Bordetella pertussis is the causative agent of whooping cough in humans, a disease that has recently experienced a resurgence. In contrast, Bordetella bronchiseptica infects the respiratory tract of various mammalian species, causing a range of symptoms from asymptomatic chronic carriage to acute illness. Both pathogens utilize type III secretion system (T3SS) to deliver the effector protein BteA into host cells. Once injected, BteA triggers a cascade of events leading to caspase 1-independent necrosis through a mechanism that remains incompletely understood. We demonstrate that BteA-induced cell death is characterized by the fragmentation of the cellular endoplasmic reticulum and mitochondria, the formation of necrotic balloon-like protrusions, and plasma membrane permeabilization. Importantly, genome-wide CRISPR-Cas9 screen targeting 19,050 genes failed to identify any host factors required for BteA cytotoxicity, suggesting that BteA does not require a single nonessential host factor for its cytotoxicity. We further reveal that BteA triggers a rapid and sustained influx of calcium ions, which is associated with organelle fragmentation and plasma membrane permeabilization. The sustained elevation of cytosolic Ca2+ levels results in mitochondrial calcium overload, mitochondrial swelling, cristolysis, and loss of mitochondrial membrane potential. Inhibition of calcium channels with 2-APB delays both the Ca2+ influx and BteA-induced cell death. Our findings indicate that BteA exploits essential host processes and/or redundant pathways to disrupt calcium homeostasis and mitochondrial function, ultimately leading to host cell death.IMPORTANCEThe respiratory pathogens Bordetella pertussis and Bordetella bronchiseptica exhibit cytotoxicity toward a variety of mammalian cells, which depends on the type III secretion effector BteA. Moreover, the increased virulence of B. bronchiseptica is associated with enhanced expression of T3SS and BteA. However, the molecular mechanism underlying BteA cytotoxicity is elusive. In this study, we performed a CRISPR-Cas9 screen, revealing that BteA-induced cell death depends on essential or redundant host processes. Additionally, we demonstrate that BteA disrupts calcium homeostasis, which leads to mitochondrial dysfunction and cell death. These findings contribute to closing the gap in our understanding of the signaling cascades targeted by BteA.
- MeSH
- bakteriální proteiny * metabolismus genetika MeSH
- Bordetella bronchiseptica genetika metabolismus účinky léků MeSH
- Bordetella pertussis genetika patogenita metabolismus účinky léků MeSH
- buněčná smrt * účinky léků MeSH
- endoplazmatické retikulum metabolismus účinky léků MeSH
- homeostáza * MeSH
- interakce hostitele a patogenu MeSH
- lidé MeSH
- mitochondrie metabolismus účinky léků MeSH
- sekreční systém typu III metabolismus genetika MeSH
- vápník * metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Mitochondrial autophagy (mitophagy) is very important process for the maintenance of cellular homeostasis, functionality and survival. Its dysregulation is associated with high risk and progression numerous serious diseases (e.g., oncological, neurodegenerative and cardiovascular ones). Therefore, targeting mitophagy mechanisms is very hot topic in the biological and medicinal research. The interrelationships between the regulation of mitophagy and iron homeostasis are now becoming apparent. In short, mitochondria are central point for the regulation of iron homeostasis, but change in intracellular cheatable iron level can induce/repress mitophagy. In this review, relationships between iron homeostasis and mitophagy are thoroughly discussed and described. Also, therapeutic applicability of mitophagy chelators in the context of individual diseases is comprehensively and critically evaluated.
Cadmium crosses the blood-brain barrier inducing damage to neurons. Cell impairment is predominantly linked to oxidative stress and glutathione (GSH) depletion. On the other hand, several reports have described an increase of GSH levels in neuronal cells after CdCl2 exposure. Therefore, the aim of the present report was to investigate the relation between changes in GSH levels and mitochondrial damage in neuronal cells after CdCl2 treatment. To characterize neuronal impairment after CdCl2 treatment (0-200 μM) for 1-48 h, we used the SH-SY5Y cell line. We analyzed GSH metabolism and determined mitochondrial activity using high-resolution respirometry. CdCl2 treatment induced both the decreases and increases of GSH levels in SH-SY5Y cells. GSH concentration was significantly increased in cells incubated with up to 50 μM CdCl2 but only 100 μM CdCl2 induced GSH depletion linked to increased ROS production. The overexpression of proteins involved in GSH synthesis increased in response to 50 and 100 μM CdCl2 after 6 h. Finally, strong mitochondrial impairment was detected even in 50 μM CdCl2 treated cells after 24 h. We conclude that a significant decrease in mitochondrial activity can be observed in 50 μM CdCl2 even without the occurrence of GSH depletion in SH-SY5Y cells.
- MeSH
- chlorid kademnatý * toxicita MeSH
- glutathion * metabolismus MeSH
- lidé MeSH
- mitochondrie * účinky léků metabolismus MeSH
- nádorové buněčné linie MeSH
- neurony * účinky léků metabolismus MeSH
- oxidační stres účinky léků MeSH
- reaktivní formy kyslíku metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVE: A prominent, safe and efficient therapy for patients with chronic myeloid leukemia (CML) is inhibiting oncogenic protein BCR::ABL1 in a targeted manner with imatinib, a tyrosine kinase inhibitor. A substantial part of patients treated with imatinib report skeletomuscular adverse events affecting their quality of life. OCTN2 membrane transporter is involved in imatinib transportation into the cells. At the same time, the crucial physiological role of OCTN2 is cellular uptake of carnitine which is an essential co-factor for the mitochondrial β-oxidation pathway. This work investigates the impact of imatinib treatment on carnitine intake and energy metabolism of muscle cells. METHODS: HTB-153 (human rhabdomyosarcoma) cell line and KCL-22 (CML cell line) were used to study the impact of imatinib treatment on intracellular levels of carnitine and vice versa. The energy metabolism changes in cells treated by imatinib were quantified and compared to changes in cells exposed to highly specific OCTN2 inhibitor vinorelbine. Mouse models were used to test whether in vitro observations are also achieved in vivo in thigh muscle tissue. The analytes of interest were quantified using a Prominence HPLC system coupled with a tandem mass spectrometer. RESULTS: This work showed that through the carnitine-specific transporter OCTN2, imatinib and carnitine intake competed unequally and intracellular carnitine concentrations were significantly reduced. In contrast, carnitine preincubation did not influence imatinib cell intake or interfere with leukemia cell targeting. Blocking the intracellular supply of carnitine with imatinib significantly reduced the production of most Krebs cycle metabolites and ATP. However, subsequent carnitine supplementation rescued mitochondrial energy production. Due to specific inhibition of OCTN2 activity, the influx of carnitine was blocked and mitochondrial energy metabolism was impaired in muscle cells in vitro and in thigh muscle tissue in a mouse model. CONCLUSIONS: This preclinical experimental study revealed detrimental effect of imatinib on carnitine-mediated energy metabolism of muscle cells providing a possible molecular background of the frequently occurred side effects during imatinib therapy such as fatigue, muscle pain and cramps.
- MeSH
- antitumorózní látky škodlivé účinky farmakologie MeSH
- chronická myeloidní leukemie * farmakoterapie metabolismus MeSH
- energetický metabolismus účinky léků MeSH
- imatinib mesylát * farmakologie škodlivé účinky MeSH
- inhibitory proteinkinas farmakologie škodlivé účinky MeSH
- karnitin * metabolismus farmakologie MeSH
- lidé MeSH
- mitochondrie metabolismus účinky léků MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- rodina nosičů rozpuštěných látek 22, člen 5 * metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Huntington's disease (HD) is a progressive neurodegenerative disorder characterized by cognitive, motor, and psychiatric symptoms. Despite significant advances in understanding the underlying molecular mechanisms of HD, there is currently no cure or disease-modifying treatment available. Emerging pharmacological approaches offer promising strategies to alleviate symptoms and slow down disease progression. This comprehensive review aims to provide a critical appraisal of the latest developments in pharmacological interventions for HD. The review begins by discussing the pathogenesis of HD, focusing on the role of mutant huntingtin protein, mitochondrial dysfunction, excitotoxicity, and neuro-inflammation. It then explores emerging therapeutic targets, including the modulation of protein homeostasis, mitochondrial function, neuro-inflammation, and neurotransmitter systems. Pharmacological agents targeting these pathways are discussed, including small molecules, gene-based therapies, and neuroprotective agents. In recent years, several clinical trials have been conducted to evaluate the safety and efficiency of novel compounds for HD. This review presents an update on the outcomes of these trials, highlighting promising results and challenges encountered. Additionally, it discusses the potential of repurposing existing drugs approved for other indications as a cost-effective approach for HD treatment. The review concludes by summarizing the current state of pharmacological approaches for HD and outlining future directions in drug development. The integration of multiple therapeutic strategies, personalized medicine approaches, and combination therapies are highlighted as potential avenues to maximize treatment effectiveness.
- MeSH
- genetická terapie metody MeSH
- Huntingtonova nemoc * farmakoterapie MeSH
- lidé MeSH
- mitochondrie účinky léků metabolismus MeSH
- neuroprotektivní látky * terapeutické užití farmakologie MeSH
- protein huntingtin genetika antagonisté a inhibitory metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Iron and copper chelation therapy plays a crucial role in treating conditions associated with metal overload, such as hemochromatosis or Wilson's disease. However, conventional chelators face challenges in reaching the core of iron and copper metabolism - the mitochondria. Mitochondria-targeted chelators can specifically target and remove metal ions from mitochondria, showing promise in treating diseases linked to mitochondrial dysfunction, including neurodegenerative diseases and cancer. Additionally, they serve as specific mitochondrial metal sensors. However, designing these new molecules presents its own set of challenges. Depending on the chelator's intended use to prevent or to promote redox cycling of the metals, the chelating moiety must possess different donor atoms and an optimal value of the electrode potential of the chelator-metal complex. Various targeting moieties can be employed for selective delivery into the mitochondria. This review also provides an overview of the current progress in the design of mitochondria-targeted chelators and their biological activity investigation.
- MeSH
- chelátory železa farmakologie MeSH
- chelátory * terapeutické užití metabolismus MeSH
- chelátová terapie metody MeSH
- lidé MeSH
- měď * metabolismus MeSH
- mitochondrie * metabolismus účinky léků MeSH
- železo * metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND & AIM: Dysfunction of skeletal muscle satellite cells might impair muscle regeneration and prolong ICU-acquired weakness, a condition associated with disability and delayed death. This study aimed to elucidate the distinct metabolic effects of critical illness and β-OH-butyrate on satellite cells isolated from these patients. METHODS: Satellite cells were extracted from vastus lateralis muscle biopsies of patients with ICU-acquired weakness (n = 10) and control group of healthy volunteers or patients undergoing elective hip replacement surgery (n = 10). The cells were exposed to standard culture media supplemented with β-OH-butyrate to assess its influence on cell proliferation by ELISA, mitochondrial functions by extracellular flux analysis, electron transport chain complexes by high resolution respirometry, and ROS production by confocal microscopy. RESULTS: Critical illness led to a decline in maximal respiratory capacity, ATP production and glycolytic capacity and increased ROS production in ICU patients' cells. Notably, the function of complex II was impaired due to critical illness but restored to normal levels upon exposure to β-OH-butyrate. While β-OH-butyrate significantly reduced ROS production in both control and ICU groups, it had no significant impact on global mitochondrial functions. CONCLUSION: Critical illness induces measurable bioenergetic dysfunction of skeletal muscle satellite cells. β-OH-butyrate displayed a potential in rectifying complex II dysfunction caused by critical illness and this warrants further exploration.
- MeSH
- adenosintrifosfát metabolismus MeSH
- dospělí MeSH
- energetický metabolismus účinky léků MeSH
- kritický stav * MeSH
- kultivované buňky MeSH
- kyselina 3-hydroxymáselná * farmakologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mitochondrie účinky léků metabolismus MeSH
- proliferace buněk účinky léků MeSH
- reaktivní formy kyslíku * metabolismus MeSH
- satelitní buňky kosterního svalu * účinky léků metabolismus MeSH
- senioři MeSH
- svalová slabost MeSH
- svalové mitochondrie účinky léků metabolismus MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Once absorbed through lung tissues, smog-soluble substances are readily distributable throughout organ system reaching approximately all cells perturbing the subcellular events at mitochondrial level. The present study aimed to detect the deleterious impact of smog-containing materials on mitochondrial and thereby serum pyruvate/lactate levels coincidentally with liver proper functionality. To do so, chronic smokers were recruited and sub-classified into groups based on chronicity of smoking; control (never smoked), G1=smokers for up to 5 years, G2=smokers for up to 10 years, and G3=smokers for up to 15 years. Serum samples were collected and stored for later on analysis. Results have confirmed that serum pyruvate/lactate and liver enzymes modulated reciprocally with smoking compared to control. The results also confirmed that liver enzymes were strongly modulated, GOT elevated while GPT reduced in a way reciprocal to chronicity, while ALP elevated in first few years of smoking in G1 group compared to other groups or control group. Serum albumin was significantly elevated in studied groups compared to control group with no changes appeared in total plasma protein and the bilirubin levels were higher in G2 group compared to G1 or G3 or control groups. Serum lactate and to certain extent serum pyruvate were also significantly perturbed showing higher levels in smokers compared to control or junior smokers. In conclusion, mitochondrial subcellular machinery are strongly affected following smoking indicated by serum pyruvate/lactate measurement and this in turn strongly affect liver functionality as an important organ involved in pyruvate-lactate demarcation and pertaining to the liver functionality indicated by bilirubin and total plasma protein or albumin measurements.
- MeSH
- dospělí MeSH
- játra * enzymologie patologie účinky léků MeSH
- kouření * krev patologie škodlivé účinky MeSH
- lidé středního věku MeSH
- lidé MeSH
- mitochondrie patologie účinky léků MeSH
- mladý dospělý MeSH
- sérum chemie enzymologie účinky léků MeSH
- statistika jako téma MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- Publikační typ
- klinická studie MeSH
Scytophycins, including tolytoxin, represent a class of actin disrupting macrolides with strong antiproliferative effects on human cells. Despite intense research, little attention has been paid to scytophycin-induced cell death or the structural features affecting its potency. We show that tolytoxin and its natural analogue, 7-O-methylscytophycin B, lacking the hydroxyl substitution in its macrolactone ring, differ substantially in their cytotoxic effect. Both compounds increase the level of caspases 3/7, which are the main executioner proteases during apoptosis, in HeLa wild-type (WT) cells. However, no caspase activity was detected in HeLa cells lacking Bax/Bak proteins crucial for caspase activation via the mitochondrial pathway. Obtained data strongly suggests that scytophycins are capable of inducing mitochondria-dependent apoptosis. These findings encourage further research in structure-activity relationships in scytophycins and highlight the potential of these compounds in targeted drug delivery.
- MeSH
- antitumorózní látky chemie farmakologie MeSH
- apoptóza účinky léků MeSH
- hydroxidy chemie farmakologie MeSH
- léky antitumorózní - screeningové testy MeSH
- lidé MeSH
- makrolidy chemie farmakologie MeSH
- mitochondrie účinky léků metabolismus MeSH
- nádorové buněčné linie MeSH
- proliferace buněk účinky léků MeSH
- pyrany chemie farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH