Metformin Increases Proliferative Activity and Viability of Multipotent Stromal Stem Cells Isolated from Adipose Tissue Derived from Horses with Equine Metabolic Syndrome
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30678275
PubMed Central
PMC6406832
DOI
10.3390/cells8020080
PII: cells8020080
Knihovny.cz E-zdroje
- Klíčová slova
- adipose-derived stromal cells, equine metabolic syndrome, metformin,
- MeSH
- apoptóza účinky léků MeSH
- beta-katenin metabolismus MeSH
- buněčný cyklus účinky léků MeSH
- koně MeSH
- kultivované buňky MeSH
- membránový potenciál mitochondrií účinky léků MeSH
- metabolický syndrom farmakoterapie patologie veterinární MeSH
- metformin farmakologie terapeutické užití MeSH
- mikro RNA genetika metabolismus MeSH
- mitochondrie účinky léků metabolismus MeSH
- multipotentní kmenové buňky cytologie MeSH
- oxidace-redukce MeSH
- proliferace buněk účinky léků MeSH
- protein Wnt3A metabolismus MeSH
- separace buněk * MeSH
- tuková tkáň cytologie MeSH
- viabilita buněk účinky léků MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- beta-katenin MeSH
- metformin MeSH
- mikro RNA MeSH
- protein Wnt3A MeSH
In this study, we investigated the influence of metformin (MF) on proliferation and viability of adipose-derived stromal cells isolated from horses (EqASCs). We determined the effect of metformin on cell metabolism in terms of mitochondrial metabolism and oxidative status. Our purpose was to evaluate the metformin effect on cells derived from healthy horses (EqASCHE) and individuals affected by equine metabolic syndrome (EqASCEMS). The cells were treated with 0.5 μM MF for 72 h. The proliferative activity was evaluated based on the measurement of BrdU incorporation during DNA synthesis, as well as population doubling time rate (PDT) and distribution of EqASCs in the cell cycle. The influence of metformin on EqASC viability was determined in relation to apoptosis profile, mitochondrial membrane potential, oxidative stress markers and BAX/BCL-2 mRNA ratio. Further, we were interested in possibility of metformin affecting the Wnt3a signalling pathway and, thus, we determined mRNA and protein level of WNT3A and β-catenin. Finally, using a two-tailed RT-qPCR method, we investigated the expression of miR-16-5p, miR-21-5p, miR-29a-3p, miR-140-3p and miR-145-5p. Obtained results indicate pro-proliferative and anti-apoptotic effects of metformin on EqASCs. In this study, MF significantly improved proliferation of EqASCs, which manifested in increased synthesis of DNA and lowered PDT value. Additionally, metformin improved metabolism and viability of cells, which correlated with higher mitochondrial membrane potential, reduced apoptosis and increased WNT3A/β-catenin expression. Metformin modulates the miRNA expression differently in EqASCHE and EqASCEMS. Metformin may be used as a preconditioning agent which stimulates proliferative activity and viability of EqASCs.
Gene Core BIOCEV Průmyslová 595 Vestec 252 50 Czech Republic
Laboratory of Gene Expression Institute of Biotechnology CAS Biocev 252 50 Vestec Czech Republic
Laboratory of Growth Regulators Faculty of Science Palacky University 78371 Olomouc Czech Republic
Zobrazit více v PubMed
Pagan J.D., Martin O.A., Crowley N.L. Relationship Between Body Condition and Metabolic Parameters in Sport Horses, Pony Hunters and Polo Ponies. J. Equine Vet. Sci. 2009;29:418–420. doi: 10.1016/j.jevs.2009.04.117. DOI
Basinska K., Marycz K., Śmieszek A., Nicpoń J. The production and distribution of IL-6 and TNF-α in subcutaneous adipose tissue and their correlation with serum concentrations in Welsh ponies with equine metabolic syndrome. J. Vet. Sci. 2015;16:113–120. doi: 10.4142/jvs.2015.16.1.113. PubMed DOI PMC
Marycz K., Kornicka K., Basinska K., Czyrek A. Equine Metabolic Syndrome Affects Viability, Senescence, and Stress Factors of Equine Adipose-Derived Mesenchymal Stromal Stem Cells: New Insight into EqASCs Isolated from EMS Horses in the Context of Their Aging. Oxid. Med. Cell. Longev. 2016;2016:4710326. doi: 10.1155/2016/4710326. PubMed DOI PMC
Marycz K., Weiss C., Śmieszek A., Kornicka K. Evaluation of Oxidative Stress and Mitophagy during Adipogenic Differentiation of Adipose-Derived Stem Cells Isolated from Equine Metabolic Syndrome (EMS) Horses. Stem Cells Int. 2018;2018:5340756. doi: 10.1155/2018/5340756. PubMed DOI PMC
Marycz K., Kornicka K., Grzesiak J., Śmieszek A., Szłapka J. Macroautophagy and Selective Mitophagy Ameliorate Chondrogenic Differentiation Potential in Adipose Stem Cells of Equine Metabolic Syndrome: New Findings in the Field of Progenitor Cells Differentiation. Oxid. Med. Cell. Longev. 2016;2016:3718468. doi: 10.1155/2016/3718468. PubMed DOI PMC
Ranera B., Remacha A.R., Álvarez-Arguedas S., Romero A., Vázquez F.J., Zaragoza P., Martín-Burriel I., Rodellar C. Effect of hypoxia on equine mesenchymal stem cells derived from bone marrow and adipose tissue. BMC Vet. Res. 2012;8:142. doi: 10.1186/1746-6148-8-142. PubMed DOI PMC
Del Bue M., Riccò S., Ramoni R., Conti V., Gnudi G., Grolli S. Equine adipose-tissue derived mesenchymal stem cells and platelet concentrates: Their association in vitro and in vivo. Vet. Res. Commun. 2008;32:51–55. doi: 10.1007/s11259-008-9093-3. PubMed DOI
Nicpoń J., Marycz K., Grzesiak J. Therapeutic effect of adipose-derived mesenchymal stem cell injection in horses suffering from bone spavin. Pol. J. Vet. Sci. 2013;16:753–754. doi: 10.2478/pjvs-2013-0107. PubMed DOI
Marycz K., Toker N.Y., Grzesiak J., Wrzeszcz K. The Therapeutic Effect of Autogenic Adipose Derived Stem Cells Combined with Autogenic Platelet Rich Plasma in Tendons Disorders in Horses In Vitro and In Vivo Research. J. Anim. Vet. Adv. 2012;11:4324–4331.
Gnecchi M., Zhang Z., Ni A., Dzau V.J. Paracrine mechanisms in adult stem cell signaling and therapy. Circ. Res. 2008;103:1204–1219. doi: 10.1161/CIRCRESAHA.108.176826. PubMed DOI PMC
De Aro A.A., Carneiro G.D., Teodoro L.F.R., da Veiga F.C., Ferrucci D.L., Simões G.F., Simões P.W., Alvares L.E., de Oliveira A.L.R., Vicente C.P., et al. Injured Achilles Tendons Treated with Adipose-Derived Stem Cells Transplantation and GDF-5. Cells. 2018;7:127. doi: 10.3390/cells7090127. PubMed DOI PMC
Marędziak M., Marycz K., Lewandowski D., Siudzińska A., Śmieszek A. Static magnetic field enhances synthesis and secretion of membrane-derived microvesicles (MVs) rich in VEGF and BMP-2 in equine adipose-derived stromal cells (EqASCs)-a new approach in veterinary regenerative medicine. In Vitro Cell. Dev. Biol. Anim. 2015;51:230–240. doi: 10.1007/s11626-014-9828-0. PubMed DOI PMC
Kornicka K., Marycz K., Tomaszewski K.A., Marędziak M., Śmieszek A. The Effect of Age on Osteogenic and Adipogenic Differentiation Potential of Human Adipose Derived Stromal Stem Cells (hASCs) and the Impact of Stress Factors in the Course of the Differentiation Process. Oxid. Med. Cell. Longev. 2015;2015:309169. doi: 10.1155/2015/309169. PubMed DOI PMC
Nawrocka D., Kornicka K., Szydlarska J., Marycz K. Basic Fibroblast Growth Factor Inhibits Apoptosis and Promotes Proliferation of Adipose-Derived Mesenchymal Stromal Cells Isolated from Patients with Type 2 Diabetes by Reducing Cellular Oxidative Stress. Oxid. Med. Cell. Longev. 2017;2017:3027109. PubMed PMC
Wu W., Niklason L., Steinbacher D.M. The effect of age on human adipose-derived stem cells. Plast. Reconstr. Surg. 2013;131:27–37. doi: 10.1097/PRS.0b013e3182729cfc. PubMed DOI
Liu M., Lei H., Dong P., Fu X., Yang Z., Yang Y., Ma J., Liu X., Cao Y., Xiao R. Adipose-Derived Mesenchymal Stem Cells from the Elderly Exhibit Decreased Migration and Differentiation Abilities with Senescent Properties. Cell Transplant. 2017;26:1505–1519. doi: 10.1177/0963689717721221. PubMed DOI PMC
Geburek F., Roggel F., van Schie H.T.M., Beineke A., Estrada R., Weber K., Hellige M., Rohn K., Jagodzinski M., Welke B., et al. Effect of single intralesional treatment of surgically induced equine superficial digital flexor tendon core lesions with adipose-derived mesenchymal stromal cells: A controlled experimental trial. Stem Cell Res. Ther. 2017;8:129. doi: 10.1186/s13287-017-0564-8. PubMed DOI PMC
De Mattos Carvalho A., Alves A.L.G., de Oliveira P.G.G., Cisneros Álvarez L.E., Amorim R.L., Hussni C.A., Deffune E. Use of Adipose Tissue-Derived Mesenchymal Stem Cells for Experimental Tendinitis Therapy in Equines. J. Equine Vet. Sci. 2011;31:26–34. doi: 10.1016/j.jevs.2010.11.014. DOI
Kornicka K., Śmieszek A., Węgrzyn A.S., Röcken M., Marycz K. Immunomodulatory Properties of Adipose-Derived Stem Cells Treated with 5-Azacytydine and Resveratrol on Peripheral Blood Mononuclear Cells and Macrophages in Metabolic Syndrome Animals. J. Clin. Med. 2018;7:383. doi: 10.3390/jcm7110383. PubMed DOI PMC
Kornicka K., Szłapka-Kosarzewska J., Śmieszek A., Marycz K. 5-Azacytydine and resveratrol reverse senescence and ageing of adipose stem cells via modulation of mitochondrial dynamics and autophagy. J. Cell. Mol. Med. 2018;23:237–259. doi: 10.1111/jcmm.13914. PubMed DOI PMC
Marycz K., Tomaszewski K.A., Kornicka K., Henry B.M., Wroński S., Tarasiuk J., Maredziak M. Metformin Decreases Reactive Oxygen Species, Enhances Osteogenic Properties of Adipose-Derived Multipotent Mesenchymal Stem Cells In Vitro, and Increases Bone Density In Vivo. Oxid. Med. Cell. Longev. 2016;2016:9785890. doi: 10.1155/2016/9785890. PubMed DOI PMC
Śmieszek A., Stręk Z., Kornicka K., Grzesiak J., Weiss C., Marycz K. Antioxidant and Anti-Senescence Effect of Metformin on Mouse Olfactory Ensheathing Cells (mOECs) May Be Associated with Increased Brain-Derived Neurotrophic Factor Levels—An Ex Vivo Study. Int. J. Mol. Sci. 2017;18:872. doi: 10.3390/ijms18040872. PubMed DOI PMC
Qi T., Chen Y., Li H., Pei Y., Woo S.-L., Guo X., Zhao J., Qian X., Awika J., Huo Y., et al. A role for PFKFB3/iPFK2 in metformin suppression of adipocyte inflammatory responses. J. Mol. Endocrinol. 2017;59:49–59. doi: 10.1530/JME-17-0066. PubMed DOI PMC
Kim E.K., Lee S.H., Jhun J.Y., Byun J.K., Jeong J.H., Lee S.-Y., Kim J.K., Choi J.Y., Cho M.-L. Metformin Prevents Fatty Liver and Improves Balance of White/Brown Adipose in an Obesity Mouse Model by Inducing FGF21. Mediat. Inflamm. 2016;2016 doi: 10.1155/2016/5813030. PubMed DOI PMC
Schosserer M., Grillari J., Wolfrum C., Scheideler M. Age-Induced Changes in White, Brite, and Brown Adipose Depots: A Mini-Review. Gerontology. 2018;64:229–236. doi: 10.1159/000485183. PubMed DOI
Rendle D.I., Rutledge F., Hughes K.J., Heller J., Durham A.E. Effects of metformin hydrochloride on blood glucose and insulin responses to oral dextrose in horses. Equine Vet. J. 2013;45:751–754. doi: 10.1111/evj.12068. PubMed DOI
Durham A.E., Rendle D.I., Newton J.R. The effect of metformin on measurements of insulin sensitivity and β cell response in 18 horses and ponies with insulin resistance. Equine Vet. J. 2008;40:493–500. doi: 10.2746/042516408X273648. PubMed DOI
Tinworth K.D., Edwards S., Noble G.K., Harris P.A., Sillence M.N., Hackett L.P. Pharmacokinetics of metformin after enteral administration in insulin-resistant ponies. Am. J. Vet. Res. 2010;71:1201–1206. doi: 10.2460/ajvr.71.10.1201. PubMed DOI
Tinworth K.D., Boston R.C., Harris P.A., Sillence M.N., Raidal S.L., Noble G.K. The effect of oral metformin on insulin sensitivity in insulin-resistant ponies. Vet. J. 2012;191:79–84. doi: 10.1016/j.tvjl.2011.01.015. PubMed DOI
Barzilai N., Crandall J.P., Kritchevsky S.B., Espeland M.A. Metformin as a Tool to Target Aging. Cell Metab. 2016;23:1060–1065. doi: 10.1016/j.cmet.2016.05.011. PubMed DOI PMC
Androvic P., Valihrach L., Elling J., Sjoback R., Kubista M. Two-tailed RT-qPCR: A novel method for highly accurate miRNA quantification. Nucleic Acids Res. 2017;45:e144. doi: 10.1093/nar/gkx588. PubMed DOI PMC
Subramaniam N., Sherman M.H., Rao R., Wilson C., Coulter S., Atkins A.R., Evans R.M., Liddle C., Downes M. Metformin-mediated Bambi expression in Hepatic Stellate Cells induces pro-survival Wnt/β-catenin signaling. Cancer Prev. Res. 2012;5:553–561. doi: 10.1158/1940-6207.CAPR-12-0053. PubMed DOI PMC
Nawrocka D., Kornicka K., Śmieszek A., Marycz K. Spirulina platensis Improves Mitochondrial Function Impaired by Elevated Oxidative Stress in Adipose-Derived Mesenchymal Stromal Cells (ASCs) and Intestinal Epithelial Cells (IECs), and Enhances Insulin Sensitivity in Equine Metabolic Syndrome (EMS) Horses. Mar. Drugs. 2017;15:237. doi: 10.3390/md15080237. PubMed DOI PMC
Marędziak M., Marycz K., Śmieszek A., Lewandowski D., Toker N.Y. The influence of static magnetic fields on canine and equine mesenchymal stem cells derived from adipose tissue. In Vitro Cell. Dev. Biol. Anim. 2014;50:562–571. doi: 10.1007/s11626-013-9730-1. PubMed DOI PMC
Marycz K., Krzak-Roś J., Donesz-Sikorska A., Śmieszek A. The morphology, proliferation rate, and population doubling time factor of adipose-derived mesenchymal stem cells cultured on to non-aqueous SiO2, TiO2, and hybrid sol-gel-derived oxide coatings. J. Biomed. Mater. Res. A. 2014;102:4017–4026. doi: 10.1002/jbm.a.35072. PubMed DOI
Nowak U., Marycz K., Nicpoń J., Śmieszek A. Chondrogenic potential of canine articular cartilage derived cells (cACCs) Open Life Sci. 2016;11:151–165. doi: 10.1515/biol-2016-0021. DOI
Marycz K., Michalak I., Kocherova I., Marędziak M., Weiss C. The Cladophora glomerata Enriched by Biosorption Process in Cr(III) Improves Viability, and Reduces Oxidative Stress and Apoptosis in Equine Metabolic Syndrome Derived Adipose Mesenchymal Stromal Stem Cells (ASCs) and Their Extracellular Vesicles (MV’s) Mar. Drugs. 2017;15:385. doi: 10.3390/md15120385. PubMed DOI PMC
Marycz K., Sobierajska P., Smieszek A., Maredziak M., Wiglusz K., Wiglusz R.J. Li+ activated nanohydroxyapatite doped with Eu3+ ions enhances proliferative activity and viability of human stem progenitor cells of adipose tissue and olfactory ensheathing cells. Further perspective of nHAP: Li+, Eu3+ application in theranostics. Mater. Sci. Eng. C. 2017;78:151–162. doi: 10.1016/j.msec.2017.04.041. PubMed DOI
Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987;162:156–159. doi: 10.1016/0003-2697(87)90021-2. PubMed DOI
Lis-Bartos A., Smieszek A., Frańczyk K., Marycz K., Lis-Bartos A., Smieszek A., Frańczyk K., Marycz K. Fabrication, Characterization, and Cytotoxicity of Thermoplastic Polyurethane/Poly(lactic acid) Material Using Human Adipose Derived Mesenchymal Stromal Stem Cells (hASCs) Polymers. 2018;10:1073. doi: 10.3390/polym10101073. PubMed DOI PMC
Marycz K., Kornicka K., Szlapka-Kosarzewska J., Weiss C. Excessive Endoplasmic Reticulum Stress Correlates with Impaired Mitochondrial Dynamics, Mitophagy and Apoptosis, in Liver and Adipose Tissue, but Not in Muscles in EMS Horses. Int. J. Mol. Sci. 2018;19:165. doi: 10.3390/ijms19010165. PubMed DOI PMC
Marycz K., Kornicka K., Marędziak M., Golonka P., Nicpoń J. Equine metabolic syndrome impairs adipose stem cells osteogenic differentiation by predominance of autophagy over selective mitophagy. J. Cell. Mol. Med. 2016;20:2384–2404. doi: 10.1111/jcmm.12932. PubMed DOI PMC
Marycz K., Marędziak M., Grzesiak J., Lis A., Śmieszek A., Marycz K., Marędziak M., Grzesiak J., Lis A., Śmieszek A. Biphasic Polyurethane/Polylactide Sponges Doped with Nano-Hydroxyapatite (nHAp) Combined with Human Adipose-Derived Mesenchymal Stromal Stem Cells for Regenerative Medicine Applications. Polymers. 2016;8:339. doi: 10.3390/polym8100339. PubMed DOI PMC
Dzamba D., Valihrach L., Kubista M., Anderova M. The correlation between expression profiles measured in single cells and in traditional bulk samples. Sci. Rep. 2016;6:37022. doi: 10.1038/srep37022. PubMed DOI PMC
Pivonkova H., Hermanova Z., Kirdajova D., Awadova T., Malinsky J., Valihrach L., Zucha D., Kubista M., Galisova A., Jirak D., et al. The Contribution of TRPV4 Channels to Astrocyte Volume Regulation and Brain Edema Formation. Neuroscience. 2018;394:127–143. doi: 10.1016/j.neuroscience.2018.10.028. PubMed DOI
Kornicka K., Houston J., Marycz K. Dysfunction of Mesenchymal Stem Cells Isolated from Metabolic Syndrome and Type 2 Diabetic Patients as Result of Oxidative Stress and Autophagy may Limit Their Potential Therapeutic Use. Stem Cell Rev. 2018;14:337–345. doi: 10.1007/s12015-018-9809-x. PubMed DOI PMC
Gallagher D., Kelley D.E., Yim J.-E., Spence N., Albu J., Boxt L., Pi-Sunyer F.X., Heshka S. Adipose tissue distribution is different in type 2 diabetes123. Am. J. Clin. Nutr. 2009;89:807–814. PubMed PMC
Lee M.-J., Wu Y., Fried S.K. Adipose Tissue Heterogeneity: Implication of depot differences in adipose tissue for Obesity Complications. Mol. Aspects Med. 2013;34:1–11. doi: 10.1016/j.mam.2012.10.001. PubMed DOI PMC
Dev R., Bruera E., Dalal S. Insulin resistance and body composition in cancer patients. Ann. Oncol. 2018;29:ii18–ii26. doi: 10.1093/annonc/mdx815. PubMed DOI
Śmieszek A., Basińska K., Chrząstek K., Marycz K. In Vitro and In Vivo Effects of Metformin on Osteopontin Expression in Mice Adipose-Derived Multipotent Stromal Cells and Adipose Tissue. J. Diabetes Res. 2015;2015:814896. doi: 10.1155/2015/814896. PubMed DOI PMC
Baer P.C., Geiger H. Adipose-Derived Mesenchymal Stromal/Stem Cells: Tissue Localization, Characterization, and Heterogeneity. Stem Cells Int. 2012;2012:812693. doi: 10.1155/2012/812693. PubMed DOI PMC
Schäfer R., Spohn G., Baer P.C. Mesenchymal Stem/Stromal Cells in Regenerative Medicine: Can Preconditioning Strategies Improve Therapeutic Efficacy? Transfus. Med. Hemother. 2016;43:256–267. doi: 10.1159/000447458. PubMed DOI PMC
Gimble J.M., Bunnell B.A., Frazier T., Rowan B., Shah F., Thomas-Porch C., Wu X. Adipose-derived stromal/stem cells. Organogenesis. 2013;9:3–10. doi: 10.4161/org.24279. PubMed DOI PMC
Baer P.C., Overath J.M., Urbschat A., Schubert R., Koch B., Bohn A.A., Geiger H. Effect of Different Preconditioning Regimens on the Expression Profile of Murine Adipose-Derived Stromal/Stem Cells. Int. J. Mol. Sci. 2018;19:1719. doi: 10.3390/ijms19061719. PubMed DOI PMC
The Pleiotropic Effects of Metformin: Time for Prospective Studies|Cardiovascular Diabetology|Full Text. [(accessed on 19 November 2018)]; Available online: https://cardiab.biomedcentral.com/articles/10.1186/s12933-015-0273-5. PubMed DOI PMC
Fatt M., Hsu K., He L., Wondisford F., Miller F.D., Kaplan D.R., Wang J. Metformin Acts on Two Different Molecular Pathways to Enhance Adult Neural Precursor Proliferation/Self-Renewal and Differentiation. Stem Cell Rep. 2015;5:988–995. doi: 10.1016/j.stemcr.2015.10.014. PubMed DOI PMC
Śmieszek A., Szydlarska J., Mucha A., Chrapiec M., Marycz K. Enhanced cytocompatibility and osteoinductive properties of sol-gel-derived silica/zirconium dioxide coatings by metformin functionalization. J. Biomater. Appl. 2017;32:570–586. doi: 10.1177/0885328217738006. PubMed DOI
Cortizo A.M., Sedlinsky C., McCarthy A.D., Blanco A., Schurman L. Osteogenic Actions of the Anti-Diabetic Drug Metformin on Osteoblasts in Culture. Eur. J. Pharmacol. 2006;536:38–46. doi: 10.1016/j.ejphar.2006.02.030. PubMed DOI
Molinuevo M.S., Schurman L., McCarthy A.D., Cortizo A.M., Tolosa M.J., Gangoiti M.V., Arnol V., Sedlinsky C. Effect of metformin on bone marrow progenitor cell differentiation: In vivo and in vitro studies. J. Bone Miner. Res. 2010;25:211–221. doi: 10.1359/jbmr.090732. PubMed DOI
Smieszek A., Tomaszewski K.A., Kornicka K., Marycz K. Metformin Promotes Osteogenic Differentiation of Adipose-Derived Stromal Cells and Exerts Pro-Osteogenic Effect Stimulating Bone Regeneration. J. Clin. Med. 2018;7:482. doi: 10.3390/jcm7120482. PubMed DOI PMC
Śmieszek A., Czyrek A., Basinska K., Trynda J., Skaradzińska A., Siudzińska A., Marędziak M., Marycz K. Effect of Metformin on Viability, Morphology, and Ultrastructure of Mouse Bone Marrow-Derived Multipotent Mesenchymal Stromal Cells and Balb/3T3 Embryonic Fibroblast Cell Line. BioMed Res. Int. 2015;2015:769402. doi: 10.1155/2015/769402. PubMed DOI PMC
Kheirandish M., Mahboobi H., Yazdanparast M., Kamal W., Kamal M.A. Anti-cancer Effects of Metformin: Recent Evidences for its Role in Prevention and Treatment of Cancer. Curr. Drug Metab. 2018;19:793–797. doi: 10.2174/1389200219666180416161846. PubMed DOI
Gomes L.C., Di Benedetto G., Scorrano L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol. 2011;13:589–598. doi: 10.1038/ncb2220. PubMed DOI PMC
Wang G.-Y., Bi Y.-G., Liu X.-D., Zhao Y., Han J.-F., Wei M., Zhang Q.-Y. Autophagy was involved in the protective effect of metformin on hyperglycemia-induced cardiomyocyte apoptosis and Connexin43 downregulation in H9c2 cells. Int. J. Med. Sci. 2017;14:698–704. doi: 10.7150/ijms.19800. PubMed DOI PMC
He X., Yao M.-W., Zhu M., Liang D.-L., Guo W., Yang Y., Zhao R.-S., Ren T.-T., Ao X., Wang W., et al. Metformin induces apoptosis in mesenchymal stromal cells and dampens their therapeutic efficacy in infarcted myocardium. Stem Cell Res. Ther. 2018;9:306. doi: 10.1186/s13287-018-1057-0. PubMed DOI PMC
Kim J.-A., Choi H.-K., Kim T.-M., Leem S.-H., Oh I.-H. Regulation of mesenchymal stromal cells through fine tuning of canonical Wnt signaling. Stem Cell Res. 2015;14:356–368. doi: 10.1016/j.scr.2015.02.007. PubMed DOI
Visweswaran M., Pohl S., Arfuso F., Newsholme P., Dilley R., Pervaiz S., Dharmarajan A. Multi-lineage differentiation of mesenchymal stem cells—To Wnt, or not Wnt. Int. J. Biochem. Cell Biol. 2015;68:139–147. doi: 10.1016/j.biocel.2015.09.008. PubMed DOI
Zhou J.Y., Xu B., Li L. A New Role for an Old Drug: Metformin Targets MicroRNAs in Treating Diabetes and Cancer. Drug Dev. Res. 2015;76:263–269. doi: 10.1002/ddr.21265. PubMed DOI
Avci C.B., Harman E., Dodurga Y., Susluer S.Y., Gunduz C. Therapeutic potential of an anti-diabetic drug, metformin: Alteration of miRNA expression in prostate cancer cells. Asian Pac. J. Cancer Prev. 2013;14:765–768. doi: 10.7314/APJCP.2013.14.2.765. PubMed DOI
Tan K., Peng Y.T., Guo P. MiR-29a Promotes Osteogenic Differentiation of Mesenchymal Stem Cells via Targeting HDAC4. Eur. Rev. Med. Pharmacol. Sci. 2018;22:3318–3326. PubMed
Guo L., Zhao R.C.H., Wu Y. The role of microRNAs in self-renewal and differentiation of mesenchymal stem cells. Exp. Hematol. 2011;39:608–616. doi: 10.1016/j.exphem.2011.01.011. PubMed DOI
