The correlation between expression profiles measured in single cells and in traditional bulk samples

. 2016 Nov 16 ; 6 () : 37022. [epub] 20161116

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27848982

Reverse transcription quantitative PCR (RT-qPCR) is already an established tool for mRNA detection and quantification. Since recently, this technique has been successfully employed for gene expression analyses, and also in individual cells (single cell RT-qPCR). Although the advantages of single cell measurements have been proven several times, a study correlating the expression measured on single cells, and in bulk samples consisting of a large number of cells, has been missing. Here, we collected a large data set to explore the relation between gene expression measured in single cells and in bulk samples, reflected by qPCR Cq values. We measured the expression of 95 genes in 12 bulk samples, each containing thousands of astrocytes, and also in 693 individual astrocytes. Combining the data, we described the relation between Cq values measured in bulk samples with either the percentage of the single cells that express the given genes, or the average expression of the genes across the single cells. We show that data obtained with single cell RT-qPCR are fully consistent with measurements in bulk samples. Our results further provide a base for quality control in single cell expression profiling, and bring new insights into the biological process of cellular expression.

Zobrazit více v PubMed

Souza N. de. Single-cell methods. Nat. Methods 9, 35 (2012). PubMed

Method of the Year 2013. Nat. Methods 11, 2014 (2014). PubMed

Macaulay I. C. & Voet T. Single Cell Genomics: Advances and Future Perspectives. PLoS Genet. 10 (2014). PubMed PMC

Saliba A. E., Westermann A. J., Gorski S. A. & Vogel J. Single-cell RNA-seq: Advances and future challenges. Nucleic Acids Res. 42, 8845–8860 (2014). PubMed PMC

Wong M. L. & Medrano J. F. Real-time PCR for mRNA quantification. Biotechniques 39, 75–85 (2005). PubMed

Costa C., Giménez-Capitán A., Karachaliou N. & Rosell R. Comprehensive molecular screening: from the RT-PCR to the RNA-seq. Transl. lung cancer Res. 2, 87–91 (2013). PubMed PMC

Nolan T., Hands R. E. & Bustin S. a. Quantification of mRNA using real-time RT-PCR. Nat. Protoc. 1, 1559–1582 (2006). PubMed

Wills Q. F. et al. Single-cell gene expression analysis reveals genetic associations masked in whole-tissue experiments. Nat. Biotechnol. 31, 748–752 (2013). PubMed

Bengtsson M., Ståhlberg A., Rorsman P. & Kubista M. Gene expression profiling in single cells from the pancreatic islets of Langerhans reveals lognormal distribution of mRNA levels. Genome Res. 15, 1388–1392 (2005). PubMed PMC

Ståhlberg A. et al. Defining cell populations with single-cell gene expression profiling: correlations and identification of astrocyte subpopulations. Nucleic Acids Res. 39, e24 (2011). PubMed PMC

Ståhlberg A., Rusnakova V. & Kubista M. The added value of single-cell gene expression profiling. Brief. Funct. Genomics 12, 81–89 (2013). PubMed

Ståhlberg A. & Kubista M. The workflow of single-cell expression profiling using quantitative real-time PCR. Expert Rev. Mol. Diagn. 14, 323–331 (2014). PubMed PMC

Elowitz M. B., Levine A. J., Siggia E. D. & Swain P. S. Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002). PubMed

Cai L., Friedman N. & Xie X. S. Stochastic protein expression in individual cells at the single molecule level. Nature 440, 358–362 (2006). PubMed

Ståhlberg A., Rusnakova V., Forootan A., Anderova M. & Kubista M. RT-qPCR work-flow for single-cell data analysis. Methods 59, 80–88 (2013). PubMed

Nolte C. et al. GFAP promoter-controlled EGFP-expressing transgenic mice: a tool to visualize astrocytes and astrogliosis in living brain tissue. Glia 33, 72–86 (2001). PubMed

Svec D. et al. Direct cell lysis for single-cell gene expression profiling. Front. Oncol. 3, 274 (2013). PubMed PMC

Bengtsson M., Hemberg M., Rorsman P. & Ståhlberg A. Quantification of mRNA in single cells and modelling of RT-qPCR induced noise. BMC Mol. Biol. 9, 63 (2008). PubMed PMC

Levesque-Sergerie J.-P., Duquette M., Thibault C., Delbecchi L. & Bissonnette N. Detection limits of several commercial reverse transcriptase enzymes: impact on the low- and high-abundance transcript levels assessed by quantitative RT-PCR. BMC Mol. Biol. 8, 93 (2007). PubMed PMC

Okello J. B. A. et al. Quantitative assessment of the sensitivity of various commercial reverse transcriptases based on armored HIV RNA. PLoS One 5, (2010). PubMed PMC

Derveaux S., Vandesompele J. & Hellemans J. How to do successful gene expression analysis using real-time PCR. Methods 50, 227–230 (2010). PubMed

Ståhlberg A. & Bengtsson M. Single-cell gene expression profiling using reverse transcription quantitative real-time PCR. Methods 50, 282–288 (2010). PubMed

Pink R. C. et al. Pseudogenes: Pseudo-functional or key regulators in health and disease? RNA 17, 792–798 (2011). PubMed PMC

L. Lun A. T., Bach K. & Marioni J. C. Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol. 17, 75 (2016). PubMed PMC

Kumar D., Minocha N., Rajanala K. & Saha S. The distribution pattern of proliferating cell nuclear antigen in the nuclei of Leishmania donovani. Microbiology 155, 3748–3757 (2009). PubMed

Zhang Y. et al. An RNA-Sequencing Transcriptome and Splicing Database of Glia, Neurons, and Vascular Cells of the Cerebral Cortex. J. Neurosci. 34, 11929–11947 (2014). PubMed PMC

Hollmann M., Hartley M. & Heinemann S. Ca2+ permeability of KA-AMPA–gated glutamate receptor channels depends on subunit composition. Science 252, 851–853 (1991). PubMed

Burnashev N. et al. Calcium-permeable AMPA-kainate receptors in fusiform cerebellar glial cells. Science 256, 1566–1570 (1992). PubMed

Dzamba D. et al. Quantitative Analysis of Glutamate Receptors in Glial Cells from the Cortex of GFAP/EGFP Mice Following Ischemic Injury: Focus on NMDA Receptors. Cell. Mol. Neurobiol, doi: 10.1007/s10571-015-0212-8 (2015) PubMed DOI

Rusnakova V. et al. Heterogeneity of astrocytes: from development to injury - single cell gene expression. PLoS One 8, e69734 (2013). PubMed PMC

Vandesompele J. et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, RESEARCH0034 (2002). PubMed PMC

Andersen C. L., Ledet-Jensen J. & Orntoft T. Normalization of real-time quantitative RT-PCR data: a mode-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 64, 5245–5250 (2004). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace