOI
Ebbens S., Tu M.-H., Howse J. R., Golestanian R.. Size Dependence of the Propulsion Velocity for Catalytic Janus-Sphere Swimmers. Physical Review E. 2012;85(2):020401. doi: 10.1103/PhysRevE.85.020401. PubMed DOI
Ibrahim Y., Golestanian R., Liverpool T. B.. Shape Dependent Phoretic Propulsion of Slender Active Particles. Physical Review Fluids. 2018;3(3):033101. doi: 10.1103/PhysRevFluids.3.033101. DOI
Ebbens S., Gregory D. A., Dunderdale G., Howse J. R., Ibrahim Y., Liverpool T. B., Golestanian R.. Electrokinetic Effects in Catalytic Platinum-Insulator Janus Swimmers. Europhysics Letters. 2014;106(5):58003. doi: 10.1209/0295-5075/106/58003. DOI
Ibrahim Y., Golestanian R., Liverpool T. B.. Multiple Phoretic Mechanisms in the Self-Propulsion of a Pt-Insulator Janus Swimmer. Journal of Fluid Mechanics. 2017;828:318–352. doi: 10.1017/jfm.2017.502. DOI
Brown A., Poon W.. Ionic Effects in Self-Propelled Pt-Coated Janus Swimmers. Soft Matter. 2014;10(22):4016–4027. doi: 10.1039/C4SM00340C. PubMed DOI
Campbell A. I., Ebbens S. J., Illien P., Golestanian R.. Experimental Observation of Flow Fields around Active Janus Spheres. Nature Communications. 2019;10(1):3952. doi: 10.1038/s41467-019-11842-1. PubMed DOI PMC
Sharan P., Daddi-Moussa-Ider A., Agudo-Canalejo J., Golestanian R., Simmchen J.. Pair Interaction between Two Catalytically Active Colloids. Small. 2023;19(36):2300817. doi: 10.1002/smll.202300817. PubMed DOI
Tierno P., Golestanian R., Pagonabarraga I., Sagués F.. Controlled Swimming in Confined Fluids of Magnetically Actuated Colloidal Rotors. Physical Review Letters. 2008;101(21):218304. doi: 10.1103/PhysRevLett.101.218304. PubMed DOI
Tierno P., Golestanian R., Pagonabarraga I., Sagués F.. Magnetically Actuated Colloidal Microswimmers. The Journal of Physical Chemistry B. 2008;112(51):16525–16528. doi: 10.1021/jp808354n. PubMed DOI
Tierno P., Güell O., Sagués F., Golestanian R., Pagonabarraga I.. Controlled Propulsion in Viscous Fluids of Magnetically Actuated Colloidal Doublets. Physical Review E. 2010;81(1):011402. doi: 10.1103/PhysRevE.81.011402. PubMed DOI
Matsunaga D., Hamilton J. K., Meng F., Bukin N., Martin E. L., Ogrin F. Y., Yeomans J. M., Golestanian R.. Controlling Collective Rotational Patterns of Magnetic Rotors. Nature Communications. 2019;10(1):4696. doi: 10.1038/s41467-019-12665-w. PubMed DOI PMC
Meng F., Ortiz-Ambriz A., Massana-Cid H., Vilfan A., Golestanian R., Tierno P.. Field Synchronized Bidirectional Current in Confined Driven Colloids. Physical Review Research. 2020;2(1):012025. doi: 10.1103/PhysRevResearch.2.012025. DOI
Kawai T., Matsunaga D., Meng F., Yeomans J. M., Golestanian R.. Degenerate States, Emergent Dynamics and Fluid Mixing by Magnetic Rotors. Soft Matter. 2020;16(28):6484–6492. doi: 10.1039/D0SM00454E. PubMed DOI
Golestanian R., Ajdari A.. Mechanical Response of a Small Swimmer Driven by Conformational Transitions. Physical Review Letters. 2008;100(3):038101. doi: 10.1103/PhysRevLett.100.038101. PubMed DOI
Golestanian R., Ajdari A.. Stochastic Low Reynolds Number Swimmers. Journal of Physics: Condensed Matter. 2009;21(20):204104. doi: 10.1088/0953-8984/21/20/204104. PubMed DOI
Najafi A., Golestanian R.. Coherent Hydrodynamic Coupling for Stochastic Swimmers. Europhysics Letters. 2010;90(6):68003. doi: 10.1209/0295-5075/90/68003. DOI
Golestanian R.. Synthetic Mechanochemical Molecular Swimmer. Physical Review Letters. 2010;105(1):018103. doi: 10.1103/PhysRevLett.105.018103. PubMed DOI
Chatzittofi M., Agudo-Canalejo J., Golestanian R.. Entropy Production and Thermodynamic Inference for Stochastic Microswimmers. Physical Review Research. 2024;6(2):L022044. doi: 10.1103/PhysRevResearch.6.L022044. DOI
Golestanian R.. Anomalous Diffusion of Symmetric and Asymmetric Active Colloids. Physical Review Letters. 2009;102(18):188305. doi: 10.1103/PhysRevLett.102.188305. PubMed DOI
Golestanian R.. Enhanced Diffusion of Enzymes That Catalyze Exothermic Reactions. Physical Review Letters. 2015;115(10):108102. doi: 10.1103/PhysRevLett.115.108102. PubMed DOI
Illien P., Zhao X., Dey K. K., Butler P. J., Sen A., Golestanian R.. Exothermicity Is Not a Necessary Condition for Enhanced Diffusion of Enzymes. Nano Letters. 2017;17(7):4415–4420. doi: 10.1021/acs.nanolett.7b01502. PubMed DOI
Agudo-Canalejo J., Adeleke-Larodo T., Illien P., Golestanian R.. Enhanced Diffusion and Chemotaxis at the Nanoscale. Accounts of Chemical Research. 2018;51(10):2365–2372. doi: 10.1021/acs.accounts.8b00280. PubMed DOI
Adeleke-Larodo T., Agudo-Canalejo J., Golestanian R.. Chemical and Hydrodynamic Alignment of an Enzyme. The Journal of Chemical Physics. 2019;150(11):115102. doi: 10.1063/1.5081717. PubMed DOI
Adeleke-Larodo T., Illien P., Golestanian R.. Fluctuation-Induced Hydrodynamic Coupling in an Asymmetric, Anisotropic Dumbbell. The European Physical Journal E. 2019;42(3):39. doi: 10.1140/epje/i2019-11799-5. PubMed DOI
Agudo-Canalejo J., Golestanian R.. Diffusion and Steady State Distributions of Flexible Chemotactic Enzymes. The European Physical Journal Special Topics. 2020;229(17):2791–2806. doi: 10.1140/epjst/e2020-900224-3. DOI
Zhang Y., Hess H.. Enhanced Diffusion of Catalytically Active Enzymes. ACS Central Science. 2019;5(6):939–948. doi: 10.1021/acscentsci.9b00228. PubMed DOI PMC
Bellotto N., Agudo-Canalejo J., Colin R., Golestanian R., Malengo G., Sourjik V.. Dependence of Diffusion in Escherichia Coli Cytoplasm on Protein Size, Environmental Conditions, and Cell Growth. eLife. 2022;11:e82654. doi: 10.7554/eLife.82654. PubMed DOI PMC
Illien P., Adeleke-Larodo T., Golestanian R.. Diffusion of an Enzyme: The Role of Fluctuation-Induced Hydrodynamic Coupling. Europhysics Letters. 2017;119(4):40002. doi: 10.1209/0295-5075/119/40002. DOI
Testa A., Dindo M., Rebane A. A., Nasouri B., Style R. W., Golestanian R., Dufresne E. R., Laurino P.. Sustained Enzymatic Activity and Flow in Crowded Protein Droplets. Nature Communications. 2021;12(1):6293. doi: 10.1038/s41467-021-26532-0. PubMed DOI PMC
Agudo-Canalejo J., Illien P., Golestanian R.. Cooperatively Enhanced Reactivity and “Stabilitaxis” of Dissociating Oligomeric Proteins. Proceedings of the National Academy of Sciences. 2020;117(22):11894–11900. doi: 10.1073/pnas.1919635117. PubMed DOI PMC
Agudo-Canalejo J., Adeleke-Larodo T., Illien P., Golestanian R.. Synchronization and Enhanced Catalysis of Mechanically Coupled Enzymes. Physical Review Letters. 2021;127(20):208103. doi: 10.1103/PhysRevLett.127.208103. PubMed DOI
Chatzittofi M., Golestanian R., Agudo-Canalejo J.. Collective Synchronization of Dissipatively-Coupled Noise-Activated Processes. New Journal of Physics. 2023;25(9):093014. doi: 10.1088/1367-2630/acf2bc. DOI
Vilfan A., Subramani S., Bodenschatz E., Golestanian R., Guido I.. Flagella-Like Beating of a Single Microtubule. Nano Letters. 2019;19(5):3359–3363. doi: 10.1021/acs.nanolett.9b01091. PubMed DOI PMC
Collesano L., Guido I., Golestanian R., Vilfan A.. Active Beating Modes of Two Clamped Filaments Driven by Molecular Motors. Journal of The Royal Society Interface. 2022;19(186):20210693. doi: 10.1098/rsif.2021.0693. PubMed DOI PMC
Guido I., Vilfan A., Ishibashi K., Sakakibara H., Shiraga M., Bodenschatz E., Golestanian R., Oiwa K.. A Synthetic Minimal Beating Axoneme. Small. 2022;18(32):2107854. doi: 10.1002/smll.202107854. PubMed DOI
Meng F., Matsunaga D., Yeomans J. M., Golestanian R.. Magnetically-Actuated Artificial Cilium: A Simple Theoretical Model. Soft Matter. 2019;15(19):3864–3871. doi: 10.1039/C8SM02561D. PubMed DOI
Hickey D., Vilfan A., Golestanian R.. Ciliary Chemosensitivity Is Enhanced by Cilium Geometry and Motility. eLife. 2021;10:e66322. doi: 10.7554/eLife.66322. PubMed DOI PMC
Pumm A.-K., Engelen W., Kopperger E., Isensee J., Vogt M., Kozina V., Kube M., Honemann M. N., Bertosin E., Langecker M.. et al. A DNA Origami Rotary Ratchet Motor. Nature. 2022;607(7919):492–498. doi: 10.1038/s41586-022-04910-y. PubMed DOI PMC
Shi X., Pumm A.-K., Isensee J., Zhao W., Verschueren D., Martin-Gonzalez A., Golestanian R., Dietz H., Dekker C.. Sustained Unidirectional Rotation of a Self-Organized DNA Rotor on a Nanopore. Nature Physics. 2022;18(9):1105–1111. doi: 10.1038/s41567-022-01683-z. DOI
Shi X., Pumm A.-K., Maffeo C., Kohler F., Feigl E., Zhao W., Verschueren D., Golestanian R., Aksimentiev A., Dietz H.. et al. A DNA Turbine Powered by a Transmembrane Potential across a Nanopore. Nature Nanotechnology. 2024;19(3):338–344. doi: 10.1038/s41565-023-01527-8. PubMed DOI PMC
Uchida N., Golestanian R.. Synchronization in a Carpet of Hydrodynamically Coupled Rotors with Random Intrinsic Frequency. Europhysics Letters. 2010;89(5):50011. doi: 10.1209/0295-5075/89/50011. DOI
Uchida N., Golestanian R.. Generic Conditions for Hydrodynamic Synchronization. Physical Review Letters. 2011;106(5):058104. doi: 10.1103/PhysRevLett.106.058104. PubMed DOI
Uchida N., Golestanian R.. Synchronization and Collective Dynamics in a Carpet of Microfluidic Rotors. Physical Review Letters. 2010;104(17):178103. doi: 10.1103/PhysRevLett.104.178103. PubMed DOI
Uchida N., Golestanian R.. Hydrodynamic Synchronization between Objects with Cyclic Rigid Trajectories. The European Physical Journal E. 2012;35(12):135. doi: 10.1140/epje/i2012-12135-5. PubMed DOI
Maestro A., Bruot N., Kotar J., Uchida N., Golestanian R., Cicuta P.. Control of Synchronization in Models of Hydrodynamically Coupled Motile Cilia. Communications Physics. 2018;1(1):28. doi: 10.1038/s42005-018-0031-6. DOI
Meng F., Bennett R. R., Uchida N., Golestanian R.. Conditions for Metachronal Coordination in Arrays of Model Cilia. Proceedings of the National Academy of Sciences. 2021;118(32):e2102828118. doi: 10.1073/pnas.2102828118. PubMed DOI PMC
Hickey D. J., Golestanian R., Vilfan A.. Nonreciprocal Interactions Give Rise to Fast Cilium Synchronization in Finite Systems. Proceedings of the National Academy of Sciences. 2023;120(40):e2307279120. doi: 10.1073/pnas.2307279120. PubMed DOI PMC
Cates M. E., Tailleur J.. Motility-Induced Phase Separation. Annual Review of Condensed Matter Physics. 2015;6:219–244. doi: 10.1146/annurev-conmatphys-031214-014710. DOI
Soto R., Golestanian R.. Run-and-Tumble Dynamics in a Crowded Environment: Persistent Exclusion Process for Swimmers. Physical Review E. 2014;89(1):012706. doi: 10.1103/PhysRevE.89.012706. PubMed DOI
Matas-Navarro R., Golestanian R., Liverpool T. B., Fielding S. M.. Hydrodynamic Suppression of Phase Separation in Active Suspensions. Physical Review E. 2014;90(3):032304. doi: 10.1103/PhysRevE.90.032304. PubMed DOI
Massana-Cid H., Meng F., Matsunaga D., Golestanian R., Tierno P.. Tunable Self-Healing of Magnetically Propelling Colloidal Carpets. Nature Communications. 2019;10(1):2444. doi: 10.1038/s41467-019-10255-4. PubMed DOI PMC
Meng F., Matsunaga D., Mahault B., Golestanian R.. Magnetic Microswimmers Exhibit Bose-Einstein-Like Condensation. Physical Review Letters. 2021;126(7):078001. doi: 10.1103/PhysRevLett.126.078001. PubMed DOI
Cotton M. W., Golestanian R., Agudo-Canalejo J.. Catalysis-Induced Phase Separation and Autoregulation of Enzymatic Activity. Physical Review Letters. 2022;129(15):158101. doi: 10.1103/PhysRevLett.129.158101. PubMed DOI
Golestanian R.. Bose-Einstein-Like Condensation in Scalar Active Matter with Diffusivity Edge. Physical Review E. 2019;100(1):010601. doi: 10.1103/PhysRevE.100.010601. PubMed DOI
Mahault B., Golestanian R.. Bose-Einstein-Like Condensation Due to Diffusivity Edge under Periodic Confinement. New Journal of Physics. 2020;22(6):063045. doi: 10.1088/1367-2630/ab90d8. DOI
Berx J., Bose A., Golestanian R., Mahault B.. Reentrant Condensation Transition in a Model of Driven Scalar Active Matter with Diffusivity Edge. Europhysics Letters. 2023;142(6):67004. doi: 10.1209/0295-5075/acdcb7. DOI
Golestanian R.. Collective Behavior of Thermally Active Colloids. Physical Review Letters. 2012;108(3):038303. doi: 10.1103/PhysRevLett.108.038303. PubMed DOI
Prathyusha K. R., Saha S., Golestanian R.. Anomalous Fluctuations in a Droplet of Chemically Active Colloids or Enzymes. Physical Review Letters. 2024;133(5):058401. doi: 10.1103/PhysRevLett.133.058401. PubMed DOI
Illien P., Golestanian R.. Chemotactic Particles as Strong Electrolytes: Debye-Hückel Approximation and Effective Mobility Law. The Journal of Chemical Physics. 2024;160(15):154901. doi: 10.1063/5.0203593. PubMed DOI
Gelimson A., Golestanian R.. Collective Dynamics of Dividing Chemotactic Cells. Physical Review Letters. 2015;114(2):028101. doi: 10.1103/PhysRevLett.114.028101. PubMed DOI
Mahdisoltani S., Zinati R. B. A., Duclut C., Gambassi A., Golestanian R.. Nonequilibrium Polarity-Induced Chemotaxis: Emergent Galilean Symmetry and Exact Scaling Exponents. Physical Review Research. 2021;3(1):013100. doi: 10.1103/PhysRevResearch.3.013100. DOI
Ben Alì Zinati R., Duclut C., Mahdisoltani S., Gambassi A., Golestanian R.. Stochastic Dynamics of Chemotactic Colonies with Logistic Growth. Europhysics Letters. 2021;136(5):50003. doi: 10.1209/0295-5075/ac48c9. DOI
Kranz W. T., Gelimson A., Zhao K., Wong G. C. L., Golestanian R.. Effective Dynamics of Microorganisms That Interact with Their Own Trail. Physical Review Letters. 2016;117(3):038101. doi: 10.1103/PhysRevLett.117.038101. PubMed DOI
Gelimson A., Zhao K., Lee C. K., Kranz W. T., Wong G. C. L., Golestanian R.. Multicellular Self-Organization of P. Aeruginosa Due to Interactions with Secreted Trails. Physical Review Letters. 2016;117(17):178102. doi: 10.1103/PhysRevLett.117.178102. PubMed DOI
Michelin S., Lauga E.. Phoretic Self-Propulsion at Finite Péclet Numbers. Journal of Fluid Mechanics. 2014;747:572–604. doi: 10.1017/jfm.2014.158. DOI
Kranz W. T., Golestanian R.. Trail-Mediated Self-Interaction. The Journal of Chemical Physics. 2019;150(21):214111. doi: 10.1063/1.5081122. PubMed DOI
Hokmabad B. V., Agudo-Canalejo J., Saha S., Golestanian R., Maass C. C.. Chemotactic Self-Caging in Active Emulsions. Proceedings of the National Academy of Sciences. 2022;119(24):e2122269119. doi: 10.1073/pnas.2122269119. PubMed DOI PMC
Soto R., Golestanian R.. Self-Assembly of Catalytically Active Colloidal Molecules: Tailoring Activity through Surface Chemistry. Physical Review Letters. 2014;112(6):068301. doi: 10.1103/PhysRevLett.112.068301. PubMed DOI
Cohen J. A., Golestanian R.. Emergent Cometlike Swarming of Optically Driven Thermally Active Colloids. Physical Review Letters. 2014;112(6):068302. doi: 10.1103/PhysRevLett.112.068302. PubMed DOI
Soto R., Golestanian R.. Self-Assembly of Active Colloidal Molecules with Dynamic Function. Physical Review E. 2015;91(5):052304. doi: 10.1103/PhysRevE.91.052304. PubMed DOI
Agudo-Canalejo J., Golestanian R.. Active Phase Separation in Mixtures of Chemically Interacting Particles. Physical Review Letters. 2019;123(1):018101. doi: 10.1103/PhysRevLett.123.018101. PubMed DOI
Ouazan-Reboul V., Agudo-Canalejo J., Golestanian R.. Non-Equilibrium Phase Separation in Mixtures of Catalytically Active Particles: Size Dispersity and Screening Effects. The European Physical Journal E. 2021;44(9):113. doi: 10.1140/epje/s10189-021-00118-6. PubMed DOI PMC
Saha S., Ramaswamy S., Golestanian R.. Pairing, Waltzing and Scattering of Chemotactic Active Colloids. New Journal of Physics. 2019;21(6):063006. doi: 10.1088/1367-2630/ab20fd. DOI
Duan Y., Agudo-Canalejo J., Golestanian R., Mahault B.. Dynamical Pattern Formation without Self-Attraction in Quorum-Sensing Active Matter: The Interplay between Nonreciprocity and Motility. Physical Review Letters. 2023;131(14):148301. doi: 10.1103/PhysRevLett.131.148301. PubMed DOI
Tucci G., Golestanian R., Saha S.. Nonreciprocal Collective Dynamics in a Mixture of Phoretic Janus Colloids. New Journal of Physics. 2024;26(7):073006. doi: 10.1088/1367-2630/ad50ff. DOI
Saha S., Agudo-Canalejo J., Golestanian R.. Scalar Active Mixtures: The Nonreciprocal Cahn-Hilliard Model. Physical Review X. 2020;10(4):041009. doi: 10.1103/PhysRevX.10.041009. DOI
You Z., Baskaran A., Marchetti M. C.. Nonreciprocity as a Generic Route to Traveling States. Proceedings of the National Academy of Sciences. 2020;117(33):19767–19772. doi: 10.1073/pnas.2010318117. PubMed DOI PMC
Rana N., Golestanian R.. Defect Solutions of the Nonreciprocal Cahn-Hilliard Model: Spirals and Targets. Physical Review Letters. 2024;133(7):078301. doi: 10.1103/PhysRevLett.133.078301. PubMed DOI
Osat S., Golestanian R.. Non-Reciprocal Multifarious Self-Organization. Nature Nanotechnology. 2023;18(1):79–85. doi: 10.1038/s41565-022-01258-2. PubMed DOI PMC
Osat S., Metson J., Kardar M., Golestanian R.. Escaping Kinetic Traps Using Nonreciprocal Interactions. Physical Review Letters. 2024;133(2):028301. doi: 10.1103/PhysRevLett.133.028301. PubMed DOI
Ouazan-Reboul V., Agudo-Canalejo J., Golestanian R.. Self-Organization of Primitive Metabolic Cycles Due to Non-Reciprocal Interactions. Nature Communications. 2023;14(1):4496. doi: 10.1038/s41467-023-40241-w. PubMed DOI PMC
Ouazan-Reboul V., Golestanian R., Agudo-Canalejo J.. Network Effects Lead to Self-Organization in Metabolic Cycles of Self-Repelling Catalysts. Physical Review Letters. 2023;131(12):128301. doi: 10.1103/PhysRevLett.131.128301. PubMed DOI
Thampi S. P., Golestanian R., Yeomans J. M.. Velocity Correlations in an Active Nematic. Physical Review Letters. 2013;111(11):118101. doi: 10.1103/PhysRevLett.111.118101. PubMed DOI
Thampi S. P., Golestanian R., Yeomans J. M.. Instabilities and Topological Defects in Active Nematics. Europhysics Letters. 2014;105(1):18001. doi: 10.1209/0295-5075/105/18001. DOI
Thampi S. P., Golestanian R., Yeomans J. M.. Vorticity, Defects and Correlations in Active Turbulence. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2014;372(2029):20130366. doi: 10.1098/rsta.2013.0366. PubMed DOI PMC
Thampi S. P., Golestanian R., Yeomans J. M.. Active Nematic Materials with Substrate Friction. Physical Review E. 2014;90(6):062307. doi: 10.1103/PhysRevE.90.062307. PubMed DOI
Thampi S. P., Golestanian R., Yeomans J. M.. Driven Active and Passive Nematics. Molecular Physics. 2015;113(17-18):2656–2665. doi: 10.1080/00268976.2015.1031840. DOI
Thampi S. P., Doostmohammadi A., Golestanian R., Yeomans J. M.. Intrinsic Free Energy in Active Nematics. Europhysics Letters. 2015;112(2):28004. doi: 10.1209/0295-5075/112/28004. DOI
Strübing T., Khosravanizadeh A., Vilfan A., Bodenschatz E., Golestanian R., Guido I.. Wrinkling Instability in 3D Active Nematics. Nano Letters. 2020;20(9):6281–6288. doi: 10.1021/acs.nanolett.0c01546. PubMed DOI PMC
Martínez-Prat B., Alert R., Meng F., Ignés-Mullol J., Joanny J.-F., Casademunt J., Golestanian R., Sagués F.. Scaling Regimes of Active Turbulence with External Dissipation. Physical Review X. 2021;11(3):031065. doi: 10.1103/PhysRevX.11.031065. DOI
Thampi S. P., Doostmohammadi A., Shendruk T. N., Golestanian R., Yeomans J. M.. Active Micromachines: Microfluidics Powered by Mesoscale Turbulence. Science Advances. 2016;2(7):e1501854. doi: 10.1126/sciadv.1501854. PubMed DOI PMC
Jülicher F., Prost J.. Generic Theory of Colloidal Transport. The European Physical Journal E. 2009;29(1):27–36. doi: 10.1140/epje/i2008-10446-8. PubMed DOI
Oshanin G., Popescu M. N., Dietrich S.. Active Colloids in the Context of Chemical Kinetics. Journal of Physics A: Mathematical and Theoretical. 2017;50(13):134001. doi: 10.1088/1751-8121/aa5e91. DOI
Gaspard P., Kapral R.. Fluctuating Chemohydrodynamics and the Stochastic Motion of Self-Diffusiophoretic Particles. The Journal of Chemical Physics. 2018;148(13):134104. doi: 10.1063/1.5020442. PubMed DOI
Popescu M. N., Dietrich S., Tasinkevych M., Ralston J.. Phoretic Motion of Spheroidal Particles Due to Self-Generated Solute Gradients. The European Physical Journal E. 2010;31(4):351–367. doi: 10.1140/epje/i2010-10593-3. PubMed DOI
Popescu M. N., Tasinkevych M., Dietrich S.. Pulling and Pushing a Cargo with a Catalytically Active Carrier. Europhysics Letters. 2011;95(2):28004. doi: 10.1209/0295-5075/95/28004. DOI
Michelin S., Lauga E.. Autophoretic Locomotion from Geometric Asymmetry. The European Physical Journal E. 2015;38(2):7. doi: 10.1140/epje/i2015-15007-6. PubMed DOI
Sharifi-Mood N., Mozaffari A., Córdova-Figueroa U. M.. Pair Interaction of Catalytically Active Colloids: From Assembly to Escape. Journal of Fluid Mechanics. 2016;798:910–954. doi: 10.1017/jfm.2016.317. DOI
Pozrikidis, C. A Practical Guide to Boundary Element Methods with the Software Library Bemlib; CRC Press, 2002.
Courant R.. Variational Methods for the Solution of Problems of Equilibrium and Vibrations. Bulletin of the American Mathematical Society. 2012;49:1–23. doi: 10.1090/S0002-9904-1943-07818-4. DOI
Elfring G. J., Brady J. F.. Active Stokesian Dynamics. Journal of Fluid Mechanics. 2022;952:A19. doi: 10.1017/jfm.2022.909. DOI
Pooley C. M., Yeomans J. M.. Lattice Boltzmann Simulation Techniques for Simulating Microscopic Swimmers. Computer Physics Communications. 2008;179(1):159–164. doi: 10.1016/j.cpc.2008.01.044. DOI
Shaebani M. R., Wysocki A., Winkler R. G., Gompper G., Rieger H.. Computational Models for Active matter. Nature Reviews Physics. 2020;2(4):181–199. doi: 10.1038/s42254-020-0152-1. DOI
Baker R. D., Montenegro-Johnson T., Sediako A. D., Thomson M. J., Sen A., Lauga E., Aranson I. S.. Shape-Programmed 3D Printed Swimming Microtori for the Transport of Passive and Active Agents. Nature Communications. 2019;10(1):4932. doi: 10.1038/s41467-019-12904-0. PubMed DOI PMC
Unruh A., Brooks A. M., Aranson I. S., Sen A.. Programming Motion of Platinum Microparticles: From Linear to Orbital. ACS Applied Engineering Materials. 2023;1(4):1126–1133. doi: 10.1021/acsaenm.2c00249. DOI
Schmieding L. C., Lauga E., Montenegro-Johnson T. D.. Autophoretic Flow on a Torus. Physical Review Fluids. 2017;2(3):034201. doi: 10.1103/PhysRevFluids.2.034201. DOI
Popescu M. N., Uspal W. E., Domínguez A., Dietrich S.. Effective Interactions between Chemically Active Colloids and Interfaces. Accounts of Chemical Research. 2018;51(12):2991–2997. doi: 10.1021/acs.accounts.8b00237. PubMed DOI
Natale G., Datt C., Hatzikiriakos S. G., Elfring G. J.. Autophoretic Locomotion in Weakly Viscoelastic Fluids at Finite Péclet Number. Physics of Fluids. 2017;29(12):123102. doi: 10.1063/1.5002729. DOI
Romanczuk P., Bär M., Ebeling W., Lindner B., Schimansky-Geier L.. Active Brownian Particles. The European Physical Journal Special Topics. 2012;202(1):1–162. doi: 10.1140/epjst/e2012-01529-y. DOI
Zöttl A., Stark H.. Emergent Behavior in Active Colloids. Journal of Physics: Condensed Matter. 2016;28(25):253001. doi: 10.1088/0953-8984/28/25/253001. DOI
Gaspard P., Kapral R.. Communication: Mechanochemical Fluctuation Theorem and Thermodynamics of Self-Phoretic Motors. The Journal of Chemical Physics. 2017;147(21):211101. doi: 10.1063/1.5008562. PubMed DOI
De Corato M., Pagonabarraga I.. Onsager Reciprocal Relations and Chemo-Mechanical Coupling for Chemically Active Colloids. The Journal of Chemical Physics. 2022;157(8):084901. doi: 10.1063/5.0098425. PubMed DOI
Gaspard P., Kapral R.. The Stochastic Motion of Self-Thermophoretic Janus Particles. Journal of Statistical Mechanics: Theory and Experiment. 2019;2019(7):074001. doi: 10.1088/1742-5468/ab252f. DOI
Gaspard P., Kapral R.. Thermodynamics and Statistical Mechanics of Chemically Powered Synthetic Nanomotors. Advances in Physics: X. 2019;4(1):1602480. doi: 10.1080/23746149.2019.1602480. DOI
Robertson B., Schofield J., Gaspard P., Kapral R.. Molecular Theory of Langevin Dynamics for Active Self-Diffusiophoretic Colloids. The Journal of Chemical Physics. 2020;153(12):124104. doi: 10.1063/5.0020553. PubMed DOI
Robertson B., Schofield J., Kapral R.. Microscopic Theory of a Janus Motor in a Non-Equilibrium Fluid: Surface Hydrodynamics and Boundary Conditions. The Journal of Chemical Physics. 2024;160(1):014502. doi: 10.1063/5.0185361. PubMed DOI
Huang M. J., Schofield J., Gaspard P., Kapral R.. Dynamics of Janus Motors with Microscopically Reversible Kinetics. The Journal of Chemical Physics. 2018;149(2):024904. doi: 10.1063/1.5029344. PubMed DOI
Yang M., Ripoll M.. Simulations of Thermophoretic Nanoswimmers. Physical Review E. 2011;84(6):061401. doi: 10.1103/PhysRevE.84.061401. PubMed DOI
Yang M., Wysocki A., Ripoll M.. Hydrodynamic Simulations of Self-Phoretic Microswimmers. Soft Matter. 2014;10(33):6208–6218. doi: 10.1039/C4SM00621F. PubMed DOI
Heidari M., Kremer K., Golestanian R., Potestio R., Cortes-Huerto R.. Open-Boundary Hamiltonian Adaptive Resolution. From Grand Canonical to Non-Equilibrium Molecular Dynamics Simulations. The Journal of Chemical Physics. 2020;152(19):194104. doi: 10.1063/1.5143268. PubMed DOI
Rapaport D. C.. Microscale Swimming: The Molecular Dynamics Approach. Physical Review Letters. 2007;99(23):238101. doi: 10.1103/PhysRevLett.99.238101. PubMed DOI
Colberg P. H., Kapral R.. Ångström-Scale Chemically Powered Motors. Europhysics Letters. 2014;106(3):30004. doi: 10.1209/0295-5075/106/30004. DOI
Malevanets A., Kapral R.. Mesoscopic Model for Solvent Dynamics. The Journal of Chemical Physics. 1999;110(17):8605–8613. doi: 10.1063/1.478857. DOI
Malevanets A., Kapral R.. Solute Molecular Dynamics in a Mesoscale Solvent. The Journal of Chemical Physics. 2000;112(16):7260–7269. doi: 10.1063/1.481289. DOI
Kapral R.. Multiparticle Collision Dynamics: Simulation of Complex Systems on Mesoscales. Advances in Chemical Physics. 2008;140:89–146. doi: 10.1002/9780470371572.ch2. DOI
Gompper, G. ; Ihle, T. ; Kroll, D. M. ; Winkler, R. G. . Multi-Particle Collision Dynamics: A Particle-Based Mesoscale Simulation Approach to the Hydrodynamics of Complex Fluids. In Advanced Computer Simulation Approaches for Soft Matter Sciences III, Holm, C. ; Kremer, K. Eds.; Springer Berlin Heidelberg, 2009; pp 1-87.
Hoogerbrugge P. J., Koelman J. M. V. A.. Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics. Europhysics Letters. 1992;19(3):155. doi: 10.1209/0295-5075/19/3/001. DOI
Español P., Warren P.. Statistical Mechanics of Dissipative Particle Dynamics. Europhysics Letters. 1995;30(4):191. doi: 10.1209/0295-5075/30/4/001. DOI
Rohlf K., Fraser S., Kapral R.. Reactive Multiparticle Collision Dynamics. Computer Physics Communications. 2008;179(1):132–139. doi: 10.1016/j.cpc.2008.01.027. DOI
Fan R., Habibi P., Padding J. T., Hartkamp R.. Coupling Mesoscale Transport to Catalytic Surface Reactions in a Hybrid Model. The Journal of Chemical Physics. 2022;156(8):084105. doi: 10.1063/5.0081829. PubMed DOI
Rückner G., Kapral R.. Chemically Powered Nanodimers. Physical Review Letters. 2007;98(15):150603. doi: 10.1103/PhysRevLett.98.150603. PubMed DOI
Huang M.-J., Schofield J., Gaspard P., Kapral R.. From Single Particle Motion to Collective Dynamics in Janus Motor Systems. The Journal of Chemical Physics. 2019;150(12):124110. doi: 10.1063/1.5081820. PubMed DOI
Gaspard P., Grosfils P., Huang M.-J., Kapral R.. Finite-Time Fluctuation Theorem for Diffusion-Influenced Surface Reactions on Spherical and Janus Catalytic Particles. Journal of Statistical Mechanics: Theory and Experiment. 2018;2018(12):123206. doi: 10.1088/1742-5468/aaeda1. DOI
Fedosov D. A., Sengupta A., Gompper G.. Effect of Fluid-Colloid Interactions on the Mobility of a Thermophoretic Microswimmer in Non-Ideal Fluids. Soft Matter. 2015;11(33):6703–6715. doi: 10.1039/C5SM01364J. PubMed DOI
Tao Y.-G., Götze I. O., Gompper G.. Multiparticle Collision Dynamics Modeling of Viscoelastic Fluids. The Journal of Chemical Physics. 2008;128(14):144902. doi: 10.1063/1.2850082. PubMed DOI
Sahoo S., Singh S. P., Thakur S.. Enhanced Self-Propulsion of a Sphere-Dimer in Viscoelastic Fluid. Soft Matter. 2019;15(10):2170–2177. doi: 10.1039/C8SM02311E. PubMed DOI
Qi K., Westphal E., Gompper G., Winkler R. G.. Enhanced Rotational Motion of Spherical Squirmer in Polymer Solutions. Physical Review Letters. 2020;124(6):068001. doi: 10.1103/PhysRevLett.124.068001. PubMed DOI
Barriuso Gutiérrez C. M., Martín-Roca J., Bianco V., Pagonabarraga I., Valeriani C.. Simulating Microswimmers under Confinement with Dissipative Particle (Hydro) Dynamics. Frontiers in Physics. 2022;10:na. doi: 10.3389/fphy.2022.926609. DOI
Thakur S., Qiao L., Kapral R.. Self-Propelled Motors in Complex Fluids and as Constituents of Active Materials. Europhysics Letters. 2022;138(3):37001. doi: 10.1209/0295-5075/ac6e84. DOI
de Buyl P., Kapral R.. Phoretic Self-Propulsion: A Mesoscopic Description of Reaction Dynamics That Powers Motion. Nanoscale. 2013;5(4):1337–1344. doi: 10.1039/c2nr33711h. PubMed DOI
McGovern A. D., Huang M.-J., Wang J., Kapral R., Aranson I. S.. Multifunctional Chiral Chemically-Powered Micropropellers for Cargo Transport and Manipulation. Small. 2024;20(11):2304773. doi: 10.1002/smll.202304773. PubMed DOI
Saha S., Golestanian R., Ramaswamy S.. Clusters, Asters, and Collective Oscillations in Chemotactic Colloids. Physical Review E. 2014;89(6):062316. doi: 10.1103/PhysRevE.89.062316. PubMed DOI
Elgeti J., Winkler R. G., Gompper G.. Physics of MicroswimmersSingle Particle Motion and Collective Behavior: A Review. Reports on Progress in Physics. 2015;78(5):056601. doi: 10.1088/0034-4885/78/5/056601. PubMed DOI
Stark H.. Artificial Chemotaxis of Self-Phoretic Active Colloids: Collective Behavior. Accounts of Chemical Research. 2018;51(11):2681–2688. doi: 10.1021/acs.accounts.8b00259. PubMed DOI
Robertson B., Huang M.-J., Chen J.-X., Kapral R.. Synthetic Nanomotors: Working Together through Chemistry. Accounts of Chemical Research. 2018;51(10):2355–2364. doi: 10.1021/acs.accounts.8b00239. PubMed DOI
Saintillan D.. Rheology of Active Fluids. Annual Review of Fluid Mechanics. 2018;50(1):563–592. doi: 10.1146/annurev-fluid-010816-060049. DOI
Lighthill M. J.. On the Squirming Motion of Nearly Spherical Deformable Bodies through Liquids at Very Small Reynolds Numbers. Communications on Pure and Applied Mathematics. 1952;5(2):109–118. doi: 10.1002/cpa.3160050201. DOI
Blake J. R.. A Spherical Envelope Approach to Ciliary Propulsion. Journal of Fluid Mechanics. 1971;46(1):199–208. doi: 10.1017/S002211207100048X. DOI
Pohl O., Stark H.. Dynamic Clustering and Chemotactic Collapse of Self-Phoretic Active Particles. Physical Review Letters. 2014;112(23):238303. doi: 10.1103/PhysRevLett.112.238303. PubMed DOI
Bialké J., Speck T., Löwen H.. Active Colloidal Suspensions: Clustering and Phase Behavior. Journal of Non-Crystalline Solids. 2015;407:367–375. doi: 10.1016/j.jnoncrysol.2014.08.011. DOI
Mallory S. A., Alarcon F., Cacciuto A., Valeriani C.. Self-Assembly of Active Amphiphilic Janus Particles. New Journal of Physics. 2017;19(12):125014. doi: 10.1088/1367-2630/aa9b77. DOI
Peng Z., Kapral R.. Self-Organization of Active Colloids Mediated by Chemical Interactions. Soft Matter. 2024;20(5):1100–1113. doi: 10.1039/D3SM01272G. PubMed DOI
Thakur S., Kapral R.. Collective Dynamics of Self-Propelled Sphere-Dimer Motors. Physical Review E. 2012;85(2):026121. doi: 10.1103/PhysRevE.85.026121. PubMed DOI
Huang M.-J., Schofield J., Kapral R.. Chemotactic and Hydrodynamic Effects on Collective Dynamics of Self-Diffusiophoretic Janus Motors. New Journal of Physics. 2017;19(12):125003. doi: 10.1088/1367-2630/aa958c. DOI
Colberg P. H., Kapral R.. Many-Body Dynamics of Chemically Propelled Nanomotors. The Journal of Chemical Physics. 2017;147(6):064910. doi: 10.1063/1.4997572. PubMed DOI
Wagner M., Ripoll M.. Hydrodynamic Front-Like Swarming of Phoretically Active Dimeric Colloids. Europhysics Letters. 2017;119(6):66007. doi: 10.1209/0295-5075/119/66007. DOI
Lüsebrink D., Ripoll M.. Collective Thermodiffusion of Colloidal Suspensions. The Journal of Chemical Physics. 2012;137(19):194904. doi: 10.1063/1.4767398. PubMed DOI
Wagner M., Roca-Bonet S., Ripoll M.. Collective Behavior of Thermophoretic Dimeric Active Colloids in Three-Dimensional Bulk. The European Physical Journal E. 2021;44(3):43. doi: 10.1140/epje/s10189-021-00043-8. PubMed DOI PMC
Qiao L., Kapral R.. Self-Assembly of Chemical Shakers. The Journal of Chemical Physics. 2024;160(15):154905. doi: 10.1063/5.0200758. PubMed DOI
Becton M., Hou J., Zhao Y., Wang X.. Dynamic Clustering and Scaling Behavior of Active Particles under Confinement. Nanomaterials. 2024;14(2):144. doi: 10.3390/nano14020144. PubMed DOI PMC
Winkler R. G., Ripoll M., Mussawisade K., Gompper G.. Simulation of Complex Fluids by Multi-Particle-Collision Dynamics. Computer Physics Communications. 2005;169(1):326–330. doi: 10.1016/j.cpc.2005.03.073. DOI
Qiao L., Kapral R.. Control of Active Polymeric Filaments by Chemically Powered Nanomotors. Physical Review Applied. 2022;18(2):024051. doi: 10.1103/PhysRevApplied.18.024051. DOI
Kikuchi N., Gent A., Yeomans J. M.. Polymer Collapse in the Presence of Hydrodynamic Interactions. The European Physical Journal E. 2002;9(1):63–66. doi: 10.1140/epje/i2002-10056-6. PubMed DOI
Ripoll M., Winkler R. G., Gompper G.. Hydrodynamic Screening of Star Polymers in Shear Flow. The European Physical Journal E. 2007;23(4):349–354. doi: 10.1140/epje/i2006-10220-0. PubMed DOI
Speck T., Menzel A. M., Bialké J., Löwen H.. Dynamical Mean-Field Theory and Weakly Non-Linear Analysis for the Phase Separation of Active Brownian Particles. The Journal of Chemical Physics. 2015;142(22):224109. doi: 10.1063/1.4922324. PubMed DOI
Liebchen B., Marenduzzo D., Pagonabarraga I., Cates M. E.. Clustering and Pattern Formation in Chemorepulsive Active Colloids. Physical Review Letters. 2015;115(25):258301. doi: 10.1103/PhysRevLett.115.258301. PubMed DOI
Gaspard P., Kapral R.. Active Matter, Microreversibility, and Thermodynamics. Research. 2020;2020:9739231. doi: 10.34133/2020/9739231. PubMed DOI PMC
Khatri N., Kapral R.. Clustering of Chemically Propelled Nanomotors in Chemically Active Environments. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2024;34(3):033103. doi: 10.1063/5.0188624. PubMed DOI
Wang H., Pumera M.. Coordinated Behaviors of Artificial Micro/Nanomachines: From Mutual Interactions to Interactions with the Environment. Chemical Society Reviews. 2020;49(10):3211–3230. doi: 10.1039/C9CS00877B. PubMed DOI
Sun M., Fan X., Meng X., Song J., Chen W., Sun L., Xie H.. Magnetic Biohybrid Micromotors with High Maneuverability for Efficient Drug Loading and Targeted Drug Delivery. Nanoscale. 2019;11(39):18382–18392. doi: 10.1039/C9NR06221A. PubMed DOI
Martinez-Pedrero F., Tierno P.. Magnetic Propulsion of Self-Assembled Colloidal Carpets: Efficient Cargo Transport via a Conveyor-Belt Effect. Physical Review Applied. 2015;3(5):051003. doi: 10.1103/PhysRevApplied.3.051003. DOI
Dong X., Sitti M.. Controlling Two-Dimensional Collective Formation and Cooperative Behavior of Magnetic Microrobot Swarms. The International Journal of Robotics Research. 2020;39(5):617–638. doi: 10.1177/0278364920903107. DOI
Gardi G., Ceron S., Wang W., Petersen K., Sitti M.. Microrobot Collectives with Reconfigurable Morphologies, Behaviors, and Functions. Nature Communications. 2022;13:2239. doi: 10.1038/s41467-022-29882-5. PubMed DOI PMC
Yu J. F., Wang B., Du X. Z., Wang Q. Q., Zhang L.. Ultra-Extensible Ribbon-Like Magnetic Microswarm. Nature Communications. 2018;9:3260. doi: 10.1038/s41467-018-05749-6. PubMed DOI PMC
Sun M., Fan X., Tian C., Yang M., Sun L., Xie H.. Swarming Microdroplets to a Dexterous Micromanipulator. Advanced Functional Materials. 2021;31(19):2011193. doi: 10.1002/adfm.202011193. DOI
Sun M., Yang S., Jiang J., Zhang L.. Horizontal and Vertical Coalescent Microrobotic Collectives Using Ferrofluid Droplets. Advanced Materials. 2023;35:2300521. doi: 10.1002/adma.202300521. PubMed DOI
Yang S., Wang Q., Jin D., Du X., Zhang L.. Probing Fast Transformation of Magnetic Colloidal Microswarms in Complex Fluids. ACS Nano. 2022;16(11):19025–19037. doi: 10.1021/acsnano.2c07948. PubMed DOI
Jin D., Yu J., Yuan K., Zhang L.. Mimicking the Structure and Function of Ant Bridges in a Reconfigurable Microswarm for Electronic Applications. ACS Nano. 2019;13(5):5999–6007. doi: 10.1021/acsnano.9b02139. PubMed DOI
Yu J., Xu T., Lu Z., Vong C. I., Zhang L.. On-Demand Disassembly of Paramagnetic Nanoparticle Chains for Microrobotic Cargo Delivery. IEEE Transactions on Robotics. 2017;33(5):1213–1225. doi: 10.1109/TRO.2017.2693999. DOI
Fan X., Sun M., Sun L., Xie H.. Ferrofluid Droplets as Liquid Microrobots with Multiple Deformabilities. Advanced Functional Materials. 2020;30(24):2000138. doi: 10.1002/adfm.202000138. DOI
Sun M., Chen W., Fan X., Tian C., Sun L., Xie H.. Cooperative Recyclable Magnetic Microsubmarines for Oil and Microplastics Removal from Water. Applied Materials Today. 2020;20:100682. doi: 10.1016/j.apmt.2020.100682. DOI
Xie H., Sun M., Fan X., Lin Z., Chen W., Wang L., Dong L., He Q.. Reconfigurable Magnetic Microrobot Swarm: Multimode Transformation, Locomotion, and Manipulation. Science Robotics. 2019;4(28):eaav8006. doi: 10.1126/scirobotics.aav8006. PubMed DOI
Martinez-Pedrero F., Cebers A., Tierno P.. Dipolar Rings of Microscopic Ellipsoids: Magnetic Manipulation and Cell Entrapment. Physical Review Applied. 2016;6(3):034002. doi: 10.1103/PhysRevApplied.6.034002. DOI
Sun M., Chan K. F., Zhang Z., Wang L., Wang Q., Yang S., Chan S. M., Chiu P. W. Y., Sung J. J. Y., Zhang L.. Magnetic Microswarm and Fluoroscopy-Guided Platform for Biofilm Eradication in Biliary Stents. Advanced Materials. 2022;34(34):2201888. doi: 10.1002/adma.202201888. PubMed DOI
Law J., Wang X., Luo M., Xin L., Du X., Dou W., Wang T., Shan G., Wang Y., Song P.. et al. Microrobotic Swarms for Selective Embolization. Science Advances. 2022;8(29):eabm5752. doi: 10.1126/sciadv.abm5752. PubMed DOI PMC
Driscoll M., Delmotte B., Youssef M., Sacanna S., Donev A., Chaikin P.. Unstable Fronts and Motile Structures Formed by Microrollers. Nature Physics. 2017;13(4):375–379. doi: 10.1038/nphys3970. DOI
Chen C., Chang X., Teymourian H., Ramírez-Herrera D. E., Esteban-Fernández de Ávila B., Lu X., Li J., He S., Fang C., Liang Y.. Bioinspired Chemical Communication between Synthetic Nanomotors. Angewandte Chemie International Edition. 2018;57(1):241–245. doi: 10.1002/anie.201710376. PubMed DOI
Ibele M. E., Lammert P. E., Crespi V. H., Sen A.. Emergent, Collective Oscillations of Self-Mobile Particles and Patterned Surfaces under Redox Conditions. ACS Nano. 2010;4(8):4845–4851. doi: 10.1021/nn101289p. PubMed DOI
Duan W., Liu R., Sen A.. Transition between Collective Behaviors of Micromotors in Response to Different Stimuli. Journal of the American Chemical Society. 2013;135(4):1280–1283. doi: 10.1021/ja3120357. PubMed DOI
Ibele M., Mallouk T. E., Sen A.. Schooling Behavior of Light-Powered Autonomous Micromotors in Water. Angewandte Chemie International Edition. 2009;121(18):3358–3362. doi: 10.1002/ange.200804704. PubMed DOI
Niu R., Palberg T.. Modular Approach to Microswimming. Soft Matter. 2018;14(37):7554–7568. doi: 10.1039/C8SM00995C. PubMed DOI
Niu R., Palberg T.. Seedless Assembly of Colloidal Crystals by Inverted Micro-Fluidic Pumping. Soft Matter. 2018;14(18):3435–3442. doi: 10.1039/C8SM00256H. PubMed DOI
Liu Y., Kailasham R., Moerman P. G., Khair A. S., Zarzar L. D.. Self-Organized Patterns in Non-Reciprocal Active Droplet Systems. Angewandte Chemie International Edition. 2024;63(49):e202409382. doi: 10.1002/anie.202409382. PubMed DOI PMC
Cira N. J., Benusiglio A., Prakash M.. Vapour-Mediated Sensing and Motility in Two-Component Droplets. Nature. 2015;519(7544):446–450. doi: 10.1038/nature14272. PubMed DOI
Kim K. E., Balaj R. V., Zarzar L. D.. Chemical Programming of Solubilizing, Nonequilibrium Active Droplets. Accounts of Chemical Research. 2024;57(16):2372–2382. doi: 10.1021/acs.accounts.4c00299. PubMed DOI
Moerman P. G., Moyses H. W., van der Wee E. B., Grier D. G., van Blaaderen A., Kegel W. K., Groenewold J., Brujic J.. Solute-Mediated Interactions between Active Droplets. Physical Review E. 2017;96(3):032607. doi: 10.1103/PhysRevE.96.032607. PubMed DOI
Meredith C. H., Moerman P. G., Groenewold J., Chiu Y.-J., Kegel W. K., van Blaaderen A., Zarzar L. D.. Predator-Prey Interactions between Droplets Driven by Non-Reciprocal Oil Exchange. Nature Chemistry. 2020;12(12):1136–1142. doi: 10.1038/s41557-020-00575-0. PubMed DOI
Meredith C. H., Castonguay A. C., Chiu Y.-J., Brooks A. M., Moerman P. G., Torab P., Wong P. K., Sen A., Velegol D., Zarzar L. D.. Chemical Design of Self-Propelled Janus Droplets. Matter. 2022;5(2):616–633. doi: 10.1016/j.matt.2021.12.014. DOI
Hokmabad B. V., Nishide A., Ramesh P., Krüger C., Maass C. C.. Spontaneously Rotating Clusters of Active Droplets. Soft Matter. 2022;18(14):2731–2741. doi: 10.1039/D1SM01795K. PubMed DOI
Ma F., Wang S., Wu D. T., Wu N.. Electric-Field-Induced Assembly and Propulsion of Chiral Colloidal Clusters. Proceedings of the National Academy of Sciences. 2015;112(20):6307–6312. doi: 10.1073/pnas.1502141112. PubMed DOI PMC
Wang W., Duan W., Sen A., Mallouk T. E.. Catalytically Powered Dynamic Assembly of Rod-Shaped Nanomotors and Passive Tracer Particles. Proceedings of the National Academy of Sciences. 2013;110(44):17744–17749. doi: 10.1073/pnas.1311543110. PubMed DOI PMC
Gao Y., Mou F., Feng Y., Che S., Li W., Xu L., Guan J.. Dynamic Colloidal Molecules Maneuvered by Light-Controlled Janus Micromotors. ACS Applied Materials & Interfaces. 2017;9(27):22704–22712. doi: 10.1021/acsami.7b05794. PubMed DOI
Huang N., Martínez L. J., Jaquay E., Nakano A., Povinelli M. L.. Optical Epitaxial Growth of Gold Nanoparticle Arrays. Nano Letters. 2015;15(9):5841–5845. doi: 10.1021/acs.nanolett.5b01929. PubMed DOI
Solovev A. A., Mei Y., Schmidt O. G.. Catalytic Microstrider at the Air-Liquid Interface. Advanced Materials. 2010;22(39):4340–4344. doi: 10.1002/adma.201001468. PubMed DOI
Chen S., Peetroons X., Bakenecker A. C., Lezcano F., Aranson I. S., Sánchez S.. Collective Buoyancy-Driven Dynamics in Swarming Enzymatic Nanomotors. Nature Communications. 2024;15(1):9315. doi: 10.1038/s41467-024-53664-w. PubMed DOI PMC
Yan J., Bae S. C., Granick S.. Colloidal Superstructures Programmed into Magnetic Janus Particles. Advanced Materials. 2015;27(5):874–879. doi: 10.1002/adma.201403857. PubMed DOI
Yu J., Yang L., Zhang L.. Pattern Generation and Motion Control of a Vortex-Like Paramagnetic Nanoparticle Swarm. The International Journal of Robotics Research. 2018;37(8):912–930. doi: 10.1177/0278364918784366. DOI
Snezhko A., Aranson I. S.. Magnetic Manipulation of Self-Assembled Colloidal Asters. Nature Materials. 2011;10(9):698–703. doi: 10.1038/nmat3083. PubMed DOI
Wang W., Giltinan J., Zakharchenko S., Sitti M.. Dynamic and Programmable Self-Assembly of Micro-Rafts at the Air-Water Interface. Science Advances. 2017;3(5):e1602522. doi: 10.1126/sciadv.1602522. PubMed DOI PMC
Snezhko A., Belkin M., Aranson I., Kwok W.-K.. Self-Assembled Magnetic Surface Swimmers. Physical Review Letters. 2009;102(11):118103. doi: 10.1103/PhysRevLett.102.118103. PubMed DOI
Servant A., Qiu F., Mazza M., Kostarelos K., Nelson B. J.. Controlled in vivo Swimming of a Swarm of Bacteria-Like Microrobotic Flagella. Advanced Materials. 2015;27(19):2981–2988. doi: 10.1002/adma.201404444. PubMed DOI
Wang W., Duan W., Zhang Z., Sun M., Sen A., Mallouk T. E.. A Tale of Two Forces: Simultaneous Chemical and Acoustic Propulsion of Bimetallic Micromotors. Chemical Communications. 2015;51(6):1020–1023. doi: 10.1039/C4CC09149C. PubMed DOI
Li Z., Zhang H., Wang D., Gao C., Sun M., Wu Z., He Q.. Reconfigurable Assembly of Active Liquid Metal Colloidal Cluster. Angewandte Chemie International Edition. 2020;59(45):19884–19888. doi: 10.1002/anie.202007911. PubMed DOI
Liang X., Mou F., Huang Z., Zhang J., You M., Xu L., Luo M., Guan J.. Hierarchical Microswarms with Leader-Follower-Like Structures: Electrohydrodynamic Self-Organization and Multimode Collective Photoresponses. Advanced Functional Materials. 2020;30(16):1908602. doi: 10.1002/adfm.201908602. DOI
Buttinoni I., Bialké J., Kümmel F., Löwen H., Bechinger C., Speck T.. Dynamical Clustering and Phase Separation in Suspensions of Self-Propelled Colloidal Particles. Physical Review Letters. 2013;110(23):238301. doi: 10.1103/PhysRevLett.110.238301. PubMed DOI
Singh D. P., Choudhury U., Fischer P., Mark A. G.. Non-Equilibrium Assembly of Light-Activated Colloidal Mixtures. Advanced Materials. 2017;29(32):1701328. doi: 10.1002/adma.201701328. PubMed DOI
Palacci J., Sacanna S., Steinberg A. P., Pine D. J., Chaikin P. M.. Living Crystals of Light-Activated Colloidal Surfers. Science. 2013;339(6122):936–940. doi: 10.1126/science.1230020. PubMed DOI
Hernández-Navarro S., Tierno P., Farrera J. A., Ignés-Mullol J., Sagués F.. Reconfigurable Swarms of Nematic Colloids Controlled by Photoactivated Surface Patterns. Angewandte Chemie International Edition. 2014;53(40):10696–10700. doi: 10.1002/anie.201406136. PubMed DOI
Deng Z., Mou F., Tang S., Xu L., Luo M., Guan J.. Swarming and Collective Migration of Micromotors under near Infrared Light. Applied Materials Today. 2018;13:45–53. doi: 10.1016/j.apmt.2018.08.004. DOI
Leaman E. J., Geuther B. Q., Behkam B.. Hybrid Centralized/Decentralized Control of a Network of Bacteria-Based Bio-Hybrid Microrobots. Journal of Micro-Bio Robotics. 2019;15(1):1–12. doi: 10.1007/s12213-019-00116-0. DOI
Sahari A., Traore M. A., Scharf B. E., Behkam B.. Directed Transport of Bacteria-Based Drug Delivery Vehicles: Bacterial Chemotaxis Dominates Particle Shape. Biomedical Microdevices. 2014;16(5):717–725. doi: 10.1007/s10544-014-9876-y. PubMed DOI
Jin D., Zhang L.. Collective Behaviors of Magnetic Active Matter: Recent Progress toward Reconfigurable, Adaptive, and Multifunctional Swarming Micro/Nanorobots. Accounts of Chemical Research. 2022;55(1):98–109. doi: 10.1021/acs.accounts.1c00619. PubMed DOI
Law J., Yu J., Tang W., Gong Z., Wang X., Sun Y.. Micro/Nanorobotic Swarms: From Fundamentals to Functionalities. ACS Nano. 2023;17(14):12971–12999. doi: 10.1021/acsnano.2c11733. PubMed DOI
Wang Q., Yang S., Zhang L.. Untethered Micro/Nanorobots for Remote Sensing: Toward Intelligent Platform. Nano-Micro Letters. 2024;16(1):40. doi: 10.1007/s40820-023-01261-9. PubMed DOI PMC
Jin D., Wang Q., Chan K. F., Xia N., Yang H., Wang Q., Yu S. C. H., Zhang L.. Swarming Self-Adhesive Microgels Enabled Aneurysm on-Demand Embolization in Physiological Blood Flow. Science Advances. 2023;9(19):eadf9278. doi: 10.1126/sciadv.adf9278. PubMed DOI PMC
Yue H., Chang X., Liu J., Zhou D., Li L.. Wheel-Like Magnetic-Driven Microswarm with a Band-Aid Imitation for Patching up Microscale Intestinal Perforation. ACS Applied Materials & Interfaces. 2022;14(7):8743–8752. doi: 10.1021/acsami.1c21352. PubMed DOI
Li M., Zhang T., Zhang X., Mu J., Zhang W.. Vector-Controlled Wheel-Like Magnetic Swarms with Multimodal Locomotion and Reconfigurable Capabilities. Frontiers in Bioengineering and Biotechnology. 2022;10:877964. doi: 10.3389/fbioe.2022.877964. PubMed DOI PMC
Law J., Chen H., Wang Y., Yu J., Sun Y.. Gravity-Resisting Colloidal Collectives. Science Advances. 2022;8(46):eade3161. doi: 10.1126/sciadv.ade3161. PubMed DOI PMC
Love J. C., Urbach A. R., Prentiss M. G., Whitesides G. M.. Three-Dimensional Self-Assembly of Metallic Rods with Submicron Diameters Using Magnetic Interactions. Journal of the American Chemical Society. 2003;125(42):12696–12697. doi: 10.1021/ja037642h. PubMed DOI
Erb R. M., Son H. S., Samanta B., Rotello V. M., Yellen B. B.. Magnetic Assembly of Colloidal Superstructures with Multipole Symmetry. Nature. 2009;457(7232):999–1002. doi: 10.1038/nature07766. PubMed DOI
Yan J., Bloom M., Bae S. C., Luijten E., Granick S.. Linking Synchronization to Self-Assembly Using Magnetic Janus Colloids. Nature. 2012;491(7425):578–581. doi: 10.1038/nature11619. PubMed DOI
Mehdizadeh Taheri S., Michaelis M., Friedrich T., Förster B., Drechsler M., Römer F. M., Bösecke P., Narayanan T., Weber B., Rehberg I.. et al. Self-Assembly of Smallest Magnetic Particles. Proceedings of the National Academy of Sciences. 2015;112(47):14484–14489. doi: 10.1073/pnas.1511443112. PubMed DOI PMC
Wang X., Sprinkle B., Bisoyi H. K., Yang T., Chen L., Huang S., Li Q.. Colloidal Tubular Microrobots for Cargo Transport and Compression. Proceedings of the National Academy of Sciences. 2023;120(37):e2304685120. doi: 10.1073/pnas.2304685120. PubMed DOI PMC
Ji F., Jin D., Wang B., Zhang L.. Light-Driven Hovering of a Magnetic Microswarm in Fluid. ACS Nano. 2020;14(6):6990–6998. doi: 10.1021/acsnano.0c01464. PubMed DOI
Vach P. J., Walker D., Fischer P., Fratzl P., Faivre D.. Pattern Formation and Collective Effects in Populations of Magnetic Microswimmers. Journal of Physics D: Applied Physics. 2017;50(11):11LT03. doi: 10.1088/1361-6463/aa5d36. DOI
Sun M., Yang S., Jiang J., Jiang S., Sitti M., Zhang L.. Bioinspired Self-Assembled Colloidal Collectives Drifting in Three Dimensions Underwater. Science Advances. 2023;9(45):eadj4201. doi: 10.1126/sciadv.adj4201. PubMed DOI PMC
Jin D., Yuan K., Du X., Wang Q., Wang S., Zhang L.. Domino Reaction Encoded Heterogeneous Colloidal Microswarm with on-Demand Morphological Adaptability. Advanced Materials. 2021;33(37):2100070. doi: 10.1002/adma.202100070. PubMed DOI
Zhang S., Mou F., Yu Z., Li L., Yang M., Zhang D., Ma H., Luo W., Li T., Guan J.. Heterogeneous Sensor-Carrier Microswarms for Collaborative Precise Drug Delivery toward Unknown Targets with Localized Acidosis. Nano Letters. 2024;24(20):5958–5967. doi: 10.1021/acs.nanolett.4c00162. PubMed DOI
Cao C., Mou F., Yang M., Zhang S., Zhang D., Li L., Lan T., Xiao D., Luo W., Ma H., Guan J.. Harnessing Disparities in Magnetic Microswarms: From Construction to Collaborative Tasks. Advanced Science. 2024;11(30):2401711. doi: 10.1002/advs.202401711. PubMed DOI PMC
Mou F., Li X., Xie Q., Zhang J., Xiong K., Xu L., Guan J.. Active Micromotor Systems Built from Passive Particles with Biomimetic Predator-Prey Interactions. ACS Nano. 2020;14(1):406–414. doi: 10.1021/acsnano.9b05996. PubMed DOI
Ceron S., Gardi G., Petersen K., Sitti M.. Programmable Self-Organization of Heterogeneous Microrobot Collectives. Proceedings of the National Academy of Sciences. 2023;120(24):e2221913120. doi: 10.1073/pnas.2221913120. PubMed DOI PMC
Du X., Yu J., Jin D., Chiu P. W. Y., Zhang L.. Independent Pattern Formation of Nanorod and Nanoparticle Swarms under an Oscillating Field. ACS Nano. 2021;15(4):4429–4439. doi: 10.1021/acsnano.0c08284. PubMed DOI
Sun M., Yang S., Jiang J., Wang Q., Zhang L.. Multiple Magneto-Optical Microrobotic Collectives with Selective Control in Three Dimensions under Water. Small. 2024;20:22310769. doi: 10.1002/smll.202310769. PubMed DOI PMC
Leaman E. J., Geuther B. Q., Behkam B.. Quantitative Investigation of the Role of Intra-/Intercellular Dynamics in Bacterial Quorum Sensing. ACS Synthetic Biology. 2018;7(4):1030–1042. doi: 10.1021/acssynbio.7b00406. PubMed DOI
Zhang K. X., Klingner A., Le Gars Y., Misra S., Magdanz V., Khalil I. S. M.. Locomotion of Bovine Spermatozoa During the Transition from Individual Cells to Bundles. Proceedings of the National Academy of Sciences. 2023;120(3):e2211911120. doi: 10.1073/pnas.2211911120. PubMed DOI PMC
Morcillo i Soler P., Hidalgo C., Fekete Z., Zalanyi L., Khalil I. S. M., Yeste M., Magdanz V.. Bundle Formation of Sperm: Influence of Environmental Factors. Frontiers in Endocrinology. 2022;13:na. doi: 10.3389/fendo.2022.957684. PubMed DOI PMC
Cruse, H. ; Dean, J. ; Ritter, H. , Eds; Prerational Intelligence: Adaptive Behavior and Intelligent Systems without Symbols and Logic, Volume 1, Volume 2; Prerational Intelligence: Interdisciplinary Perspectives on the Behavior of Natural and Artificial Systems, Volume 3; Springer Science & Business Media, 2013, Vol. 26.
Lanz P.. Introduction to Part Ii. In Prerational Intelligence: Adaptive Behavior and Intelligent Systems without Symbols and Logic, Volume 1, Volume 2 Prerational Intelligence: Interdisciplinary Perspectives on the Behavior of Natural and Artificial Systems, Volume 3. Springer. 2000;26:7–18. doi: 10.1007/978-94-010-0870-9_2. DOI
Ruiz-Mirazo K., Moreno A.. Autonomy in Evolution: From Minimal to Complex Life. Synthese. 2012;185:21–52. doi: 10.1007/s11229-011-9874-z. DOI
Bich L., Bechtel W.. Mechanism, Autonomy and Biological Explanation. Biology & Philosophy. 2021;36:53. doi: 10.1007/s10539-021-09829-8. DOI
Cruse H., Dean J., Ritter H.. Prerational Intelligence: Interdisciplinary Perspectives on the Behavior of Natural and Artificial Systems. Springer. 2000;26:3. doi: 10.1007/978-94-010-0870-9_1. DOI
Wilson A. D., Golonka S.. Embodied Cognition Is Not What You Think It Is. Frontiers in Psychology. 2013;4:na. doi: 10.3389/fpsyg.2013.00058. PubMed DOI PMC
Moravec, H. Mind Children: The Future of Robot and Human Intelligence; Harvard University Press, 1988.
Luc Steels, R. B. The Artificial Life Route to Artificial Intelligence: Building Embodied, Situated Agents; Routledge, 2018.
Ye M., Zhou Y., Zhao H., Wang Z., Nelson B. J., Wang X.. A Review of Soft Microrobots: Material, Fabrication, and Actuation. Advanced Intelligent Systems. 2023;5(11):2300311. doi: 10.1002/aisy.202300311. DOI
Bernasconi, R. ; Pané, S. ; Magagnin, L. . Chapter One - Soft Microrobotics. In Advances in Chemical Engineering, Magagnin, L. ; Rossi, F. Eds.; Vol. 57; Academic Press, 2021; pp 1-44.
Hu W., Lum G. Z., Mastrangeli M., Sitti M.. Small-Scale Soft-Bodied Robot with Multimodal Locomotion. Nature. 2018;554(7690):81–85. doi: 10.1038/nature25443. PubMed DOI
Cui J., Huang T.-Y., Luo Z., Testa P., Gu H., Chen X.-Z., Nelson B. J., Heyderman L. J.. Nanomagnetic Encoding of Shape-Morphing Micromachines. Nature. 2019;575(7781):164–168. doi: 10.1038/s41586-019-1713-2. PubMed DOI
Huang T.-Y., Gu H., Nelson B. J.. Increasingly Intelligent Micromachines. Annual Review of Control, Robotics, and Autonomous Systems. 2022;5:279–310. doi: 10.1146/annurev-control-042920-013322. DOI
Sitti M.. Microscale and Nanoscale Robotics Systems [Grand Challenges of Robotics] IEEE Robotics & Automation Magazine. 2007;14(1):53–60. doi: 10.1109/MRA.2007.339606. DOI
Wang, J. Nanomachines: Fundamentals and Applications; Wiley, 2013.
Ma K. Y., Chirarattananon P., Fuller S. B., Wood R. J.. Controlled Flight of a Biologically Inspired, Insect-Scale Robot. Science. 2013;340(6132):603–607. doi: 10.1126/science.1231806. PubMed DOI
Baisch A. T., Ozcan O., Goldberg B., Ithier D., Wood R. J.. High Speed Locomotion for a Quadrupedal Microrobot. The International Journal of Robotics Research. 2014;33(8):1063–1082. doi: 10.1177/0278364914521473. DOI
Koh J.-S., Yang E., Jung G.-P., Jung S.-P., Son J. H., Lee S.-I., Jablonski P. G., Wood R. J., Kim H.-Y., Cho K.-J.. Jumping on Water: Surface Tension-Dominated Jumping of Water Striders and Robotic Insects. Science. 2015;349(6247):517–521. doi: 10.1126/science.aab1637. PubMed DOI
de Rivaz S. D., Goldberg B., Doshi N., Jayaram K., Zhou J., Wood R. J.. Inverted and Vertical Climbing of a Quadrupedal Microrobot Using Electroadhesion. Science Robotics. 2018;3(25):eaau3038. doi: 10.1126/scirobotics.aau3038. PubMed DOI
Wang M., Vecchio D., Wang C., Emre A., Xiao X., Jiang Z., Bogdan P., Huang Y., Kotov N. A.. Biomorphic Structural Batteries for Robotics. Science Robotics. 2020;5(45):eaba1912. doi: 10.1126/scirobotics.aba1912. PubMed DOI
Yang X., Chang L., Pérez-Arancibia N. O.. An 88-Milligram Insect-Scale Autonomous Crawling Robot Driven by a Catalytic Artificial Muscle. Science Robotics. 2020;5(45):eaba0015. doi: 10.1126/scirobotics.aba0015. PubMed DOI
Wehner M., Truby R. L., Fitzgerald D. J., Mosadegh B., Whitesides G. M., Lewis J. A., Wood R. J.. An Integrated Design and Fabrication Strategy for Entirely Soft, Autonomous Robots. Nature. 2016;536(7617):451–455. doi: 10.1038/nature19100. PubMed DOI
Ren Z., Hu W., Dong X., Sitti M.. Multi-Functional Soft-Bodied Jellyfish-Like Swimming. Nature Communications. 2019;10(1):2703. doi: 10.1038/s41467-019-10549-7. PubMed DOI PMC
Gu H., Boehler Q., Cui H., Secchi E., Savorana G., De Marco C., Gervasoni S., Peyron Q., Huang T.-Y., Pane S.. et al. Magnetic Cilia Carpets with Programmable Metachronal Waves. Nature Communications. 2020;11(1):2637. doi: 10.1038/s41467-020-16458-4. PubMed DOI PMC
Rubenstein M., Cornejo A., Nagpal R.. Programmable Self-Assembly in a Thousand-Robot Swarm. Science. 2014;345(6198):795–799. doi: 10.1126/science.1254295. PubMed DOI
Li S., Batra R., Brown D., Chang H.-D., Ranganathan N., Hoberman C., Rus D., Lipson H.. Particle Robotics Based on Statistical Mechanics of Loosely Coupled components. Nature. 2019;567(7748):361–365. doi: 10.1038/s41586-019-1022-9. PubMed DOI
Xu B., Tian Z., Wang J., Han H., Lee T., Mei Y.. Stimuli-Responsive and on-Chip Nanomembrane Micro-Rolls for Enhanced Macroscopic Visual Hydrogen Detection. Science Advances. 2018;4(4):eaap8203. doi: 10.1126/sciadv.aap8203. PubMed DOI PMC
Li X., Cao C., Liu C., He W., Wu K., Wang Y., Xu B., Tian Z., Song E., Cui J.. et al. Self-Rolling of Vanadium Dioxide Nanomembranes for Enhanced Multi-Level Solar Modulation. Nature Communications. 2022;13(1):7819. doi: 10.1038/s41467-022-35513-w. PubMed DOI PMC
Wu B., Zhang Z., Chen B., Zheng Z., You C., Liu C., Li X., Wang J., Wang Y., Song E.. et al. One-Step Rolling Fabrication of Vo2 Tubular Bolometers with Polarization-Sensitive and Omnidirectional Detection. Science Advances. 2023;9(42):eadi7805. doi: 10.1126/sciadv.adi7805. PubMed DOI PMC
Tian Z., Xu B., Wan G., Han X., Di Z., Chen Z., Mei Y.. Gaussian-Preserved, Non-Volatile Shape Morphing in Three-Dimensional Microstructures for Dual-Functional Electronic Devices. Nature Communications. 2021;12(1):509. doi: 10.1038/s41467-020-20843-4. PubMed DOI PMC
Liu Q., Wang W., Reynolds M. F., Cao M. C., Miskin M. Z., Arias T. A., Muller D. A., McEuen P. L., Cohen I.. Micrometer-Sized Electrically Programmable Shape-Memory Actuators for Low-Power Microrobotics. Science Robotics. 2021;6(52):eabe6663. doi: 10.1126/scirobotics.abe6663. PubMed DOI
Wang W., Liu Q., Tanasijevic I., Reynolds M. F., Cortese A. J., Miskin M. Z., Cao M. C., Muller D. A., Molnar A. C., Lauga E.. et al. Cilia Metasurfaces for Electronically Programmable Microfluidic Manipulation. Nature. 2022;605(7911):681–686. doi: 10.1038/s41586-022-04645-w. PubMed DOI
Kiener D., Misra A.. Nanomechanical Characterization. MRS Bulletin. 2024;49(3):214–223. doi: 10.1557/s43577-023-00643-z. DOI
You C., Li X., Hu Y., Huang N., Wang Y., Wu B., Jiang G., Huang J., Zhang Z., Chen B.. et al. Cmos-Compatible Reconstructive Spectrometers with Self-Referencing Integrated Fabry-Perot Resonators. Proceedings of the National Academy of Sciences. 2024;121(33):e2403950121. doi: 10.1073/pnas.2403950121. PubMed DOI PMC
Zeng H., Wasylczyk P., Parmeggiani C., Martella D., Burresi M., Wiersma D. S.. Light-Fueled Microscopic Walkers. Advanced Materials. 2015;27(26):3883–3887. doi: 10.1002/adma.201501446. PubMed DOI PMC
Shahsavan H., Aghakhani A., Zeng H., Guo Y., Davidson Z. S., Priimagi A., Sitti M.. Bioinspired Underwater Locomotion of Light-Driven Liquid Crystal Gels. Proceedings of the National Academy of Sciences. 2020;117(10):5125–5133. doi: 10.1073/pnas.1917952117. PubMed DOI PMC
Yasa O., Erkoc P., Alapan Y., Sitti M.. Microalga-Powered Microswimmers toward Active Cargo Delivery. Advanced Materials. 2018;30(45):1804130. doi: 10.1002/adma.201804130. PubMed DOI
Jiang J., Yang Z., Ferreira A., Zhang L.. Control and Autonomy of Microrobots: Recent Progress and Perspective. Advanced Intelligent Systems. 2022;4(5):2100279. doi: 10.1002/aisy.202100279. DOI
Reynolds M. F., Cortese A. J., Liu Q., Zheng Z., Wang W., Norris S. L., Lee S., Miskin M. Z., Molnar A. C., Cohen I., McEuen P. L.. Microscopic Robots with Onboard Digital Control. Science Robotics. 2022;7(70):eabq2296. doi: 10.1126/scirobotics.abq2296. PubMed DOI
Bandari V. K., Schmidt O. G.. System-Engineered Miniaturized Robots: From Structure to Intelligence. Advanced Intelligent Systems. 2021;3(10):2000284. doi: 10.1002/aisy.202170072. DOI
Dolev A., Kaynak M., Sakar M. S.. On-Board Mechanical Control Systems for Untethered Microrobots. Advanced Intelligent Systems. 2021;3(10):2000233. doi: 10.1002/aisy.202000233. DOI
Pu R., Yang X., Mu H., Xu Z., He J.. Current Status and Future Application of Electrically Controlled Micro/Nanorobots in Biomedicine. Frontiers in Bioengineering and Biotechnology. 2024;12:na. doi: 10.3389/fbioe.2024.1353660. PubMed DOI PMC
Wu Y., Fu A., Yossifon G.. Active Particles as Mobile Microelectrodes for Selective Bacteria Electroporation and Transport. Science Advances. 2020;6(5):eaay4412. doi: 10.1126/sciadv.aay4412. PubMed DOI PMC
Ohiri U., Han K., Shields C. W. IV, Velev O. D., Jokerst N. M.. Propulsion and Assembly of Remotely Powered P-Type Silicon Microparticles. APL Materials. 2018;6(12):121102. doi: 10.1063/1.5053862. DOI
Kocak G., Tuncer C., Butun V.. Ph-Responsive Polymers. Polymer Chemistry. 2017;8:144–176. doi: 10.1039/C6PY01872F. DOI
Farshad M., Benine A.. Magnetoactive Elastomer Composites. Polymer Testing. 2004;23(3):347–353. doi: 10.1016/S0142-9418(03)00103-X. DOI
Aubin C. A., Gorissen B., Milana E., Buskohl P. R., Lazarus N., Slipher G. A., Keplinger C., Bongard J., Iida F., Lewis J. A.. et al. Towards Enduring Autonomous Robots via Embodied Energy. Nature. 2022;602(7897):393–402. doi: 10.1038/s41586-021-04138-2. PubMed DOI
Nasseri R., Bouzari N., Huang J., Golzar H., Jankhani S., Tang X., Mekonnen T. H., Aghakhani A., Shahsavan H.. Programmable Nanocomposites of Cellulose Nanocrystals and Zwitterionic Hydrogels for Soft Robotics. Nature Communications. 2023;14(1):6108. doi: 10.1038/s41467-023-41874-7. PubMed DOI PMC
Wu Z. L., Moshe M., Greener J., Therien-Aubin H., Nie Z., Sharon E., Kumacheva E.. Three-Dimensional Shape Transformations of Hydrogel Sheets Induced by Small-Scale Modulation of Internal Stresses. Nature Communications. 2013;4(1):1586. doi: 10.1038/ncomms2549. PubMed DOI
Bastola A. K., Hossain M.. The Shape - Morphing Performance of Magnetoactive Soft Materials. Materials & Design. 2021;211:110172. doi: 10.1016/j.matdes.2021.110172. DOI
Pillay V., Tsai T.-S., Choonara Y. E., du Toit L. C., Kumar P., Modi G., Naidoo D., Tomar L. K., Tyagi C., Ndesendo V. M. K.. A Review of Integrating Electroactive Polymers as Responsive Systems for Specialized Drug Delivery Applications. Journal of Biomedical Materials Research Part A. 2014;102(6):2039–2054. doi: 10.1002/jbm.a.34869. PubMed DOI
Shen Z., Chen F., Zhu X., Yong K.-T., Gu G.. Stimuli-Responsive Functional Materials for Soft Robotics. Journal of Materials Chemistry B. 2020;8(39):8972–8991. doi: 10.1039/D0TB01585G. PubMed DOI
Shklyaev O. E., Balazs A. C.. Interlinking Spatial Dimensions and Kinetic Processes in Dissipative Materials to Create Synthetic Systems with Lifelike Functionality. Nature Nanotechnology. 2024;19(2):146–159. doi: 10.1038/s41565-023-01530-z. PubMed DOI
Li J., Thamphiwatana S., Liu W., Esteban-Fernández de Ávila B., Angsantikul P., Sandraz E., Wang J., Xu T., Soto F., Ramez V.. et al. Enteric Micromotor Can Selectively Position and Spontaneously Propel in the Gastrointestinal Tract. ACS Nano. 2016;10(10):9536–9542. doi: 10.1021/acsnano.6b04795. PubMed DOI PMC
Zhang M., Shahsavan H., Guo Y., Pena-Francesch A., Zhang Y., Sitti M.. Liquid-Crystal-Elastomer-Actuated Reconfigurable Microscale Kirigami Metastructures. Advanced Materials. 2021;33(25):2008605. doi: 10.1002/adma.202008605. PubMed DOI PMC
Shahsavan H., Salili S. M., Jákli A., Zhao B.. Smart Muscle-Driven Self-Cleaning of Biomimetic Microstructures from Liquid Crystal Elastomers. Advanced Materials. 2015;27(43):6828–6833. doi: 10.1002/adma.201503203. PubMed DOI
Erol O., Pantula A., Liu W., Gracias D. H.. Transformer Hydrogels: A Review. Advanced Materials Technologies. 2019;4(4):1900043. doi: 10.1002/admt.201900043. DOI
Hancock M. J., Sekeroglu K., Demirel M. C.. Bioinspired Directional Surfaces for Adhesion, Wetting, and Transport. Advanced Functional Materials. 2012;22(11):2223–2234. doi: 10.1002/adfm.201103017. PubMed DOI PMC
Fan X., Sun M., Lin Z., Song J., He Q., Sun L., Xie H.. Automated Noncontact Micromanipulation Using Magnetic Swimming Microrobots. IEEE Transactions on Nanotechnology. 2018;17(4):666–669. doi: 10.1109/TNANO.2018.2797325. DOI
Ammi, M. ; Ferreira, A. . Path Planning of an Afm-Based Nanomanipulator Using Virtual Force Reflection. In 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), 28 Sept.-2 Oct. 2004, 2004; Vol. 1, pp 577-582. 10.1109/IROS.2004.1389414. DOI
Ding X., Lin S.-C. S., Kiraly B., Yue H., Li S., Chiang I.-K., Shi J., Benkovic S. J., Huang T. J.. On-Chip Manipulation of Single Microparticles, Cells, and Organisms Using Surface Acoustic Waves. Proceedings of the National Academy of Sciences. 2012;109(28):11105–11109. doi: 10.1073/pnas.1209288109. PubMed DOI PMC
Xu H. F., Medina-S ánchez M., Maitz M. F., Werner C., Schmidt O. G.. Sperm Micromotors for Cargo Delivery through Flowing Blood. ACS Nano. 2020;14(3):2982–2993. doi: 10.1021/acsnano.9b07851. PubMed DOI
Medina-Sánchez M., Schwarz L., Meyer A. K., Hebenstreit F., Schmidt O. G.. Cellular Cargo Delivery: Toward Assisted Fertilization by Sperm-Carrying Micromotors. Nano Letters. 2016;16(1):555–561. doi: 10.1021/acs.nanolett.5b04221. PubMed DOI
Jin Q. R., Yang Y. Q., Jackson J. A., Yoon C. Y., Gracias D. H.. Untethered Single Cell Grippers for Active Biopsy. Nano Letters. 2020;20(7):5383–5390. doi: 10.1021/acs.nanolett.0c01729. PubMed DOI PMC
Zhang Z., Li J., Fu L., Liu D., Chen L.. Magnetic Molecularly Imprinted Microsensor for Selective Recognition and Transport of Fluorescent Phycocyanin in Seawater. Journal of Materials Chemistry A. 2015;3(14):7437–7444. doi: 10.1039/C5TA00143A. DOI
Pacheco M., Jurado-Sánchez B., Escarpa A.. Sensitive Monitoring of Enterobacterial Contamination of Food Using Self-Propelled Janus Microsensors. Analytical Chemistry. 2018;90(4):2912–2917. doi: 10.1021/acs.analchem.7b05209. PubMed DOI
Molinero-Fernández Á., Moreno-Guzmán M., López M. Á., Escarpa A.. Biosensing Strategy for Simultaneous and Accurate Quantitative Analysis of Mycotoxins in Food Samples Using Unmodified Graphene Micromotors. Analytical Chemistry. 2017;89(20):10850–10857. doi: 10.1021/acs.analchem.7b02440. PubMed DOI
Rogers J., Huang Y., Schmidt O. G., Gracias D. H.. Origami Mems and Nems. MRS Bulletin. 2016;41(2):123–129. doi: 10.1557/mrs.2016.2. DOI
Wang X. Y., Sprinkle B., Bisoyi H. K., Yang T., Chen L. X., Huang S., Li Q.. Colloidal Tubular Microrobots for Cargo Transport and Compression. Proceedings of the National Academy of Sciences. 2023;120(37):e2304685120. doi: 10.1073/pnas.2304685120. PubMed DOI PMC
Erol O., Pantula A., Liu W. Q., Gracias D. H.. Transformer Hydrogels: A Review. Advanced Materials Technologies. 2019;4(4):1900043. doi: 10.1002/admt.201900043. DOI
Liu X., Liu J., Lin S., Zhao X.. Hydrogel Machines. Materials Today. 2020;36:102–124. doi: 10.1016/j.mattod.2019.12.026. DOI
Huang T. Y., Gu H. R., Nelson B. J.. Increasingly Intelligent Micromachines. Annual Review of Control, Robotics, and Autonomous Systems. 2022;5:279–310. doi: 10.1146/annurev-control-042920-013322. DOI
Li M., Pal A., Aghakhani A., Pena-Francesch A., Sitti M.. Soft Actuators for Real-World Applications. Nature Reviews Materials. 2022;7(3):235–249. doi: 10.1038/s41578-021-00389-7. PubMed DOI PMC
Jiao D., Zhu Q. L., Li C. Y., Zheng Q., Wu Z. L.. Programmable Morphing Hydrogels for Soft Actuators and Robots: From Structure Designs to Active Functions. Accounts of Chemical Research. 2022;55(11):1533–1545. doi: 10.1021/acs.accounts.2c00046. PubMed DOI
Lee Y., Song W. J., Sun J. Y.. Hydrogel Soft Robotics. Materials Today Physics. 2020;15:100258. doi: 10.1016/j.mtphys.2020.100258. DOI
Maeda S., Hara Y., Sakai T., Yoshida R., Hashimoto S.. Self-Walking Gel. Advanced Materials. 2007;19(21):3480–3484. doi: 10.1002/adma.200700625. DOI
Pantula A., Datta B., Shi Y. P., Wang M., Liu J. Y., Deng S. M., Cowan N. J., Nguyen T. D., Gracias D. H.. Untethered Unidirectionally Crawling Gels Driven by Asymmetry in Contact Forces. Science Robotics. 2022;7(73):eadd2903. doi: 10.1126/scirobotics.add2903. PubMed DOI
John S., Hester S., Basij M., Paul A., Xavierselvan M., Mehrmohammadi M., Mallidi S.. Niche Preclinical and Clinical Applications of Photoacoustic Imaging with Endogenous Contrast. Photoacoustics. 2023;32:100533. doi: 10.1016/j.pacs.2023.100533. PubMed DOI PMC
Pinchin N. P., Lin C.-H., Kinane C. A., Yamada N., Pena-Francesch A., Shahsavan H.. Plasticized Liquid Crystal Networks and Chemical Motors for the Active Control of Power Transmission in Mechanical Devices. Soft Matter. 2022;18(42):8063–8070. doi: 10.1039/D2SM00826B. PubMed DOI
Gelebart A. H., Mulder D. J., Varga M., Konya A., Vantomme G., Meijer E. W., Selinger R. L. B., Broer D. J.. Making Waves in a Photoactive Polymer Film. Nature. 2017;546(7660):632–636. doi: 10.1038/nature22987. PubMed DOI PMC
Bennett M. S.. Five Breakthroughs: A First Approximation of Brain Evolution from Early Bilaterians to Humans. Frontiers in Neuroanatomy. 2021;15:na. doi: 10.3389/fnana.2021.693346. PubMed DOI PMC
Leong T. G., Randall C. L., Benson B. R., Bassik N., Stern G. M., Gracias D. H.. Tetherless Thermobiochemically Actuated Microgrippers. Proceedings of the National Academy of Sciences. 2009;106(3):703–708. doi: 10.1073/pnas.0807698106. PubMed DOI PMC
Cui J. Z., Huang T. Y., Luo Z. C., Testa P., Gu H. R., Chen X. Z., Nelson B. J., Heyderman L. J.. Nanomagnetic Encoding of Shape-Morphing Micromachines. Nature. 2019;575(7781):164–168. doi: 10.1038/s41586-019-1713-2. PubMed DOI
Tibbits S.. 4d Printing: Multi-Material Shape Change. Architectural Design. 2014;84(1):116–121. doi: 10.1002/ad.1710. DOI
Shah D. S., Powers J. P., Tilton L. G., Kriegman S., Bongard J., Kramer-Bottiglio R.. A Soft Robot That Adapts to Environments through Shape Change. Nature Machine Intelligence. 2021;3(1):51–59. doi: 10.1038/s42256-020-00263-1. DOI
Cangialosi A., Yoon C., Liu J., Huang Q., Guo J. K., Nguyen T. D., Gracias D. H., Schulman R.. DNA Sequence-Directed Shape Change of Photopatterned Hydrogels via High-Degree Swelling. Science. 2017;357(6356):1126–1129. doi: 10.1126/science.aan3925. PubMed DOI
Gultepe E., Randhawa J. S., Kadam S., Yamanaka S., Selaru F. M., Shin E. J., Kalloo A. N., Gracias D. H.. Biopsy with Thermally-Responsive Untethered Microtools. Advanced Materials. 2013;25(4):514–519. doi: 10.1002/adma.201203348. PubMed DOI PMC
Malachowski K., Jamal M., Jin Q. R., Polat B., Morris C. J., Gracias D. H.. Self-Folding Single Cell Grippers. Nano Letters. 2014;14(7):4164–4170. doi: 10.1021/nl500136a. PubMed DOI PMC
Malachowski K., Breger J., Kwag H. R., Wang M. O., Fisher J. P., Selaru F. M., Gracias D. H.. Stimuli-Responsive Theragrippers for Chemomechanical Controlled Release. Angewandte Chemie International Edition. 2014;53(31):8045–8049. doi: 10.1002/anie.201311047. PubMed DOI PMC
Ghosh A., Li L., Xu L. Y., Dash R. P., Gupta N., Lam J., Jin Q. R., Akshintala V., Pahapale G., Liu W. Q.. et al. Gastrointestinal-Resident, Shape-Changing Microdevices Extend Drug Release in vivo. Science Advances. 2020;6(44):eabb4133. doi: 10.1126/sciadv.abb4133. PubMed DOI PMC
Liu W. Q., Choi S. J., George D., Li L., Zhong Z. J., Zhang R. L., Choi S. Y., Selaru F. M., Gracias D. H.. Untethered Shape-Changing Devices in the Gastrointestinal Tract. Expert Opinion on Drug Delivery. 2023;20(12):1801–1822. doi: 10.1080/17425247.2023.2291450. PubMed DOI PMC
Abramson A., Caffarel-Salvador E., Soares V., Minahan D., Tian R. Y., Lu X., Dellal D., Gao Y., Kim S., Wainer J.. et al. A Luminal Unfolding Microneedle Injector for Oral Delivery of Macromolecules. Nature Medicine. 2019;25(10):1512–1518. doi: 10.1038/s41591-019-0598-9. PubMed DOI PMC
Miyashita, S. ; Guitron, S. ; Yoshida, K. ; Li, S. ; Damian, D. D. ; Rus, D. . Ingestible, Controllable, and Degradable Origami Robot for Patching Stomach Wounds. In 2016 IEEE International Conference on Robotics and Automation (ICRA), 2016; pp 909-916.
Yan W. Z., Li S. G., Deguchi M., Zheng Z. L., Rus D., Mehta A.. Origami-Based Integration of Robots That Sense, Decide, and Respond. Nature Communications. 2023;14(1):1553. doi: 10.1038/s41467-023-37158-9. PubMed DOI PMC
Shi, R. ; Chen, K.-L. ; Fern, J. ; Deng, S. ; Liu, Y. ; Scalise, D. ; Huang, Q. ; Cowan, N. J. ; Gracias, D. H. ; Schulman, R. . Shape-Shifting Microgel Automata Controlled by DNA Sequence Instructions. bioRxiv Preprint, 2022. 10.1101/2022.09.21.508918. DOI
Bassik N., Brafman A., Zarafshar A. M., Jamal M., Luvsanjav D., Selaru F. M., Gracias D. H.. Enzymatically Triggered Actuation of Miniaturized Tools. Journal of the American Chemical Society. 2010;132(46):16314–16317. doi: 10.1021/ja106218s. PubMed DOI PMC
Scalise D., Schulman R.. Controlling Matter at the Molecular Scale with DNA Circuits. Annual Review of Biomedical Engineering. 2019;21:469–493. doi: 10.1146/annurev-bioeng-060418-052357. PubMed DOI
Miskin M. Z., Cortese A. J., Dorsey K., Esposito E. P., Reynolds M. F., Liu Q. K., Cao M. C., Muller D. A., McEuen P. L., Cohen I.. Electronically Integrated, Mass-Manufactured, Microscopic Robots. Nature. 2020;584(7822):557–561. doi: 10.1038/s41586-020-2626-9. PubMed DOI
Liu J. Y., Erol O., Pantula A., Liu W. Q., Jiang Z. R., Kobayashi K., Chatterjee D., Hibino N., Romer L. H., Kang S. H.. et al. Dual-Gel 4d Printing of Bioinspired Tubes. ACS Applied Materials & Interfaces. 2019;11(8):8492–8498. doi: 10.1021/acsami.8b17218. PubMed DOI PMC
Ergeneman O., Dogangil G., Kummer M. P., Abbott J. J., Nazeeruddin M. K., Nelson B. J.. A Magnetically Controlled Wireless Optical Oxygen Sensor for Intraocular Measurements. IEEE Sensors Journal. 2008;8(1):29–37. doi: 10.1109/JSEN.2007.912552. DOI
Ergeneman, O. ; Abbott, J. J. ; Dogangil, G. ; Nelson, B. J. . Functionalizing Intraocular Microrobots with Surface Coatings. In 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, 19-22 Oct. 2008, 2008; pp 232-237 10.1109/BIOROB.2008.4762857. DOI
Bing R., Loganath K., Adamson P., Newby D., Moss A.. Non-Invasive Imaging of High-Risk Coronary Plaque: The Role of Computed Tomography and Positron Emission Tomography. British Journal of Radiology. 2020;93(1113):20190740. doi: 10.1259/bjr.20190740. PubMed DOI PMC
Wang B., Zhang Y., Zhang L.. Recent Progress on Micro- and Nano-Robots: Towards in vivo Tracking and Localization. Quantitative Imaging in Medicine and Surgery. 2018;8(5):461–479. doi: 10.21037/qims.2018.06.07. PubMed DOI PMC
Guo J., Agola J. O., Serda R., Franco S., Lei Q., Wang L., Minster J., Croissant J. G., Butler K. S., Zhu W.. et al. Biomimetic Rebuilding of Multifunctional Red Blood Cells: Modular Design Using Functional Components. ACS Nano. 2020;14(7):7847–7859. doi: 10.1021/acsnano.9b08714. PubMed DOI
Zhang Y., Zhang L., Yang L., Vong C. I., Chan K. F., Wu W. K. K., Kwong T. N. Y., Lo N. W. S., Ip M., Wong S. H.. et al. Real-Time Tracking of Fluorescent Magnetic Spore-Based Microrobots for Remote Detection of C. Diff Toxins. Science Advances. 2019;5(1):eaau9650. doi: 10.1126/sciadv.aau9650. PubMed DOI PMC
Yuan K., López M. Á., Jurado-Sánchez B., Escarpa A.. Janus Micromotors Coated with 2D Nanomaterials as Dynamic Interfaces for (Bio)-Sensing. ACS Applied Materials & Interfaces. 2020;12(41):46588–46597. doi: 10.1021/acsami.0c15389. PubMed DOI
Cogal G. C., Karaca G. Y., Uygun E., Kuralay F., Oksuz L., Remskar M., Oksuz A. U.. Rf Plasma-Enhanced Conducting Polymer/W5o14 Based Self-Propelled Micromotors for miRNA Detection. Analytica Chimica Acta. 2020;1138:69–78. doi: 10.1016/j.aca.2020.07.010. PubMed DOI
Wang K., Wang W., Pan S., Fu Y., Dong B., Wang H.. Fluorescent Self-Propelled Covalent Organic Framework as a Microsensor for Nitro Explosive Detection. Applied Materials Today. 2020;19:100550. doi: 10.1016/j.apmt.2019.100550. DOI
Singh V. V., Kaufmann K., Esteban-Fernández de Ávila B., Karshalev E., Wang J.. Molybdenum Disulfide-Based Tubular Microengines: Toward Biomedical Applications. Advanced Functional Materials. 2016;26(34):6270–6278. doi: 10.1002/adfm.201602005. DOI
Kaspar C., Ravoo B. J., van der Wiel W. G., Wegner S. V., Pernice W. H. P.. The Rise of Intelligent Matter. Nature. 2021;594(7863):345–355. doi: 10.1038/s41586-021-03453-y. PubMed DOI
Chen X., Xu Y., Lou K., Peng Y., Zhou C., Zhang H. P., Wang W.. Programmable, Spatiotemporal Control of Colloidal Motion Waves via Structured Light. ACS Nano. 2022;16(8):12755–12766. doi: 10.1021/acsnano.2c04596. PubMed DOI
Chen X., Xu Y. K., Zhou C., Lou K., Peng Y. X., Zhang H. P., Wang W.. Unraveling the Physiochemical Nature of Colloidal Motion Waves among Silver Colloids. Science Advances. 2022;8(21):eabn9130. doi: 10.1126/sciadv.abn9130. PubMed DOI PMC
Zhou C., Chen X., Han Z., Wang W.. Photochemically Excited, Pulsating Janus Colloidal Motors of Tunable Dynamics. ACS Nano. 2019;13(4):4064–4072. doi: 10.1021/acsnano.8b08276. PubMed DOI
Zhou C., Suematsu N. J., Peng Y., Wang Q., Chen X., Gao Y., Wang W.. Coordinating an Ensemble of Chemical Micromotors via Spontaneous Synchronization. ACS Nano. 2020;14(5):5360–5370. doi: 10.1021/acsnano.9b08421. PubMed DOI
Kuhnert L., Agladze K. I., Krinsky V. I.. Image Processing Using Light-Sensitive Chemical Waves. Nature. 1989;337(6204):244–247. doi: 10.1038/337244a0. DOI
Katz Y., Tunstrøm K., Ioannou C. C., Huepe C., Couzin I. D.. Inferring the Structure and Dynamics of Interactions in Schooling Fish. Proceedings of the National Academy of Sciences. 2011;108(46):18720–18725. doi: 10.1073/pnas.1107583108. PubMed DOI PMC
Ansell H. S., Kovács I. A.. Unveiling Universal Aspects of the Cellular Anatomy of the Brain. Communications Physics. 2024;7(1):184. doi: 10.1038/s42005-024-01665-y. DOI
Palagi S., Fischer P.. Bioinspired Microrobots. Nature Reviews Materials. 2018;3(6):113–124. doi: 10.1038/s41578-018-0016-9. DOI
Peyer K. E., Zhang L., Nelson B. J.. Bio-Inspired Magnetic Swimming Microrobots for Biomedical Applications. Nanoscale. 2013;5(4):1259–1272. doi: 10.1039/C2NR32554C. PubMed DOI
Abbasi S. A., Ahmed A., Noh S., Gharamaleki N. L., Kim S., Chowdhury A. M. M. B., Kim J.-y., Pané S., Nelson B. J., Choi H.. Autonomous 3D Positional Control of a Magnetic Microrobot Using Reinforcement Learning. Nature Machine Intelligence. 2024;6(1):92–105. doi: 10.1038/s42256-023-00779-2. DOI
Xu T., Yu J., Yan X., Choi H., Zhang L.. Magnetic Actuation Based Motion Control for Microrobots: An Overview. Micromachines. 2015;6(9):1346–1364. doi: 10.3390/mi6091346. DOI
Wei T., Liu J., Li D., Chen S., Zhang Y., Li J., Fan L., Guan Z., Lo C.-M., Wang L.. et al. Development of Magnet-Driven and Image-Guided Degradable Microrobots for the Precise Delivery of Engineered Stem Cells for Cancer Therapy. Small. 2020;16(41):1906908. doi: 10.1002/smll.201906908. PubMed DOI
Wang Q., Yang L., Yu J., Chiu P. W. Y., Zheng Y. P., Zhang L.. Real-Time Magnetic Navigation of a Rotating Colloidal Microswarm under Ultrasound Guidance. Ieee Transactions on Biomedical Engineering. 2020;67(12):3403–3412. doi: 10.1109/TBME.2020.2987045. PubMed DOI
Muiños-Landin S., Fischer A., Holubec V., Cichos F.. Reinforcement Learning with Artificial Microswimmers. Science Robotics. 2021;6(52):eabd9285. doi: 10.1126/scirobotics.abd9285. PubMed DOI
Sun T., Zhang Y., Power C., Alexander P. M., Sutton J. T., Aryal M., Vykhodtseva N., Miller E. L., McDannold N. J.. Closed-Loop Control of Targeted Ultrasound Drug Delivery across the Blood-Brain/Tumor Barriers in a Rat Glioma Model. Proceedings of the National Academy of Sciences. 2017;114(48):E10281-E10290. doi: 10.1073/pnas.1713328114. PubMed DOI PMC
Li D., Niu F., Li J., Li X., Sun D.. Gradient-Enhanced Electromagnetic Actuation System with a New Core Shape Design for Microrobot Manipulation. IEEE Transactions on Industrial Electronics. 2020;67(6):4700–4710. doi: 10.1109/TIE.2019.2928283. DOI
Khalil, I. S. M. ; Ferreira, P. ; Eleutério, R. ; Korte, C. L. d. ; Misra, S. . Magnetic-Based Closed-Loop Control of Paramagnetic Microparticles Using Ultrasound Feedback. In 2014 IEEE International Conference on Robotics and Automation (ICRA), 31 May-7 June 2014, 2014; pp 3807-3812. 10.1109/ICRA.2014.6907411. DOI
Ghanbari A., Chang P. H., Nelson B. J., Choi H.. Electromagnetic Steering of a Magnetic Cylindrical Microrobot Using Optical Feedback Closed-Loop Control. International Journal of Optomechatronics. 2014;8(2):129–145. doi: 10.1080/15599612.2014.901454. DOI
Kim J., Choi H., Kim J.. A Robust Motion Control with Antiwindup Scheme for Electromagnetic Actuated Microrobot Using Time-Delay Estimation. IEEE/ASME Transactions on Mechatronics. 2019;24(3):1096–1105. doi: 10.1109/TMECH.2019.2907145. DOI
Mousavi A., Ahmed A., Khaksar H., Choi H., Hoshiar A. K.. An Input Saturation-Tolerant Position Control Method for Magnetic Microrobots Using Adaptive Fuzzy Sliding-Mode Method. IEEE Transactions on Automation Science and Engineering. 2025;22:3852–3865. doi: 10.1109/TASE.2024.3400602. DOI
Dong X., Kheiri S., Lu Y., Xu Z., Zhen M., Liu X.. Toward a Living Soft Microrobot through Optogenetic Locomotion Control of Caenorhabditis elegans . Science Robotics. 2021;6(55):eabe3950. doi: 10.1126/scirobotics.abe3950. PubMed DOI
Jung H., Kwak S., Choi H., Oh S.. Two-Degree-of-Freedom Control of a Micro-Robot Using a Dual-Rate State Observer. IEEE Transactions on Control Systems Technology. 2023;31(3):1451–1459. doi: 10.1109/TCST.2022.3220898. DOI
Yang L., Yu J., Yang S., Wang B., Nelson B. J., Zhang L.. A Survey on Swarm Microrobotics. IEEE Transactions on Robotics. 2022;38(3):1531–1551. doi: 10.1109/TRO.2021.3111788. DOI
Hart P. E., Nilsson N. J., Raphael B.. A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics. 1968;4(2):100–107. doi: 10.1109/TSSC.1968.300136. DOI
Kennedy, J. ; Eberhart, R. . Particle Swarm Optimization. In Proceedings of ICNN'95 - International Conference on Neural Networks, 27 Nov.-1 Dec. 1995, 1995; Vol. 4, pp 1942-1948. 10.1109/ICNN.1995.488968. DOI
Guo, S. ; Gao, B. . Path-Planning Optimization of Underwater Microrobots in 3-D Space by Pso Approach. In 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO), 19-23 Dec. 2009, 2009; pp 1655-1620. 10.1109/ROBIO.2009.5420390. DOI
Klemm, S. ; Oberländer, J. ; Hermann, A. ; Roennau, A. ; Schamm, T. ; Zollner, J. M. ; Dillmann, R. . Rrt*-Connect: Faster, Asymptotically Optimal Motion Planning. In 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), 6-9 Dec. 2015, 2015; pp 1670-1677. 10.1109/ROBIO.2015.7419012. DOI
Huan Z., Wang J., Zhu L., Zhong Z., Ma W., Chen Z.. Navigation and Closed-Loop Control of Magnetic Microrobot in Plant Vein Mimic Environment. Frontiers in Plant Science. 2023;14:na. doi: 10.3389/fpls.2023.1133944. PubMed DOI PMC
Kuffner, J. J. ; LaValle, S. M. . Rrt-Connect: An Efficient Approach to Single-Query Path Planning. In Proceedings 2000 ICRA, Millennium Conference, IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), 24-28 April 2000, 2000; Vol. 2, pp 995-1001. 10.1109/ROBOT.2000.844730. DOI
Karaman S., Frazzoli E.. Sampling-Based Algorithms for Optimal Motion Planning. The International Journal of Robotics Research. 2011;30(7):846–894. doi: 10.1177/0278364911406761. DOI
Soori M., Arezoo B., Dastres R.. Artificial Intelligence, Machine Learning and Deep Learning in Advanced Robotics, a Review. Cognitive Robotics. 2023;3:54–70. doi: 10.1016/j.cogr.2023.04.001. DOI
Morales, E. F. ; Escalante, H. J. . Chapter 6 - a Brief Introduction to Supervised, Unsupervised, and Reinforcement Learning. In Biosignal Processing and Classification Using Computational Learning and Intelligence, Torres-García, A. A. ; Reyes-García, C. A. ; Villaseñor-Pineda, L. ; Mendoza-Montoya, O. Eds.; Academic Press, 2022; pp 111-129.
Yang Y., Bevan M. A., Li B.. Efficient Navigation of Colloidal Robots in an Unknown Environment via Deep Reinforcement Learning. Advanced Intelligent Systems. 2020;2(1):1900106. doi: 10.1002/aisy.201900106. DOI
Yang Y., Bevan M. A., Li B.. Micro/Nano Motor Navigation and Localization via Deep Reinforcement Learning. Advanced Theory and Simulations. 2020;3(6):2000034. doi: 10.1002/adts.202000034. DOI
Schrage M., Medany M., Ahmed D.. Ultrasound Microrobots with Reinforcement Learning. Advanced Materials Technologies. 2023;8(10):2201702. doi: 10.1002/admt.202201702. DOI
Colabrese S., Gustavsson K., Celani A., Biferale L.. Flow Navigation by Smart Microswimmers via Reinforcement Learning. Physical Review Letters. 2017;118(15):158004. doi: 10.1103/PhysRevLett.118.158004. PubMed DOI
Yang L., Jiang J., Gao X., Wang Q., Dou Q., Zhang L.. Autonomous Environment-Adaptive Microrobot Swarm Navigation Enabled by Deep Learning-Based Real-Time Distribution Planning. Nature Machine Intelligence. 2022;4(5):480–493. doi: 10.1038/s42256-022-00482-8. DOI
Chowdhury A. M. M. B., Abbasi S. A., Gharamaleki N. L., Kim J.-y., Choi H.. Virtual Reality-Enabled Intuitive Magnetic Manipulation of Microrobots and Nanoparticles. Advanced Intelligent Systems. 2024;6(7):2300793. doi: 10.1002/aisy.202300793. DOI
Feng Y., An M., Liu Y., Sarwar M. T., Yang H.. Advances in Chemically Powered Micro/Nanorobots for Biological Applications: A Review. Advanced Functional Materials. 2023;33(1):2209883. doi: 10.1002/adfm.202209883. DOI
Teo W. Z., Wang H., Pumera M.. Beyond Platinum: Silver-Catalyst Based Bubble-Propelled Tubular Micromotors. Chemical Communications. 2016;52(23):4333–4336. doi: 10.1039/C6CC00115G. PubMed DOI
Yuan S., Yang L., Lin X., He Q.. Ultrasmall Pt Nps-Modified Flasklike Colloidal Motors with High Mobility and Enhanced Ion Tolerance. Nanoscale. 2023;15(30):12558–12566. doi: 10.1039/D3NR02664G. PubMed DOI
Zhou M., Hou T., Li J., Yu S., Xu Z., Yin M., Wang J., Wang X.. Self-Propelled and Targeted Drug Delivery of Poly (Aspartic Acid)/Iron-Zinc Microrocket in the Stomach. ACS Nano. 2019;13(2):1324–1332. doi: 10.1021/acsnano.8b06773. PubMed DOI
Lin Z., Fan X., Sun M., Gao C., He Q., Xie H.. Magnetically Actuated Peanut Colloid Motors for Cell Manipulation and Patterning. ACS Nano. 2018;12(3):2539–2545. doi: 10.1021/acsnano.7b08344. PubMed DOI
Jodra A., Soto F., Lopez-Ramirez M. A., Escarpa A., Wang J.. Delayed Ignition and Propulsion of Catalytic Microrockets Based on Fuel-Induced Chemical Dealloying of the Inner Alloy Layer. Chemical Communications. 2016;52(79):11838–11841. doi: 10.1039/C6CC06632A. PubMed DOI
Sengupta S., Patra D., Ortiz-Rivera I., Agrawal A., Shklyaev S., Dey K. K., Córdova-Figueroa U., Mallouk T. E., Sen A.. Self-Powered Enzyme Micropumps. Nature Chemistry. 2014;6(5):415–422. doi: 10.1038/nchem.1895. PubMed DOI
Zhou C., Gao C., Wu Y., Si T., Yang M., He Q.. Torque-Driven Orientation Motion of Chemotactic Colloidal Motors. Angewandte Chemie International Edition. 2022;61(10):e202116013. doi: 10.1002/anie.202116013. PubMed DOI
Nourhani A., Lammert P. E., Crespi V. H., Borhan A.. A General Flux-Based Analysis for Spherical Electrocatalytic Nanomotors. Physics of Fluids. 2015;27(1):012001. doi: 10.1063/1.4904951. DOI
Gibbs J., Zhao Y. P.. Design and Characterization of Rotational Multicomponent Catalytic Nanomotors. Small. 2009;5(20):2304–2308. doi: 10.1002/smll.200900686. PubMed DOI
Zhao G., Viehrig M., Pumera M.. Challenges of the Movement of Catalytic Micromotors in Blood. Lab on a Chip. 2013;13(10):1930–1936. doi: 10.1039/c3lc41423j. PubMed DOI
Mozaffari A., Sharifi-Mood N., Koplik J., Maldarelli C.. Self-Diffusiophoretic Colloidal Propulsion near a Solid Boundary. Physics of Fluids. 2016;28(5):053107. doi: 10.1063/1.4948398. DOI
Vilela D., Hortelão A. C., Balderas-Xicohténcatl R., Hirscher M., Hahn K., Ma X., Sánchez S.. Facile Fabrication of Mesoporous Silica Micro-Jets with Multi-Functionalities. Nanoscale. 2017;9(37):13990–13997. doi: 10.1039/C7NR04527A. PubMed DOI PMC
Nourhani A., Karshalev E., Soto F., Wang J.. Multigear Bubble Propulsion of Transient Micromotors. Research. 2020;2020:7823615. doi: 10.34133/2020/7823615. PubMed DOI PMC
Martín A., Jurado-Sánchez B., Escarpa A., Wang J.. Template Electrosynthesis of High-Performance Graphene Microengines. Small. 2015;11(29):3568–3574. doi: 10.1002/smll.201500008. PubMed DOI
Jurado-Sanchez B., Pacheco M., Maria-Hormigos R., Escarpa A.. Perspectives on Janus Micromotors: Materials and Applications. Applied Materials Today. 2017;9:407–418. doi: 10.1016/j.apmt.2017.09.005. DOI
Wu Z. G., Wu Y. J., He W. P., Lin X. K., Sun J. M., He Q.. Self-Propelled Polymer-Based Multilayer Nanorockets for Transportation and Drug Release. Angewandte Chemie International Edition. 2013;52(27):7000–7003. doi: 10.1002/anie.201301643. PubMed DOI
Gao W., Pei A., Dong R., Wang J.. Catalytic Iridium-Based Janus Micromotors Powered by Ultralow Levels of Chemical Fuels. Journal of the American Chemical Society. 2014;136(6):2276–2279. doi: 10.1021/ja413002e. PubMed DOI
Cao S., Wu H., Pijpers I. A., Shao J., Abdelmohsen L. K., Williams D. S., Van Hest J. C.. Cucurbit-Like Polymersomes with Aggregation-Induced Emission Properties Show Enzyme-Mediated Motility. ACS Nano. 2021;15(11):18270–18278. doi: 10.1021/acsnano.1c07343. PubMed DOI PMC
Choi H., Jeong S. H., Kim T. Y., Yi J., Hahn S. K.. Bioinspired Urease-Powered Micromotor as an Active Oral Drug Delivery Carrier in Stomach. Bioactive Materials. 2022;9:54–62. doi: 10.1016/j.bioactmat.2021.08.004. PubMed DOI PMC
Huang Y., Liang Z., Alsoraya M., Guo J., Fan D.. Light-Gated Manipulation of Micro/Nanoparticles in Electric Fields. Advanced Intelligent Systems. 2020;2(7):1900127. doi: 10.1002/aisy.201900127. DOI
Zhan Z., Wei F., Zheng J., Yang W., Luo J., Yao L.. Recent Advances of Light-Driven Micro/Nanomotors: Toward Powerful Thrust and Precise Control. Nanotechnology Reviews. 2018;7(6):555–581. doi: 10.1515/ntrev-2018-0106. DOI
Zhou D., Zhuang R., Chang X., Li L.. Enhanced Light-Harvesting Efficiency and Adaptation: A Review on Visible-Light-Driven Micro/Nanomotors. Research. 2020;2020:6821595. doi: 10.34133/2020/6821595. PubMed DOI PMC
Wang X., Sridhar V., Guo S., Talebi N., Miguel-López A., Hahn K., van Aken P. A., Sánchez S.. Fuel-Free Nanocap-Like Motors Actuated under Visible Light. Advanced Functional Materials. 2018;28(25):1705862. doi: 10.1002/adfm.201705862. DOI
Yan X., Xu J., Meng Z., Xie J., Wang H.. A New Mechanism of Light-Induced Bubble Growth to Propel Microbubble Piston Engine. Small. 2020;16(29):2001548. doi: 10.1002/smll.202001548. PubMed DOI
Mallick A., Roy S.. Visible Light Driven Catalytic Gold Decorated Soft-Oxometalate (Som) Based Nanomotors for Organic Pollutant Remediation. Nanoscale. 2018;10(26):12713–12722. doi: 10.1039/C8NR03534B. PubMed DOI
Eskandarloo H., Kierulf A., Abbaspourrad A.. Light-Harvesting Synthetic Nano-and Micromotors: A Review. Nanoscale. 2017;9(34):12218–12230. doi: 10.1039/C7NR05166B. PubMed DOI
Okawa D., Pastine S. J., Zettl A., Fréchet J. M.. Surface Tension Mediated Conversion of Light to Work. Journal of the American Chemical Society. 2009;131(15):5396–5398. doi: 10.1021/ja900130n. PubMed DOI PMC
Chen H., Zhao Q., Du X.. Light-Powered Micro/Nanomotors. Micromachines. 2018;9(2):41. doi: 10.3390/mi9020041. PubMed DOI PMC
Yang Z., Zhang L.. Magnetic Actuation Systems for Miniature Robots: A Review. Advanced Intelligent Systems. 2020;2(9):2000082. doi: 10.1002/aisy.202000082. DOI
Chen X. Z., Jang B., Ahmed D., Hu C., De Marco C., Hoop M., Mushtaq F., Nelson B. J., Pané S.. Small-Scale Machines Driven by External Power Sources. Advanced Materials. 2018;30(15):1705061. doi: 10.1002/adma.201705061. PubMed DOI
Li T., Li J., Zhang H., Chang X., Song W., Hu Y., Shao G., Sandraz E., Zhang G., Li L., Wang J.. Magnetically Propelled Fish-Like Nanoswimmers. Small. 2016;12(44):6098–6105. doi: 10.1002/smll.201601846. PubMed DOI
Han K., Shields C. W., Diwakar N. M., Bharti B., López G. P., Velev O. D.. Sequence-Encoded Colloidal Origami and Microbot Assemblies from Patchy Magnetic Cubes. Science Advances. 2017;3(8):e1701108. doi: 10.1126/sciadv.1701108. PubMed DOI PMC
Han K., Shields C. W. I. V., Bharti B., Arratia P. E., Velev O. D.. Active Reversible Swimming of Magnetically Assembled “Microscallops” in Non-Newtonian Fluids. Langmuir. 2020;36(25):7148–7154. doi: 10.1021/acs.langmuir.9b03698. PubMed DOI
Shields IV C. W., Kim Y.-K., Han K., Murphy A. C., Scott A. J., Abbott N. L., Velev O. D.. Control of the Folding Dynamics of Self-Reconfiguring Magnetic Microbots Using Liquid Crystallinity. Advanced Intelligent Systems. 2020;2(2):1900114. doi: 10.1002/aisy.201900114. DOI
Mandal P., Patil G., Kakoty H., Ghosh A.. Magnetic Active Matter Based on Helical Propulsion. Accounts of Chemical Research. 2018;51(11):2689–2698. doi: 10.1021/acs.accounts.8b00315. PubMed DOI
Wu Z. G., Li J. X., Esteban-Fernández de Ávila B., Li T. L., Gao W. W., He Q., Zhang L. F., Wang J.. Water-Powered Cell-Mimicking Janus Micromotor. Advanced Functional Materials. 2015;25(48):7497–7501. doi: 10.1002/adfm.201503441. DOI
Esteban-Fernández de Ávila B., Angsantikul P., Ramírez-Herrera D. E., Soto F., Teymourian H., Dehaini D., Chen Y., Zhang L., Wang J.. Hybrid Biomembrane-Functionalized Nanorobots for Concurrent Removal of Pathogenic Bacteria and Toxins. Science Robotics. 2018;3(18):eaat0485. doi: 10.1126/scirobotics.aat0485. PubMed DOI
McNeill J. M., Nama N., Braxton J. M., Mallouk T. E.. Wafer-Scale Fabrication of Micro- to Nanoscale Bubble Swimmers and Their Fast Autonomous Propulsion by Ultrasound. ACS Nano. 2020;14(6):7520–7528. doi: 10.1021/acsnano.0c03311. PubMed DOI
Soto F., Martin A., Ibsen S., Vaidyanathan M., Garcia-Gradilla V., Levin Y., Escarpa A., Esener S. C., Wang J.. Acoustic Microcannons: Toward Advanced Microballistics. ACS Nano. 2016;10(1):1522–1528. doi: 10.1021/acsnano.5b07080. PubMed DOI
Li J., Pumera M.. 3D Printing of Functional Microrobots. Chemical Society Reviews. 2021;50(4):2794–2838. doi: 10.1039/D0CS01062F. PubMed DOI
Wallin T. J., Pikul J., Shepherd R. F.. 3D Printing of Soft Robotic Systems. Nature Reviews Materials. 2018;3(6):84–100. doi: 10.1038/s41578-018-0002-2. DOI
Kaynak M., Dirix P., Sakar M. S.. Addressable Acoustic Actuation of 3D Printed Soft Robotic Microsystems. Advanced Science. 2020;7(20):2001120. doi: 10.1002/advs.202001120. PubMed DOI PMC
Garcia-Gradilla V., Sattayasamitsathit S., Soto F., Kuralay F., Yardımcı C., Wiitala D., Galarnyk M., Wang J.. Ultrasound-Propelled Nanoporous Gold Wire for Efficient Drug Loading and Release. Small. 2014;10(20):4154–4159. doi: 10.1002/smll.201401013. PubMed DOI
Gao F., Tang Y., Liu W. L., Zou M. Z., Huang C., Liu C. J., Zhang X. Z.. Intra/Extracellular Lactic Acid Exhaustion for Synergistic Metabolic Therapy and Immunotherapy of Tumors. Advanced Materials. 2019;31(51):1904639. doi: 10.1002/adma.201904639. PubMed DOI
Zhang H. Y., Li Z. S., Gao C. Y., Fan X. J., Pang Y. X., Li T. L., Wu Z. G., Xie H., He Q.. Dual-Responsive Biohybrid Neutrobots for Active Target Delivery. Science Robotics. 2021;6(52):eaaz9519. doi: 10.1126/scirobotics.aaz9519. PubMed DOI
Huang L., Zhou M. Y., Abbas G., Li C., Cui M. M., Zhang X. E., Wang D. B.. A Cancer Cell Membrane-Derived Biomimetic Nanocarrier for Synergistic Photothermal/Gene Therapy by Efficient Delivery of Crispr/Cas9 and Gold Nanorods. Advanced Healthcare Materials. 2022;11(16):2201038. doi: 10.1002/adhm.202201038. PubMed DOI
Xiong X., Zhao J. Y., Pan J. M., Liu C. P., Guo X., Zhou S. B.. Personalized Nanovaccine Coated with Calcinetin-Expressed Cancer Cell Membrane Antigen for Cancer Immunotherapy. Nano Letters. 2021;21(19):8418–8425. doi: 10.1021/acs.nanolett.1c03004. PubMed DOI
Jeon S., Park S. H., Kim E., Kim J. Y., Kim S. W., Choi H.. A Magnetically Powered Stem Cell-Based Microrobot for Minimally Invasive Stem Cell Delivery via the Intranasal Pathway in a Mouse Brain. Advanced Healthcare Materials. 2021;10(19):2100801. doi: 10.1002/adhm.202100801. PubMed DOI
Striggow F., Ribeiro C., Aziz A., Nauber R., Hebenstreit F., Schmidt O. G., Medina-Sánchez M.. Magnetotactic Sperm Cells for Assisted Reproduction. Small. 2024;20(23):2310288. doi: 10.1002/smll.202310288. PubMed DOI
Yeaman M. R.. Platelets in Defense against Bacterial Pathogens. Cellular and Molecular Life Sciences. 2010;67(4):525–544. doi: 10.1007/s00018-009-0210-4. PubMed DOI PMC
Wang S. Y., Duan Y. O., Zhang Q. Z., Komarla A., Gong H., Gao W. W., Zhang L. F.. Drug Targeting via Platelet Membrane-Coated Nanoparticles. Small Structures. 2020;1(1):2000018. doi: 10.1002/sstr.202000018. PubMed DOI PMC
Uchida T.. Neutrophil Kinetics in Health and Disease (Author's Transl) Rinsho ketsueki, The Japanese journal of clinical hematology. 1979;20(12):1548–1561. PubMed
Williams M. R., Azcutia V., Newton G., Alcaide P., Luscinskas F. W.. Emerging Mechanisms of Neutrophil Recruitment across Endothelium. Trends in Immunology. 2011;32(10):461–469. doi: 10.1016/j.it.2011.06.009. PubMed DOI PMC
Kruger P., Saffarzadeh M., Weber A. N. R., Rieber N., Radsak M., von Bernuth H., Benarafa C., Roos D., Skokowa J., Hartl D.. Neutrophils: Between Host Defence, Immune Modulation, and Tissue Injury. Plos Pathogens. 2015;11(3):e1004651. doi: 10.1371/journal.ppat.1004651. PubMed DOI PMC
Wright H. L., Moots R. J., Bucknall R. C., Edwards S. W.. Neutrophil Function in Inflammation and Inflammatory Diseases. Rheumatology. 2010;49(9):1618–1631. doi: 10.1093/rheumatology/keq045. PubMed DOI
Chu D. F., Zhao Q., Yu J., Zhang F. Y., Zhang H., Wang Z. J.. Nanoparticle Targeting of Neutrophils for Improved Cancer Immunotherapy. Advanced Healthcare Materials. 2016;5(9):1088–1093. doi: 10.1002/adhm.201500998. PubMed DOI PMC
Xue J. W., Zhao Z. K., Zhang L., Xue L. J., Shen S. Y., Wen Y. J., Wei Z. Y., Wang L., Kong L. Y., Sun H. B.. et al. Neutrophil-Mediated Anticancer Drug Delivery for Suppression of Postoperative Malignant Glioma Recurrence. Nature Nanotechnology. 2017;12(7):692–700. doi: 10.1038/nnano.2017.54. PubMed DOI
Chu D. F., Gao J., Wang Z. J.. Neutrophil-Mediated Delivery of Therapeutic Nanoparticles across Blood Vessel Barrier for Treatment of Inflammation and Infection. ACS Nano. 2015;9(12):11800–11811. doi: 10.1021/acsnano.5b05583. PubMed DOI PMC
Hou J., Yang X., Li S. Y., Cheng Z. K., Wang Y. H., Zhao J., Zhang C., Li Y. J., Luo M., Ren H. W.. et al. Accessing Neuroinflammation Sites: Monocyte/Neutrophil-Mediated Drug Delivery for Cerebral Ischemia. Science Advances. 2019;5(7):eaau8301. doi: 10.1126/sciadv.aau8301. PubMed DOI PMC
Wu M. Y., Zhang H. X., Tie C. J., Yan C. H., Deng Z. T., Wan Q., Liu X., Yan F., Zheng H. R.. Mr Imaging Tracking of Inflammation-Activatable Engineered Neutrophils for Targeted Therapy of Surgically Treated Glioma. Nature Communications. 2018;9:4777. doi: 10.1038/s41467-018-07250-6. PubMed DOI PMC
Fang R. H., Hu C. M. J., Luk B. T., Gao W. W., Copp J. A., Tai Y. Y., O'Connor D. E., Zhang L. F.. Cancer Cell Membrane-Coated Nanoparticles for Anticancer Vaccination and Drug Delivery. Nano Letters. 2014;14(4):2181–2188. doi: 10.1021/nl500618u. PubMed DOI PMC
Chen Z., Zhao P. F., Luo Z. Y., Zheng M. B., Tian H., Gong P., Gao G. H., Pan H., Liu L. L., Ma A. Q.. et al. Cancer Cell Membrane-Biomimetic Nanoparticles for Homologous-Targeting Dual-Modal Imaging and Photothermal Therapy. ACS Nano. 2016;10(11):10049–10057. doi: 10.1021/acsnano.6b04695. PubMed DOI
Jaiswal S., Jamieson C. H. M., Pang W. W., Park C. Y., Chao M. P., Majeti R., Traver D., van Rooijen N., Weissman I. L.. Cd47 Is Upregulated on Circulating Hematopoietic Stem Cells and Leukemia Cells to Avoid Phagocytosis. Cell. 2009;138(2):271–285. doi: 10.1016/j.cell.2009.05.046. PubMed DOI PMC
Majeti R., Chao M. P., Alizadeh A. A., Pang W. W., Jaiswal S., Gibbs K. D., van Rooijen N., Weissman I. L.. Cd47 Is an Adverse Prognostic Factor and Therapeutic Antibody Target on Human Acute Myeloid Leukemia Stem Cells. Cell. 2009;138(2):286–299. doi: 10.1016/j.cell.2009.05.045. PubMed DOI PMC
Fang R. H., Kroll A. V., Gao W. W., Zhang L. F.. Cell Membrane Coating Nanotechnology. Advanced Materials. 2018;30(23):1706759. doi: 10.1002/adma.201706759. PubMed DOI PMC
Su Y. X., Xie Z. W., Kim G. B., Dong C., Yang J.. Design Strategies and Applications of Circulating Cell-Mediated Drug Delivery Systems. ACS Biomaterials Science & Engineering. 2015;1(4):201–217. doi: 10.1021/ab500179h. PubMed DOI PMC
Majumdar M. K., Thiede M. A., Mosca J. D., Moorman M., Gerson S. L.. Phenotypic and Functional Comparison of Cultures of Marrow-Derived Mesenchymal Stem Cells (Mscs) and Stromal Cells. Journal of Cellular Physiology. 1998;176(1):57–66. doi: 10.1002/(SICI)1097-4652(199807)176:1<57::AID-JCP7>3.0.CO;2-7. PubMed DOI
Sellheyer K., Krahl D.. Skin Mesenchymal Stem Cells: Prospects for Clinical Dermatology. Journal of the American Academy of Dermatology. 2010;63(5):859–865. doi: 10.1016/j.jaad.2009.09.022. PubMed DOI
Hassan G., Kasem I., Antaki R., Mohammad M. B., AlKadry R., Aljamali M.. Isolation of Umbilical Cord Mesenchymal Stem Cells Using Human Blood Derivatives Accompanied with Explant Method. Stem cell investigation. 2019;6:28. doi: 10.21037/sci.2019.08.06. PubMed DOI PMC
Xie C. Y., Yang Z. R., Suo Y. Z., Chen Q. Q., Wei D., Weng X. F., Gu Z. Q., Wei X. B.. Systemically Infused Mesenchymal Stem Cells Show Different Homing Profiles in Healthy and Tumor Mouse Models. Stem Cells Translational Medicine. 2017;6(4):1120–1131. doi: 10.1002/sctm.16-0204. PubMed DOI PMC
Wang L. T., Ting C. H., Yen M. L., Liu K. J., Sytwu H. K., Wu K. K., Yen B. L.. Human Mesenchymal Stem Cells (Mscs) for Treatment Towards Immune- and Inflammation-Mediated Diseases: Review of Current Clinical Trials. Journal of Biomedical Science. 2016;23:76. doi: 10.1186/s12929-016-0289-5. PubMed DOI PMC
Cipriani P., Ruscitti P., Di Benedetto P., Carubbi F., Liakouli V., Berardicurti O., Ciccia F., Triolo G., Giacomelli R.. Mesenchymal Stromal Cells and Rheumatic Diseases: New Tools from Pathogenesis to Regenerative Therapies. Cytotherapy. 2015;17(7):832–849. doi: 10.1016/j.jcyt.2014.12.006. PubMed DOI
Kidd S., Spaeth E., Dembinski J. L., Dietrich M., Watson K., Klopp A., Battula V. L., Weil M., Andreeff M., Marini F. C.. Direct Evidence of Mesenchymal Stem Cell Tropism for Tumor and Wounding Microenvironments Using in vivo Bioluminescent Imaging. Stem Cells. 2009;27(10):2614–2623. doi: 10.1002/stem.187. PubMed DOI PMC
Bexell D., Scheding S., Bengzon J.. Toward Brain Tumor Gene Therapy Using Multipotent Mesenchymal Stromal Cell Vectors. Molecular Therapy. 2010;18(6):1067–1075. doi: 10.1038/mt.2010.58. PubMed DOI PMC
Layek B., Sadhukha T., Panyam J., Prabha S.. Nano-Engineered Mesenchymal Stem Cells Increase Therapeutic Efficacy of Anticancer Drug through True Active Tumor Targeting. Molecular Cancer Therapeutics. 2018;17(6):1196–1206. doi: 10.1158/1535-7163.MCT-17-0682. PubMed DOI PMC
Nitzsche F., Muller C., Lukomska B., Jolkkonen J., Deten A., Boltze J.. Concise Review: Msc Adhesion Cascade-Insights into Homing and Transendothelial Migration. Stem Cells. 2017;35(6):1446–1460. doi: 10.1002/stem.2614. PubMed DOI
Wang X. L., Gao J. Q., Ouyang X. M., Wang J. B., Sun X. Y., Lv Y. Y.. Mesenchymal Stem Cells Loaded with Paclitaxel-Poly(Lactic-Co-Glycolic Acid) Nanoparticles for Glioma-Targeting Therapy. International Journal of Nanomedicine. 2018;13:5231–5248. doi: 10.2147/IJN.S167142. PubMed DOI PMC
Bengisu, M. ; Ferrara, M. . Materials That Move: Smart Materials, Intelligent Design; Springer, 2018.
Brizzi S., Cavozzi C., Storti F.. Smart Materials for Experimental Tectonics: Viscous Behavior of Magnetorheological Silicones. Tectonophysics. 2023;867:230038. doi: 10.1016/j.tecto.2023.230038. DOI
Bahl S., Nagar H., Singh I., Sehgal S.. Smart Materials Types, Properties and Applications: A Review. Materials Today: Proceedings. 2020;28:1302–1306. doi: 10.1016/j.matpr.2020.04.505. DOI
Soto F., Karshalev E., Zhang F., Esteban-Fernández de Ávila B., Nourhani A., Wang J.. Smart Materials for Microrobots. Chemical Reviews. 2022;122(5):5365–5403. doi: 10.1021/acs.chemrev.0c00999. PubMed DOI
Shahinpoor, M. ; Schneider, H.-J. . Intelligent Materials; Royal Society of Chemistry, 2007.
Xu, C. ; Schwartz, M. . Encyclopedia of Smart Materials; John Wiley & Sons, 2002; Vol. 1, pp 190-201.
Nakanishi, T. Supramolecular Soft Matter: Applications in Materials and Organic Electronics; John Wiley & Sons, 2011.
Huang H.-W., Sakar M. S., Petruska A. J., Pané S., Nelson B.. Soft Micromachines with Programmable Motility and Morphology. Nature Communications. 2016;7(1):12263. doi: 10.1038/ncomms12263. PubMed DOI PMC
Palacci J., Sacanna S., Abramian A., Barral J., Hanson K., Grosberg A. Y., Pine D. J., Chaikin P. M.. Artificial Rheotaxis. Science Advances. 2015;1(4):e1400214. doi: 10.1126/sciadv.1400214. PubMed DOI PMC
Zhuang J., Sitti M.. Chemotaxis of Bio-Hybrid Multiple Bacteria-Driven Microswimmers. Scientific Reports. 2016;6(1):32135. doi: 10.1038/srep32135. PubMed DOI PMC
Cappelleri D., Bi C., Noguera M.. Tumbling Microrobots for Future Medicine. American Scientists. 2018;106:210. doi: 10.1511/2018.106.4.210. DOI
Sattayasamitsathit S., Kou H., Gao W., Thavarajah W., Kaufmann K., Zhang L., Wang J.. Fully Loaded Micromotors for Combinatorial Delivery and Autonomous Release of Cargoes. Small. 2014;10(14):2830–2833. doi: 10.1002/smll.201303646. PubMed DOI PMC
Mou F., Chen C., Zhong Q., Yin Y., Ma H., Guan J.. interfaces. Autonomous Motion and Temperature-Controlled Drug Delivery of Mg/Pt-Poly (N-Isopropylacrylamide) Janus Micromotors Driven by Simulated Body Fluid and Blood Plasma. ACS Applied Materials & Interfaces. 2014;6(12):9897–9903. doi: 10.1021/am502729y. PubMed DOI
Gao W., Pei A., Wang J.. Water-Driven Micromotors. ACS Nano. 2012;6(9):8432–8438. doi: 10.1021/nn303309z. PubMed DOI
Li J., Singh V. V., Sattayasamitsathit S., Orozco J., Kaufmann K., Dong R., Gao W., Jurado-Sanchez B., Fedorak Y., Wang J.. Water-Driven Micromotors for Rapid Photocatalytic Degradation of Biological and Chemical Warfare Agents. ACS Nano. 2014;8(11):11118–11125. doi: 10.1021/nn505029k. PubMed DOI
Esteban-Fernández de Ávila B., Lopez-Ramirez M. A., Mundaca-Uribe R., Wei X., Ramírez-Herrera D. E., Karshalev E., Nguyen B., Fang R. H., Zhang L., Wang J.. Multicompartment Tubular Micromotors toward Enhanced Localized Active Delivery. Advanced Materials. 2020;32(25):2000091. doi: 10.1002/adma.202000091. PubMed DOI
Liu J., Li L., Cao C., Feng Z., Liu Y., Ma H., Luo W., Guan J., Mou F.. Swarming Multifunctional Heater-Thermometer Nanorobots for Precise Feedback Hyperthermia Delivery. ACS Nano. 2023;17(17):16731–16742. doi: 10.1021/acsnano.3c03131. PubMed DOI
Li L., Yu Z., Liu J., Yang M., Shi G., Feng Z., Luo W., Ma H., Guan J., Mou F.. Swarming Responsive Photonic Nanorobots for Motile-Targeting Microenvironmental Mapping and Mapping-Guided Photothermal Treatment. Nano-Micro Letters. 2023;15(1):141. doi: 10.1007/s40820-023-01095-5. PubMed DOI PMC
Yu Z., Li L., Mou F., Yu S., Zhang D., Yang M., Zhao Q., Ma H., Luo W., Li T., Guan J.. Swarming Magnetic Photonic-Crystal Microrobots with on-the-fly Visual pH Detection and Self-Regulated Drug Delivery. InfoMat. 2023;5(10):e12464. doi: 10.1002/inf2.12464. DOI
Li J., Yu X., Xu M., Liu W., Sandraz E., Lan H., Wang J., Cohen S. M.. Metal-Organic Frameworks as Micromotors with Tunable Engines and Brakes. Journal of the American Chemical Society. 2017;139(2):611–614. doi: 10.1021/jacs.6b11899. PubMed DOI
Wang X., Chen X. Z., Alcântara C. C., Sevim S., Hoop M., Terzopoulou A., De Marco C., Hu C., de Mello A. J., Falcaro P.. et al. Mofbots: Metal-Organic-Framework-Based Biomedical Microrobots. Advanced Materials. 2019;31(27):1901592. doi: 10.1002/adma.201901592. PubMed DOI
Diao Y. Y., Liu X. Y., Toh G. W., Shi L., Zi J.. Multiple Structural Coloring of Silk-Fibroin Photonic Crystals and Humidity-Responsive Color Sensing. Advanced Functional Materials. 2013;23(43):5373–5380. doi: 10.1002/adfm.201203672. DOI
Fang Y., Ni Y., Choi B., Leo S. Y., Gao J., Ge B., Taylor C., Basile V., Jiang P.. Chromogenic Photonic Crystals Enabled by Novel Vapor-Responsive Shape-Memory Polymers. Advanced Materials. 2015;27(24):3696–3704. doi: 10.1002/adma.201500835. PubMed DOI
Patiño T., Feiner-Gracia N., Arqué X., Miguel-Lopez A., Jannasch A., Stumpp T., Schäffer E., Albertazzi L., Sanchez S.. Influence of Enzyme Quantity and Distribution on the Self-Propulsion of Non-Janus Urease-Powered Micromotors. Journal of the American Chemical Society. 2018;140(25):7896–7903. doi: 10.1021/jacs.8b03460. PubMed DOI
Greco F. V., Tarnowski M. J., Gorochowski T. E.. Living Computers Powered by Biochemistry. Biochem. 2019;41(3):14–18. doi: 10.1042/BIO04103014. DOI
Marucci L., Barberis M., Karr J., Ray O., Race P. R., de Souza Andrade M., Grierson C., Hoffmann S. A., Landon S., Rech E.. et al. Computer-Aided Whole-Cell Design: Taking a Holistic Approach by Integrating Synthetic with Systems Biology. Front. Bioeng. Biotechnol. 2020;8:942. doi: 10.3389/fbioe.2020.00942. PubMed DOI PMC
Pena-Francesch A., Demirel M. C.. Squid-Inspired Tandem Repeat Proteins: Functional Fibers and Films. Frontiers in Chemistry. 2019;7:na. doi: 10.3389/fchem.2019.00069. PubMed DOI PMC
Ceylan H., Yasa I. C., Yasa O., Tabak A. F., Giltinan J., Sitti M.. 3D-Printed Biodegradable Microswimmer for Theranostic Cargo Delivery and Release. ACS Nano. 2019;13(3):3353–3362. doi: 10.1021/acsnano.8b09233. PubMed DOI PMC
Pena-Francesch A., Jung H., Demirel M. C., Sitti M.. Biosynthetic Self-Healing Materials for Soft Machines. Nature Materials. 2020;19(11):1230–1235. doi: 10.1038/s41563-020-0736-2. PubMed DOI PMC
Terzopoulou A., Nicholas J. D., Chen X.-Z., Nelson B. J., Pane S., Puigmarti-Luis J.. Metal-Organic Frameworks in Motion. Chemical Reviews. 2020;120(20):11175–11193. doi: 10.1021/acs.chemrev.0c00535. PubMed DOI
Feng J., Yuan J., Cho S. K.. 2-D Steering and Propelling of Acoustic Bubble-Powered Microswimmers. Lab on a Chip. 2016;16(12):2317–2325. doi: 10.1039/C6LC00431H. PubMed DOI
Zhou Y., Wang H., Ma Z., Yang J. K., Ai Y.. Acoustic Vibration-Induced Actuation of Multiple Microrotors in Microfluidics. Advanced Materials Technologies. 2020;5(9):2000323. doi: 10.1002/admt.202000323. DOI
Irie M., Fukaminato T., Matsuda K., Kobatake S.. Photochromism of Diarylethene Molecules and Crystals: Memories, Switches, and Actuators. Chemical Reviews. 2014;114(24):12174–12277. doi: 10.1021/cr500249p. PubMed DOI
Guo S., Matsukawa K., Miyata T., Okubo T., Kuroda K., Shimojima A.. Photoinduced Bending of Self-Assembled Azobenzene-Siloxane Hybrid. Journal of the American Chemical Society. 2015;137(49):15434–15440. doi: 10.1021/jacs.5b06172. PubMed DOI
Liu D., Liu L., Onck P. R., Broer D. J.. Reverse Switching of Surface Roughness in a Self-Organized Polydomain Liquid Crystal Coating. Proceedings of the National Academy of Sciences. 2015;112(13):3880–3885. doi: 10.1073/pnas.1419312112. PubMed DOI PMC
Kim T., Zhu L., Mueller L. J., Bardeen C. J.. Mechanism of Photoinduced Bending and Twisting in Crystalline Microneedles and Microribbons Composed of 9-Methylanthracene. Journal of the American Chemical Society. 2014;136(18):6617–6625. doi: 10.1021/ja412216z. PubMed DOI
Ohshima A., Momotake A., Arai T.. Photochromism, Thermochromism, and Solvatochromism of Naphthalene-Based Analogues of Salicylideneaniline in Solution. Journal of Photochemistry and Photobiology. 2004;162(2-3):473–479. doi: 10.1016/S1010-6030(03)00388-5. DOI
Gupta P., Panda T., Allu S., Borah S., Baishya A., Gunnam A., Nangia A., Naumov P., Nath N. K.. Crystalline Acylhydrazone Photoswitches with Multiple Mechanical Responses. Crystal Growth & Design. 2019;19(5):3039–3044. doi: 10.1021/acs.cgd.8b01860. DOI
Morimoto M., Irie M.. A Diarylethene Cocrystal That Converts Light into Mechanical Work. Journal of the American Chemical Society. 2010;132(40):14172–14178. doi: 10.1021/ja105356w. PubMed DOI
Kitagawa D., Tsujioka H., Tong F., Dong X., Bardeen C. J., Kobatake S.. Control of Photomechanical Crystal Twisting by Illumination Direction. Journal of the American Chemical Society. 2018;140(12):4208–4212. doi: 10.1021/jacs.7b13605. PubMed DOI
Zhu L., Al-Kaysi R. O., Bardeen C. J.. Photoinduced Ratchet-Like Rotational Motion of Branched Molecular Crystals. Angewandte Chemie International Edition. 2016;55(25):7073–7076. doi: 10.1002/anie.201511444. PubMed DOI
Tong F., Al-Haidar M., Zhu L., Al-Kaysi R. O., Bardeen C. J.. Photoinduced Peeling of Molecular Crystals. Chemical Communications. 2019;55(26):3709–3712. doi: 10.1039/C8CC10051A. PubMed DOI
Xuan M., Wu Z., Shao J., Dai L., Si T., He Q.. Near Infrared Light-Powered Janus Mesoporous Silica Nanoparticle Motors. Journal of the American Chemical Society. 2016;138(20):6492–6497. doi: 10.1021/jacs.6b00902. PubMed DOI
Ji Y., Lin X., Zhang H., Wu Y., Li J., He Q.. Thermoresponsive Polymer Brush Modulation on the Direction of Motion of Phoretically Driven Janus Micromotors. Angewandte Chemie International Edition. 2019;131(13):4228–4232. doi: 10.1002/ange.201812860. PubMed DOI
Bandari V. K., Nan Y., Karnaushenko D., Hong Y., Sun B., Striggow F., Karnaushenko D. D., Becker C., Faghih M., Medina-Sánchez M.. et al. A Flexible Microsystem Capable of Controlled Motion and Actuation by Wireless Power Transfer. Nature Electronics. 2020;3(3):172–180. doi: 10.1038/s41928-020-0384-1. DOI
Wang H., Pumera M.. Emerging Materials for the Fabrication of Micro/Nanomotors. Nanoscale. 2017;9(6):2109–2116. doi: 10.1039/C6NR09217A. PubMed DOI
Gao W., Liu M., Liu L., Zhang H., Dong B., Li C. Y.. One-Step Fabrication of Multifunctional Micromotors. Nanoscale. 2015;7(33):13918–13923. doi: 10.1039/C5NR03574K. PubMed DOI
Tabrizi M. A., Shamsipur M.. A Simple Method for the Fabrication of Nanomotors Based on a Gold Nanosheet Decorated with Copt Nanoparticles. RSC Advances. 2015;5(64):51508–51511. doi: 10.1039/C5RA08552G. DOI
Su M., Liu M., Liu L., Sun Y., Li M., Wang D., Zhang H., Dong B.. Shape-Controlled Fabrication of the Polymer-Based Micromotor Based on the Polydimethylsiloxane Template. Langmuir. 2015;31(43):11914–11920. doi: 10.1021/acs.langmuir.5b03649. PubMed DOI
Walker D., Käsdorf B. T., Jeong H.-H., Lieleg O., Fischer P.. Enzymatically Active Biomimetic Micropropellers for the Penetration of Mucin Gels. Science Advances. 2015;1(11):e1500501. doi: 10.1126/sciadv.1500501. PubMed DOI PMC
Wu Z., Li J., Esteban-Fernández de Ávila B., Li T., Gao W., He Q., Zhang L., Wang J.. Water-Powered Cell-Mimicking Janus Micromotor. Advanced Functional Materials. 2015;25(48):7497–7501. doi: 10.1002/adfm.201503441. DOI
Wang D., Gao C., Zhou C., Lin Z., He Q.. Leukocyte Membrane-Coated Liquid Metal Nanoswimmers for Actively Targeted Delivery and Synergistic Chemophotothermal Therapy. Research. 2020;2020:3676954. doi: 10.34133/2020/3676954. PubMed DOI PMC
Chen C., Karshalev E., Guan J., Wang J.. Magnesium-Based Micromotors: Water-Powered Propulsion, Multifunctionality, and Biomedical and Environmental Applications. Small. 2018;14(23):1704252. doi: 10.1002/smll.201704252. PubMed DOI
Bozuyuk U., Yasa O., Yasa I. C., Ceylan H., Kizilel S., Sitti M.. Light-Triggered Drug Release from 3D-Printed Magnetic Chitosan Microswimmers. ACS Nano. 2018;12(9):9617–9625. doi: 10.1021/acsnano.8b05997. PubMed DOI
Ye H., Wang Y., Xu D., Liu X., Liu S., Ma X.. Design and Fabrication of Micro/Nano-Motors for Environmental and Sensing Applications. Applied Materials Today. 2021;23:101007. doi: 10.1016/j.apmt.2021.101007. DOI
Verma C., Berdimurodov E., Verma D. K., Berdimuradov K., Alfantazi A., Hussain C. M.. 3D Nanomaterials: The Future of Industrial, Biological, and Environmental Applications. Inorganic Chemistry Communications. 2023;156:111163. doi: 10.1016/j.inoche.2023.111163. DOI
Xu B., Zhang B., Wang L., Huang G., Mei Y.. Tubular Micro/Nanomachines: From the Basics to Recent Advances. Advanced Functional Materials. 2018;28(25):1705872. doi: 10.1002/adfm.201705872. DOI
Zhao Y., Jiang L.. Hollow Micro/Nanomaterials with Multilevel Interior Structures. Advanced Materials. 2009;21(36):3621–3638. doi: 10.1002/adma.200803645. DOI
Liu X., Dong R., Chen Y., Zhang Q., Yu S., Zhang Z., Hong X., Li T., Gao M., Cai Y.. Motion Mode-Driven Adsorption by Magnetically Propelled MOF-Based Nanomotor. Materials Today Nano. 2022;18:100182. doi: 10.1016/j.mtnano.2022.100182. DOI
Tan C., Cao X., Wu X.-J., He Q., Yang J., Zhang X., Chen J., Zhao W., Han S., Nam G.-H.. et al. Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chemical Reviews. 2017;117(9):6225–6331. doi: 10.1021/acs.chemrev.6b00558. PubMed DOI
Zhang H., Cao Z., Zhang Q., Xu J., Yun S. L. J., Liang K., Gu Z.. Chemotaxis-Driven 2D Nanosheet for Directional Drug Delivery toward the Tumor Microenvironment. Small. 2020;16(44):2002732. doi: 10.1002/smll.202002732. PubMed DOI
Chang X., Feng Y., Guo B., Zhou D., Li L.. Nature-Inspired Micro/Nanomotors. Nanoscale. 2022;14(2):219–238. doi: 10.1039/D1NR07172F. PubMed DOI
Poon W., Zhang Y.-N., Ouyang B., Kingston B. R., Wu J. L. Y., Wilhelm S., Chan W. C. W.. Elimination Pathways of Nanoparticles. ACS Nano. 2019;13(5):5785–5798. doi: 10.1021/acsnano.9b01383. PubMed DOI
Tsoi K. M., MacParland S. A., Ma X.-Z., Spetzler V. N., Echeverri J., Ouyang B., Fadel S. M., Sykes E. A., Goldaracena N., Kaths J. M.. et al. Mechanism of Hard-Nanomaterial Clearance by The liver. Nature Materials. 2016;15(11):1212–1221. doi: 10.1038/nmat4718. PubMed DOI PMC
Zhu W., Li J., Leong Y. J., Rozen I., Qu X., Dong R., Wu Z., Gao W., Chung P. H., Wang J.. et al. 3D-Printed Artificial Microfish. Advanced Materials. 2015;27(30):4411–4417. doi: 10.1002/adma.201501372. PubMed DOI PMC
Wang Y., Shen J., Handschuh-Wang S., Qiu M., Du S., Wang B.. Microrobots for Targeted Delivery and Therapy in Digestive System. ACS Nano. 2023;17(1):27–50. doi: 10.1021/acsnano.2c04716. PubMed DOI
Wang B., Chan K. F., Yuan K., Wang Q., Xia X., Yang L., Ko H., Wang Y.-X. J., Sung J. J. Y., Chiu P. W. Y., Zhang L.. Endoscopy-Assisted Magnetic Navigation of Biohybrid Soft Microrobots with Rapid Endoluminal Delivery and Imaging. Science Robotics. 2021;6(52):eabd2813. doi: 10.1126/scirobotics.abd2813. PubMed DOI
Wu Z., Li L., Yang Y., Hu P., Li Y., Yang S.-Y., Wang L. V., Gao W.. A Microrobotic System Guided by Photoacoustic Computed Tomography for Targeted Navigation in Intestines in vivo. Science Robotics. 2019;4(32):eaax0613. doi: 10.1126/scirobotics.aax0613. PubMed DOI PMC
Li H. C., Li Y., Liu J., He Q., Wu Y. J.. Asymmetric Colloidal Motors: From Dissymmetric Nanoarchitectural Fabrication to Efficient Propulsion Strategy. Nanoscale. 2022;14(20):7444–7459. doi: 10.1039/D2NR00610C. PubMed DOI
Zhang, J. ; Zheng, X. ; Cui, H. ; Silber-Li, Z. . The Self-Propulsion of the Spherical Pt-SiO
Wang H., Moo J. G. S., Pumera M.. From Nanomotors to Micromotors: The Influence of the Size of an Autonomous Bubble-Propelled Device Upon Its Motion. ACS Nano. 2016;10(5):5041–5050. doi: 10.1021/acsnano.5b07771. PubMed DOI
Piazza R., Parola A.. Thermophoresis in Colloidal Suspensions. Journal of Physics: Condensed Matter. 2008;20(15):153102. doi: 10.1088/0953-8984/20/15/153102. DOI
Blanco E., Shen H., Ferrari M.. Principles of Nanoparticle Design for Overcoming Biological Barriers to Drug Delivery. Nature Biotechnology. 2015;33(9):941–951. doi: 10.1038/nbt.3330. PubMed DOI PMC
Kim J., Mayorga-Burrezo P., Song S.-J., Mayorga-Martinez C. C., Medina-Sánchez M., Pané S., Pumera M.. Advanced Materials for Micro/Nanorobotics. Chemical Society Reviews. 2024;53(18):9190–9253. doi: 10.1039/D3CS00777D. PubMed DOI
Yoo J., Tang S., Gao W.. Micro- and Nanorobots for Biomedical Applications in the Brain. Nature Reviews Bioengineering. 2023;1(5):308–310. doi: 10.1038/s44222-023-00038-4. DOI
Parrish J. K., Edelstein-Keshet L.. Complexity, Pattern, and Evolutionary Trade-Offs in Animal Aggregation. Science. 1999;284(5411):99–101. doi: 10.1126/science.284.5411.99. PubMed DOI
Marchetti M. C., Joanny J.-F., Ramaswamy S., Liverpool T. B., Prost J., Rao M., Simha R. A.. Hydrodynamics of Soft Active Matter. Reviews of Modern Physics. 2013;85(3):1143. doi: 10.1103/RevModPhys.85.1143. DOI
Grzybowski B. A., Whitesides G. M.. Dynamic Aggregation of Chiral Spinners. Science. 2002;296(5568):718–721. doi: 10.1126/science.1068130. PubMed DOI
Cheng R., Huang W., Huang L., Yang B., Mao L., Jin K., ZhuGe Q., Zhao Y.. Acceleration of Tissue Plasminogen Activator-Mediated Thrombolysis by Magnetically Powered Nanomotors. ACS Nano. 2014;8(8):7746–7754. doi: 10.1021/nn5029955. PubMed DOI PMC
Hu J., Huang S., Zhu L., Huang W., Zhao Y., Jin K., ZhuGe Q.. interfaces. Tissue Plasminogen Activator-Porous Magnetic Microrods for Targeted Thrombolytic Therapy after Ischemic Stroke. ACS Applied Materials & Interfaces. 2018;10(39):32988–32997. doi: 10.1021/acsami.8b09423. PubMed DOI
Cademartiri L., Bishop K. J.. Programmable Self-Assembly. Nature Materials. 2015;14(1):2–9. doi: 10.1038/nmat4184. PubMed DOI
Li Q., Hu E., Yu K., Xie R., Lu F., Lu B., Bao R., Zhao T., Dai F., Lan G.. Self-Propelling Janus Particles for Hemostasis in Perforating and Irregular Wounds with Massive Hemorrhage. Advanced Functional Materials. 2020;30(42):2004153. doi: 10.1002/adfm.202004153. DOI
Katsamba P., Lauga E.. Micro-Tug-of-War: A Selective Control Mechanism for Magnetic Swimmers. Physical Review Applied. 2016;5(6):064019. doi: 10.1103/PhysRevApplied.5.064019. DOI
Mandal P., Chopra V., Ghosh A.. Independent Positioning of Magnetic Nanomotors. ACS Nano. 2015;9(5):4717–4725. doi: 10.1021/acsnano.5b01518. PubMed DOI
Hong Y., Diaz M., Córdova-Figueroa U. M., Sen A.. Light-Driven Titanium-Dioxide-Based Reversible Microfireworks and Micromotor/Micropump Systems. Advanced Functional Materials. 2010;20(10):1568–1576. doi: 10.1002/adfm.201000063. DOI
Altemose A., Sánchez-Farrán M. A., Duan W. T., Schulz S., Borhan A., Crespi V. H., Sen A.. Chemically Controlled Spatiotemporal Oscillations of Colloidal Assemblies. Angewandte Chemie International Edition. 2017;56(27):7817–7821. doi: 10.1002/anie.201703239. PubMed DOI
Aubret A., Youssef M., Sacanna S., Palacci J.. Targeted Assembly and Synchronization of Self-Spinning Microgears. Nature Physics. 2018;14(11):1114–1118. doi: 10.1038/s41567-018-0227-4. DOI
Maggi C., Simmchen J., Saglimbeni F., Katuri J., Dipalo M., De Angelis F., Sanchez S., Di Leonardo R.. Self-Assembly of Micromachining Systems Powered by Janus Micromotors. Small. 2016;12(4):446–451. doi: 10.1002/smll.201502391. PubMed DOI
Butter K., Bomans P., Frederik P., Vroege G., Philipse A.. Direct Observation of Dipolar Chains in Iron Ferrofluids by Cryogenic Electron Microscopy. Nature Materials. 2003;2(2):88–91. doi: 10.1038/nmat811. PubMed DOI
Tripp S. L., Dunin-Borkowski R. E., Wei A.. Flux Closure in Self-Assembled Cobalt Nanoparticle Rings. Angewandte Chemie International Edition. 2003;115(45):5749–5751. doi: 10.1002/ange.200352825. PubMed DOI
Llacer-Wintle J., Rivas-Dapena A., Chen X.-Z., Pellicer E., Nelson B. J., Puigmartí-Luis J., Pané S.. Biodegradable Small-Scale Swimmers for Biomedical Applications. Advanced Materials. 2021;33(42):2102049. doi: 10.1002/adma.202102049. PubMed DOI
Liu M., Ishida Y., Ebina Y., Sasaki T., Hikima T., Takata M., Aida T.. An Anisotropic Hydrogel with Electrostatic Repulsion between Cofacially Aligned Nanosheets. Nature. 2015;517(7532):68–72. doi: 10.1038/nature14060. PubMed DOI
Kostiainen M. A., Hiekkataipale P., Laiho A., Lemieux V., Seitsonen J., Ruokolainen J., Ceci P.. Electrostatic Assembly of Binary Nanoparticle Superlattices Using Protein Cages. Nature Nanotechnology. 2013;8(1):52–56. doi: 10.1038/nnano.2012.220. PubMed DOI
Liljeström V., Mikkilä J., Kostiainen M. A.. Self-Assembly and Modular Functionalization of Three-Dimensional Crystals from Oppositely Charged Proteins. Nature Communications. 2014;5(1):4445. doi: 10.1038/ncomms5445. PubMed DOI PMC
Zehavi M., Sofer D., Miloh T., Velev O. D., Yossifon G.. Optically Modulated Propulsion of Electric-Field-Powered Photoconducting Janus Particles. Physical Review Applied. 2022;18(2):024060. doi: 10.1103/PhysRevApplied.18.024060. DOI
Hoop M., Chen X.-Z., Ferrari A., Mushtaq F., Ghazaryan G., Tervoort T., Poulikakos D., Nelson B., Pané S.. Ultrasound-Mediated Piezoelectric Differentiation of Neuron-Like Pc12 Cells on Pvdf Membranes. Scientific Reports. 2017;7(1):4028. doi: 10.1038/s41598-017-03992-3. PubMed DOI PMC
Mushtaq F., Torlakcik H., Vallmajo-Martin Q., Siringil E. C., Zhang J., Röhrig C., Shen Y., Yu Y., Chen X.-Z., Müller R.. et al. Magnetoelectric 3D Scaffolds for Enhanced Bone Cell Proliferation. Applied Materials Today. 2019;16:290–300. doi: 10.1016/j.apmt.2019.06.004. DOI
Chen X.-Z., Liu J.-H., Dong M., Müller L., Chatzipirpiridis G., Hu C., Terzopoulou A., Torlakcik H., Wang X., Mushtaq F.. et al. Magnetically Driven Piezoelectric Soft Microswimmers for Neuron-Like Cell Delivery and Neuronal Differentiation. Materials Horizons. 2019;6(7):1512–1516. doi: 10.1039/C9MH00279K. DOI
Chen X.-Z., Hoop M., Shamsudhin N., Huang T., Ozkale B., Li Q., Siringil E., Mushtaq F., Di Tizio L., Nelson B. J., Pane S.. Hybrid Magnetoelectric Nanowires for Nanorobotic Applications: Fabrication, Magnetoelectric Coupling, and Magnetically Assisted in Vitro Targeted Drug Delivery. Advanced Materials. 2017;29(8):1605458. doi: 10.1002/adma.201605458. PubMed DOI
Mushtaq F., Torlakcik H., Hoop M., Jang B., Carlson F., Grunow T., Laubli N., Ferreira A., Chen X.-Z., Nelson B. J., Pane S.. Motile Piezoelectric Nanoeels for Targeted Drug Delivery. Advanced Functional Materials. 2019;29(12):1808135. doi: 10.1002/adfm.201808135. DOI
Chen X.-Z., Shamsudhin N., Hoop M., Pieters R., Siringil E., Sakar M. S., Nelson B. J., Pané S.. Magnetoelectric Micromachines with Wirelessly Controlled Navigation and Functionality. Materials Horizons. 2016;3(2):113–118. doi: 10.1039/C5MH00259A. DOI
Ashkin A., Dziedzic J. M., Bjorkholm J. E., Chu S.. Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles. Optics Letters. 1986;11(5):288–290. doi: 10.1364/OL.11.000288. PubMed DOI
Fan D., Zhu F., Cammarata R., Chien C.. Electric Tweezers. Nano Today. 2011;6(4):339–354. doi: 10.1016/j.nantod.2011.05.003. PubMed DOI PMC
Grier D. G.. A Revolution in Optical Manipulation. Nature. 2003;424(6950):810–816. doi: 10.1038/nature01935. PubMed DOI
Curtis J. E., Koss B. A., Grier D. G.. Dynamic Holographic Optical Tweezers. Optics Communications. 2002;207(1-6):169–175. doi: 10.1016/S0030-4018(02)01524-9. DOI
Simon P., Dupuis R., Costentin J.. Thigmotaxis as an Index of Anxiety in Mice. Influence of Dopaminergic Transmissions. Behavioural Brain Research. 1994;61(1):59–64. doi: 10.1016/0166-4328(94)90008-6. PubMed DOI
Treit D., Fundytus M.. Thigmotaxis as a Test for Anxiolytic Activity in Rats. Pharmacol. Biochem. Behav. 1988;31(4):959–962. doi: 10.1016/0091-3057(88)90413-3. PubMed DOI
de la Asunción-Nadal V., Franco C., Veciana A., Ning S., Terzopoulou A., Sevim S., Chen X.-Z., Gong D., Cai J., Wendel-Garcia P. D.. et al. MoSBOTS: Magnetically Driven Biotemplated MoS2-Based Microrobots for Biomedical Applications. Small. 2022;18(33):2203821. doi: 10.1002/smll.202203821. PubMed DOI
Ding S., O'Banion C. P., Welfare J. G., Lawrence D. S.. Cellular Cyborgs: On the Precipice of a Drug Delivery Revolution. Cell Chemical Biology. 2018;25(6):648–658. doi: 10.1016/j.chembiol.2018.03.003. PubMed DOI
Gao S., Hou J., Zeng J., Richardson J. J., Gu Z., Gao X., Li D., Gao M., Wang D.-W., Chen P.. et al. Superassembled Biocatalytic Porous Framework Micromotors with Reversible and Sensitive pH-Speed Regulation at Ultralow Physiological H2O2 Concentration. Advanced Functional Materials. 2019;29(18):1808900. doi: 10.1002/adfm.201808900. DOI
Tu Y. F., Peng F., Sui X. F., Men Y. J., White P. B., van Hest J. C. M., Wilson D. A.. Self-Propelled Supramolecular Nanomotors with Temperature-Responsive Speed Regulation. Nature Chemistry. 2017;9(5):480–486. doi: 10.1038/nchem.2674. PubMed DOI
Ma X., Wang X., Hahn K., Sánchez S.. Motion Control of Urea-Powered Biocompatible Hollow Microcapsules. ACS Nano. 2016;10(3):3597–3605. doi: 10.1021/acsnano.5b08067. PubMed DOI
Singh D. P., Choudhury U., Fischer P., Mark A. G.. Non-Equilibrium Assembly of Light-Activated Colloidal Mixtures. Advanced Materials. 2017;29(32):1701328. doi: 10.1002/adma.201701328. PubMed DOI
Yuan S. R., Lin X. K., He Q.. Reconfigurable Assembly of Colloidal Motors Towards Interactive Soft Materials and Systems. Journal of Colloid and Interface Science. 2022;612:43–56. doi: 10.1016/j.jcis.2021.12.135. PubMed DOI
Chen M. L., Lin Z. H., Xuan M. J., Lin X. K., Yang M. C., Dai L. R., He Q.. Programmable Synamic Shapes with a Swarm of Light-Powered Colloidal Motors. Angewandte Chemie International Edition. 2021;60(30):16674–16679. doi: 10.1002/anie.202105746. PubMed DOI
Wang Q. Q., Yang L. D., Wang B., Yu E., Yu J. F., Zhang L.. Collective Behavior of Reconfigurable Magnetic Droplets via Dynamic Self-Assembly. ACS Applied Materials & Interfaces. 2019;11(1):1630–1637. doi: 10.1021/acsami.8b17402. PubMed DOI
Wang Q. Q., Yu J. F., Yuan K., Yang L. D., Jin D. D., Zhang L.. Disassembly and Spreading of Magnetic Nanoparticle Clusters on Uneven Surfaces. Applied Materials Today. 2020;18:100489. doi: 10.1016/j.apmt.2019.100489. DOI
Zhang S., Scott E. Y., Singh J., Chen Y., Zhang Y., Elsayed M., Chamberlain M. D., Shakiba N., Adams K., Yu S.. et al. The Optoelectronic Microrobot: A Versatile Toolbox for Micromanipulation. Proceedings of the National Academy of Sciences. 2019;116(30):14823–14828. doi: 10.1073/pnas.1903406116. PubMed DOI PMC
Das S. S., Yossifon G.. Optoelectronic Trajectory Reconfiguration and Directed Self-Assembly of Self-Propelling Electrically Powered Active Particles. Advanced Science. 2023;10(16):2206183. doi: 10.1002/advs.202206183. PubMed DOI PMC
Wu Z. G., Lin X. K., Si T. Y., He Q.. Recent Progress on Bioinspired Self-Propelled Micro/Nanomotors via Controlled Molecular Self-Assembly. Small. 2016;12(23):3080–3093. doi: 10.1002/smll.201503969. PubMed DOI
Zhang Q. H., Yan Y. W., Liu J., Wu Y. J., He Q.. Supramolecular Colloidal Motors via Chemical Self-Assembly. Current Opinion in Colloid & Interface Science. 2022;62:101642. doi: 10.1016/j.cocis.2022.101642. DOI
Wu Y., Wu Z., Lin X., He Q., Li J.. Autonomous Movement of Controllable Assembled Janus Capsule Motors. ACS Nano. 2012;6(12):10910–10916. doi: 10.1021/nn304335x. PubMed DOI
Wu Z. G., Lin X. K., Wu Y. J., Si T. Y., Sun J. M., He Q.. Near-Infrared Light-Triggered "on/Off" Motion of Polymer Multi Layer Rockets. ACS Nano. 2014;8(6):6097–6105. doi: 10.1021/nn501407r. PubMed DOI
Wu Y. J., Si T. Y., Lin X. K., He Q.. Near Infrared-Modulated Propulsion of Catalytic Janus Polymer Multilayer Capsule Motors. Chemical Communications. 2015;51(3):511–514. doi: 10.1039/C4CC07182D. PubMed DOI
Lin Z. H., Wu Z. G., Lin X. K., He Q.. Catalytic Polymer Multilayer Shell Motors for Separation of Organics. Chemistry-a European Journal. 2016;22(5):1587–1591. doi: 10.1002/chem.201503892. PubMed DOI
Wu Y. J., Si T. Y., Shao J. X., Wu Z. G., He Q.. Near-Infrared Light-Driven Janus Capsule Motors: Fabrication, Propulsion, and Simulation. Nano Research. 2016;9(12):3747–3756. doi: 10.1007/s12274-016-1245-0. DOI
Ji Y. X., Lin X. K., Wang D. L., Zhou C., Wu Y. J., He Q.. Continuously Variable Regulation of the Speed of Bubble-Propelled Janus Microcapsule Motors Based on Salt-Responsive Polyelectrolyte Brushes. Chemistry-an Asian Journal. 2019;14(14):2450–2455. doi: 10.1002/asia.201801716. PubMed DOI
Si T. Y., Zou X., Wu Z. G., Li T. L., Wang X., Ivanovich K. I., He Q.. A Bubble-Dragged Catalytic Polymer Microrocket. Chemistry-an Asian Journal. 2019;14(14):2460–2464. doi: 10.1002/asia.201900277. PubMed DOI
Wang W., Wu Z. G., Lin X. K., Si T. Y., He Q.. Gold-Nanoshell-Functionalized Polymer Nanoswimmer for Photomechanical Poration of Single-Cell Membrane. Journal of the American Chemical Society. 2019;141(16):6601–6608. doi: 10.1021/jacs.8b13882. PubMed DOI
Yuan Y., Gao C. Y., Wang D. L., Zhou C., Zhu B. H., He Q.. Janus-Micromotor-Based on-Off Luminescence Sensor for Active Tnt Detection. Beilstein Journal of Nanotechnology. 2019;10:1324–1331. doi: 10.3762/bjnano.10.131. PubMed DOI PMC
Gai M. Y., Frueh J., Hu N. R. S., Si T. Y., Sukhorukov G. B., He Q.. Self-Propelled Two Dimensional Polymer Multilayer Plate Micromotors. Physical Chemistry Chemical Physics. 2016;18(5):3397–3401. doi: 10.1039/C5CP07697H. PubMed DOI
Yang S. H., Ren J. Y., Wang H.. Injectable Micromotor@Hydrogel System for Antibacterial Therapy. Chemistry-a European Journal. 2022;28(7):e202103867. doi: 10.1002/chem.202103867. PubMed DOI
Ren J., Hu P., Ma E., Zhou X., Wang W., Zheng S., Wang H.. Enzyme-Powered Nanomotors with Enhanced Cell Uptake and Lysosomal Escape for Combined Therapy of Cancer. Applied Materials Today. 2022;27:101445. doi: 10.1016/j.apmt.2022.101445. DOI
Jurado-Sánchez B., Escarpa A., Wang J.. Lighting up Micromotors with Quantum Dots for Smart Chemical Sensing. Chemical Communications. 2015;51(74):14088–14091. doi: 10.1039/C5CC04726A. PubMed DOI
Xuan M., Shao J., Lin X., Dai L., He Q.. Light-Activated Janus Self-Assembled Capsule Micromotors. Colloids and Surfaces a-Physicochemical and Engineering Aspects. 2015;482:92–97. doi: 10.1016/j.colsurfa.2015.04.032. DOI
Hu N. R. S., Sun M. M., Lin X. K., Gao C. Y., Zhang B., Zheng C., Xie H., He Q.. Self-Propelled Rolled-up Polyelectrolyte Multilayer Microrockets. Advanced Functional Materials. 2018;28(25):1705684. doi: 10.1002/adfm.201705684. DOI
Lin X. K., Wu Z. G., Wu Y. J., Xuan M. J., He Q.. Self-Propelled Micro-/Nanomotors Based on Controlled Assembled Architectures. Advanced Materials. 2016;28(6):1060–1072. doi: 10.1002/adma.201502583. PubMed DOI
Wang W., Wu Z. G., Yang L., Si T. Y., He Q.. Rational Design of Polymer Conical Nanoswimmers with Upstream Motility. ACS Nano. 2022;16(6):9317–9328. doi: 10.1021/acsnano.2c01979. PubMed DOI
Itel F., Schattling P. S., Zhang Y., Städler B.. Enzymes as Key Features in Therapeutic Cell Mimicry. Advanced Drug Delivery Reviews. 2017;118:94–108. doi: 10.1016/j.addr.2017.09.006. PubMed DOI
Shao J. X., Abdelghani M., Shen G. Z., Cao S. P., Williams D. S., van Hest J. C. M.. Erythrocyte Membrane Modified Janus Polymeric Motors for Thrombus Therapy. ACS Nano. 2018;12(5):4877–4885. doi: 10.1021/acsnano.8b01772. PubMed DOI PMC
Wu Z. G., Lin X. K., Zou X., Sun J. M., He Q.. Biodegradable Protein-Based Rockets for Drug Transportation and Light-Triggered Release. ACS Applied Materials & Interfaces. 2015;7(1):250–255. doi: 10.1021/am507680u. PubMed DOI
Liu J., Wu Y. J., Li Y., Yang L., Wu H., He Q.. Rotary Biomolecular Motor-Powered Supramolecular Colloidal Motor. Science Advances. 2023;9(8):eabg3015. doi: 10.1126/sciadv.abg3015. PubMed DOI PMC
Wilson D. A., Nolte R. J. M., van Hest J. C. M.. Autonomous Movement of Platinum-Loaded Stomatocytes. Nature Chemistry. 2012;4(4):268–274. doi: 10.1038/nchem.1281. PubMed DOI
Peng F., Tu Y. F., van Hest J. C. M., Wilson D. A.. Self-Guided Supramolecular Cargo-Loaded Nanomotors with Chemotactic Behavior Towards Cells. Angewandte Chemie International Edition. 2015;54(40):11662–11665. doi: 10.1002/anie.201504186. PubMed DOI PMC
Abdelmohsen L., Nijemeisland M., Pawar G. M., Janssen G. J. A., Nolte R. J. M., van Hest J. C. M., Wilson D. A.. Dynamic Loading and Unloading of Proteins in Polymeric Stomatocytes: Formation of an Enzyme-Loaded Supramolecular Nanomotor. ACS Nano. 2016;10(2):2652–2660. doi: 10.1021/acsnano.5b07689. PubMed DOI
Peng F., Tu Y. F., Men Y. J., van Hest J. C. M., Wilson D. A.. Supramolecular Adaptive Nanomotors with Magnetotaxis Behavior. Advanced Materials. 2017;29(6):1604996. doi: 10.1002/adma.201604996. PubMed DOI
Tu Y. F., Peng F., André A. A. M., Men Y. J., Srinivas M., Wilson D. A.. Biodegradable Hybrid Stomatocyte Nanomotors for Drug Delivery. ACS Nano. 2017;11(2):1957–1963. doi: 10.1021/acsnano.6b08079. PubMed DOI PMC
Sun J. W., Mathesh M., Li W., Wilson D. A.. Enzyme-Powered Nanomotors with Controlled Size for Biomedical Applications. ACS Nano. 2019;13(9):10191–10200. doi: 10.1021/acsnano.9b03358. PubMed DOI PMC
Zhang P., Wu G., Zhao C. M., Zhou L., Wang X. J., Wei S. H.. Magnetic Stomatocyte-Like Nanomotor as Photosensitizer Carrier for Photodynamic Therapy Based Cancer Treatment. Colloids and Surfaces B-Biointerfaces. 2020;194:111204. doi: 10.1016/j.colsurfb.2020.111204. PubMed DOI
Tu Y. F., Peng F., Heuvelmans J. M., Liu S. W., Nolte R. J. M., Wilson D. A.. Motion Control of Polymeric Nanomotors Based on Host-Guest Interactions. Angewandte Chemie International Edition. 2019;58(26):8687–8691. doi: 10.1002/anie.201900917. PubMed DOI
Shao J. X., Cao S. P., Williams D. S., Abdelmohsen L., van Hest J. C. M.. Photoactivated Polymersome Nanomotors: Traversing Biological Barriers. Angewandte Chemie International Edition. 2020;59(39):16918–16925. doi: 10.1002/anie.202003748. PubMed DOI PMC
Fu J. Y., Jiao J. Q., Ban W. H., Kong Y. Q., Gu Z. Y., Song H., Huang X. D., Yang Y. N., Yu C. Z.. Large Scale Synthesis of Self-Assembled Shuttlecock-Shaped Silica Nanoparticles with Minimized Drag as Advanced Catalytic Nanomotors. Chemical Engineering Journal. 2021;417:127971. doi: 10.1016/j.cej.2020.127971. DOI
Huang H., Li J., Yuan M. G., Yang H. W., Zhao Y., Ying Y. L., Wang S.. Large-Scale Self-Assembly of Mofs Colloidosomes for Bubble-Propelled Micromotors and Stirring-Free Environmental Remediation. Angewandte Chemie International Edition. 2022;61(46):e202211163. doi: 10.1002/anie.202211163. PubMed DOI
Liu M., Liu L. M., Gao W. L., Su M. D., Ge Y., Shi L. L., Zhang H., Dong B., Li C. Y.. A Micromotor Based on Polymer Single Crystals and Nanoparticles: Toward Functional Versatility. Nanoscale. 2014;6(15):8601–8605. doi: 10.1039/C4NR02593H. PubMed DOI
Ji Y. X., Lin X. K., Zhang H. Y., Wu Y. J., Li J. B., He Q.. Thermoresponsive Polymer Brush Modulation on the Direction of Motion of Phoretically Driven Janus Micromotors. Angewandte Chemie International Edition. 2019;58(13):4184–4188. doi: 10.1002/anie.201812860. PubMed DOI
Gao C. Y., Lin Z. H., Lin X. K., He Q.. Cell Membrane-Camouflaged Colloid Motors for Biomedical Applications. Advanced Therapeutics. 2018;1(5):1800056. doi: 10.1002/adtp.201800056. DOI
Hu C. M. J., Zhang L., Aryal S., Cheung C., Fang R. H., Zhang L. F.. Erythrocyte Membrane-Camouflaged Polymeric Nanoparticles as a Biomimetic Delivery Platform. Proceedings of the National Academy of Sciences. 2011;108(27):10980–10985. doi: 10.1073/pnas.1106634108. PubMed DOI PMC
Zhang H. Y., Li Z. S., He Q.. Medical Swimming Cellbots. Advanced Nanobiomed Research. 2022;2(10):2200094. doi: 10.1002/anbr.202270101. DOI
Shao J. X., Xuan M. J., Zhang H. Y., Lin X. K., Wu Z. G., He Q.. Chemotaxis-Guided Hybrid Neutrophil Micromotors for Targeted Drug Transport. Angewandte Chemie International Edition. 2017;56(42):12935–12939. doi: 10.1002/anie.201706570. PubMed DOI
Gao C. Y., Lin Z. H., Wang D. L., Wu Z. G., Xie H., He Q.. Red Blood Cell-Mimicking Micromotor for Active Photodynamic Cancer Therapy. ACS Applied Materials & Interfaces. 2019;11(26):23392–23400. doi: 10.1021/acsami.9b07979. PubMed DOI
Zhang F. Y., Zhuang J., Esteban-Fernández de Ávila B., Tang S. S., Zhang Q. Z., Fang R. H., Zhang L. F., Wang J.. A Nanomotor-Based Active Delivery System for Intracellular Oxygen Transport. ACS Nano. 2019;13(10):11996–12005. doi: 10.1021/acsnano.9b06127. PubMed DOI PMC
Hou K., Zhang Y., Bao M., Xin C., Wei Z., Lin G., Wang Z.. A Multifunctional Magnetic Red Blood Cell-Mimetic Micromotor for Drug Delivery and Image-Guided Therapy. ACS Applied Materials & Interfaces. 2022;14(3):3825–3837. doi: 10.1021/acsami.1c21331. PubMed DOI
Li J. X., Angsantikul P., Liu W. J., Esteban-Fernández de Ávila B., Chang X. C., Sandraz E., Liang Y. Y., Zhu S. Y., Zhang Y., Chen C. R.. et al. Biomimetic Platelet-Camouflaged Nanorobots for Binding and Isolation of Biological Threats. Advanced Materials. 2018;30(2):1704800. doi: 10.1002/adma.201704800. PubMed DOI
Xuan M. J., Shao J. X., Gao C. Y., Wang W., Dai L. R., He Q.. Self-Propelled Nanomotors for Thermomechanically Percolating Cell Membranes. Angewandte Chemie International Edition. 2018;57(38):12463–12467. doi: 10.1002/anie.201806759. PubMed DOI
Zhang H. Y., Li Z. S., Wu Z. G., He Q.. Cancer Cell Membrane-Camouflaged Micromotor. Advanced Therapeutics. 2019;2(12):1900096. doi: 10.1002/adtp.201900096. DOI
Zhou M. Y., Xing Y., Li X. Y., Du X., Xu T. L., Zhang X. J.. Cancer Cell Membrane Camouflaged Semi-Yolk@Spiky-Shell Nanomotor for Enhanced Cell Adhesion and Synergistic Therapy. Small. 2020;16(39):2003834. doi: 10.1002/smll.202003834. PubMed DOI
Wang Z. F., Yan Y., Li C., Yu Y., Cheng S., Chen S., Zhu X. J., Sun L. P., Tao W., Liu J. W.. et al. Fluidity-Guided Assembly of Au@Pt on Liposomes as a Catalase-Powered Nanomotor for Effective Cell Uptake in Cancer Cells and Plant Leaves. ACS Nano. 2022;16(6):9019–9030. doi: 10.1021/acsnano.2c00327. PubMed DOI
Gao C. Y., Lin Z. H., Zhou C., Wang D. L., He Q.. Acoustophoretic Motion of Erythrocyte-Mimicking Hemoglobin Micromotors. Chinese Journal of Chemistry. 2020;38(12):1589–1594. doi: 10.1002/cjoc.202000347. DOI
de Gennes P. G.. Weiche Materie. (Nobel-Vortrag) Angewandte Chemie International Edition. 1992;104(7):856–859. doi: 10.1002/ange.19921040707. DOI
Ye Y., Luan J., Wang M., Chen Y., Wilson D. A., Peng F., Tu Y.. Fabrication of Self-Propelled Micro- and Nanomotors Based on Janus Structures. Chemistry - A European Journal. 2019;25(37):8663–8680. doi: 10.1002/chem.201900840. PubMed DOI
Nourhani A., Brown D., Pletzer N., Gibbs J. G.. Engineering Contactless Particle-Particle Interactions in Active Microswimmers. Advanced Materials. 2017;29(47):1703910. doi: 10.1002/adma.201703910. PubMed DOI
Chen C., Karshalev E., Li J., Soto F., Castillo R., Campos I., Mou F., Guan J., Wang J.. Transient Micromotors That Disappear When No Longer Needed. ACS Nano. 2016;10(11):10389–10396. doi: 10.1021/acsnano.6b06256. PubMed DOI
Xuan M., Shao J., Gao C., Wang W., Dai L., He Q.. Self-Propelled Nanomotors for Thermomechanically Percolating Cell Membranes. Angewandte Chemie International Edition. 2018;130(38):12643–12647. doi: 10.1002/ange.201806759. PubMed DOI
Baranova N. B., Zel'dovich B. Y.. Separation of Mirror Isomeric Molecules by Radio-Frequency Electric Field of Rotating Polarization. Chemical Physics Letters. 1978;57(3):435–437. doi: 10.1016/0009-2614(78)85543-2. DOI
Ishiyama K., Sendoh M., Yamazaki A., Arai K. I.. Swimming Micro-Machine Driven by Magnetic Torque. Sensors and Actuators A: Physical. 2001;91(1):141–144. doi: 10.1016/S0924-4247(01)00517-9. DOI
Hawkeye M. M., Brett M. J.. Glancing Angle Deposition: Fabrication, Properties, and Applications of Micro- and Nanostructured Thin Films. Journal of Vacuum Science & Technology A. 2007;25(5):1317–1335. doi: 10.1116/1.2764082. DOI
Turner L., Ryu W. S., Berg H. C.. Real-Time Imaging of Fluorescent Flagellar Filaments. Journal of Bacteriology. 2000;182(10):2793–2801. doi: 10.1128/JB.182.10.2793-2801.2000. PubMed DOI PMC
Fischer P., Ghosh A.. Magnetically Actuated Propulsion at Low Reynolds Numbers: Towards Nanoscale Control. Nanoscale. 2011;3(2):557–563. doi: 10.1039/C0NR00566E. PubMed DOI
Schamel D., Pfeifer M., Gibbs J. G., Miksch B., Mark A. G., Fischer P.. Chiral Colloidal Molecules and Observation of the Propeller Effect. Journal of the American Chemical Society. 2013;135(33):12353–12359. doi: 10.1021/ja405705x. PubMed DOI PMC
Ghosh A., Paria D., Rangarajan G., Ghosh A.. Velocity Fluctuations in Helical Propulsion: How Small Can a Propeller Be. The Journal of Physical Chemistry Letters. 2014;5(1):62–68. doi: 10.1021/jz402186w. PubMed DOI
Mark A. G., Gibbs J. G., Lee T.-C., Fischer P.. Hybrid Nanocolloids with Programmed Three-Dimensional Shape and Material Composition. Nature Materials. 2013;12(9):802–807. doi: 10.1038/nmat3685. PubMed DOI
Ramachandran R. V., Barman A., Modak P., Bhat R., Ghosh A., Saini D. K.. How Safe Are Magnetic Nanomotors: From Cells to Animals. Biomaterials Advances. 2022;140:213048. doi: 10.1016/j.bioadv.2022.213048. PubMed DOI PMC
Peter F., Kadiri V. M., Goyal R., Hurst J., Schnichels S., Avital A., Sela M., Mora-Raimundo P., Schroeder A., Alarcon-Correa M., Fischer P.. Degradable and Biocompatible Magnesium Zinc Structures for Nanomedicine: Magnetically Actuated Liposome Microcarriers with Tunable Release. Advanced Functional Materials. 2024;34(23):2314265. doi: 10.1002/adfm.202314265. DOI
Kadiri V. M., Bussi C., Holle A. W., Son K., Kwon H., Schütz G., Gutierrez M. G., Fischer P.. Biocompatible Magnetic Micro- and Nanodevices: Fabrication of FePt Nanopropellers and Cell Transfection. Advanced Materials. 2020;32(25):2001114. doi: 10.1002/adma.202001114. PubMed DOI
Jeong H.-H., Mark A. G., Alarcón-Correa M., Kim I., Oswald P., Lee T.-C., Fischer P.. Dispersion and Shape Engineered Plasmonic Nanosensors. Nature Communications. 2016;7(1):11331. doi: 10.1038/ncomms11331. PubMed DOI PMC
Jeong H.-H., Mark A. G., Lee T.-C., Alarcón-Correa M., Eslami S., Qiu T., Gibbs J. G., Fischer P.. Active Nanorheology with Plasmonics. Nano Letters. 2016;16(8):4887–4894. doi: 10.1021/acs.nanolett.6b01404. PubMed DOI
Ghosh S., Ghosh A.. Mobile Nanotweezers for Active Colloidal Manipulation. Science Robotics. 2018;3(14):eaaq0076. doi: 10.1126/scirobotics.aaq0076. PubMed DOI
Venugopalan P. L., Jain S., Shivashankar S., Ghosh A.. Single Coating of Zinc Ferrite Renders Magnetic Nanomotors Therapeutic and Stable against Agglomeration. Nanoscale. 2018;10(5):2327–2332. doi: 10.1039/C7NR08291F. PubMed DOI
Dasgupta D., Pally D., Saini D. K., Bhat R., Ghosh A.. Nanomotors Sense Local Physicochemical Heterogeneities in Tumor Microenvironments. Angewandte Chemie International Edition. 2020;59(52):23690–23696. doi: 10.1002/anie.202008681. PubMed DOI PMC
Ghosh A., Dasgupta D., Pal M., Morozov K. I., Leshansky A. M., Ghosh A.. Helical Nanomachines as Mobile Viscometers. Advanced Functional Materials. 2018;28(25):1705687. doi: 10.1002/adfm.201705687. DOI
Ghosh A., Ghosh A.. Mapping Viscoelastic Properties Using Helical Magnetic Nanopropellers. Transactions of the Indian National Academy of Engineering. 2021;6(2):429–438. doi: 10.1007/s41403-021-00212-3. PubMed DOI PMC
Pal M., Fouxon I., Leshansky A. M., Ghosh A.. Fluid Flow Induced by Helical Microswimmers in Bulk and near Walls. Physical Review Research. 2022;4(3):033069. doi: 10.1103/PhysRevResearch.4.033069. PubMed DOI PMC
Patil G., Vashist E., Kakoty H., Behera J., Ghosh A.. Magnetic Nanohelices Swimming in an Optical Bowl. Applied Physics Letters. 2021;119(1):012406. doi: 10.1063/5.0058848. DOI
Ghosh A., Paria D., Singh H. J., Venugopalan P. L., Ghosh A.. Dynamical Configurations and Bistability of Helical Nanostructures under External Torque. Physical Review E. 2012;86(3):031401. doi: 10.1103/PhysRevE.86.031401. PubMed DOI
Mandal P., Ghosh A.. Observation of Enhanced Diffusivity in Magnetically Powered Reciprocal Swimmers. Physical Review Letters. 2013;111(24):248101. doi: 10.1103/PhysRevLett.111.248101. PubMed DOI
Patil G., Mandal P., Ghosh A.. Using the Thermal Ratchet Mechanism to Achieve Net Motility in Magnetic Microswimmers. Physical Review Letters. 2022;129(19):198002. doi: 10.1103/PhysRevLett.129.198002. PubMed DOI
Pal M., Somalwar N., Singh A., Bhat R., Eswarappa S. M., Saini D. K., Ghosh A.. Maneuverability of Magnetic Nanomotors inside Living Cells. Advanced Materials. 2018;30(22):1800429. doi: 10.1002/adma.201800429. PubMed DOI
Pal M., Dasgupta D., Somalwar N., Vr R., Tiwari M., Teja D., Narayana S. M., Katke A., Rs J., Bhat R.. et al. Helical Nanobots as Mechanical Probes of Intra- and Extracellular Environments. Journal of Physics: Condensed Matter. 2020;32(22):224001. doi: 10.1088/1361-648X/ab6f89. PubMed DOI
Dasgupta D., Peddi S., Saini D. K., Ghosh A.. Mobile Nanobots for Prevention of Root Canal Treatment Failure. Advanced Healthcare Materials. 2022;11(14):2200232. doi: 10.1002/adhm.202270085. PubMed DOI PMC
Gao W., Sattayasamitsathit S., Manesh K. M., Weihs D., Wang J.. Magnetically-Powered-Flexible-Metal-Nanowire-Motors. Journal of the American Chemical Society. 2010;132:14403–14405. doi: 10.1021/ja1072349. PubMed DOI
Zhou D., Ren L., Li Y. C., Xu P., Gao Y., Zhang G., Wang W., Mallouk T. E., Li L.. Visible Light-Driven, Magnetically Steerable Gold/Iron Oxide Nanomotors. Chemical Communications. 2017;53(83):11465–11468. doi: 10.1039/C7CC06327J. PubMed DOI
Loget G., Zigah D., Bouffier L., Sojic N., Kuhn A.. Bipolar Electrochemistry: From Materials Science to Motion and Beyond. Accounts of Chemical Research. 2013;46(11):2513–2523. doi: 10.1021/ar400039k. PubMed DOI
Loget G., Roche J., Kuhn A.. True Bulk Synthesis of Janus Objects by Bipolar Electrochemistry. Advanced Materials. 2012;24(37):5111–5116. doi: 10.1002/adma.201201623. PubMed DOI
Tiewcharoen S., Warakulwit C., Lapeyre V., Garrigue P., Fourier L., Elissalde C., Buffière S., Legros P., Gayot M., Limtrakul J.. et al. Anisotropic Metal Deposition on TiO2 Particles by Electric-Field-Induced Charge Separation. Angewandte Chemie International Edition. 2017;56(38):11431–11435. doi: 10.1002/anie.201704393. PubMed DOI
Chassagne P., Garrigue P., Kuhn A.. Bulk Electrosynthesis of Patchy Particles with Highly Controlled Asymmetric Features. Advanced Materials. 2024;36(6):2307539. doi: 10.1002/adma.202307539. PubMed DOI
Gao R., Beladi-Mousavi S. M., Salinas G., Garrigue P., Zhang L., Kuhn A.. Spatial Precision Tailoring the Catalytic Activity of Graphene Monolayers for Designing Janus Swimmers. Nano Letters. 2023;23(17):8180–8185. doi: 10.1021/acs.nanolett.3c02314. PubMed DOI
Gao R., Beladi-Mousavi M., Salinas G., Zhang L., Kuhn A.. Synthesis of Multi-Functional Graphene Monolayers via Bipolar Electrochemistry. ChemPhysChem. 2024;25(16):e202400257. doi: 10.1002/cphc.202400257. PubMed DOI
Fattah Z. A., Bouffier L., Kuhn A.. Indirect Bipolar Electrodeposition of Polymers for the Controlled Design of Zinc Microswimmers. Applied Materials Today. 2017;9:259–265. doi: 10.1016/j.apmt.2017.08.005. DOI
Wang L., Hortelão A. C., Huang X., Sánchez S.. Lipase-Powered Mesoporous Silica Nanomotors for Triglyceride Degradation. Angewandte Chemie International Edition. 2019;58(24):7992–7996. doi: 10.1002/anie.201900697. PubMed DOI
Wang L., Marciello M., Estévez-Gay M., Soto Rodriguez P. E. D., Luengo Morato Y., Iglesias-Fernández J., Huang X., Osuna S., Filice M., Sánchez S.. Enzyme Conformation Influences the Performance of Lipase-Powered Nanomotors. Angewandte Chemie International Edition. 2020;59(47):21080–21087. doi: 10.1002/anie.202008339. PubMed DOI
Arque X., Andres X., Mestre R., Ciraulo B., Ortega Arroyo J., Quidant R., Patino T., Sanchez S.. Ionic Species Affect the Self-Propulsion of Urease-Powered Micromotors. Research. 2020;2020:2424972. doi: 10.34133/2020/2424972. PubMed DOI PMC
Valles M., Pujals S., Albertazzi L., Sánchez S.. Enzyme Purification Improves the Enzyme Loading, Self-Propulsion, and Endurance Performance of Micromotors. ACS Nano. 2022;16(4):5615–5626. doi: 10.1021/acsnano.1c10520. PubMed DOI PMC
Patiño T., Llacer-Wintle J., Pujals S., Albertazzi L., Sánchez S.. Unveiling Protein Corona Formation around Self-Propelled Enzyme Nanomotors by Nanoscopy. Nanoscale. 2024;16(6):2904–2912. doi: 10.1039/D3NR03749E. PubMed DOI
Yang Y. H., Arqué X., Patiño T., Guillerm V., Blersch P. R., Pérez-Carvajal J., Imaz I., Maspoch D., Sánchez S.. Enzyme-Powered Porous Micromotors Built from a Hierarchical Micro- and Mesoporous Uio-Type Metal-Organic Framework. Journal of the American Chemical Society. 2020;142(50):20962–20967. doi: 10.1021/jacs.0c11061. PubMed DOI
Ye Z. H., Che Y. N., Dai D. H., Jin D. D., Yang Y. W., Yan X. H., Ma X.. Supramolecular Modular Assembly of Imaging-Trackable Enzymatic Nanomotors. Angewandte Chemie International Edition. 2024;63(16):e202401209. doi: 10.1002/anie.202401209. PubMed DOI
Ma X., Sánchez S.. Bio-Catalytic Mesoporous Janus Nano-Motors Powered by Catalase Enzyme. Tetrahedron. 2017;73(33):4883–4886. doi: 10.1016/j.tet.2017.06.048. DOI
Ma X., Sanchez S.. A Bio-Catalytically Driven Janus Mesoporous Silica Cluster Motor with Magnetic Guidance. Chemical Communications. 2015;51(25):5467–5470. doi: 10.1039/C4CC08285K. PubMed DOI PMC
Serra-Casablancas M., Di Carlo V., Esporrín-Ubieto D., Prado-Morales C., Bakenecker A. C., Sánchez S.. Catalase-Powered Nanobots for Overcoming the Mucus Barrier. ACS Nano. 2024;18(26):16701–16714. doi: 10.1021/acsnano.4c01760. PubMed DOI PMC
Zhou C., Gao C., Wu Y., Si T., Yang M., He Q.. Torque-Driven Orientation Motion of Chemotactic Colloidal Motors. Angewandte Chemie International Edition. 2022;61(10):e202116013. doi: 10.1002/anie.202116013. PubMed DOI
Pimpin A., Srituravanich W.. Review on Micro- and Nanolithography Techniques and Their Applications. Engineering Journal. 2012;16(1):37–56. doi: 10.4186/ej.2012.16.1.37. DOI
Traub M. C., Longsine W., Truskett V. N.. Advances in Nanoimprint Lithography. Annual Review of Chemical and Biomolecular Engineering. 2016;7:583–604. doi: 10.1146/annurev-chembioeng-080615-034635. PubMed DOI
Gangnaik A. S., Georgiev Y. M., Holmes J. D.. New Generation Electron Beam Resists: A Review. Chemistry of Materials. 2017;29(5):1898–1917. doi: 10.1021/acs.chemmater.6b03483. DOI
Huh J. S., Shepard M. I., Melngailis J.. Focused Ion Beam Lithography. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena. 1991;9(1):173–175. doi: 10.1116/1.585282. DOI
Aassime, A. ; Hamouda, F. . Conventional and Un-Conventional Lithography for Fabricating Thin Film Functional Devices. In Modern Technologies for Creating the Thin-Film Systems and Coatings; IntechOpen, 2017. 10.5772/66028 DOI
Bowden N., Brittain S., Evans A. G., Hutchinson J. W., Whitesides G. M.. Spontaneous Formation of Ordered Structures in Thin Films of Metals Supported on an Elastomeric Polymer. Nature. 1998;393(6681):146–149. doi: 10.1038/30193. DOI
Ha D., Hong J., Shin H., Kim T.. Unconventional Micro-/Nanofabrication Technologies for Hybrid-Scale Lab-on-a-Chip. Lab on a Chip. 2016;16(22):4296–4312. doi: 10.1039/C6LC01058J. PubMed DOI
Odom T. W., Love J. C., Wolfe D. B., Paul K. E., Whitesides G. M.. Improved Pattern Transfer in Soft Lithography Using Composite Stamps. Langmuir. 2002;18(13):5314–5320. doi: 10.1021/la020169l. DOI
Fischer U. C., Zingsheim H. P.. Submicroscopic Pattern Replication with Visible Light. Journal of Vacuum Science and Technology. 1981;19(4):881–885. doi: 10.1116/1.571227. DOI
Rekstyte S., Paipulas D., Malinauskas M., Mizeikis V.. Microactuation and Sensing Using Reversible Deformations of Laser-Written Polymeric Structures. Nanotechnology. 2017;28(12):124001. doi: 10.1088/1361-6528/aa5d4d. PubMed DOI
Laura Jáuregui A., Siller H. R., Rodriguez C. A., Elías-Zúñiga A.. Evaluation of Manufacturing Processes for Microfluidic Devices. AIP Conference Proceedings. 2009;1181(1):222–230. doi: 10.1063/1.3273635. DOI
Vijayanandh V., Pradeep A., Suneesh P. V., Satheesh Babu T. G.. Design and Simulation of Passive Micromixers with Ridges for Enhanced Efficiency. IOP Conference Series: Materials Science and Engineering. 2019;577(1):012106. doi: 10.1088/1757-899X/577/1/012106. DOI
Aidelberg G., Goldshmidt Y., Nachman I.. A Microfluidic Device for Studying Multiple Distinct Strains. Journal of Visualized Experiments. 2012;9(69):4257. doi: 10.3791/4257. PubMed DOI PMC
Asmatulu R., Zhang B., Nuraje N.. A Ferrofluid Guided System for the Rapid Separation of the Non-Magnetic Particles in a Microfluidic Device. Journal of Nanoscience and Nanotechnology. 2010;10(10):6383–6387. doi: 10.1166/jnn.2010.2643. PubMed DOI
Xi Y., Zhang W., Fan Z., Ma Q., Wang S., Ma D., Jiang Z., Li H., Zhang Y.. A Facile Synthesis of Silicon Nanowires/Micropillars Structure Using Lithography and Metal-Assisted Chemical Etching Method. Journal of Solid State Chemistry. 2018;258:181–190. doi: 10.1016/j.jssc.2017.07.034. DOI
Fok, L. M. ; Liu, Y. H. ; Li, W. J. . Fabrication and Characterization of Nanowires by Atomic Force Microscope Lithography. In 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 9-15 Oct. 2006, 2006; pp 1927-1932. 10.1109/IROS.2006.282320. DOI
Yan X. M., Kwon S., Contreras A. M., Bokor J., Somorjai G. A.. Fabrication of Large Number Density Platinum Nanowire Arrays by Size Reduction Lithography and Nanoimprint Lithography. Nano Letters. 2005;5(4):745–748. doi: 10.1021/nl050228q. PubMed DOI
Wu S., Zhao D., Qiu M.. 3D Nanoprinting by Electron-Beam with an Ice Resist. ACS Applied Materials & Interfaces. 2022;14(1):1652–1658. doi: 10.1021/acsami.1c18356. PubMed DOI
Wang Y., Zhang M., Lai Y., Chi L.. Advanced Colloidal Lithography: From Patterning to Applications. Nano Today. 2018;22:36–61. doi: 10.1016/j.nantod.2018.08.010. DOI
Song P., Fu H., Wang Y., Chen C., Ou P., Rashid R. T., Duan S., Song J., Mi Z., Liu X.. A Microfluidic Field-Effect Transistor Biosensor with Rolled-up Indium Nitride Microtubes. Biosens Bioelectron. 2021;190:113264. doi: 10.1016/j.bios.2021.113264. PubMed DOI
Chen Y., Xu B., Mei Y.. Design and Fabrication of Tubular Micro/Nanomotors via 3D Laser Lithography. Chem Asian J. 2019;14(14):2472–2478. doi: 10.1002/asia.201900300. PubMed DOI
Bley K., Sinatra N., Vogel N., Landfester K., Weiss C. K.. Switching Light with Light - Advanced Functional Colloidal Monolayers. Nanoscale. 2014;6(1):492–502. doi: 10.1039/C3NR04897G. PubMed DOI
Bognár J., Szücs J., Dorkó Z., Horváth V., Gyurcsányi R. E.. Nanosphere Lithography as a Versatile Method to Generate Surface-Imprinted Polymer Films for Selective Protein Recognition. Advanced Functional Materials. 2013;23(37):4703–4709. doi: 10.1002/adfm.201300113. DOI
Cox L. M., Killgore J. P., Li Z., Zhang Z., Hurley D. C., Xiao J., Ding Y.. Morphing Metal-Polymer Janus Particles. Advanced Materials. 2014;26(6):899–904. doi: 10.1002/adma.201304079. PubMed DOI
Hu N., Ding L., Liu Y., Wang K., Zhang B., Yin R., Zhou W., Bi Z., Zhang W.. Development of 3D-Printed Magnetic Micro-Nanorobots for Targeted Therapeutics: The State of Art. Advanced Nanobiomed Research. 2023;3(10):2300018. doi: 10.1002/anbr.202300018. DOI
Lee S., Kim S., Kim S., Kim J.-Y., Moon C., Nelson B. J., Choi H.. A Capsule-Type Microrobot with Pick-and-Drop Motion for Targeted Drug and Cell Delivery. Advanced Healthcare Materials. 2018;7(9):1700985. doi: 10.1002/adhm.201700985. PubMed DOI
Kim S., Qiu F., Kim S., Ghanbari A., Moon C., Zhang L., Nelson B. J., Choi H.. Fabrication and Characterization of Magnetic Microrobots for Three-Dimensional Cell Culture and Targeted Transportation. Advanced Materials. 2013;25(41):5863–5868. doi: 10.1002/adma.201301484. PubMed DOI PMC
Xing J.-F., Zheng M.-L., Duan X.-M.. Two-Photon Polymerization Microfabrication of Hydrogels: An Advanced 3D Printing Technology for Tissue Engineering and Drug Delivery. Chemical Society Reviews. 2015;44(15):5031–5039. doi: 10.1039/C5CS00278H. PubMed DOI
Huang H. W., Chao Q., Sakar M. S., Nelson B. J.. Optimization of Tail Geometry for the Propulsion of Soft Microrobots. IEEE Robotics and Automation Letters. 2017;2(2):727–732. doi: 10.1109/LRA.2017.2651167. DOI
Zakeri S., Vippola M., Levänen E.. A Comprehensive Review of the Photopolymerization of Ceramic Resins Used in Stereolithography. Additive Manufacturing. 2020;35:101177. doi: 10.1016/j.addma.2020.101177. DOI
Park J., Jin C., Lee S., Kim J.-Y., Choi H.. Magnetically Actuated Degradable Microrobots for Actively Controlled Drug Release and Hyperthermia Therapy. Advanced Healthcare Materials. 2019;8(16):1900213. doi: 10.1002/adhm.201900213. PubMed DOI
Park J., Kim J.-y., Pané S., Nelson B. J., Choi H.. Acoustically Mediated Controlled Drug Release and Targeted Therapy with Degradable 3D Porous Magnetic Microrobots. Advanced Healthcare Materials. 2021;10(2):2001096. doi: 10.1002/adhm.202001096. PubMed DOI
Li T., Li J., Zhang H., Chang X., Song W., Hu Y., Shao G., Sandraz E., Zhang G., Li L.. et al. Nanorobots: Magnetically Propelled Fish-Like Nanoswimmers (Small 44/2016) Small. 2016;12(44):6045–6045. doi: 10.1002/smll.201670227. PubMed DOI
Li J., Sattayasamitsathit S., Dong R., Gao W., Tam R., Feng X., Ai S., Wang J.. Template Electrosynthesis of Tailored-Made Helical Nanoswimmers. Nanoscale. 2014;6(16):9415–9420. doi: 10.1039/C3NR04760A. PubMed DOI
Ren M., Guo W., Guo H., Ren X.. Microfluidic Fabrication of Bubble-Propelled Micromotors for Wastewater Treatment. ACS Applied Materials & Interfaces. 2019;11(25):22761–22767. doi: 10.1021/acsami.9b05925. PubMed DOI
Hussain M., Xie J., Wang K., Wang H., Tan Z., Liu Q., Geng Z., Shezad K., Noureen L., Jiang H.. et al. Biodegradable Polymer Microparticles with Tunable Shapes and Surface Textures for Enhancement of Dendritic Cell Maturation. ACS Applied Materials & Interfaces. 2019;11(45):42734–42743. doi: 10.1021/acsami.9b14286. PubMed DOI
Huang W., Manjare M., Zhao Y.. Catalytic Nanoshell Micromotors. The Journal of Physical Chemistry C. 2013;117(41):21590–21596. doi: 10.1021/jp4080288. DOI
Soto F., Wagner G. L., Garcia-Gradilla V., Gillespie K. T., Lakshmipathy D. R., Karshalev E., Angell C., Chen Y., Wang J.. Acoustically Propelled Nanoshells. Nanoscale. 2016;8(41):17788–17793. doi: 10.1039/C6NR06603H. PubMed DOI
Sun M., Liu Q., Fan X., Wang Y., Chen W., Tian C., Sun L., Xie H.. Autonomous Biohybrid Urchin-Like Microperforator for Intracellular Payload Delivery. Small. 2020;16(23):1906701. doi: 10.1002/smll.201906701. PubMed DOI
Dong Y., Wang L., Yuan K., Ji F., Gao J., Zhang Z., Du X., Tian Y., Wang Q., Zhang L.. Magnetic Microswarm Composed of Porous Nanocatalysts for Targeted Elimination of Biofilm Occlusion. ACS Nano. 2021;15(3):5056–5067. doi: 10.1021/acsnano.0c10010. PubMed DOI
Kiristi M., Singh V. V., Esteban-Fernández de Ávila B., Uygun M., Soto F., AktaşUygun D., Wang J.. Lysozyme-Based Antibacterial Nanomotors. ACS Nano. 2015;9(9):9252–9259. doi: 10.1021/acsnano.5b04142. PubMed DOI
Zhang B., Huang G., Wang L., Wang T., Liu L., Di Z., Liu X., Mei Y.. Rolled-up Monolayer Graphene Tubular Micromotors: Enhanced Performance and Antibacterial Property. Chemistry - An Asian Journal. 2019;14(14):2479–2484. doi: 10.1002/asia.201900301. PubMed DOI
Zhang Y., Zhang L., Yang L., Vong C. I., Chan K. F., Wu W. K., Kwong T. N., Lo N. W., Ip M., Wong S. H.. et al. Real-Time Tracking of Fluorescent Magnetic Spore-Based Microrobots for Remote Detection of C. Diff Toxins. Science Advances. 2019;5(1):eaau9650. doi: 10.1126/sciadv.aau9650. PubMed DOI PMC
Erin O., Gilbert H. B., Tabak A. F., Sitti M.. Elevation and Azimuth Rotational Actuation of an Untethered Millirobot by Mri Gradient Coils. IEEE Transactions on Robotics. 2019;35(6):1323–1337. doi: 10.1109/TRO.2019.2934712. DOI
Martel S., Felfoul O., Mathieu J.-B., Chanu A., Tamaz S., Mohammadi M., Mankiewicz M., Tabatabaei N.. Mri-Based Medical Nanorobotic Platform for the Control of Magnetic Nanoparticles and Flagellated Bacteria for Target Interventions in Human Capillaries. The International Journal of Robotics Research. 2009;28(9):1169–1182. doi: 10.1177/0278364908104855. PubMed DOI PMC
Vilela D., Cossío U., Parmar J., Martínez-Villacorta A. M., Gómez-Vallejo V., Llop J., Sánchez S.. Medical Imaging for the Tracking of Micromotors. ACS Nano. 2018;12(2):1220–1227. doi: 10.1021/acsnano.7b07220. PubMed DOI
Liu W., Liu Y., Li H., Nie H. M., Tian M. Y., Long W.. Biomedical Micro-/Nanomotors: Design, Imaging, and Disease Treatment. Advanced Functional Materials. 2023;33(15):2212452. doi: 10.1002/adfm.202212452. DOI
Zanzonico P.. Principles of Nuclear Medicine Imaging: Planar, Spect, Pet, Multi-Modality, and Autoradiography Systems. Radiation Research. 2012;177(4):349–364. doi: 10.1667/RR2577.1. PubMed DOI
Hasan S., Prelas M. A.. Molybdenum-99 Production Pathways and the Sorbents for 99mo/99mtc Generator Systems Using (N, Γ) 99mo: A Review. Sn Applied Sciences. 2020;2(11):1782. doi: 10.1007/s42452-020-03524-1. DOI
Chen D. Q., Yang D. Z., Dougherty C. A., Lu W. F., Wu H. W., He X. R., Cai T., Van Dort M. E., Ross B. D., Hong H.. In Vivo Targeting and Positron Emission Tomography Imaging of Tumor with Intrinsically Radioactive Metal-Organic Frameworks Nanomaterials. ACS Nano. 2017;11(4):4315–4327. doi: 10.1021/acsnano.7b01530. PubMed DOI PMC
Chen J. W., Liang C., Song X. J., Yi X., Yang K., Feng L. Z., Liu Z.. Hybrid Protein Nano-Reactors Enable Simultaneous Increments of Tumor Oxygenation and Iodine-131 Delivery for Enhanced Radionuclide Therapy. Small. 2019;15(46):1903628. doi: 10.1002/smll.201903628. PubMed DOI
Nallathamby P. D., Mortensen N. P., Palko H. A., Malfatti M., Smith C., Sonnett J., Doktycz M. J., Gu B. H., Roeder R. K., Wang W.. et al. New Surface Radiolabeling Schemes of Super Paramagnetic Iron Oxide Nanoparticles (Spions) for Biodistribution Studies. Nanoscale. 2015;7(15):6545–6555. doi: 10.1039/C4NR06441K. PubMed DOI PMC
Soubaneh Y. D., Pelletier E., Desbiens I., Rouleau C.. Radiolabeling of Amide Functionalized Multi-Walled Carbon Nanotubes for Bioaccumulation Study in Fish Bone Using Whole-Body Autoradiography. Environmental Science and Pollution Research. 2020;27(4):3756–3767. doi: 10.1007/s11356-019-05794-8. PubMed DOI
Du Y., Liang X. L., Li Y., Sun T., Jin Z. Y., Xue H. D., Tian J.. Nuclear and Fluorescent Labeled Pd-1-Liposome-Dox-64Cu/Irdye800cw Allows Improved Breast Tumor Targeted Imaging and Therapy. Molecular Pharmaceutics. 2017;14(11):3978–3986. doi: 10.1021/acs.molpharmaceut.7b00649. PubMed DOI
Alnaaimi M., Sulieman A., Alkhorayef M., Salah H., Alduaij M., Algaily M., Alomair O., Alashban Y., Almohammad H. I., Bradley D.. et al. Organs Dosimetry in Targeted Radionuclide Therapy. Radiation Physics and Chemistry. 2021;188:109668. doi: 10.1016/j.radphyschem.2021.109668. DOI
Marenco M., Canziani L., De Matteis G., Cavenaghi G., Aprile C., Lodola L.. Chemical and Physical Characterisation of Human Serum Albumin Nanocolloids: Kinetics, Strength and Specificity of Bonds with 99mtc and 68ga. Nanomaterials. 2021;11(7):1776. doi: 10.3390/nano11071776. PubMed DOI PMC
Thakor A. S., Jokerst J. V., Ghanouni P., Campbell J. L., Mittra E., Gambhir S. S.. Clinically Approved Nanoparticle Imaging Agents. Journal of Nuclear Medicine. 2016;57(12):1833–1837. doi: 10.2967/jnumed.116.181362. PubMed DOI PMC
d'Abadie P., Hesse M., Louppe A., Lhommel R., Walrand S., Jamar F.. Microspheres Used in Liver Radioembolization: From Conception to Clinical Effects. Molecules. 2021;26(13):3966. doi: 10.3390/molecules26133966. PubMed DOI PMC
Pijeira M. S. O., Viltres H., Kozempel J., Sakmár M., Vlk M., Ilem-Özdemir D., Ekinci M., Srinivasan S., Rajabzadeh A. R., Ricci-Junior E.. et al. Radiolabeled Nanomaterials for Biomedical Applications: Radiopharmacy in the Era of Nanotechnology. Ejnmmi Radiopharmacy and Chemistry. 2022;7:8. doi: 10.1186/s41181-022-00161-4. PubMed DOI PMC
Gao C. Y., Wang Y., Ye Z. H., Lin Z. H., Ma X., He Q.. Biomedical Micro-/Nanomotors: From Overcoming Biological Barriers to in vivo Imaging. Advanced Materials. 2021;33(6):2000512. doi: 10.1002/adma.202000512. PubMed DOI
Liu X., Jing Y., Xu C., Wang X., Xie X., Zhu Y., Dai L., Wang H., Wang L., Yu S.. Medical Imaging Technology for Micro/Nanorobots. Nanomaterials. 2023;13(21):2872. doi: 10.3390/nano13212872. PubMed DOI PMC
Doan V. H. M., Nguyen V. T., Mondal S., Vo T. M. T., Ly C. D., Vu D. D., Ataklti G. Y., Park S., Choi J., Oh J.. Fluorescence/Photoacoustic Imaging-Guided Nanomaterials for Highly Efficient Cancer Theragnostic Agent. Scientific Reports. 2021;11:15943. doi: 10.1038/s41598-021-95660-w. PubMed DOI PMC
Li D., Zhang Y., Liu C., Chen J., Sun D., Wang L.. Review of Photoacoustic Imaging for Microrobots Tracking in vivo. Chinese Optics Letters. 2021;19:111701. doi: 10.3788/COL202119.111701. DOI
Soto F., Wang J., Ahmed R., Demirci U.. Medical Micro/Nanorobots in Precision Medicine. Advanced Science. 2020;7(21):2002203. doi: 10.1002/advs.202002203. PubMed DOI PMC
Graham M., Assis F., Allman D., Wiacek A., Gonzalez E., Gubbi M., Dong J., Hou H., Beck S., Chrispin J.. et al. In Vivo Demonstration of Photoacoustic Image Guidance and Robotic Visual Servoing for Cardiac Catheter-Based Interventions. IEEE Transactions on Medical Imaging. 2020;39(4):1015–1029. doi: 10.1109/TMI.2019.2939568. PubMed DOI
Lin L., Hu P., Shi J., Appleton C. M., Maslov K., Li L., Zhang R., Wang L. V.. Single-Breath-Hold Photoacoustic Computed Tomography of the Breast. Nature Communications. 2018;9(1):2352. doi: 10.1038/s41467-018-04576-z. PubMed DOI PMC
Wrede P., Degtyaruk O., Kalva S. K., Deán-Ben X. L., Bozuyuk U., Aghakhani A., Akolpoglu B., Sitti M., Razansky D.. Real-Time 3D Optoacoustic Tracking of Cell-Sized Magnetic Microrobots Circulating in the Mouse Brain Vasculature. Science Advances. 2022;8(19):eabm9132. doi: 10.1126/sciadv.abm9132. PubMed DOI PMC
Aziz A., Holthof J., Meyer S., Schmidt O. G., Medina-Sánchez M.. Dual Ultrasound and Photoacoustic Tracking of Magnetically Driven Micromotors: From in vitro to in vivo. Advanced Healthcare Materials. 2021;10(22):2101077. doi: 10.1002/adhm.202101077. PubMed DOI PMC
Su H., Li S., Yang G. Z., Qian K.. Janus Micro/Nanorobots in Biomedical Applications. Advanced Healthcare Materials. 2023;12(16):2202391. doi: 10.1002/adhm.202202391. PubMed DOI
Li D., Liu C., Yang Y., Wang L., Shen Y.. Micro-Rocket Robot with All-Optic Actuating and Tracking in Blood. Light: Science & Applications. 2020;9:84. doi: 10.1038/s41377-020-0323-y. PubMed DOI PMC
Li L., Zhu L., Ma C., Lin L., Yao J., Wang L., Maslov K., Zhang R., Chen W., Shi J., Wang L. V.. Single-Impulse Panoramic Photoacoustic Computed Tomography of Small-Animal Whole-Body Dynamics at High Spatiotemporal Resolution. Nature Biomedical Engineering. 2017;1(5):0071. doi: 10.1038/s41551-017-0071. PubMed DOI PMC
Chen J., Zhang Y., He L., Liang Y., Wang L.. Wide-Field Polygon-Scanning Photoacoustic Microscopy of Oxygen Saturation at 1-Mhz a-Line Rate. Photoacoustics. 2020;20:100195. doi: 10.1016/j.pacs.2020.100195. PubMed DOI PMC
Yan Y., Jing W., Mehrmohammadi M.. Photoacoustic Imaging to Track Magnetic-Manipulated Micro-Robots in Deep Tissue. Sensors. 2020;20:2816. doi: 10.3390/s20102816. PubMed DOI PMC
Song X., Qian R., Li T., Fu W., Fang L., Cai Y., Guo H., Xi L., Cheang U. K.. Imaging-Guided Biomimetic M1 Macrophage Membrane-Camouflaged Magnetic Nanorobots for Photothermal Immunotargeting Cancer Therapy. ACS Applied Materials & Interfaces. 2022;14(51):56548–56559. doi: 10.1021/acsami.2c16457. PubMed DOI
Zhong D., Li W., Qi Y., He J., Zhou M.. Photosynthetic Biohybrid Nanoswimmers System to Alleviate Tumor Hypoxia for Fl/Pa/Mr Imaging-Guided Enhanced Radio-Photodynamic Synergetic Therapy. Advanced Functional Materials. 2020;30(17):1910395. doi: 10.1002/adfm.202070110. DOI
Xie L., Pang X., Yan X., Dai Q., Lin H., Ye J., Cheng Y., Zhao Q., Ma X., Zhang X.. et al. Photoacoustic Imaging-Trackable Magnetic Microswimmers for Pathogenic Bacterial Infection Treatment. ACS Nano. 2020;14(3):2880–2893. doi: 10.1021/acsnano.9b06731. PubMed DOI
Wang Q., Dai Y., Xu J., Cai J., Niu X., Zhang L., Chen R., Shen Q., Huang W., Fan Q.. All-in-One Phototheranostics: Single Laser Triggers NIR-Ii Fluorescence/Photoacoustic Imaging Guided Photothermal/Photodynamic/Chemo Combination Therapy. Advanced Functional Materials. 2019;29(31):1901480. doi: 10.1002/adfm.201901480. DOI
Wang L. V., Hu S.. Photoacoustic Tomography: in vivo Imaging from Organelles to Organs. Science. 2012;335(6075):1458–1462. doi: 10.1126/science.1216210. PubMed DOI PMC
Pané S., Puigmartí-Luis J., Bergeles C., Chen X. Z., Pellicer E., Sort J., Počepcová V., Ferreira A., Nelson B. J.. Imaging Technologies for Biomedical Micro- and Nanoswimmers. Advanced Materials Technologies. 2019;4(4):1800575. doi: 10.1002/admt.201800575. DOI
Olson E. S., Orozco J., Wu Z., Malone C. D., Yi B., Gao W., Eghtedari M., Wang J., Mattrey R. F.. Toward In vivo Detection of Hydrogen Peroxide with Ultrasound Molecular Imaging. Biomaterials. 2013;34(35):8918–8924. doi: 10.1016/j.biomaterials.2013.06.055. PubMed DOI PMC
Sánchez, A. ; Magdanz, V. ; Schmidt, O. G. ; Misra, S. . Magnetic Control of Self-Propelled Microjets under Ultrasound Image Guidance. In 2014 5th EEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics (Biorob), 2014; pp 169-174.
Xu D., Hu J., Pan X., Sánchez S., Yan X., Ma X.. Enzyme-Powered Liquid Metal Nanobots Endowed with Multiple Biomedical Functions. ACS Nano. 2021;15(7):11543–11554. doi: 10.1021/acsnano.1c01573. PubMed DOI
Han H., Ma X., Deng W., Zhang J., Tang S., Pak O. S., Zhu L., Criado-Hidalgo E., Gong C., Karshalev E.. et al. Imaging-Guided Bioresorbable Acoustic Hydrogel Microrobots. Science Robotics. 2024;9(97):eadp3593. doi: 10.1126/scirobotics.adp3593. PubMed DOI
Khalil I. S. M., Dijkslag H. C., Abelmann L., Misra S.. Magnetosperm: A Microrobot That Navigates Using Weak Magnetic Fields. Applied Physics Letters. 2014;104(22):223701. doi: 10.1063/1.4880035. DOI
Chen H., Zhang H., Xu T., Yu J.. An Overview of Micronanoswarms for Biomedical Applications. ACS Nano. 2021;15(10):15625–15644. doi: 10.1021/acsnano.1c07363. PubMed DOI
Wang J., Dong Y., Ma P., Wang Y., Zhang F., Cai B., Chen P., Liu B. F.. Intelligent Micro-/Nanorobots for Cancer Theragnostic. Advanced Materials. 2022;34(52):2201051. doi: 10.1002/adma.202201051. PubMed DOI
Medina-Sanchez M., Schmidt O. G.. Medical Microbots Need Better Imaging and Control. Nature. 2017;545(7655):406–408. doi: 10.1038/545406a. PubMed DOI
Shapiro E. M., Skrtic S., Sharer K., Hill J. M., Dunbar C. E., Koretsky A. P.. Mri Detection of Single Particles for Cellular Imaging. Proceedings of the National Academy of Sciences. 2004;101(30):10901–10906. doi: 10.1073/pnas.0403918101. PubMed DOI PMC
Martel S., Mathieu J.-B., Felfoul O., Chanu A., Aboussouan E., Tamaz S., Pouponneau P., Yahia L., Beaudoin G., Soulez G., Mankiewicz M.. Automatic Navigation of an Untethered Device in the Artery of a Living Animal Using a Conventional Clinical Magnetic Resonance Imaging System. Applied Physics Letters. 2007;90(11):114105. doi: 10.1063/1.2713229. DOI
Zheng S., Wang Y., Pan S., Ma E., Jin S., Jiao M., Wang W., Li J., Xu K., Wang H.. Biocompatible Nanomotors as Active Diagnostic Imaging Agents for Enhanced Magnetic Resonance Imaging of Tumor Tissues in vivo. Advanced Functional Materials. 2021;31(24):2100936. doi: 10.1002/adfm.202100936. DOI
Aziz A., Pane S., Iacovacci V., Koukourakis N., Czarske J., Menciassi A., Medina-Sánchez M., Schmidt O. G.. Medical Imaging of Microrobots: Toward in vivo Applications. ACS Nano. 2020;14(9):10865–10893. doi: 10.1021/acsnano.0c05530. PubMed DOI
Makela A. V., Gaudet J. M., Schott M. A., Sehl O. C., Contag C. H., Foster P. J.. Magnetic Particle Imaging of Macrophages Associated with Cancer: Filling the Voids Left by Iron-Based Magnetic Resonance Imaging. Molecular Imaging and Biology. 2020;22(4):958–968. doi: 10.1007/s11307-020-01473-0. PubMed DOI
Makela A. V., Gaudet J. M., Murrell D. H., Mansfield J. R., Wintermark M., Contag C. H.. Mind over Magnets - How Magnetic Particle Imaging Is Changing the Way We Think About the Future of Neuroscience. Neuroscience. 2021;474:100–109. doi: 10.1016/j.neuroscience.2020.10.036. PubMed DOI
Irfan M., Dogan N.. Comprehensive Evaluation of Magnetic Particle Imaging (Mpi) Scanners for Biomedical Applications. IEEE Access. 2022;10:86718–86732. doi: 10.1109/ACCESS.2022.3197586. DOI
Bakenecker A. C., von Gladiss A., Friedrich T., Heinen U., Lehr H., Lüdtke-Buzug K., Buzug T. M.. Actuation and Visualization of a Magnetically Coated Swimmer with Magnetic Particle Imaging. Journal of Magnetism and Magnetic Materials. 2019;473:495–500. doi: 10.1016/j.jmmm.2018.10.056. DOI
Bakenecker A. C., von Gladiss A., Schwenke H., Behrends A., Friedrich T., Lüdtke-Buzug K., Neumann A., Barkhausen J., Wegner F., Buzug T. M.. Navigation of a Magnetic Micro-Robot through a Cerebral Aneurysm Phantom with Magnetic Particle Imaging. Scientific Reports. 2021;11(1):14082. doi: 10.1038/s41598-021-93323-4. PubMed DOI PMC
Zhu X., Li J., Peng P., Hosseini Nassab N., Smith B. R.. Quantitative Drug Release Monitoring in Tumors of Living Subjects by Magnetic Particle Imaging Nanocomposite. Nano Letters. 2019;19(10):6725–6733. doi: 10.1021/acs.nanolett.9b01202. PubMed DOI
Li J. W. J., Tan W. H.. A Single DNA Molecule Nanomotor. Nano Letters. 2002;2(4):315–318. doi: 10.1021/nl015713+. PubMed DOI PMC
Wang J. H., Luo Y. T., Wu H. L., Cao S. P., Abdelmohsen L., Shao J. X., van Hest J. C. M.. Inherently Fluorescent Peanut-Shaped Polymersomes for Active Cargo Transportation. Pharmaceutics. 2023;15(7):1986. doi: 10.3390/pharmaceutics15071986. PubMed DOI PMC
Cao S. P., Shao J. X., Wu H. L., Song S. D., De Martino M. T., Pijpers I. A. B., Friedrich H., Abdelmohsen L., Williams D. S., van Hest J. C. M.. Photoactivated Nanomotors via Aggregation Induced Emission for Enhanced Phototherapy. Nature Communications. 2021;12(1):10. doi: 10.1038/s41467-021-22279-w. PubMed DOI PMC
Liu L. T., Li S. Q., Yang K. Q., Chen Z. X., Li Q. Q., Zheng L. T., Wu Z. S., Zhang X., Su L. C., Wu Y.. et al. Drug-Free Antimicrobial Nanomotor for Precise Treatment of Multidrug-Resistant Bacterial Infections. Nano Letters. 2023;23(9):3929–3938. doi: 10.1021/acs.nanolett.3c00632. PubMed DOI
Alivisatos A. P.. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science. 1996;271(5251):933–937. doi: 10.1126/science.271.5251.933. DOI
Lee J., Kim J., Kim S., Min D. H.. Biosensors Based on Graphene Oxide and Its Biomedical Application. Advanced Drug Delivery Reviews. 2016;105:275–287. doi: 10.1016/j.addr.2016.06.001. PubMed DOI PMC
Donaldson L.. Autofluorescence in Plants. Molecules. 2020;25(10):2393. doi: 10.3390/molecules25102393. PubMed DOI PMC
Yang M., Guo X., Mou F., Guan J.. Lighting up Micro-/Nanorobots with Fluorescence. Chemical Reviews. 2023;123(7):3944–3975. doi: 10.1021/acs.chemrev.2c00062. PubMed DOI
Downes A., Mouras R., Elfick A.. A Versatile Cars Microscope for Biological Imaging. Journal of Raman Spectroscopy. 2009;40(7):757–762. doi: 10.1002/jrs.2249. DOI
Molinero-Fernández Á., Moreno-Guzmán M., Arruza L., López M. Á., Escarpa A.. Polymer-Based Micromotor Fluorescence Immunoassay for on-the-Move Sensitive Procalcitonin Determination in Very Low Birth Weight Infants’ Plasma. ACS Sensors. 2020;5(5):1336–1344. doi: 10.1021/acssensors.9b02515. PubMed DOI
Maric T., Beladi-Mousavi S. M., Khezri B., Sturala J., Nasir M. Z. M., Webster R. D., Sofer Z. k., Pumera M.. Functional 2D Germanene Fluorescent Coating of Microrobots for Micromachines Multiplexing. Small. 2020;16(27):1902365. doi: 10.1002/smll.201902365. PubMed DOI
Krafft C., Ramoji A. A., Bielecki C., Vogler N., Meyer T., Akimov D., Rösch P., Schmitt M., Dietzek B., Petersen I.. et al. A Comparative Raman and Cars Imaging Study of Colon Tissue. Journal of Biophotonics. 2009;2(5):303–312. doi: 10.1002/jbio.200810063. PubMed DOI
Maric T., Atladóttir S., Thamdrup L. H. E., Ilchenko O., Ghavami M., Boisen A.. Self-Propelled Janus Micromotors for pH-Responsive Release of Small Molecule Drug. Applied Materials Today. 2022;27:101418. doi: 10.1016/j.apmt.2022.101418. DOI
Maric T., Adamakis V., Zhang Z., Milián-Guimerá C., Thamdrup L. H. E., Stamate E., Ghavami M., Boisen A.. Microscopic Cascading Devices for Boosting Mucus Penetration in Oral Drug DeliveryMicromotors Nesting inside Microcontainers. Small. 2023;19(15):2206330. doi: 10.1002/smll.202206330. PubMed DOI
Maric T., Løvind A., Zhang Z., Geng J., Boisen A.. Near-Infrared Light-Driven Mesoporous SiO2/Au Nanomotors for Eradication of Pseudomonas Aeruginosa Biofilm. Advanced Healthcare Materials. 2023;12(13):2203018. doi: 10.1002/adhm.202203018. PubMed DOI PMC
Mitchell M. J., Billingsley M. M., Haley R. M., Wechsler M. E., Peppas N. A., Langer R.. Engineering Precision Nanoparticles for Drug Delivery. Nature Reviews Drug Discovery. 2021;20(2):101–124. doi: 10.1038/s41573-020-0090-8. PubMed DOI PMC
Shields C. W., Velev O. D.. The Evolution of Active Particles: Toward Externally Powered Self-Propelling and Self-Reconfiguring Particle Systems. Chem. 2017;3(4):539–559. doi: 10.1016/j.chempr.2017.09.006. DOI
Wilhelm S., Tavares A. J., Dai Q., Ohta S., Audet J., Dvorak H. F., Chan W. C. W.. Analysis of Nanoparticle Delivery to Tumours. Nature Reviews Materials. 2016;1(5):16014. doi: 10.1038/natrevmats.2016.14. DOI
Darquenne C.. Aerosol Deposition in Health and Disease. Journal of Aerosol Medicine and Pulmonary Drug Delivery. 2012;25(3):140–147. doi: 10.1089/jamp.2011.0916. PubMed DOI PMC
Tanjeem N., Minnis M. B., Hayward R. C., Shields IV C. W.. Shape-Changing Particles: From Materials Design and Mechanisms to Implementation. Advanced Materials. 2022;34(3):2105758. doi: 10.1002/adma.202105758. PubMed DOI PMC
Lee J. G., Raj R. R., Day N. B., Shields C. W. I. V.. Microrobots for Biomedicine: Unsolved Challenges and Opportunities for Translation. ACS Nano. 2023;17(15):14196–14204. doi: 10.1021/acsnano.3c03723. PubMed DOI PMC
Bush L. M., Healy C. P., Javdan S. B., Emmons J. C., Deans T. L.. Biological Cells as Therapeutic Delivery Vehicles. Trends in Pharmacological Sciences. 2021;42(2):106–118. doi: 10.1016/j.tips.2020.11.008. PubMed DOI PMC
Evans M. A., Shields IV C. W., Krishnan V., Wang L. L.-W., Zhao Z., Ukidve A., Lewandowski M., Gao Y., Mitragotri S.. Macrophage-Mediated Delivery of Hypoxia-Activated Prodrug Nanoparticles. Advanced Therapeutics. 2020;3(2):2000183. doi: 10.1002/adtp.201900162. DOI
Tang L., He S., Yin Y., Liu H., Hu J., Cheng J., Wang W.. Combination of Nanomaterials in Cell-Based Drug Delivery Systems for Cancer Treatment. Pharmaceutics. 2021;13(11):1888. doi: 10.3390/pharmaceutics13111888. PubMed DOI PMC
Wang L. L.-W., Gao Y., Chandran Suja V., Boucher M. L., Shaha S., Kapate N., Liao R., Sun T., Kumbhojkar N., Prakash S.. et al. Preclinical Characterization of Macrophage-Adhering Gadolinium Micropatches for Mri Contrast after Traumatic Brain Injury in Pigs. Science Translational Medicine. 2024;16(728):eadk5413. doi: 10.1126/scitranslmed.adk5413. PubMed DOI
Day N. B., Orear C. R., Velazquez-Albino A. C., Good H. J., Melnyk A., Rinaldi-Ramos C. M., Shields C. W. IV. Magnetic Cellular Backpacks for Spatial Targeting, Imaging, and Immunotherapy. ACS Applied Bio Materials. 2024;7(8):4843–4855. doi: 10.1021/acsabm.3c00720. PubMed DOI PMC
Shields C. W., Evans M. A., Wang L. L.-W., Baugh N., Iyer S., Wu D., Zhao Z., Pusuluri A., Ukidve A., Pan D. C.. et al. Cellular Backpacks for Macrophage Immunotherapy. Science Advances. 2020;6(18):eaaz6579. doi: 10.1126/sciadv.aaz6579. PubMed DOI PMC
Liao X., Gong G., Dai M., Xiang Z., Pan J., He X., Shang J., Blocki A. M., Zhao Z., Shields C. W., Guo J.. Systemic Tumor Suppression via Macrophage-Driven Automated Homing of Metal-Phenolic-Gated Nanosponges for Metastatic Melanoma. Advanced Science. 2023;10(18):2207488. doi: 10.1002/advs.202207488. PubMed DOI PMC
Zhao Z., Pan D. C., Qi Q. M., Kim J., Kapate N., Sun T., Shields IV, C W., Wang L. L.-W., Wu D., Kwon C. J.. et al. Engineering of Living Cells with Polyphenol-Functionalized Biologically Active Nanocomplexes. Advanced Materials. 2020;32(49):2003492. doi: 10.1002/adma.202003492. PubMed DOI
Kapate N., Liao R., Sodemann R. L., Stinson T., Prakash S., Kumbhojkar N., Suja V. C., Wang L. L.-W., Flanz M., Rajeev R.. et al. Backpack-Mediated Anti-Inflammatory Macrophage Cell Therapy for the Treatment of Traumatic Brain Injury. PNAS Nexus. 2023;3(1):pgad434. doi: 10.1093/pnasnexus/pgad434. PubMed DOI PMC
Akin D., Sturgis J., Ragheb K., Sherman D., Burkholder K., Robinson J. P., Bhunia A. K., Mohammed S., Bashir R.. Bacteria-Mediated Delivery of Nanoparticles and Cargo into Cells. Nature Nanotechnology. 2007;2(7):441–449. doi: 10.1038/nnano.2007.149. PubMed DOI
Stephan M. T., Moon J. J., Um S. H., Bershteyn A., Irvine D. J.. Therapeutic Cell Engineering with Surface-Conjugated Synthetic Nanoparticles. Nature Medicine. 2010;16(9):1035–1041. doi: 10.1038/nm.2198. PubMed DOI PMC
de Lanauze D., Felfoul O., Turcot J.-P., Mohammadi M., Martel S.. Three-Dimensional Remote Aggregation and Steering of Magnetotactic Bacteria Microrobots for Drug Delivery Applications. The International Journal of Robotics Research. 2014;33(3):359–374. doi: 10.1177/0278364913500543. DOI
Mirkhani N., Christiansen M. G., Gwisai T., Menghini S., Schuerle S.. Spatially Selective Delivery of Living Magnetic Microrobots through Torque-Focusing. Nature Communications. 2024;15(1):2160. doi: 10.1038/s41467-024-46407-4. PubMed DOI PMC
Abedi M. H., Yao M. S., Mittelstein D. R., Bar-Zion A., Swift M. B., Lee-Gosselin A., Barturen-Larrea P., Buss M. T., Shapiro M. G.. Ultrasound-Controllable Engineered Bacteria for Cancer Immunotherapy. Nature Communications. 2022;13(1):1585. doi: 10.1038/s41467-022-29065-2. PubMed DOI PMC
Chen M., Xia L., Wu C., Wang Z., Ding L., Xie Y., Feng W., Chen Y.. Microbe-Material Hybrids for Therapeutic Applications. Chemical Society Reviews. 2024;53(16):8306–8378. doi: 10.1039/D3CS00655G. PubMed DOI
Zheng J. H., Nguyen V. H., Jiang S.-N., Park S.-H., Tan W., Hong S. H., Shin M. G., Chung I.-J., Hong Y., Bom H.-S.. et al. Two-Step Enhanced Cancer Immunotherapy with Engineered Salmonella typhimurium Secreting Heterologous Flagellin. Science Translational Medicine. 2017;9(376):eaak9537. doi: 10.1126/scitranslmed.aak9537. PubMed DOI
Luo C.-H., Huang C.-T., Su C.-H., Yeh C.-S.. Bacteria-Mediated Hypoxia-Specific Delivery of Nanoparticles for Tumors Imaging and Therapy. Nano Letters. 2016;16(6):3493–3499. doi: 10.1021/acs.nanolett.6b00262. PubMed DOI
Chen W., Wang Y., Qin M., Zhang X., Zhang Z., Sun X., Gu Z.. Bacteria-Driven Hypoxia Targeting for Combined Biotherapy and Photothermal Therapy. ACS Nano. 2018;12(6):5995–6005. doi: 10.1021/acsnano.8b02235. PubMed DOI
Pan P., Dong X., Chen Y., Zeng X., Zhang X.-Z.. Engineered Bacteria for Enhanced Radiotherapy against Breast Carcinoma. ACS Nano. 2022;16(1):801–812. doi: 10.1021/acsnano.1c08350. PubMed DOI
Yang Y., Wang Y., Zeng F., Chen Y., Chen Z., Yan F.. Ultrasound-Visible Engineered Bacteria for Tumor Chemo-Immunotherapy. Cell Reports Medicine. 2024;5(5):101512. doi: 10.1016/j.xcrm.2024.101512. PubMed DOI PMC
Zhang F., Guo Z., Li Z., Luan H., Yu Y., Zhu A. T., Ding S., Gao W., Fang R. H., Zhang L., Wang J.. Biohybrid Microrobots Locally and Actively Deliver Drug-Loaded Nanoparticles to Inhibit the Progression of Lung Metastasis. Science Advances. 2024;10(24):eadn6157. doi: 10.1126/sciadv.adn6157. PubMed DOI PMC
Prakash S., Kumbhojkar N., Lu A., Kapate N., Suja V. C., Park K. S., Wang L. L.-W., Mitragotri S.. Polymer Micropatches as Natural Killer Cell Engagers for Tumor Therapy. ACS Nano. 2023;17(16):15918–15930. doi: 10.1021/acsnano.3c03980. PubMed DOI
Kumbhojkar N., Prakash S., Fukuta T., Adu-Berchie K., Kapate N., An R., Darko S., Chandran Suja V., Park K. S., Gottlieb A. P.. et al. Neutrophils Bearing Adhesive Polymer Micropatches as a Drug-Free Cancer Immunotherapy. Nature Biomedical Engineering. 2024;8(5):579–592. doi: 10.1038/s41551-024-01180-z. PubMed DOI
Shields C. W. I. V.. Biohybrid Microrobots for Enhancing Adoptive Cell Transfers. Accounts of Materials Research. 2023;4(7):566–569. doi: 10.1021/accountsmr.3c00061. PubMed DOI PMC
Jeon S., Kim S., Ha S., Lee S., Kim E., Kim S. Y., Park S. H., Jeon J. H., Kim S. W., Moon C.. et al. Magnetically Actuated Microrobots as a Platform for Stem Cell Transplantation. Science Robotics. 2019;4(30):eaav4317. doi: 10.1126/scirobotics.aav4317. PubMed DOI
Kim E., Jeon S., An H.-K., Kianpour M., Yu S.-W., Kim J.-y., Rah J.-C., Choi H.. A Magnetically Actuated Microrobot for Targeted Neural Cell Delivery and Selective Connection of Neural Networks. Science Advances. 2020;6(39):eabb5696. doi: 10.1126/sciadv.abb5696. PubMed DOI PMC
Joshi S., Allabun S., Ojo S., Alqahtani M. S., Shukla P. K., Abbas M., Wechtaisong C., Almohiy H. M.. Enhanced Drug Delivery System Using Mesenchymal Stem Cells and Membrane-Coated Nanoparticles. Molecules. 2023;28(5):2130. doi: 10.3390/molecules28052130. PubMed DOI PMC
Xu H. F., Medina-Sánchez M., Magdanz V., Schwarz L., Hebenstreit F., Schmidt O. G.. Sperm-Hybrid Micromotor for Targeted Drug Delivery. ACS Nano. 2018;12(1):327–337. doi: 10.1021/acsnano.7b06398. PubMed DOI
Ridzewski C., Li M., Dong B., Magdanz V.. Gelatin Microcartridges for Onboard Activation and Antioxidant Protection of Sperm. ACS Applied Bio Materials. 2020;3(3):1616–1627. doi: 10.1021/acsabm.9b01188. PubMed DOI
Rajabasadi F., Moreno S., Fichna K., Aziz A., Appelhans D., Schmidt O. G., Medina-Sánchez M.. Multifunctional 4d-Printed Sperm-Hybrid Microcarriers for Assisted Reproduction. Advanced Materials. 2022;34(50):2204257. doi: 10.1002/adma.202270346. PubMed DOI
Magdanz V., Khalil I. S. M., Simmchen J., Furtado G. P., Mohanty S., Gebauer J., Xu H., Klingner A., Aziz A., Medina-Sánchez M.. et al. IRONSperm: Sperm-Templated Soft Magnetic Microrobots. Science Advances. 2020;6(28):eaba5855. doi: 10.1126/sciadv.aba5855. PubMed DOI PMC
Ribeiro C., Striggow F., Hebenstreit F., Nauber R., Schoen J., Medina-Sanchez M.. P-260in Vitro Fertilization (Ivf) Using Magnetotactic Sperm Cells and Their Prospects for Assisted in vivo Reproduction. Human Reproduction. 2024;39:deae108.630. doi: 10.1093/humrep/deae108.630. DOI
Xu H. F., Medina-Sánchez M., Schmidt O. G.. Magnetic Micromotors for Multiple Motile Sperm Cells Capture, Transport, and Enzymatic Release. Angewandte Chemie International Edition. 2020;59(35):15029–15037. doi: 10.1002/anie.202005657. PubMed DOI PMC
Wang S., Liu K., Zhou Q., Xu C., Gao J., Wang Z., Wang F., Chen B., Ye Y., Ou J.. et al. Hydrogen-Powered Microswimmers for Precise and Active Hydrogen Therapy Towards Acute Ischemic Stroke. Advanced Functional Materials. 2021;31(19):2009475. doi: 10.1002/adfm.202009475. DOI
Wan M., Chen H., Wang Q., Niu Q., Xu P., Yu Y., Zhu T., Mao C., Shen J.. Bio-Inspired Nitric-Oxide-Driven Nanomotor. Nature Communications. 2019;10(1):966. doi: 10.1038/s41467-019-08670-8. PubMed DOI PMC
Tian H., Ou J., Wang Y., Sun J., Gao J., Ye Y., Zhang R., Chen B., Wang F., Huang W.. et al. Bladder Microenvironment Actuated Proteomotors with Ammonia Amplification for Enhanced Cancer Treatment. Acta Pharmaceutica Sinica B. 2023;13(9):3862–3875. doi: 10.1016/j.apsb.2023.02.016. PubMed DOI PMC
Wu Z. G., Si T. Y., Gao W., Lin X. K., Wang J., He Q.. Superfast near-Infrared Light-Driven Polymer Multilayer Rockets. Small. 2016;12(5):577–582. doi: 10.1002/smll.201502605. PubMed DOI
Chen B., Ding M., Tan H., Wang S., Liu L., Wang F., Tian H., Gao J., Ye Y., Fu D.. et al. Visible-Light-Driven TiO2@N-Au Nanorobot Penetrating the Vitreous. Applied Materials Today. 2022;27:101455. doi: 10.1016/j.apmt.2022.101455. DOI
Srivastava S. K., Medina-Sánchez M., Koch B., Schmidt O. G.. Medibots: Dual-Action Biogenic Microdaggers for Single-Cell Surgery and Drug Release. Advanced Materials. 2016;28(5):832–837. doi: 10.1002/adma.201504327. PubMed DOI
Beasley R. A.. Medical Robots: Current Systems and Research Directions. Journal of Robotics. 2012;2012(1):401613. doi: 10.1155/2012/401613. DOI
Diller E., Sitti M.. Three-Dimensional Programmable Assembly by Untethered Magnetic Robotic Micro-Grippers. Advanced Functional Materials. 2014;24(28):4397–4404. doi: 10.1002/adfm.201400275. DOI
Wang X., Gong Z., Wang T., Law J., Chen X., Wanggou S., Wang J., Ying B., Francisco M., Dong W.. et al. Mechanical Nanosurgery of Chemoresistant Glioblastoma Using Magnetically Controlled Carbon Nanotubes. Science Advances. 2023;9(13):eade5321. doi: 10.1126/sciadv.ade5321. PubMed DOI PMC
Maier C. M., Huergo M. A., Milosevic S., Pernpeintner C., Li M., Singh D. P., Walker D., Fischer P., Feldmann J., Lohmüller T.. Optical and Thermophoretic Control of Janus Nanopen Injection into Living Cells. Nano Letters. 2018;18(12):7935–7941. doi: 10.1021/acs.nanolett.8b03885. PubMed DOI
Fan D., Yin Z., Cheong R., Zhu F. Q., Cammarata R. C., Chien C. L., Levchenko A.. Subcellular-Resolution Delivery of a Cytokine through Precisely Manipulated Nanowires. Nature Nanotechnology. 2010;5(7):545–551. doi: 10.1038/nnano.2010.104. PubMed DOI PMC
Fields, A. P. ; Cohen, A. E. . Chapter Seven - Anti-Brownian Traps for Studies on Single Molecules. In Methods in Enzymology; Walter, N. G. Ed.; Vol. 475; Academic Press, 2010; pp 149-174. PubMed
Li H., Teal D., Liang Z., Kwon H., Huo D., Jin A., Fischer P., Fan D. E.. Precise Electrokinetic Position and Three-Dimensional Orientation Control of a Nanowire Bioprobe in Solution. Nature Nanotechnology. 2023;18(10):1213–1221. doi: 10.1038/s41565-023-01439-7. PubMed DOI
Rivkin B., Becker C., Singh B., Aziz A., Akbar F., Egunov A., Karnaushenko D. D., Naumann R., Schäfer R., Medina-Sánchez M.. et al. Electronically Integrated Microcatheters Based on Self-Assembling Polymer Films. Science Advances. 2021;7(51):eabl5408. doi: 10.1126/sciadv.abl5408. PubMed DOI PMC
Liu X., Wang L., Xiang Y., Liao F., Li N., Li J., Wang J., Wu Q., Zhou C., Yang Y.. et al. Magnetic Soft Microfiberbots for Robotic Embolization. Science Robotics. 2024;9(87):eadh2479. doi: 10.1126/scirobotics.adh2479. PubMed DOI
Wang B., Wang Q., Chan K. F., Ning Z., Wang Q., Ji F., Yang H., Jiang S., Zhang Z., Ip B. Y. M.. et al. Tpa-Anchored Nanorobots for in vivo Arterial Recanalization at Submillimeter-Scale Segments. Science Advances. 2024;10(5):eadk8970. doi: 10.1126/sciadv.adk8970. PubMed DOI PMC
Wang Q., Jin D., Wang B., Xia N., Ko H., Ip B. Y. M., Leung T. W. H., Yu S. C. H., Zhang L.. Reconfigurable Magnetic Microswarm for Accelerating Tpa-Mediated Thrombolysis under Ultrasound Imaging. IEEE/ASME Transactions on Mechatronics. 2022;27(4):2267–2277. doi: 10.1109/TMECH.2021.3103994. DOI
Tang X., Manamanchaiyaporn L., Zhou Q., Huang C., Li L., Li Z., Wang L., Wang J., Ren L., Xu T.. et al. Synergistic Integration and Pharmacomechanical Function of Enzyme-Magnetite Nanoparticle Swarms for Low-Dose Fast Thrombolysis. Small. 2022;18(34):2202848. doi: 10.1002/smll.202202848. PubMed DOI
Wan M., Wang Q., Wang R., Wu R., Li T., Fang D., Huang Y., Yu Y., Fang L., Wang X.. et al. Platelet-Derived Porous Nanomotor for Thrombus Therapy. Science Advances. 2020;6(22):eaaz9014. doi: 10.1126/sciadv.aaz9014. PubMed DOI PMC
Wang L., Wang J., Hao J., Dong Z., Wu J., Shen G., Ying T., Feng L., Cai X., Liu Z., Zheng Y.. Guiding Drug through Interrupted Bloodstream for Potentiated Thrombolysis by C-Shaped Magnetic Actuation System in vivo. Advanced Materials. 2021;33(51):2105351. doi: 10.1002/adma.202105351. PubMed DOI
Xie M., Zhang W., Fan C., Wu C., Feng Q., Wu J., Li Y., Gao R., Li Z., Wang Q.. et al. Bioinspired Soft Microrobots with Precise Magneto-Collective Control for Microvascular Thrombolysis. Advanced Materials. 2020;32(26):2000366. doi: 10.1002/adma.202000366. PubMed DOI
Flemming H.-C., Wingender J.. The Biofilm Matrix. Nature Reviews Microbiology. 2010;8(9):623–633. doi: 10.1038/nrmicro2415. PubMed DOI
Stoica, P. ; Chifiriuc, M. C. ; Rapa, M. ; Lazăr, V. . 1 - Overview of Biofilm-Related Problems in Medical Devices. In Biofilms and Implantable Medical Devices; Deng, Y. ; Lv, W. Eds.; Woodhead Publishing, 2017; pp 3-23.
Davies D.. Understanding Biofilm Resistance to Antibacterial Agents. Nature Reviews Drug Discovery. 2003;2(2):114–122. doi: 10.1038/nrd1008. PubMed DOI
Li J., Shen H., Zhou H., Shi R., Wu C., Chu P. K.. Antimicrobial Micro/Nanorobotic Materials Design: From Passive Combat to Active Therapy. Materials Science and Engineering: R: Reports. 2023;152:100712. doi: 10.1016/j.mser.2022.100712. DOI
Zhang Z., Wang L., Chan T. K. F., Chen Z., Ip M., Chan P. K. S., Sung J. J. Y., Zhang L.. Micro-/Nanorobots in Antimicrobial Applications: Recent Progress, Challenges, and Opportunities. Advanced Healthcare Materials. 2022;11(6):2101991. doi: 10.1002/adhm.202101991. PubMed DOI
Percival S. L., Emanuel C., Cutting K. F., Williams D. W.. Microbiology of the Skin and the Role of Biofilms in Infection. International Wound Journal. 2012;9(1):14–32. doi: 10.1111/j.1742-481X.2011.00836.x. PubMed DOI PMC
Xie S., Huang K., Peng J., Liu Y., Cao W., Zhang D., Li X.. Self-Propelling Nanomotors Integrated with Biofilm Microenvironment-Activated No Release to Accelerate Healing of Bacteria-Infected Diabetic Wounds. Advanced Healthcare Materials. 2022;11(19):2201323. doi: 10.1002/adhm.202201323. PubMed DOI
Peng J., Xie S., Huang K., Ran P., Wei J., Zhang Z., Li X.. Nitric Oxide-Propelled Nanomotors for Bacterial Biofilm Elimination and Endotoxin Removal to Treat Infected Burn Wounds. Journal of Materials Chemistry B. 2022;10(22):4189–4202. doi: 10.1039/D2TB00555G. PubMed DOI
Zheng J., Wang W., Gao X., Zhao S., Chen W., Li J., Liu Y.-N.. Cascade Catalytically Released Nitric Oxide-Driven Nanomotor with Enhanced Penetration for Antibiofilm. Small. 2022;18(52):2205252. doi: 10.1002/smll.202205252. PubMed DOI
Guo W., Wang Y., Zhang K., Dai X., Qiao Z., Liu Z., Yu B., Zhao N., Xu F.-J.. Near-Infrared Light-Propelled MOF@Au Nanomotors for Enhanced Penetration and Sonodynamic Therapy of Bacterial Biofilms. Chemistry of Materials. 2023;35(17):6853–6864. doi: 10.1021/acs.chemmater.3c01140. DOI
Yuan X., Suárez-García S., De Corato M., Muñoz A. C., Pagonabarraga I., Ruiz-Molina D., Villa K.. Self-Degradable Photoactive Micromotors for Inactivation of Resistant Bacteria. Advanced Optical Materials. 2024;12(16):2303137. doi: 10.1002/adom.202303137. DOI
Oh M. J., Yoon S., Babeer A., Liu Y., Ren Z., Xiang Z., Miao Y., Cormode D. P., Chen C., Steager E., Koo H.. Nanozyme-Based Robotics Approach for Targeting Fungal Infection. Advanced Materials. 2024;36(10):2300320. doi: 10.1002/adma.202300320. PubMed DOI PMC
Arciola C. R., Campoccia D., Montanaro L.. Implant Infections: Adhesion, Biofilm Formation and Immune Evasion. Nature Reviews Microbiology. 2018;16(7):397–409. doi: 10.1038/s41579-018-0019-y. PubMed DOI
Sánchez M. C., Llama-Palacios A., Fernández E., Figuero E., Marín M. J., León R., Blanc V., Herrera D., Sanz M.. An in vitro Biofilm Model Associated to Dental Implants: Structural and Quantitative Analysis of in vitro Biofilm Formation on Different Dental Implant Surfaces. Dental Materials. 2014;30(10):1161–1171. doi: 10.1016/j.dental.2014.07.008. PubMed DOI
Mayorga-Martinez C. C., Zelenka J., Klima K., Mayorga-Burrezo P., Hoang L., Ruml T., Pumera M.. Swarming Magnetic Photoactive Microrobots for Dental Implant Biofilm Eradication. ACS Nano. 2022;16(6):8694–8703. doi: 10.1021/acsnano.2c02516. PubMed DOI
Ussia M., Urso M., Kment S., Fialova T., Klima K., Dolezelikova K., Pumera M.. Light-Propelled Nanorobots for Facial Titanium Implants Biofilms Removal. Small. 2022;18(22):2200708. doi: 10.1002/smll.202200708. PubMed DOI
Cui T., Wu S., Sun Y., Ren J., Qu X.. Self-Propelled Active Photothermal Nanoswimmer for Deep-Layered Elimination of Biofilm in vivo. Nano Letters. 2020;20(10):7350–7358. doi: 10.1021/acs.nanolett.0c02767. PubMed DOI
Dong Y., Wang L., Zhang Z., Ji F., Chan T. K. F., Yang H., Chan C. P. L., Yang Z., Chen Z., Chang W. T.. et al. Endoscope-Assisted Magnetic Helical Micromachine Delivery for Biofilm Eradication in Tympanostomy Tube. Science Advances. 2022;8(40):eabq8573. doi: 10.1126/sciadv.abq8573. PubMed DOI PMC
Sun M., Chan K. F., Zhang Z., Wang L., Wang Q., Yang S., Chan S. M., Chiu P. W. Y., Sung J. J. Y., Zhang L.. Magnetic Microswarm and Fluoroscopy-Guided Platform for Biofilm Eradication in Biliary Stents. Advanced Materials. 2022;34(34):2201888. doi: 10.1002/adma.202201888. PubMed DOI
Villa K., Viktorova J., Plutnar J., Ruml T., Hoang L., Pumera M.. Chemical Microrobots as Self-Propelled Microbrushes against Dental Biofilm. Cell Reports Physical Science. 2020;1(9):100181. doi: 10.1016/j.xcrp.2020.100181. DOI
Oh M. J., Babeer A., Liu Y., Ren Z., Wu J., Issadore D. A., Stebe K. J., Lee D., Steager E., Koo H.. Surface Topography-Adaptive Robotic Superstructures for Biofilm Removal and Pathogen Detection on Human Teeth. ACS Nano. 2022;16(8):11998–12012. doi: 10.1021/acsnano.2c01950. PubMed DOI PMC
Hwang G., Paula A. J., Hunter E. E., Liu Y., Babeer A., Karabucak B., Stebe K., Kumar V., Steager E., Koo H.. Catalytic Antimicrobial Robots for Biofilm Eradication. Science Robotics. 2019;4(29):eaaw2388. doi: 10.1126/scirobotics.aaw2388. PubMed DOI PMC
Xu H., Wu S., Liu Y., Wang X., Efremov A. K., Wang L., McCaskill J. S., Medina-Sánchez M., Schmidt O. G.. 3D Nanofabricated Soft Microrobots with Super-Compliant Picoforce Springs as Onboard Sensors and Actuators. Nature Nanotechnology. 2024;19(4):494–503. doi: 10.1038/s41565-023-01567-0. PubMed DOI PMC
Schuerle S., Erni S., Flink M., Kratochvil B. E., Nelson B. J.. Three-Dimensional Magnetic Manipulation of Micro- and Nanostructures for Applications in Life Sciences. IEEE Transactions on Magnetics. 2013;49(1):321–330. doi: 10.1109/TMAG.2012.2224693. DOI
Tang W., Chen X., Wang X., Zhu M., Shan G., Wang T., Dou W., Wang J., Law J., Gong Z.. et al. Indentation Induces Instantaneous Nuclear Stiffening and Unfolding of Nuclear Envelope Wrinkles. Proceedings of the National Academy of Sciences. 2023;120(36):e2307356120. doi: 10.1073/pnas.2307356120. PubMed DOI PMC
Schuerle S., Vizcarra I. A., Moeller J., Sakar M. S., Ozkale B., Lindo A. M., Mushtaq F., Schoen I., Pane S., Vogel V., Nelson B. J.. Robotically Controlled Microprey to Resolve Initial Attack Modes Preceding Phagocytosis. Science Robotics. 2017;2(2):eaah6094. doi: 10.1126/scirobotics.aah6094. PubMed DOI
Yasa I. C., Ceylan H., Bozuyuk U., Wild A.-M., Sitti M.. Elucidating the Interaction Dynamics between Microswimmer Body and Immune System for Medical Microrobots. Science Robotics. 2020;5(43):eaaz3867. doi: 10.1126/scirobotics.aaz3867. PubMed DOI
Huang H.-W., Uslu F. E., Katsamba P., Lauga E., Sakar M. S., Nelson B. J.. Adaptive Locomotion of Artificial Microswimmers. Science Advances. 2019;5(1):eaau1532. doi: 10.1126/sciadv.aau1532. PubMed DOI PMC
Serwane F., Mongera A., Rowghanian P., Kealhofer D. A., Lucio A. A., Hockenbery Z. M., Campàs O.. In Vivo Quantification of Spatially Varying Mechanical Properties in Developing Tissues. Nature Methods. 2017;14(2):181–186. doi: 10.1038/nmeth.4101. PubMed DOI PMC
Mohagheghian E., Luo J., Yavitt F. M., Wei F., Bhala P., Amar K., Rashid F., Wang Y., Liu X., Ji C.. et al. Quantifying Stiffness and Forces of Tumor Colonies and Embryos Using a Magnetic Microrobot. Science Robotics. 2023;8(74):eadc9800. doi: 10.1126/scirobotics.adc9800. PubMed DOI PMC
Uslu F. E., Davidson C. D., Mailand E., Bouklas N., Baker B. M., Sakar M. S.. Engineered Extracellular Matrices with Integrated Wireless Microactuators to Study Mechanobiology. Advanced Materials. 2021;33(40):2102641. doi: 10.1002/adma.202102641. PubMed DOI PMC
Asgeirsson D. O., Mehta A., Scheeder A., Li F., Wang X., Christiansen M. G., Hesse N., Ward R., De Micheli A. J., Ildiz E. S.. et al. Magnetically Controlled Cyclic Microscale Deformation of in vitro Cancer Invasion Models. Biomaterials Science. 2023;11(23):7541–7555. doi: 10.1039/D3BM00583F. PubMed DOI
Rios B., Bu A., Sheehan T., Kobeissi H., Kohli S., Shah K., Lejeune E., Raman R.. Mechanically Programming Anisotropy in Engineered Muscle with Actuating Extracellular Matrices. Device. 2023;1(4):100097. doi: 10.1016/j.device.2023.100097. DOI
Kress H., Park J.-G., Mejean C. O., Forster J. D., Park J., Walse S. S., Zhang Y., Wu D., Weiner O. D., Fahmy T. M.. et al. Cell Stimulation with Optically Manipulated Microsources. Nature Methods. 2009;6(12):905–909. doi: 10.1038/nmeth.1400. PubMed DOI PMC
Gou X., Yang H., Fahmy T. M., Wang Y., Sun D.. Direct Measurement of Cell Protrusion Force Utilizing a Robot-Aided Cell Manipulation System with Optical Tweezers for Cell Migration Control. The International Journal of Robotics Research. 2014;33(14):1782–1792. doi: 10.1177/0278364914546536. DOI
Johansen P. L., Fenaroli F., Evensen L., Griffiths G., Koster G.. Optical Micromanipulation of Nanoparticles and Cells inside Living Zebrafish. Nature Communications. 2016;7(1):10974. doi: 10.1038/ncomms10974. PubMed DOI PMC
Pastoriza-Santos I., Kinnear C., Pérez-Juste J., Mulvaney P., Liz-Marzán L. M.. Plasmonic Polymer Nanocomposites. Nature Reviews Materials. 2018;3(10):375–391. doi: 10.1038/s41578-018-0050-7. DOI
Liu Z., Liu Y., Chang Y., Seyf H. R., Henry A., Mattheyses A. L., Yehl K., Zhang Y., Huang Z., Salaita K.. Nanoscale Optomechanical Actuators for Controlling Mechanotransduction in Living Cells. Nature Methods. 2016;13(2):143–146. doi: 10.1038/nmeth.3689. PubMed DOI PMC
Sutton A., Shirman T., Timonen J. V. I., England G. T., Kim P., Kolle M., Ferrante T., Zarzar L. D., Strong E., Aizenberg J.. Photothermally Triggered Actuation of Hybrid Materials as a New Platform for in vitro Cell Manipulation. Nature Communications. 2017;8(1):14700. doi: 10.1038/ncomms14700. PubMed DOI PMC
Özkale B., Parreira R., Bekdemir A., Pancaldi L., Özelçi E., Amadio C., Kaynak M., Stellacci F., Mooney D. J., Sakar M. S.. Modular Soft Robotic Microdevices for Dexterous Biomanipulation. Lab on a Chip. 2019;19(5):778–788. doi: 10.1039/C8LC01200H. PubMed DOI PMC
Chandorkar Y., Castro Nava A., Schweizerhof S., Van Dongen M., Haraszti T., Kohler J., Zhang H., Windoffer R., Mourran A., Moller M., De Laporte L.. Cellular Responses to Beating Hydrogels to Investigate Mechanotransduction. Nature Communications. 2019;10(1):4027. doi: 10.1038/s41467-019-11475-4. PubMed DOI PMC
Özkale B., Lou J., Özelçi E., Elosegui-Artola A., Tringides C. M., Mao A. S., Sakar M. S., Mooney D. J.. Actuated 3D Microgels for Single Cell Mechanobiology. Lab on a Chip. 2022;22(10):1962–1970. doi: 10.1039/D2LC00203E. PubMed DOI PMC
Talà L., Fineberg A., Kukura P., Persat A.. Pseudomonas Aeruginosa Orchestrates Twitching Motility by Sequential Control of Type Iv Pili Movements. Nature Microbiology. 2019;4(5):774–780. doi: 10.1038/s41564-019-0378-9. PubMed DOI PMC
Zhang F. Y., Li Z. X., Duan Y. o., Luan H., Yin L., Guo Z. Y., Chen C. R., Xu M. Y., Gao W. W., Fang R. H.. et al. Extremophile-Based Biohybrid Micromotors for Biomedical Operations in Harsh Acidic Environments. Science Advances. 2022;8(51):eade6455. doi: 10.1126/sciadv.ade6455. PubMed DOI PMC
Li J., Angsantikul P., Liu W., Esteban-Fernández de Ávila B., Thamphiwatana S., Xu M., Sandraz E., Wang X., Delezuk J., Gao W.. et al. Micromotors Spontaneously Neutralize Gastric Acid for pH-Responsive Payload Release. Angewandte Chemie International Edition. 2017;56(8):2156–2161. doi: 10.1002/anie.201611774. PubMed DOI PMC
Karshalev E., Zhang Y., Esteban-Fernández de Ávila B., Beltrán-Gastélum M., Chen Y., Mundaca-Uribe R., Zhang F., Nguyen B., Tong Y., Fang R. H.. et al. Micromotors for Active Delivery of Minerals toward the Treatment of Iron Deficiency Anemia. Nano Letters. 2019;19(11):7816–7826. doi: 10.1021/acs.nanolett.9b02832. PubMed DOI PMC
Ying B., Huang H., Su Y., Howarth J. G., Gu Z., Nan K.. Theranostic Gastrointestinal Residence Systems. Device. 2023;1(2):100053. doi: 10.1016/j.device.2023.100053. DOI
Liu X., Yang Y., Inda M. E., Lin S., Wu J., Kim Y., Chen X., Ma D., Lu T. K., Zhao X.. Magnetic Living Hydrogels for Intestinal Localization, Retention, and Diagnosis. Advanced Functional Materials. 2021;31(27):2010918. doi: 10.1002/adfm.202010918. PubMed DOI PMC
Li Z., Duan Y., Zhang F., Luan H., Shen W.-T., Yu Y., Xian N., Guo Z., Zhang E., Yin L.. et al. Biohybrid Microrobots Regulate Colonic Cytokines and the Epithelium Barrier in Inflammatory Bowel Disease. Science Robotics. 2024;9(91):eadl2007. doi: 10.1126/scirobotics.adl2007. PubMed DOI
Yang M., Zhang Y., Mou F., Cao C., Yu L., Li Z., Guan J.. Swarming Magnetic Nanorobots Bio-Interfaced by Heparinoid-Polymer Brushes for in vivo Safe Synergistic Thrombolysis. Science Advances. 2023;9(48):eadk7251. doi: 10.1126/sciadv.adk7251. PubMed DOI PMC
Wang Q., Wang Q., Ning Z., Chan K. F., Jiang J., Wang Y., Su L., Jiang S., Wang B., Ip B. Y. M.. et al. Tracking and Navigation of a Microswarm under Laser Speckle Contrast Imaging for Targeted Delivery. Science Robotics. 2024;9(87):eadh1978. doi: 10.1126/scirobotics.adh1978. PubMed DOI
Peng Q., Wang S., Han J., Huang C., Yu H., Li D., Qiu M., Cheng S., Wu C., Cai M.. et al. Thermal and Magnetic Dual-Responsive Catheter-Assisted Shape Memory Microrobots for Multistage Vascular Embolization. Research. 2024;7:0339. doi: 10.34133/research.0339. PubMed DOI PMC
Tang L., Yin Y., Cao Y., Fu C., Liu H., Feng J., Wang W., Liang X.-J.. Extracellular Vesicles-Derived Hybrid Nanoplatforms for Amplified Cd47 Blockade-Based Cancer Immunotherapy. Advanced Materials. 2023;35(35):2303835. doi: 10.1002/adma.202303835. PubMed DOI
Eisenbach M., Giojalas L. C.. Sperm Guidance in Mammals an Unpaved Road to the Egg. Nature Reviews Molecular Cell Biology. 2006;7(4):276–285. doi: 10.1038/nrm1893. PubMed DOI
Miki K., Clapham D. E.. Rheotaxis Guides Mammalian Sperm. Current Biology. 2013;23(6):443–452. doi: 10.1016/j.cub.2013.02.007. PubMed DOI PMC
Cong Z., Tang S., Xie L., Yang M., Li Y., Lu D., Li J., Yang Q., Chen Q., Zhang Z.. et al. Magnetic-Powered Janus Cell Robots Loaded with Oncolytic Adenovirus for Active and Targeted Virotherapy of Bladder Cancer. Advanced Materials. 2022;34(26):2201042. doi: 10.1002/adma.202201042. PubMed DOI
Schwarz L., Karnaushenko D. D., Hebenstreit F., Naumann R., Schmidt O. G., Medina-Sánchez M.. A Rotating Spiral Micromotor for Noninvasive Zygote Transfer. Advanced Science. 2020;7(18):2000843. doi: 10.1002/advs.202000843. PubMed DOI PMC
Ribeiro, C. ; Nauber, R. ; Aziz, A. ; Robles, D. C. ; Hebenstreit, F. ; Medina-Sánchez, M. . Microrobot's Performance in Cell-Lining Surfaces and Ex-Vivo Tissue. In 2024 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), 1-5 July 2024, 2024; pp 1-6. 10.1109/MARSS61851.2024.10612747. DOI
Nauber, R. ; Hoppe, J. ; Robles, D. C. ; Medina-Sánchez, M. . Photoacoustics-Guided Real-Time Closed-Loop Control of Magnetic Microrobots through Deep Learning. In 2024 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), 1-5 July 2024, 2024; pp 1-5. 10.1109/MARSS61851.2024.10612756. DOI
Schmidt C. K., Medina-Sánchez M., Edmondson R. J., Schmidt O. G.. Engineering Microrobots for Targeted Cancer Therapies from a Medical Perspective. Nature Communications. 2020;11(1):5618. doi: 10.1038/s41467-020-19322-7. PubMed DOI PMC
Xu H., Medina-Sánchez M., Zhang W., Seaton M. P. H., Brison D. R., Edmondson R. J., Taylor S. S., Nelson L., Zeng K., Bagley S.. et al. Human Spermbots for Patient-Representative 3D Ovarian Cancer Cell Treatment. Nanoscale. 2020;12(39):20467–20481. doi: 10.1039/D0NR04488A. PubMed DOI
Go G., Jeong S.-G., Yoo A., Han J., Kang B., Kim S., Nguyen K. T., Jin Z., Kim C.-S., Seo Y. R.. Human Adipose-Derived Mesenchymal Stem Cell-Based Medical Microrobot System for Knee Cartilage Regeneration in vivo. Science Robotics. 2020;5(38):eaay6626. doi: 10.1126/scirobotics.aay6626. PubMed DOI
Ahuja C. S., Wilson J. R., Nori S., Kotter M. R. N., Druschel C., Curt A., Fehlings M. G.. Traumatic Spinal Cord Injury. Nature Reviews Disease Primers. 2017;3(1):17018. doi: 10.1038/nrdp.2017.18. PubMed DOI
Sadekar S. S., Bowen M., Cai H., Jamalian S., Rafidi H., Shatz-Binder W., Lafrance-Vanasse J., Chan P., Meilandt W. J., Oldendorp A.. et al. Translational Approaches for Brain Delivery of Biologics via Cerebrospinal Fluid. Clinical Pharmacology & Therapeutics. 2022;111(4):826–834. doi: 10.1002/cpt.2531. PubMed DOI PMC
Ye, H. ; Zang, J. ; Zhu, J. ; Arx, D. v. ; Pustovalov, V. ; Mao, M. ; Tang, Q. ; Veciana, A. ; Torlakcik, H. ; Zhang, E. . Magnetoelectric Microrobots for Spinal Cord Injury Regeneration. bioRxiv Preprint, 2024. 10.1101/2024.08.06.606378. DOI
Bao T., Li N., Chen H., Zhao Z., Fan J., Tao Y., Chen C., Wan M., Yin G., Mao C.. Drug-Loaded Zwitterion-Based Nanomotors for the Treatment of Spinal Cord Injury. ACS Applied Materials & Interfaces. 2023;15(27):32762–32771. doi: 10.1021/acsami.3c05866. PubMed DOI
Shen J., Wang Y., Yao M., Liu S., Guo Z., Zhang L., Wang B.. Long-Span Delivery of Differentiable Hybrid Robots for Restoration of Neural Connections. Matter. 2025;8:101942. doi: 10.1016/j.matt.2024.101942. DOI
Quon H., Jiang S.. Decision Making for Implementing Non-Traditional Water Sources: A Review of Challenges and Potential Solutions. npj Clean Water. 2023;6(1):56. doi: 10.1038/s41545-023-00273-7. DOI
Vardhan K. H., Kumar P. S., Panda R. C.. A Review on Heavy Metal Pollution, Toxicity and Remedial Measures: Current Trends and Future Perspectives. Journal of Molecular Liquids. 2019;290:111197. doi: 10.1016/j.molliq.2019.111197. DOI
Sun B., Li Q., Zheng M., Su G., Lin S., Wu M., Li C., Wang Q., Tao Y., Dai L.. et al. Recent Advances in the Removal of Persistent Organic Pollutants (Pops) Using Multifunctional Materials:A Review. Environmental Pollution. 2020;265:114908. doi: 10.1016/j.envpol.2020.114908. PubMed DOI
Singh S., Kumar Naik T. S. S., Anil A. G., Dhiman J., Kumar V., Dhanjal D. S., Aguilar-Marcelino L., Singh J., Ramamurthy P. C.. Micro (Nano) Plastics in Wastewater: A Critical Review on Toxicity Risk Assessment, Behaviour, Environmental Impact and Challenges. Chemosphere. 2022;290:133169. doi: 10.1016/j.chemosphere.2021.133169. PubMed DOI
Dhaka A., Chattopadhyay P.. A Review on Physical Remediation Techniques for Treatment of Marine Oil Spills. Journal of Environmental Management. 2021;288:112428. doi: 10.1016/j.jenvman.2021.112428. PubMed DOI
Islam M. M. M., Iqbal M. S., D'Souza N., Islam M. A.. A Review on Present and Future Microbial Surface Water Quality Worldwide. Environmental Nanotechnology, Monitoring & Management. 2021;16:100523. doi: 10.1016/j.enmm.2021.100523. DOI
Jing D., Li Z., Yan W., Zhang J., Guo Y.. Application of Micro/Nanomotors in Environmental Remediation. New Journal of Chemistry. 2024;48(3):1036–1056. doi: 10.1039/D3NJ04873J. DOI
Wang K., Ma E., Cui H., Hu Z., Wang H.. Bioinspired Self-Propelled Micromotors with Improved Transport Efficiency in the Subsurface Environment for Soil Decontamination. Advanced Functional Materials. 2023;33(52):2307632. doi: 10.1002/adfm.202307632. DOI
Ma W., Wang K., Pan S., Wang H.. Iron-Exchanged Zeolite Micromotors for Enhanced Degradation of Organic Pollutants. Langmuir. 2020;36(25):6924–6929. doi: 10.1021/acs.langmuir.9b02137. PubMed DOI
Xiong K., Lin J., Chen Q., Gao T., Xu L., Guan J.. An Axis-Asymmetric Self-Driven Micromotor That Can Perform Precession Multiplying “on-the-fly” Mass Transfer. Matter. 2023;6(3):907–924. doi: 10.1016/j.matt.2023.01.005. DOI
Urso M., Ussia M., Pumera M.. Breaking Polymer Chains with Self-Propelled Light-Controlled Navigable Hematite Microrobots. Advanced Functional Materials. 2021;31(28):2101510. doi: 10.1002/adfm.202101510. DOI
Wang L., Kaeppler A., Fischer D., Simmchen J.. Photocatalytic TiO2 Micromotors for Removal of Microplastics and Suspended Matter. ACS Applied Materials & Interfaces. 2019;11(36):32937–32944. doi: 10.1021/acsami.9b06128. PubMed DOI
Wang Q., Ji F., Wang S., Zhang L.. Accelerating the Fenton Reaction with a Magnetic Microswarm for Enhanced Water Remediation. ChemNanoMat. 2021;7(6):600–606. doi: 10.1002/cnma.202100108. DOI
Hu K., Li J., Han Y., Ng D. H. L., Xing N., Lyu Y.. A Colorimetric Detection Strategy and Micromotor-Assisted Photo-Fenton Like Degradation for Hydroquinone Based on the Peroxidase-Like Activity of Co3o4-CeO2 Nanocages. Catalysis Science & Technology. 2022;12(23):7161–7170. doi: 10.1039/D2CY01192A. DOI
Ma E., Wang K., Hu Z., Wang H.. Dual-Stimuli-Responsive Cus-Based Micromotors for Efficient Photo-Fenton Degradation of Antibiotics. Journal of Colloid and Interface Science. 2021;603:685–694. doi: 10.1016/j.jcis.2021.06.142. PubMed DOI
Feng K., Zhang L., Gong J., Qu J., Niu R.. Visible Light Triggered Exfoliation of COF Micro/Nanomotors for Efficient Photocatalysis. Green Energy & Environment. 2023;8(2):567–578. doi: 10.1016/j.gee.2021.09.002. DOI
Ghanbari F., Moradi M.. Application of Peroxymonosulfate and Its Activation Methods for Degradation of Environmental Organic Pollutants: Review. Chemical Engineering Journal. 2017;310:41–62. doi: 10.1016/j.cej.2016.10.064. DOI
Vaghasiya J. V., Mayorga-Martinez C. C., Matějková S., Pumera M.. Pick up and Dispose of Pollutants from Water via Temperature-Responsive Micellar Copolymers on Magnetite Nanorobots. Nature Communications. 2022;13(1):1026. doi: 10.1038/s41467-022-28406-5. PubMed DOI PMC
Uygun D. A., Jurado-Sánchez B., Uygun M., Wang J.. Self-Propelled Chelation Platforms for Efficient Removal of Toxic Metals. Environmental Science: Nano. 2016;3(3):559–566. doi: 10.1039/C6EN00043F. DOI
Han Y., Lyu Y., Xing N., Zhang X., Hu K., Luo H., Ng D. H. L., Li J.. Ion-Imprinted MnO2/CoFe2O4 Janus Magnetic Micromotors Synthesized by a Lotus Pollen Template for Highly Selective Recognition and Capture of Pb(Ii) Ions. Journal of Materials Chemistry C. 2022;10(41):15524–15531. doi: 10.1039/D2TC02458F. DOI
Hou T., Yu S., Zhou M., Wu M., Liu J., Zheng X., Li J., Wang J., Wang X.. Effective Removal of Inorganic and Organic Heavy Metal Pollutants with Poly(Amino Acid)-Based Micromotors. Nanoscale. 2020;12(8):5227–5232. doi: 10.1039/C9NR09813E. PubMed DOI
Yang J., Liu Y., Li J., Zuo M., Li W., Xing N., Wang C., Li T.. Γ-Fe2O3@Ag-mSiO2NH2 Magnetic Janus Micromotor for Active Water Remediation. Applied Materials Today. 2021;25:101190. doi: 10.1016/j.apmt.2021.101190. DOI
Urso M., Ussia M., Peng X., Oral C. M., Pumera M.. Reconfigurable Self-Assembly of Photocatalytic Magnetic Microrobots for Water Purification. Nature Communications. 2023;14(1):6969. doi: 10.1038/s41467-023-42674-9. PubMed DOI PMC
Liu M., Jiang J., Tan H., Chen B., Ou J., Wang H., Sun J., Liu L., Wang F., Gao J.. et al. Light-Driven Au-ZnO Nanorod Motors for Enhanced Photocatalytic Degradation of Tetracycline. Nanoscale. 2022;14(35):12804–12813. doi: 10.1039/D2NR02441A. PubMed DOI
Tesař J., Ussia M., Alduhaish O., Pumera M.. Autonomous Self-Propelled MnO2 Micromotors for Hormones Removal and Degradation. Applied Materials Today. 2022;26:101312. doi: 10.1016/j.apmt.2021.101312. DOI
Kochergin Y. S., Villa K., Nemeškalová A., Kuchař M., Pumera M.. Hybrid Inorganic-Organic Visible-Light-Driven Microrobots Based on Donor-Acceptor Organic Polymer for Degradation of Toxic Psychoactive Substances. ACS Nano. 2021;15(11):18458–18468. doi: 10.1021/acsnano.1c08136. PubMed DOI
Uygun M., Asunción-Nadal V. d. l., Evli S., Uygun D. A., Jurado-Sánchez B., Escarpa A.. Dye Removal by Laccase-Functionalized Micromotors. Applied Materials Today. 2021;23:101045. doi: 10.1016/j.apmt.2021.101045. DOI
Yang W., Xu C., Lyu Y., Lan Z., Li J., Ng D. H. L.. Hierarchical Hollow Α-Fe2O3/ZnFe2O4/Mn2O3 Janus Micromotors as Dynamic and Efficient Microcleaners for Enhanced Photo-Fenton Elimination of Organic Pollutants. Chemosphere. 2023;338:139530. doi: 10.1016/j.chemosphere.2023.139530. PubMed DOI
Zheng C., Song X., Gan Q., Lin J.. High-Efficiency Removal of Organic Pollutants by Visible-Light-Driven Tubular Heterogeneous Micromotors through a Photocatalytic Fenton Process. Journal of Colloid and Interface Science. 2023;630:121–133. doi: 10.1016/j.jcis.2022.10.021. PubMed DOI
Oral C. M., Ussia M., Pumera M.. Self-Propelled Activated Carbon Micromotors for “on-the-Fly” Capture of Nitroaromatic Explosives. The Journal of Physical Chemistry C. 2021;125(32):18040–18045. doi: 10.1021/acs.jpcc.1c05136. DOI
Soto F., Lopez-Ramirez M. A., Jeerapan I., Esteban-Fernandez de Avila B., Mishra R. K., Lu X., Chai I., Chen C., Kupor D., Nourhani A., Wang J.. et al. Rotibot: Use of Rotifers as Self-Propelling Biohybrid Microcleaners. Advanced Functional Materials. 2019;29(22):1900658. doi: 10.1002/adfm.201900658. DOI
Li J., Ji F., Ng D. H. L., Liu J., Bing X., Wang P.. Bioinspired Pt-Free Molecularly Imprinted Hydrogel-Based Magnetic Janus Micromotors for Temperature-Responsive Recognition and Adsorption of Erythromycin in Water. Chemical Engineering Journal. 2019;369:611–620. doi: 10.1016/j.cej.2019.03.101. DOI
Peng X., Urso M., Pumera M.. Metal Oxide Single-Component Light-Powered Micromotors for Photocatalytic Degradation of Nitroaromatic Pollutants. npj Clean Water. 2023;6(1):21. doi: 10.1038/s41545-023-00235-z. DOI
Urso M., Pumera M.. Nano/Microplastics Capture and Degradation by Autonomous Nano/Microrobots: A Perspective. Advanced Functional Materials. 2022;32(20):2112120. doi: 10.1002/adfm.202112120. DOI
Li W., Wang J., Xiong Z., Li D.. Micro/Nanorobots for Efficient Removal and Degradation of Micro/Nanoplastics. Cell Reports Physical Science. 2023;4(11):101639. doi: 10.1016/j.xcrp.2023.101639. DOI
Li W., Wu C., Xiong Z., Liang C., Li Z., Liu B., Cao Q., Wang J., Tang J., Li D.. Self-Driven Magnetorobots for Recyclable and Scalable Micro/Nanoplastic Removal from Nonmarine Waters. Science Advances. 2022;8(45):eade1731. doi: 10.1126/sciadv.ade1731. PubMed DOI PMC
Chattopadhyay P., Ariza-Tarazona M. C., Cedillo-González E. I., Siligardi C., Simmchen J.. Combining Photocatalytic Collection and Degradation of Microplastics Using Self-Asymmetric Pac-Man TiO2 . Nanoscale. 2023;15(36):14774–14781. doi: 10.1039/D3NR01512B. PubMed DOI
Ye H., Wang Y., Liu X., Xu D., Yuan H., Sun H., Wang S., Ma X.. Magnetically Steerable Iron Oxides-Manganese Dioxide Core-Shell Micromotors for Organic and Microplastic Removals. Journal of Colloid and Interface Science. 2021;588:510–521. doi: 10.1016/j.jcis.2020.12.097. PubMed DOI
Beladi-Mousavi S. M., Hermanová S., Ying Y., Plutnar J., Pumera M.. A Maze in Plastic Wastes: Autonomous Motile Photocatalytic Microrobots against Microplastics. ACS Applied Materials & Interfaces. 2021;13(21):25102–25110. doi: 10.1021/acsami.1c04559. PubMed DOI
Khairudin K., Abu Bakar N. F., Osman M. S.. Magnetically Recyclable Flake-Like BiOI-Fe3O4 Microswimmers for Fast and Efficient Degradation of Microplastics. Journal of Environmental Chemical Engineering. 2022;10(5):108275. doi: 10.1016/j.jece.2022.108275. DOI
Jancik-Prochazkova A., Jašek V., Figalla S., Pumera M.. Photocatalytic Microplastics “on-the-Fly” Degradation via Motile Quantum Materials-Based Microrobots. Advanced Optical Materials. 2023;11(22):2300782. doi: 10.1002/adom.202300782. DOI
Ullattil S. G., Pumera M.. Light-Powered Self-Adaptive Mesostructured Microrobots for Simultaneous Microplastics Trapping and Fragmentation via in situ Surface Morphing. Small. 2023;19(38):2301467. doi: 10.1002/smll.202301467. PubMed DOI
Urso M., Bruno L., Dattilo S., Carroccio S. C., Mirabella S.. Band Engineering Versus Catalysis: Enhancing the Self-Propulsion of Light-Powered Mxene-Derived Metal-TiO2 Micromotors to Degrade Polymer Chains. ACS Applied Materials & Interfaces. 2024;16(1):1293–1307. doi: 10.1021/acsami.3c13470. PubMed DOI PMC
Peng X., Urso M., Ussia M., Pumera M.. Shape-Controlled Self-Assembly of Light-Powered Microrobots into Ordered Microchains for Cells Transport and Water Remediation. ACS Nano. 2022;16(5):7615–7625. doi: 10.1021/acsnano.1c11136. PubMed DOI
Zhou H., Mayorga-Martinez C. C., Pumera M.. Microplastic Removal and Degradation by Mussel-Inspired Adhesive Magnetic/Enzymatic Microrobots. Small Methods. 2021;5(9):2100230. doi: 10.1002/smtd.202100230. PubMed DOI
Wang D., Zhao G., Chen C., Zhang H., Duan R., Zhang D., Li M., Dong B.. One-Step Fabrication of Dual Optically/Magnetically Modulated Walnut-Like Micromotor. Langmuir. 2019;35(7):2801–2807. doi: 10.1021/acs.langmuir.8b02904. PubMed DOI
Su Y.-Y., Zhang M.-J., Wang W., Deng C.-F., Peng J., Liu Z., Faraj Y., Ju X.-J., Xie R., Chu L.-Y.. Bubble-Propelled Hierarchical Porous Micromotors from Evolved Double Emulsions. Industrial & Engineering Chemistry Research. 2019;58(4):1590–1600. doi: 10.1021/acs.iecr.8b05791. DOI
Wang X., Lin D., Zhou Y., Jiao N., Tung S., Liu L.. Multistimuli-Responsive Hydroplaning Superhydrophobic Microrobots with Programmable Motion and Multifunctional Applications. ACS Nano. 2022;16(9):14895–14906. doi: 10.1021/acsnano.2c05783. PubMed DOI
Jancik-Prochazkova A., Mayorga-Martinez C. C., Vyskočil J., Pumera M.. Swarming Magnetically Navigated Indigo-Based Hydrophobic Microrobots for Oil Removal. ACS Applied Materials & Interfaces. 2022;14(40):45545–45552. doi: 10.1021/acsami.2c09527. PubMed DOI
Ge Y., Liu M., Liu L., Sun Y., Zhang H., Dong B.. Dual-Fuel-Driven Bactericidal Micromotor. Nano-Micro Letters. 2016;8(2):157–164. doi: 10.1007/s40820-015-0071-3. PubMed DOI PMC
Huang H., Zhao Y., Yang H., Li J., Ying Y., Li J., Wang S.. Light-Driven MOF-Based Micromotors with Self-Floating Characteristics for Water Sterilization. Nanoscale. 2023;15(34):14165–14174. doi: 10.1039/D3NR02299D. PubMed DOI
Zhang F., Li Z., Yin L., Zhang Q., Askarinam N., Mundaca-Uribe R., Tehrani F., Karshalev E., Gao W., Zhang L.. et al. Ace2 Receptor-Modified Algae-Based Microrobot for Removal of Sars-Cov-2 in Wastewater. Journal of the American Chemical Society. 2021;143(31):12194–12201. doi: 10.1021/jacs.1c04933. PubMed DOI
Peng X., Urso M., Pumera M.. Photo-Fenton Degradation of Nitroaromatic Explosives by Light-Powered Hematite Microrobots: When Higher Speed Is Not What We Go For. Small Methods. 2021;5(10):2100617. doi: 10.1002/smtd.202100617. PubMed DOI
Moran J. L., Posner J. D.. Role of Solution Conductivity in Reaction Induced Charge Auto-Electrophoresis. Physics of Fluids. 2014;26(4):042001. doi: 10.1063/1.4869328. DOI
Mayorga-Burrezo P., Mayorga-Martinez C. C., Kim J., Pumera M.. Hybrid Magneto-Photocatalytic Microrobots for Sunscreens Pollutants Decontamination. Chemical Engineering Journal. 2022;446:137139. doi: 10.1016/j.cej.2022.137139. DOI
Feng K., Gong J., Qu J., Niu R.. Dual-Mode-Driven Micromotor Based on Foam-Like Carbon Nitride and Fe3O4 with Improved Manipulation and Photocatalytic Performance. ACS Applied Materials & Interfaces. 2022;14(39):44271–44281. doi: 10.1021/acsami.2c10590. PubMed DOI
Kim J., Mayorga-Martinez C. C., Pumera M.. Magnetically Boosted 1D Photoactive Microswarm for Covid-19 Face Mask Disruption. Nature Communications. 2023;14(1):935. doi: 10.1038/s41467-023-36650-6. PubMed DOI PMC
Mayorga-Burrezo P., Mayorga-Martinez C. C., Pumera M.. Photocatalysis Dramatically Influences Motion of Magnetic Microrobots: Application to Removal of Microplastics and Dyes. Journal of Colloid and Interface Science. 2023;643:447–454. doi: 10.1016/j.jcis.2023.04.019. PubMed DOI
Xue J., Zhang M., Yong J., Chen Q., Wang J., Xu J., Liang K.. Light-Switchable Biocatalytic Covalent-Organic Framework Nanomotors for Aqueous Contaminants Removal. Nano Letters. 2023;23(23):11243–11251. doi: 10.1021/acs.nanolett.3c03766. PubMed DOI
Wu J., Yu H., Liu W., Dong C., Wu M., Zhang C.. Enhanced Degradation of Organic Pollutant by Bimetallic Catalysts Decorated Micromotor in Advanced Oxidation Processes. Journal of Environmental Chemical Engineering. 2022;10(1):107034. doi: 10.1016/j.jece.2021.107034. DOI
Terzopoulou A., Palacios-Corella M., Franco C., Sevim S., Dysli T., Mushtaq F., Romero-Angel M., Martí-Gastaldo C., Gong D., Cai J.. et al. Biotemplating of Metal-Organic Framework Nanocrystals for Applications in Small-Scale Robotics. Advanced Functional Materials. 2022;32(13):2107421. doi: 10.1002/adfm.202107421. DOI
Yang W., Qiang Y., Du M., Cao Y., Wang Y., Zhang X., Yue T., Huang J., Li Z.. Self-Propelled Nanomotors Based on Hierarchical Metal-Organic Framework Composites for the Removal of Heavy Metal Ions. Journal of Hazardous Materials. 2022;435:128967. doi: 10.1016/j.jhazmat.2022.128967. PubMed DOI
Ye H., Wang S., Wang Y., Guo P., Wang L., Zhao C., Chen S., Chen Y., Sun H., Wang S.. et al. Atomic H* Mediated Fast Decontamination of Antibiotics by Bubble-Propelled Magnetic Iron-Manganese Oxides Core-Shell Micromotors. Applied Catalysis B: Environmental. 2022;314:121484. doi: 10.1016/j.apcatb.2022.121484. DOI
Oral C. M., Ussia M., Pumera M.. Hybrid Enzymatic/Photocatalytic Degradation of Antibiotics via Morphologically Programmable Light-Driven ZnO Microrobots. Small. 2022;18(39):2202600. doi: 10.1002/smll.202202600. PubMed DOI
Shang Y., Cai L., Liu R., Zhang D., Zhao Y., Sun L.. Self-Propelled Structural Color Cylindrical Micromotors for Heavy Metal Ions Adsorption and Screening. Small. 2022;18(46):2204479. doi: 10.1002/smll.202204479. PubMed DOI
Zhang X., Liu B., Wei T., Liu Z., Li J.. Self-Propelled Janus Magnetic Micromotors as Peroxidase-Like Nanozyme for Colorimetric Detection and Removal of Hydroquinone. Environmental Science: Nano. 2023;10(2):476–488. doi: 10.1039/D2EN00990K. DOI
Xing N., Lyu Y., Li J., Ng D. H. L., Zhang X., Zhao W.. 3D Hierarchical Ldhs-Based Janus Micro-Actuator for Detection and Degradation of Catechol. Journal of Hazardous Materials. 2023;442:129914. doi: 10.1016/j.jhazmat.2022.129914. PubMed DOI
Yang W., Lyu Y., Lan Z., Li J., Ng D. H. L.. Biomass-Derived 3D Hierarchical Zr-Based Tubular Magnetomotors with Peroxidase-Like Properties for Selective Colorimetric Detection and Specific Decontamination of Glyphosate at Neutral pH. Environmental Science: Nano. 2023;10(6):1676–1688. doi: 10.1039/D3EN00167A. DOI
Yang J., Li J., Yan X., Lyu Y., Xing N., Yang P., Song P., Zuo M.. Three-Dimensional Hierarchical Hrp-Mil-100(Fe)@TiO2@Fe3O4 Janus Magnetic Micromotor as a Smart Active Platform for Detection and Degradation of Hydroquinone. ACS Applied Materials & Interfaces. 2022;14(5):6484–6498. doi: 10.1021/acsami.1c18086. PubMed DOI
Xing N., Lyu Y., Yang J., Zhang X., Han Y., Zhao W., Ng D. H. L., Li J.. Motion-Based Phenol Detection and Degradation Using 3D Hierarchical AA-NiMn-CLDHs@HNTs-Ag Nanomotors. Environmental Science: Nano. 2022;9(8):2815–2826. doi: 10.1039/D2EN00322H. DOI
Wang J.. Will Future Microbots Be Task-Specific Customized Machines or Multi-Purpose “All in One” Vehicles? Nature Communications. 2021;12(1):7125. doi: 10.1038/s41467-021-26675-0. PubMed DOI PMC
Song S.-J., Mayorga-Martinez C. C., Vyskočil J., Častorálová M., Ruml T., Pumera M.. Precisely Navigated Biobot Swarms of Bacteria Magnetospirillum Magneticum for Water Decontamination. ACS Applied Materials & Interfaces. 2023;15(5):7023–7029. doi: 10.1021/acsami.2c16592. PubMed DOI PMC
Peng X., Urso M., Kolackova M., Huska D., Pumera M.. Biohybrid Magnetically Driven Microrobots for Sustainable Removal of Micro/Nanoplastics from the Aquatic Environment. Advanced Functional Materials. 2024;34(3):2307477. doi: 10.1002/adfm.202307477. DOI
Singh A. K., Basireddy T., Moran J. L.. Eliminating Waste with Waste: Transforming Spent Coffee Grounds into Microrobots for Water Treatment. Nanoscale. 2023;15(43):17494–17507. doi: 10.1039/D3NR03592A. PubMed DOI
Pan Y., Liu R., Luo L., Song Z., Pan J., Li H.. Rapid and Selective Gold Stripping from Electronic Waste with Yolk-Shell-Structured Ion-Imprinted Magnetic Mesoporous Nanorobots for Efficient Water Decontamination. ACS Sustainable Chemistry & Engineering. 2023;11(40):14723–14733. doi: 10.1021/acssuschemeng.3c02969. DOI
Yang Y., Hu K., Zhu Z.-S., Yao Y., Zhang P., Zhou P., Huo P., Duan X., Sun H., Wang S.. Catalytic Pollutant Upgrading to Dual-Asymmetric MnO2@Polymer Nanotubes as Self-Propelled and Controlled Micromotors for H2O2 Decomposition. Small Methods. 2023;7(10):2300588. doi: 10.1002/smtd.202300588. PubMed DOI
Wang L., Huang Y., Xu H., Chen S., Chen H., Lin Y., Wang X., Liu X., Sánchez S., Huang X.. Contaminants-Fueled Laccase-Powered Fe3O4@SiO2 Nanomotors for Synergistical Degradation of Multiple Pollutants. Materials Today Chemistry. 2022;26:101059. doi: 10.1016/j.mtchem.2022.101059. DOI
Ferrer Campos R., Bachimanchi H., Volpe G., Villa K.. Bubble-Propelled Micromotors for Ammonia Generation. Nanoscale. 2023;15(38):15785–15793. doi: 10.1039/D3NR03804A. PubMed DOI PMC
Wei K.-H., Ma J., Xi B.-D., Yu M.-D., Cui J., Chen B.-L., Li Y., Gu Q.-B., He X.-S.. Recent Progress on in-situ Chemical Oxidation for the Remediation of Petroleum Contaminated Soil and Groundwater. Journal of Hazardous Materials. 2022;432:128738. doi: 10.1016/j.jhazmat.2022.128738. PubMed DOI
Wang J.. Self-Propelled Affinity Biosensors: Moving the Receptor around the Sample. Biosensors and Bioelectronics. 2016;76:234–242. doi: 10.1016/j.bios.2015.04.095. PubMed DOI
Russell S. M., Alba-Patiño A., Borges M., de la Rica R.. Multifunctional Motion-to-Color Janus Transducers for the Rapid Detection of Sepsis Biomarkers in Whole Blood. Biosensors and Bioelectronics. 2019;140:111346. doi: 10.1016/j.bios.2019.111346. PubMed DOI