Cimmino A., Calin G.A., Fabbri M., Iorio M.V., Ferracin M., Shimizu M., Wojcik S.E., Aqeilan R.I., Zupo S., Dono M., et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl. Acad. Sci. USA. 2005;102:13944–13949. doi: 10.1073/pnas.0506654102. PubMed DOI PMC
Zeng Y.-L., Zheng H., Chen Q.-R., Yuan X.-H., Ren J.-H., Luo X.-F., Chen P., Lin Z.-Y., Chen S.-Z., Wu X.-Q., et al. Bone marrow-derived mesenchymal stem cells overexpressing MiR-21 efficiently repair myocardial damage in rats. Oncotarget. 2017;8:29161–29173. doi: 10.18632/oncotarget.16254. PubMed DOI PMC
Sun Y., Xu L., Huang S., Hou Y., Liu Y., Chan K.-M., Pan X.-H., Li G. mir-21 Overexpressing Mesenchymal Stem Cells Accelerate Fracture Healing in a Rat Closed Femur Fracture Model. BioMed Res. Int. 2015;2015:412327. doi: 10.1155/2015/412327. PubMed DOI PMC
Sugatani T., Vacher J., Hruska K.A. A microRNA expression signature of osteoclastogenesis. Blood. 2011;117:3648–3657. doi: 10.1182/blood-2010-10-311415. PubMed DOI PMC
Mei Y., Bian C., Li J., Du Z., Zhou H., Yang Z., Zhao R.C.H. miR-21 modulates the ERK-MAPK signaling pathway by regulating SPRY2 expression during human mesenchymal stem cell differentiation. J. Cell. Biochem. 2013;114:1374–1384. doi: 10.1002/jcb.24479. PubMed DOI
Zhou Y., Liu Y., Cheng L. miR-21 expression is related to particle-induced osteolysis pathogenesis. J. Orthop. Res. 2012;30:1837–1842. doi: 10.1002/jor.22128. PubMed DOI
Zhang Y., Zhou S. MicroRNA-29a inhibits mesenchymal stem cell viability and proliferation by targeting Roundabout 1. Mol. Med. Rep. 2015;12:6178–6184. doi: 10.3892/mmr.2015.4183. PubMed DOI
Fráguas M.S., Eggenschwiler R., Hoepfner J., Schiavinato J.L., Haddad R., Oliveira L.H.B., Araújo A.G., Zago M.A., Panepucci R.A., Cantz T. MicroRNA-29 impairs the early phase of reprogramming process by targeting active DNA demethylation enzymes and Wnt signaling. Stem Cell Res. 2017;19:21–30. doi: 10.1016/j.scr.2016.12.020. PubMed DOI
Sun D.-G., Xin B.-C., Wu D., Zhou L., Wu H.-B., Gong W., Lv J. miR-140-5p-mediated regulation of the proliferation and differentiation of human dental pulp stem cells occurs through the lipopolysaccharide/toll-like receptor 4 signaling pathway. Eur. J. Oral Sci. 2017;125:419–425. doi: 10.1111/eos.12384. PubMed DOI
Da Costa Santos H., Hess T., Bruemmer J., Splan R. Possible Role of MicroRNA in Equine Insulin Resistance: A Pilot Study. J. Equine Vet. Sci. 2018;63:74–79. doi: 10.1016/j.jevs.2017.10.024. DOI
Raitoharju E., Seppälä I., Oksala N., Lyytikäinen L.-P., Raitakari O., Viikari J., Ala-Korpela M., Soininen P., Kangas A.J., Waldenberger M., et al. Blood microRNA profile associates with the levels of serum lipids and metabolites associated with glucose metabolism and insulin resistance and pinpoints pathways underlying metabolic syndrome: The cardiovascular risk in Young Finns Study. Mol. Cell. Endocrinol. 2014;391:41–49. doi: 10.1016/j.mce.2014.04.013. PubMed DOI
Van der Kolk J.H., Pacholewska A., Gerber V. The role of microRNAs in equine medicine: A review. Vet. Q. 2015;35:88–96. doi: 10.1080/01652176.2015.1021186. PubMed DOI
The Role of miR-21 in Osteoblasts-Osteoclasts Coupling In Vitro