Gordón Pidal J. M., Molinero-Fernández Á., Moreno-Guzmán M., López M. Á., Escarpa A.. Analytical Micro and Nano Technologies Meet Sepsis Diagnosis. TrAC Trends in Analytical Chemistry. 2024;173:117615. doi: 10.1016/j.trac.2024.117615. DOI
Gordón Pidal J. M., Moreno-Guzmán M., Montero-Calle A., Valverde A., Pingarrón J. M., Campuzano S., Calero M., Barderas R., López M. Á., Escarpa A.. Micromotor-Based Electrochemical Immunoassays for Reliable Determination of Amyloid-Β (1-42) in Alzheimer's Diagnosed Clinical Samples. Biosensors and Bioelectronics. 2024;249:115988. doi: 10.1016/j.bios.2023.115988. PubMed DOI
Chen Q., Liang K.. Self-Propelled Nanoswimmers in Biomedical Sensing. Advanced Sensor Research. 2023;2(9):2300056. doi: 10.1002/adsr.202300056. DOI
Van Nguyen K., Minteer S. D.. DNA-Functionalized Pt Nanoparticles as Catalysts for Chemically Powered Micromotors: Toward Signal-on Motion-Based DNA Biosensor. Chemical Communications. 2015;51(23):4782–4784. doi: 10.1039/C4CC10250A. PubMed DOI
Draz M. S., Lakshminaraasimulu N. K., Krishnakumar S., Battalapalli D., Vasan A., Kanakasabapathy M. K., Sreeram A., Kallakuri S., Thirumalaraju P., Li Y.. et al. Motion-Based Immunological Detection of Zika Virus Using Pt-Nanomotors and a Cellphone. ACS Nano. 2018;12(6):5709–5718. doi: 10.1021/acsnano.8b01515. PubMed DOI PMC
Zhang X., Chen C., Wu J., Ju H.. Bubble-Propelled Jellyfish-Like Micromotors for DNA Sensing. ACS Applied Materials & Interfaces. 2019;11(14):13581–13588. doi: 10.1021/acsami.9b00605. PubMed DOI
Guo Z., Zhuang C., Song Y., Yong J., Li Y., Guo Z., Kong B., Whitelock J. M., Wang J., Liang K.. Biocatalytic Buoyancy-Driven Nanobots for Autonomous Cell Recognition and Enrichment. Nano-Micro Letters. 2023;15(1):236. doi: 10.1007/s40820-023-01207-1. PubMed DOI PMC
Thome C. P., Hoertdoerfer W. S., Bendorf J. R., Lee J. G., Shields C. W. I. V.. Electrokinetic Active Particles for Motion-Based Biomolecule Detection. Nano Letters. 2023;23(6):2379–2387. doi: 10.1021/acs.nanolett.3c00319. PubMed DOI PMC
Lee J. G., Thome C. P., Cruse Z. A., Ganguly A., Gupta A., Shields C. W.. Magnetically Locked Janus Particle Clusters with Orientation-Dependent Motion in Ac Electric Fields. Nanoscale. 2023;15(40):16268–16276. doi: 10.1039/D3NR03744D. PubMed DOI PMC
Orozco J., García-Gradilla V., D’Agostino M., Gao W., Cortés A., Wang J.. Artificial Enzyme-Powered Microfish for Water-Quality Testing. ACS Nano. 2013;7(1):818–824. doi: 10.1021/nn305372n. PubMed DOI
Singh V. V., Kaufmann K., Esteban-Fernández de Ávila B., Uygun M., Wang J.. Nanomotors Responsive to Nerve-Agent Vapor Plumes. Chemical Communications. 2016;52(16):3360–3363. doi: 10.1039/C5CC10670B. PubMed DOI
Maric T., Mayorga-Martinez C. C., Nasir M. Z. M., Pumera M.. Platinum-Halloysite Nanoclay Nanojets as Sensitive and Selective Mobile Nanosensors for Mercury Detection. Advanced Materials Technologies. 2019;4(2):1800502. doi: 10.1002/admt.201800502. DOI
Yuan K., Cuntín-Abal C., Jurado-Sánchez B., Escarpa A.. Smartphone-Based Janus Micromotors Strategy for Motion-Based Detection of Glutathione. Analytical Chemistry. 2021;93(49):16385–16392. doi: 10.1021/acs.analchem.1c02947. PubMed DOI PMC
Bujalance-Fernández J., Carro E., Jurado-Sánchez B., Escarpa A.. Biocatalytic Zif-8 Surface-Functionalized Micromotors Navigating in the Cerebrospinal Fluid: Toward Alzheimer Management. Nanoscale. 2024;16(45):20917–20924. doi: 10.1039/D4NR02044H. PubMed DOI
Campuzano S., Orozco J., Kagan D., Guix M., Gao W., Sattayasamitsathit S., Claussen J. C., Merkoçi A., Wang J.. Bacterial Isolation by Lectin-Modified Microengines. Nano Letters. 2012;12(1):396–401. doi: 10.1021/nl203717q. PubMed DOI PMC
García M., Orozco J., Guix M., Gao W., Sattayasamitsathit S., Escarpa A., Merkoçi A., Wang J.. Micromotor-Based Lab-on-Chip Immunoassays. Nanoscale. 2013;5(4):1325–1331. doi: 10.1039/C2NR32400H. PubMed DOI
Vilela D., Orozco J., Cheng G., Sattayasamitsathit S., Galarnyk M., Kan C., Wang J., Escarpa A.. Multiplexed Immunoassay Based on Micromotors and Microscale Tags. Lab on a Chip. 2014;14(18):3505–3509. doi: 10.1039/C4LC00596A. PubMed DOI
Park S., Yossifon G.. Micromotor-Based Biosensing Using Directed Transport of Functionalized Beads. ACS Sensors. 2020;5(4):936–942. doi: 10.1021/acssensors.9b02041. PubMed DOI PMC
Jurado-Sánchez B., Pacheco M., Rojo J., Escarpa A.. Magnetocatalytic Graphene Quantum Dots Janus Micromotors for Bacterial Endotoxin Detection. Angewandte Chemie International Edition. 2017;56(24):6957–6961. doi: 10.1002/anie.201701396. PubMed DOI
Jyoti, Muñoz J., Pumera M.. Quantum Material-Based Self-Propelled Microrobots for the Optical “on-the-Fly” Monitoring of DNA. ACS Applied Materials & Interfaces. 2023;15(50):58548–58555. doi: 10.1021/acsami.3c09920. PubMed DOI PMC
Esteban-Fernández de Ávila B., Lopez-Ramirez M. A., Báez D. F., Jodra A., Singh V. V., Kaufmann K., Wang J.. Aptamer-Modified Graphene-Based Catalytic Micromotors: Off-on Fluorescent Detection of Ricin. ACS Sensors. 2016;1(3):217–221. doi: 10.1021/acssensors.5b00300. DOI
Gordón Pidal J. M., Arruza L., Moreno-Guzmán M., López M. Á., Escarpa A.. Off-on on-the-fly Aptassay for Rapid and Accurate Determination of Procalcitonin in Very Low Birth Weight Infants with Sepsis Suspicion. Sensors and Actuators B: Chemical. 2023;378:133107. doi: 10.1016/j.snb.2022.133107. DOI
Gordón J., Arruza L., Ibáñez M. D., Moreno-Guzmán M., López M. Á., Escarpa A.. On the Move-Sensitive Fluorescent Aptassay on Board Catalytic Micromotors for the Determination of Interleukin-6 in Ultra-Low Serum Volumes for Neonatal Sepsis Diagnostics. ACS Sensors. 2022;7(10):3144–3152. doi: 10.1021/acssensors.2c01635. PubMed DOI PMC
Gordón Pidal J. M., Arruza L., Moreno-Guzmán M., López M. Á., Escarpa A.. Micromotor-Based Dual Aptassay for Early Cost-Effective Diagnosis of Neonatal Sepsis. Microchimica Acta. 2024;191(2):106. doi: 10.1007/s00604-023-06134-x. PubMed DOI PMC
la Asunción-Nadal V. d., Pacheco M., Jurado-Sánchez B., Escarpa A.. Chalcogenides-Based Tubular Micromotors in Fluorescent Assays. Analytical Chemistry. 2020;92(13):9188–9193. doi: 10.1021/acs.analchem.0c01541. PubMed DOI
Pacheco M., Asunción-Nadal V. d. l., Jurado-Sánchez B., Escarpa A.. Engineering Janus Micromotors with Ws2 and Affinity Peptides for Turn-on Fluorescent Sensing of Bacterial Lipopolysaccharides. Biosensors and Bioelectronics. 2020;165:112286. doi: 10.1016/j.bios.2020.112286. PubMed DOI
Orozco J., Cortés A., Cheng G., Sattayasamitsathit S., Gao W., Feng X., Shen Y., Wang J.. Molecularly Imprinted Polymer-Based Catalytic Micromotors for Selective Protein Transport. Journal of the American Chemical Society. 2013;135(14):5336–5339. doi: 10.1021/ja4018545. PubMed DOI
Bujalance-Fernández J., Jurado-Sánchez B., Escarpa A.. Molecular Memory Micromotors for Fast Snake Venom Toxin Dynamic Detection. Analytical Chemistry. 2024;96(26):10791–10799. doi: 10.1021/acs.analchem.4c01976. PubMed DOI PMC
Yuan K., de la Asunción-Nadal V., Cuntín-Abal C., Jurado-Sánchez B., Escarpa A.. On-Board Smartphone Micromotor-Based Fluorescence Assays. Lab on a Chip. 2022;22(5):928–935. doi: 10.1039/D1LC01106E. PubMed DOI
Esteban-Fernández de Ávila B., Zhao M., Campuzano S., Ricci F., Pingarrón J. M., Mascini M., Wang J.. Rapid Micromotor-Based Naked-Eye Immunoassay. Talanta. 2017;167:651–657. doi: 10.1016/j.talanta.2017.02.068. PubMed DOI
María-Hormigos R., Jurado-Sánchez B., Escarpa A.. Self-Propelled Micromotors for Naked-Eye Detection of Phenylenediamines Isomers. Analytical Chemistry. 2018;90(16):9830–9837. doi: 10.1021/acs.analchem.8b01860. PubMed DOI
María-Hormigos R., Molinero-Fernández Á., López M. Á., Jurado-Sánchez B., Escarpa A.. Prussian Blue/Chitosan Micromotors with Intrinsic Enzyme-Like Activity for (Bio)-Sensing Assays. Analytical Chemistry. 2022;94(14):5575–5582. doi: 10.1021/acs.analchem.1c05173. PubMed DOI PMC
Cuntín-Abal C., Bujalance-Fernández J., Yuan K., Arribi A., Jurado-Sánchez B., Escarpa A.. Magnetic Bacteriophage-Engineered Janus Micromotors for Selective Bacteria Capture and Detection. Advanced Functional Materials. 2024;34(16):2312257. doi: 10.1002/adfm.202312257. DOI
Wang Y., Zhou C., Wang W., Xu D., Zeng F., Zhan C., Gu J., Li M., Zhao W., Zhang J.. et al. Photocatalytically Powered Matchlike Nanomotor for Light-Guided Active Sers Sensing. Angewandte Chemie International Edition. 2018;57(40):13110–13113. doi: 10.1002/anie.201807033. PubMed DOI
de la Asunción-Nadal V., Perales-Rondon J. V., Colina A., Jurado-Sánchez B., Escarpa A.. Photoactive Au@MoS2 Micromotors for Dynamic Surface-Enhanced Raman Spectroscopy Sensing. ACS Applied Materials & Interfaces. 2023;15(47):54829–54837. doi: 10.1021/acsami.3c12895. PubMed DOI PMC
Cinti S., Valdés-Ramírez G., Gao W., Li J., Palleschi G., Wang J.. Microengine-Assisted Electrochemical Measurements at Printable Sensor Strips. Chemical Communications. 2015;51(41):8668–8671. doi: 10.1039/C5CC02222C. PubMed DOI
Rojas D., Jurado-Sánchez B., Escarpa A.. “Shoot and Sense” Janus Micromotors-Based Strategy for the Simultaneous Degradation and Detection of Persistent Organic Pollutants in Food and Biological Samples. Analytical Chemistry. 2016;88(7):4153–4160. doi: 10.1021/acs.analchem.6b00574. PubMed DOI
Kong L., Rohaizad N., Nasir M. Z. M., Guan J., Pumera M.. Micromotor-Assisted Human Serum Glucose Biosensing. Analytical Chemistry. 2019;91(9):5660–5666. doi: 10.1021/acs.analchem.8b05464. PubMed DOI
Molinero-Fernández Á., Arruza L., López M. Á., Escarpa A.. On-the-Fly Rapid Immunoassay for Neonatal Sepsis Diagnosis: C-Reactive Protein Accurate Determination Using Magnetic Graphene-Based Micromotors. Biosensors and Bioelectronics. 2020;158:112156. doi: 10.1016/j.bios.2020.112156. PubMed DOI
Molinero-Fernández Á., López M. Á., Escarpa A.. Electrochemical Microfluidic Micromotors-Based Immunoassay for C-Reactive Protein Determination in Preterm Neonatal Samples with Sepsis Suspicion. Analytical Chemistry. 2020;92(7):5048–5054. doi: 10.1021/acs.analchem.9b05384. PubMed DOI
Kim J., Mayorga-Martinez C. C., Vyskočil J., Ruzek D., Pumera M.. Plasmonic-Magnetic Nanorobots for Sars-Cov-2 RNA Detection through Electronic Readout. Applied Materials Today. 2022;27:101402. doi: 10.1016/j.apmt.2022.101402. PubMed DOI PMC
Gallo-Orive Á., Moreno-Guzmán M., Sanchez-Paniagua M., Montero-Calle A., Barderas R., Escarpa A.. Gold Nanoparticle-Decorated Catalytic Micromotor-Based Aptassay for Rapid Electrochemical Label-Free Amyloid-Β42 Oligomer Determination in Clinical Samples from Alzheimer’s Patients. Analytical Chemistry. 2024;96(14):5509–5518. doi: 10.1021/acs.analchem.3c05665. PubMed DOI PMC
Singh V. V., Martin A., Kaufmann K., D. S. de Oliveira S., Wang J.. Zirconia/Graphene Oxide Hybrid Micromotors for Selective Capture of Nerve Agents. Chemistry of Materials. 2015;27(23):8162–8169. doi: 10.1021/acs.chemmater.5b03960. DOI
Kim J., Mayorga-Martinez C. C., Pumera M.. Microrobotic Photocatalyst on-the-fly: 1D/2D Nanoarchitectonic Hybrid-Based Layered Metal Thiophosphate Magnetic Micromachines for Enhanced Photodegradation of Nerve Agent. Chemical Engineering Journal. 2022;446:137342. doi: 10.1016/j.cej.2022.137342. DOI
Molinero-Fernández Á., Jodra A., Moreno-Guzmán M., López M. Á., Escarpa A.. Magnetic Reduced Graphene Oxide/Nickel/Platinum Nanoparticles Micromotors for Mycotoxin Analysis. Chemistry - A European Journal. 2018;24(28):7172–7176. doi: 10.1002/chem.201706095. PubMed DOI
Maria-Hormigos R., Mayorga-Martinez C. C., Pumera M.. Magnetic Hydrogel Microrobots as Insecticide Carriers for in vivo Insect Pest Control in Plants. Small. 2023;19(51):2204887. doi: 10.1002/smll.202204887. PubMed DOI
Arnaboldi S., Salinas G., Bonetti G., Garrigue P., Cirilli R., Benincori T., Kuhn A.. Autonomous Chiral Microswimmers with Self-mixing Capabilities for Highly Efficient Enantioselective Synthesis. Angew. Chem. Int. Ed. 2022;61(40):e202209098. doi: 10.1002/anie.202209098. PubMed DOI
Salinas G., Arnaboldi S., Garrigue P., Bonetti G., Cirilli R., Benincori T., Kuhn A.. Magnetic Field-Enhanced Redox Chemistry on-the-fly for Enantioselective Synthesis. Faraday Discussions. 2023;247(0):34–44. doi: 10.1039/D3FD00041A. PubMed DOI
Li Q., Liu L., Huo H., Su L., Wu Y., Lin H., Ge X., Mu J., Zhang X., Zheng L.. et al. Nanosized Janus Aunr-Pt Motor for Enhancing NIR-Ii Photoacoustic Imaging of Deep Tumor and Pt2+ Ion-Based Chemotherapy. ACS Nano. 2022;16(5):7947–7960. doi: 10.1021/acsnano.2c00732. PubMed DOI
Goswami D., Munera J. C., Pal A., Sadri B., Scarpetti C. L. P. G., Martinez R. V.. Roll-to-Roll Nanoforming of Metals Using Laser-Induced Superplasticity. Nano Letters. 2018;18(6):3616–3622. doi: 10.1021/acs.nanolett.8b00714. PubMed DOI
Park S.-H., Lee S.-M., Ko E.-H., Kim T.-H., Nah Y.-C., Lee S.-J., Lee J. H., Kim H.-K.. Roll-to-Roll Sputtered Ito/Cu/Ito Multilayer Electrode for Flexible, Transparent Thin Film Heaters and Electrochromic Applications. Scientific Reports. 2016;6(1):33868. doi: 10.1038/srep33868. PubMed DOI PMC
Cho D., Jang J.-S., Nam S.-H., Ko K., Hwang W., Jung J.-W., Lee J., Choi M., Hong J.-W., Kim I.-D.. et al. Focused Electric-Field Polymer Writing: Toward Ultralarge, Multistimuli-Responsive Membranes. ACS Nano. 2020;14(9):12173–12183. doi: 10.1021/acsnano.0c05843. PubMed DOI
Wu W., Chi H., Zhang Q., Zheng C., Hu N., Wu Y., Liu J.. Self-Propelled Bioglass Janus Nanomotors for Dentin Hypersensitivity Treatment. Nanoscale. 2023;15(48):19681–19690. doi: 10.1039/D3NR03685E. PubMed DOI
Qiu B., Xie L., Zeng J., Liu T., Yan M., Zhou S., Liang Q., Tang J., Liang K., Kong B.. Interfacially Super-Assembled Asymmetric and H2O2 Sensitive Multilayer-Sandwich Magnetic Mesoporous Silica Nanomotors for Detecting and Removing Heavy Metal Ions. Advanced Functional Materials. 2021;31(21):2010694. doi: 10.1002/adfm.202010694. DOI
Lv H., Xing Y., Du X., Xu T., Zhang X.. Construction of Dendritic Janus Nanomotors with H2O2 and NIR Light Dual-Propulsion via a Pickering Emulsion. Soft Matter. 2020;16(21):4961–4968. doi: 10.1039/D0SM00552E. PubMed DOI
Dai J., Cheng X., Li X., Wang Z., Wang Y., Zheng J., Liu J., Chen J., Wu C., Tang J.. Solution-Synthesized Multifunctional Janus Nanotree Microswimmer. Advanced Functional Materials. 2021;31(48):2106204. doi: 10.1002/adfm.202106204. DOI
Liu S., Xu D., Chen J., Peng N., Ma T., Liang F.. Nanozymatic Magnetic Nanomotors for Enhancing Photothermal Therapy and Targeting Intracellular Sers Sensing. Nanoscale. 2023;15(31):12944–12953. doi: 10.1039/D3NR02739B. PubMed DOI
Yu L., Yang M., Guan J., Mou F.. Ultrasmall Fe2O3 Tubular Nanomotors: The First Example of Swarming Photocatalytic Nanomotors Operating in High-Electrolyte Media. Nanomaterials. 2023;13(8):1370. doi: 10.3390/nano13081370. PubMed DOI PMC
Chen C., Tang S., Teymourian H., Karshalev E., Zhang F., Li J., Mou F., Liang Y., Guan J., Wang J.. Chemical/Light-Powered Hybrid Micromotors with “on-the-Fly” Optical Brakes. Angewandte Chemie International Edition. 2018;57(27):8110–8114. doi: 10.1002/anie.201803457. PubMed DOI
Yang Z., Wang L., Gao Z., Hao X., Luo M., Yu Z., Guan J.. Ultrasmall Enzyme-Powered Janus Nanomotor Working in Blood Circulation System. ACS Nano. 2023;17(6):6023–6035. doi: 10.1021/acsnano.3c00548. PubMed DOI
He Y., Wu J., Zhao Y.. Designing Catalytic Nanomotors by Dynamic Shadowing Growth. Nano Letters. 2007;7(5):1369–1375. doi: 10.1021/nl070461j. PubMed DOI
Li J., Liu W., Wang J., Rozen I., He S., Chen C., Kim H. G., Lee H.-J., Lee H.-B.-R., Kwon S.-H.. et al. Nanoconfined Atomic Layer Deposition of TiO2/Pt Nanotubes: Toward Ultrasmall Highly Efficient Catalytic Nanorockets. Advanced Functional Materials. 2017;27(24):1700598. doi: 10.1002/adfm.201700598. DOI
Wen L., Xu R., Mi Y., Lei Y.. Multiple Nanostructures Based on Anodized Aluminium Oxide Templates. Nature Nanotechnology. 2017;12(3):244–250. doi: 10.1038/nnano.2016.257. PubMed DOI
Wu J., Lee W. L., Low H. Y.. Nanostructured Free-Form Objects via a Synergy of 3D Printing and Thermal Nanoimprinting. Global Challenges. 2019;3(5):1800083. doi: 10.1002/gch2.201800083. PubMed DOI PMC
Medina-Sánchez, M. ; Guix, M. ; Harazim, S. ; Schwarz, L. ; Schmidt, O. G. . Rapid 3D Printing of Complex Polymeric Tubular Catalytic Micromotors. In 2016 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), 18-22 July 2016, 2016; pp 1-6. 10.1109/MARSS.2016.7561721. DOI
Zhao G., Ambrosi A., Pumera M.. Clean Room-Free Rapid Fabrication of Roll-up Self-Powered Catalytic Microengines. Journal of Materials Chemistry A. 2014;2(5):1219–1223. doi: 10.1039/C3TA14318J. DOI
Zheng Y., Zhao H., Cai Y., Jurado-Sánchez B., Dong R.. Recent Advances in One-Dimensional Micro/Nanomotors: Fabrication, Propulsion and Application. Nano-Micro Letters. 2023;15(1):20. doi: 10.1007/s40820-022-00988-1. PubMed DOI PMC
Wang L., Hao X., Gao Z., Yang Z., Long Y., Luo M., Guan J.. Artificial Nanomotors: Fabrication, Locomotion Characterization, Motion Manipulation, and Biomedical Applications. Interdisciplinary Materials. 2022;1(2):256–280. doi: 10.1002/idm2.12021. DOI
Pieber B., Gilmore K., Seeberger P. H.. Integrated Flow Processing Challenges in Continuous Multistep Synthesis. Journal of Flow Chemistry. 2017;7(3):129–136. doi: 10.1556/1846.2017.00016. DOI
Barcelos I. D., Moura L. G., Lacerda R. G., Malachias A.. Observation of Strain-Free Rolled-up CVD Graphene Single Layers: Toward Unstrained Heterostructures. Nano Letters. 2014;14(7):3919–3924. doi: 10.1021/nl5012068. PubMed DOI
Chao C.-H., Hsieh C.-T., Ke W.-J., Lee L.-W., Lin Y.-F., Liu H.-W., Gu S., Fu C.-C., Juang R.-S., Mallick B. C.. et al. Roll-to-Roll Atomic Layer Deposition of Titania Coating on Polymeric Separators for Lithium Ion Batteries. Journal of Power Sources. 2021;482:228896. doi: 10.1016/j.jpowsour.2020.228896. DOI
Ali K., Choi K.-H., Muhammad N. M.. Roll-to-Roll Atmospheric Atomic Layer Deposition of Al2O3 Thin Films on Pet Substrates. Chemical Vapor Deposition. 2014;20(10-11-12):380–387. doi: 10.1002/cvde.201407126. DOI
Song Y., Lee Y.-k., Lee Y., Hwang W.-T., Lee J., Park S., Park N., Song H., Kim H., Lee K. G.. et al. Anti-Viral, Anti-Bacterial, but Non-Cytotoxic Nanocoating for Reusable Face Mask with Efficient Filtration, Breathability, and Robustness in Humid Environment. Chemical Engineering Journal. 2023;470:144224. doi: 10.1016/j.cej.2023.144224. DOI
Lee J., Bae J., Youn D.-Y., Ahn J., Hwang W.-T., Bae H., Bae P. K., Kim I.-D.. Violacein-Embedded Nanofiber Filters with Antiviral and Antibacterial Activities. Chemical Engineering Journal. 2022;444:136460. doi: 10.1016/j.cej.2022.136460. PubMed DOI PMC
Jung J.-W., Youn D.-Y., Lee J., Cheong J. Y., Kang H. E., Kim I., Yun T. G., Kim I.-D.. Unveiling the Role of Strontium in 1D SrxRu1‑xO2‑x Compound Oxide Nanofibers for High-Performance Supercapacitor. Journal of Alloys and Compounds. 2023;945:169111. doi: 10.1016/j.jallcom.2023.169111. DOI
Park S., Lim Y., Oh D., Ahn J., Park C., Kim M., Jung W., Kim J., Kim I.-D.. Steering Selectivity in the Detection of Exhaled Biomarkers over Oxide Nanofibers Dispersed with Noble Metals. Journal of Materials Chemistry A. 2023;11(7):3535–3545. doi: 10.1039/D2TA07226B. DOI
Kim D.-H., Kim J. K., Oh D., Park S., Kim Y. B., Ko J., Jung W., Kim I.-D.. Ex-Solution Hybrids Functionalized on Oxide Nanofibers for Highly Active and Durable Catalytic Materials. ACS Nano. 2023;17(6):5842–5851. doi: 10.1021/acsnano.2c12580. PubMed DOI
Kim D.-H., Jang J.-S., Koo W.-T., Choi S.-J., Cho H.-J., Kim M.-H., Kim S.-J., Kim I.-D.. Bioinspired Cocatalysts Decorated WO3 Nanotube toward Unparalleled Hydrogen Sulfide Chemiresistor. ACS Sensors. 2018;3(6):1164–1173. doi: 10.1021/acssensors.8b00210. PubMed DOI
Jang J.-S., Kim S.-J., Choi S.-J., Kim N.-H., Hakim M., Rothschild A., Kim I.-D.. Thin-Walled SnO2 Nanotubes Functionalized with Pt and Au Catalysts via the Protein Templating Route and Their Selective Detection of Acetone and Hydrogen Sulfide Molecules. Nanoscale. 2015;7(39):16417–16426. doi: 10.1039/C5NR04487A. PubMed DOI
Cho Y., Son Y., Ahn J., Lim H., Ahn S., Lee J., Bae P. K., Kim I.-D.. Multifunctional Filter Membranes Based on Self-Assembled Core-Shell Biodegradable Nanofibers for Persistent Electrostatic Filtration through the Triboelectric Effect. ACS Nano. 2022;16(11):19451–19463. doi: 10.1021/acsnano.2c09165. PubMed DOI
Li R., Zhang R., Lou Z., Huang T., Jiang K., Chen D., Shen G.. Electrospraying Preparation of Metal Germanate Nanospheres for High-Performance Lithium-Ion Batteries and Room-Temperature Gas Sensors. Nanoscale. 2019;11(25):12116–12123. doi: 10.1039/C9NR03641E. PubMed DOI
Hezarkhani, M. ; Aliyeva, N. ; Menceloglu, Y. Z. ; Saner Okan, B. . Fabrication Methodologies of Multi-Layered and Multi-Functional Electrospun Structures by Co-Axial and Multi-Axial Electrospinning Techniques. In Electrospun Nanofibers: Principles, Technology and Novel Applications; Vaseashta, A. ; Bölgen, N. Eds.; Springer International Publishing, 2022; pp 35-66.
Wang M., Hou J., Yu D.-G., Li S., Zhu J., Chen Z.. Electrospun Tri-Layer Nanodepots for Sustained Release of Acyclovir. Journal of Alloys and Compounds. 2020;846:156471. doi: 10.1016/j.jallcom.2020.156471. DOI
Shin H., Jung W.-G., Kim D.-H., Jang J.-S., Kim Y. H., Koo W.-T., Bae J., Park C., Cho S.-H., Kim B. J.. et al. Single-Atom Pt Stabilized on One-Dimensional Nanostructure Support via Carbon Nitride/SnO2 Heterojunction Trapping. ACS Nano. 2020;14(9):11394–11405. doi: 10.1021/acsnano.0c03687. PubMed DOI
Bae J., Lee J., Hwang W.-T., Youn D.-Y., Song H., Ahn J., Nam J.-S., Jang J.-S., Kim D.-w., Jo W.. et al. Advancing Breathability of Respiratory Nanofilter by Optimizing Pore Structure and Alignment in Nanofiber Networks. ACS Nano. 2024;18(2):1371–1380. doi: 10.1021/acsnano.3c06060. PubMed DOI
Niu G., Zhou M., Yang X., Park J., Lu N., Wang J., Kim M. J., Wang L., Xia Y.. Synthesis of Pt-Ni Octahedra in Continuous-Flow Droplet Reactors for the Scalable Production of Highly Active Catalysts toward Oxygen Reduction. Nano Letters. 2016;16(6):3850–3857. doi: 10.1021/acs.nanolett.6b01340. PubMed DOI
Wang, J. ; Esteban-Fernández De Ávila, B. ; Yi, C. ; Angell, C. ; Soto, F. ; Zhang, L. ; Hansen-Bruhn, M. . Nano/Micromotors for Active and Dynamic Intracellular Payload Delivery. U.S. Patent 15939104, 2018.
Qiu, M. ; Li, Q. ; Lu, J. . Light-Driven Micro/Nanomotor System Based on Micro/Nanofiber in Air Environment. China Patent 107161943, 2017.
Sanchez Ordonez, S. ; Padial, T. P. ; Hortelão, C. L. . Functionalized Enzyme-Powered Nanomotors. Europe Patent 19817624, 2019.
Lee, I. S. ; Kwon, T. W. , Nitee, K. . Hybrid Metal Nanomotor for Glucose-Catalyzed Chemical Promotion and Enhanced Molecular Transport into Cells and Manufacturing Method Thereof. Korea Patent 102627437, 2022.
Shen Y., Zhang W., Li G., Ning P., Li Z., Chen H., Wei X., Pan X., Qin Y., He B.. et al. Adaptive Control of Nanomotor Swarms for Magnetic-Field-Programmed Cancer Cell Destruction. ACS Nano. 2021;15(12):20020–20031. doi: 10.1021/acsnano.1c07615. PubMed DOI
Cao Y., Liu S., Ma Y., Ma L., Zu M., Sun J., Dai F., Duan L., Xiao B.. Oral Nanomotor-Enabled Mucus Traverse and Tumor Penetration for Targeted Chemo-Sono-Immunotherapy against Colon Cancer. Small. 2022;18(42):2203466. doi: 10.1002/smll.202203466. PubMed DOI
Kutorglo E. M., Elashnikov R., Rimpelova S., Ulbrich P., ŘíhováAmbrožová J., Svorcik V., Lyutakov O.. Polypyrrole-Based Nanorobots Powered by Light and Glucose for Pollutant Degradation in Water. ACS Applied Materials & Interfaces. 2021;13(14):16173–16181. doi: 10.1021/acsami.0c20055. PubMed DOI
Kaissis G. A., Makowski M. R., Rückert D., Braren R. F.. Secure, Privacy-Preserving and Federated Machine Learning in Medical Imaging. Nature Machine Intelligence. 2020;2(6):305–311. doi: 10.1038/s42256-020-0186-1. DOI
Chen H., Li T., Liu Z., Tang S., Tong J., Tao Y., Zhao Z., Li N., Mao C., Shen J., Wan M.. A Nitric-Oxide Driven Chemotactic Nanomotor for Enhanced Immunotherapy of Glioblastoma. Nature Communications. 2023;14(1):941. doi: 10.1038/s41467-022-35709-0. PubMed DOI PMC
Fadeel B., Farcal L., Hardy B., Vázquez-Campos S., Hristozov D., Marcomini A., Lynch I., Valsami-Jones E., Alenius H., Savolainen K.. Advanced Tools for the Safety Assessment of Nanomaterials. Nature Nanotechnology. 2018;13(7):537–543. doi: 10.1038/s41565-018-0185-0. PubMed DOI
Nel A., Xia T., Mädler L., Li N.. Toxic Potential of Materials at the Nanolevel. Science. 2006;311(5761):622–627. doi: 10.1126/science.1114397. PubMed DOI
Valsami-Jones E., Lynch I.. How Safe Are Nanomaterials? Science. 2015;350(6259):388–389. doi: 10.1126/science.aad0768. PubMed DOI
Naahidi S., Jafari M., Edalat F., Raymond K., Khademhosseini A., Chen P.. Biocompatibility of Engineered Nanoparticles for Drug Delivery. Journal of Controlled Release. 2013;166(2):182–194. doi: 10.1016/j.jconrel.2012.12.013. PubMed DOI
Zhang F. Y., Mundaca-Uribe R., Askarinam N., Li Z. X., Gao W. W., Zhang L. F., Wang J.. Biomembrane-Functionalized Micromotors: Biocompatible Active Devices for Diverse Biomedical Applications. Advanced Materials. 2022;34(5):2107177. doi: 10.1002/adma.202107177. PubMed DOI
Dobrovolskaia M. A., Mcneil S. E.. Immunological Properties of Engineered Nanomaterials. Nature Nanotechnology. 2007;2(8):469–478. doi: 10.1038/nnano.2007.223. PubMed DOI
Alapan Y., Yasa O., Schauer O., Giltinan J., Tabak A. F., Sourjik V., Sitti M.. Soft Erythrocyte-Based Bacterial Microswimmers for Cargo Delivery. Science Robotics. 2018;3(17):eaar4423. doi: 10.1126/scirobotics.aar4423. PubMed DOI
Park B. W., Zhuang J., Yasa O., Sitti M.. Multifunctional Bacteria-Driven Microswimmers for Targeted Active Drug Delivery. ACS Nano. 2017;11(9):8910–8923. doi: 10.1021/acsnano.7b03207. PubMed DOI
Stanton M. M., Park B. W., Vilele D., Bente K., Faivre D., Sitti M., Sánchez S.. Magnetotactic Bacteria Powered Biohybrids Target E. Coli Biofilms. ACS Nano. 2017;11(10):9968–9978. doi: 10.1021/acsnano.7b04128. PubMed DOI
Stanton M. M., Park B. W., Miguel-López A., Ma X., Sitti M., Sánchez S.. Biohybrid Microtube Swimmers Driven by Single Captured Bacteria. Small. 2017;13(19):1603679. doi: 10.1002/smll.201603679. PubMed DOI
Chen C. R., Chang X. C., Angsantikul P., Li J. X., Esteban-Fernández de Ávila B., Karshalev E., Liu W. J., Mou F. Z., He S., Castillo R.. et al. Chemotactic Guidance of Synthetic Organic/Inorganic Payloads Functionalized Sperm Micromotors. Advanced Biosystems. 2018;2(1):1700160. doi: 10.1002/adbi.201700160. DOI
Stegemeier J. P., Schwab F., Colman B. P., Webb S. M., Newville M., Lanzirotti A., Winkler C., Wiesner M. R., Lowry G. V.. Speciation Matters: Bioavailability of Silver and Silver Sulfide Nanoparticles to Alfalfa (Medicago Sativa) Environmental Science & Technology. 2015;49(14):8451–8460. doi: 10.1021/acs.est.5b01147. PubMed DOI
Buck S.. Solving Reproducibility. Science. 2015;348(6242):1403–1403. doi: 10.1126/science.aac8041. PubMed DOI
Krittanawong C., Rogers A. J., Johnson K. W., Wang Z., Turakhia M. P., Halperin J. L., Narayan S. M.. Integration of Novel Monitoring Devices with Machine Learning Technology for Scalable Cardiovascular Management. Nature Reviews Cardiology. 2021;18(2):75–91. doi: 10.1038/s41569-020-00445-9. PubMed DOI PMC
Obidin N., Tasnim F., Dagdeviren C.. The Future of Neuroimplantable Devices: A Materials Science and Regulatory Perspective. Advanced Materials. 2020;32(15):1901482. doi: 10.1002/adma.201901482. PubMed DOI
Luo Y. F., Abidian M. R., Ahn J. H., Akinwande D., Andrews A. M., Antonietti M., Bao Z. N., Berggren M., Berkey C. A., Bettinger C. J.. et al. Technology Roadmap for Flexible Sensors. ACS Nano. 2023;17(6):5211–5295. doi: 10.1021/acsnano.2c12606. PubMed DOI PMC
Tettey F., Parupelli S. K., Desai S.. A Review of Biomedical Devices: Classification, Regulatory Guidelines, Human Factors, Software as a Medical Device, and Cybersecurity. Biomedical Materials & Devices. 2024;2:316–341. doi: 10.1007/s44174-023-00113-9. DOI
Ng, A. ; Nathwani, J. . Exploiting Financial and Technological Innovation for Sustainability Transformation. In Financial and Technological Innovation for Sustainability; Routledge, 2023; pp 3-20.
Linkov I., Bates M. E., Canis L. J., Seager T. P., Keisler J. M.. A Decision-Directed Approach for Prioritizing Research into the Impact of Nanomaterials on the Environment and Human Health. Nature Nanotechnology. 2011;6(12):784–787. doi: 10.1038/nnano.2011.163. PubMed DOI
Hochella M. F., Mogk D. W., Ranville J., Allen I. C., Luther G. W., Marr L. C., McGrail B. P., Murayama M., Qafoku N. P., Rosso K. M.. et al. Natural, Incidental, and Engineered Nanomaterials and Their Impacts on the Earth System. Science. 2019;363(6434):eaau8299. doi: 10.1126/science.aau8299. PubMed DOI
Schulte P. A., Salamanca-Buentello F.. Ethical and Scientific Issues of Nanotechnology in the Workplace. Environmental Health Perspectives. 2007;115(1):5–12. doi: 10.1289/ehp.9456. PubMed DOI PMC
Liu Y. X., Liu J., Chen S. C., Lei T., Kim Y., Niu S. M., Wang H. L., Wang X., Foudeh A. M., Tok J. B. H.. et al. Soft and Elastic Hydrogel-Based Microelectronics for Localized Low-Voltage Neuromodulation. Nature Biomedical Engineering. 2019;3(1):58–68. doi: 10.1038/s41551-018-0335-6. PubMed DOI
Gavanji S., Bakhtari A., Famurewa A. C., Othman E. M.. Cytotoxic Activity of Herbal Medicines as Assessed: A Review. Chemistry & Biodiversity. 2023;20(2):e202201098. doi: 10.1002/cbdv.202201098. PubMed DOI
Wan M. M., Chen H., Da Wang Z., Liu Z. Y., Yu Y. Q., Li L., Miao Z. Y., Wang X. W., Wang Q., Mao C., Shen J., Wei J.. Nitric Oxide-Driven Nanomotor for Deep Tissue Penetration and Multidrug Resistance Reversal in Cancer Therapy. Advanced Science. 2021;8(3):2002525. doi: 10.1002/advs.202002525. PubMed DOI PMC
Wan M. M., Wang Q., Li X. Y., Xu B., Fang D., Li T., Yu Y. Q., Fang L. Y., Wang Y., Wang M.. et al. Systematic Research and Evaluation Models of Nanomotors for Cancer Combined Therapy. Angewandte Chemie International Edition. 2020;59(34):14458–14465. doi: 10.1002/anie.202002452. PubMed DOI
Wu Y., Song Z. Y., Deng G. Y., Jiang K., Wang H. J., Zhang X. J., Han H. Y.. Gastric Acid Powered Nanomotors Release Antibiotics for in vivo Treatment of Helicobacter Pylori Infection. Small. 2021;17(11):2006877. doi: 10.1002/smll.202006877. PubMed DOI
Zhang F., Li Z., Duan Y., Abbas A., Mundaca-Uribe R., Yin L., Luan H., Gao W., Fang R. H., Zhang L., Wang J.. Gastrointestinal Tract Drug Delivery Using Algae Motors Embedded in a Degradable Capsule. Science Robotics. 2022;7(70):eabo4160. doi: 10.1126/scirobotics.abo4160. PubMed DOI PMC
Kwon T., Kumari N., Kumar A., Lim J., Son C. Y., Lee I. S.. Au/Pt-Egg-in-Nest Nanomotor for Glucose-Powered Catalytic Motion and Enhanced Molecular Transport to Living Cells. Angewandte Chemie International Edition. 2021;60(32):17579–17586. doi: 10.1002/anie.202103827. PubMed DOI
Lin M., Lee J. U., Kim Y., Kim G., Jung Y., Jo A., Park M., Lee S., Lah J. D., Park J.. et al. A Magnetically Powered Nanomachine with a DNA Clutch. Nature Nanotechnology. 2024;19:646–651. doi: 10.1038/s41565-023-01599-6. PubMed DOI
Wang W. D., Chen C., Ying Y., Lv S. R., Wang Y., Zhang X., Cai Z. H., Gu W. X., Li Z., Jiang G.. et al. Smart PdH@MnO Yolk-Shell Nanostructures for Spatiotemporally Synchronous Targeted Hydrogen Delivery and Oxygen-Elevated Phototherapy of Melanoma. ACS Nano. 2022;16(4):5597–5614. doi: 10.1021/acsnano.1c10450. PubMed DOI
Sridhar V., Podjaski F., Alapan Y., Kröger J., Grunenberg L., Kishore V., Lotsch B. V., Sitti M.. Light-Driven Carbon Nitride Microswimmers with Propulsion in Biological and Ionic Media and Responsive on-Demand Drug Delivery. Science Robotics. 2022;7(62):eabm1421. doi: 10.1126/scirobotics.abm1421. PubMed DOI PMC
Yu X., Li X., Chen Q., Wang S., Xu R., He Y., Qin X., Zhang J., Yang W., Shi L.. et al. High Intensity Focused Ultrasound-Driven Nanomotor for Effective Ferroptosis-Immunotherapy of Tnbc. Advanced Science. 2024;11(15):e2305546. doi: 10.1002/advs.202305546. PubMed DOI PMC
Sitti, M. Mobile Microrobotics; MIT Press, 2017.
Nadal F., Michelin S.. Acoustic Propulsion of a Small, Bottom-Heavy sphere. Journal of Fluid Mechanics. 2020;898:A10. doi: 10.1017/jfm.2020.401. DOI
Lyu X., Liu X., Zhou C., Duan S., Xu P., Dai J., Chen X., Peng Y., Cui D., Tang J.. Active, yet Little Mobility: Asymmetric Decomposition of H2O2 Is Not Sufficient in Propelling Catalytic Micromotors. Journal of the American Chemical Society. 2021;143(31):12154–12164. doi: 10.1021/jacs.1c04501. PubMed DOI
Ebbens S. J., Howse J. R.. Direct Observation of the Direction of Motion for Spherical Catalytic Swimmers. Langmuir. 2011;27(20):12293–12296. doi: 10.1021/la2033127. PubMed DOI
Liebchen B., Mukhopadhyay A. K.. Interactions in Active Colloids. Journal of Physics: Condensed Matter. 2022;34(8):083002. doi: 10.1088/1361-648X/ac3a86. PubMed DOI
Liebchen B., Löwen H.. Which Interactions Dominate in Active Colloids? The Journal of Chemical Physics. 2019;150(6):061102. doi: 10.1063/1.5082284. PubMed DOI
Yigit B., Alapan Y., Sitti M.. Programmable Collective Behavior in Dynamically Self-Assembled Mobile Microrobotic Swarms. Advanced Science. 2019;6(6):1801837. doi: 10.1002/advs.201801837. PubMed DOI PMC
Needleman D., Dogic Z.. Active Matter at the Interface between Materials Science and Cell Biology. Nature Reviews Materials. 2017;2(9):17048. doi: 10.1038/natrevmats.2017.48. DOI
Murphy R. R.. Swarm Robots in Science Fiction. Science Robotics. 2021;6(56):eabk0451. doi: 10.1126/scirobotics.abk0451. PubMed DOI
Jancik-Prochazkova A., Kmentova H., Ju X., Kment S., Zboril R., Pumera M.. Precision Engineering of Nanorobots: Toward Single Atom Decoration and Defect Control for Enhanced Microplastic Capture. Advanced Functional Materials. 2024;34(38):2402567. doi: 10.1002/adfm.202402567. DOI
Ju X., Pumera M.. Single Atom Engineering for Nanorobotics. ACS Nano. 2024;18(31):19907–19911. doi: 10.1021/acsnano.4c06880. PubMed DOI PMC
Ariga K.. Nanoarchitectonics: The Method for Everything in Materials Science. Bulletin of the Chemical Society of Japan. 2024;97(1):uoad001. doi: 10.1093/bulcsj/uoad001. DOI
Jancik-Prochazkova A., Ariga K.. Nano-/Microrobots for Environmental Remediation in the Eyes of Nanoarchitectonics: Toward Engineering on a Single-Atomic Scale. Research. 2025;8:0624. doi: 10.34133/research.0624. PubMed DOI PMC
Agrahari V., Agrahari V., Chou M.-L., Chew C. H., Noll J., Burnouf T.. Intelligent Micro-/Nanorobots as Drug and Cell Carrier Devices for Biomedical Therapeutic Advancement: Promising Development Opportunities and Translational Challenges. Biomaterials. 2020;260:120163. doi: 10.1016/j.biomaterials.2020.120163. PubMed DOI
Hadjidemetriou M., Kostarelos K.. Evolution of the Nanoparticle Corona. Nature Nanotechnology. 2017;12(4):288–290. doi: 10.1038/nnano.2017.61. PubMed DOI
Liu D., Guo R., Wang B., Hu J., Lu Y.. Magnetic Micro/Nanorobots: A New Age in Biomedicines. Advanced Intelligent Systems. 2022;4(12):2200208. doi: 10.1002/aisy.202200208. DOI
Pané S., Puigmartí-Luis J., Bergeles C., Chen X. Z., Pellicer E., Sort J., Počepcová V., Ferreira A., Nelson B. J.. Imaging Technologies for Biomedical Micro-and Nanoswimmers. Advanced Materials Technologies. 2019;4(4):1800575. doi: 10.1002/admt.201800575. DOI
Huaroto J. J., Capuano L., Kaya M., Hlukhau I., Assayag F., Mohanty S., Römer G.-w., Misra S.. Two-Photon Microscopy for Microrobotics: Visualization of Micro-Agents Below Fixed Tissue. Plos One. 2023;18(8):e0289725. doi: 10.1371/journal.pone.0289725. PubMed DOI PMC
Liu Y., Lin G., Bao G., Guan M., Yang L., Liu Y., Wang D., Zhang X., Liao J., Fang G.. et al. Stratified Disk Microrobots with Dynamic Maneuverability and Proton-Activatable Luminescence for in Vivo Imaging. ACS Nano. 2021;15(12):19924–19937. doi: 10.1021/acsnano.1c07431. PubMed DOI
Luu P., Fraser S. E., Schneider F.. More Than Double the Fun with Two-Photon Excitation Microscopy. Communications Biology. 2024;7(1):364. doi: 10.1038/s42003-024-06057-0. PubMed DOI PMC
Streich L., Boffi J. C., Wang L., Alhalaseh K., Barbieri M., Rehm R., Deivasigamani S., Gross C. T., Agarwal A., Prevedel R.. High-Resolution Structural and Functional Deep Brain Imaging Using Adaptive Optics Three-Photon Microscopy. Nature Methods. 2021;18(10):1253–1258. doi: 10.1038/s41592-021-01257-6. PubMed DOI PMC
Zhong J., Zhang Y., Chen X., Tong S., Deng X., Huang J., Li Z., Zhang C., Gao Z., Li J.. et al. In Vivo Deep Brain Multiphoton Fluorescence Imaging Emitting at NIR-I and NIR-Ii and Excited at NIR-Iv. Journal of Biophotonics. 2024;17(4):e202300422. doi: 10.1002/jbio.202300422. PubMed DOI
Luo M., Feng Y., Wang T., Guan J.. Micro-/Nanorobots at Work in Active Drug Delivery. Advanced Functional Materials. 2018;28(25):1706100. doi: 10.1002/adfm.201706100. DOI
Ruiz-González N., Esporrín-Ubieto D., Hortelao A. C., Fraire J. C., Bakenecker A. C., Guri-Canals M., Cugat R., Carrillo J. M., Garcia-Batlletbó M., Laiz P.. et al. Swarms of Enzyme-Powered Nanomotors Enhance the Diffusion of Macromolecules in Viscous Media. Small. 2024;20(11):2309387. doi: 10.1002/smll.202309387. PubMed DOI
McCaskill J. S., Karnaushenko D., Zhu M., Schmidt O. G.. Microelectronic Morphogenesis: Smart Materials with Electronics Assembling into Artificial Organisms. Advanced Materials. 2023;35(51):2306344. doi: 10.1002/adma.202306344. PubMed DOI