Direct cell lysis for single-cell gene expression profiling

. 2013 ; 3 () : 274. [epub] 20131107

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid24224157

The interest to analyze single and few cell samples is rapidly increasing. Numerous extraction protocols to purify nucleic acids are available, but most of them compromise severely on yield to remove contaminants and are therefore not suitable for the analysis of samples containing small numbers of transcripts only. Here, we evaluate 17 direct cell lysis protocols for transcript yield and compatibility with downstream reverse transcription quantitative real-time PCR. Four endogenously expressed genes are assayed together with RNA and DNA spikes in the samples. We found bovine serum albumin (BSA) to be the best lysis agent, resulting in efficient cell lysis, high RNA stability, and enhanced reverse transcription efficiency. Furthermore, we found direct cell lysis with BSA superior to standard column based extraction methods, when analyzing from 1 up to 512 mammalian cells. In conclusion, direct cell lysis protocols based on BSA can be applied with most cell collection methods and are compatible with most analytical workflows to analyze single-cells as well as samples composed of small numbers of cells.

Zobrazit více v PubMed

Bengtsson M, Stahlberg A, Rorsman P, Kubista M. Gene expression profiling in single cells from the pancreatic islets of Langerhans reveals lognormal distribution of mRNA levels. Genome Res (2005) 15:1388–9210.1101/gr.3820805 PubMed DOI PMC

Stahlberg A, Bengtsson M, Hemberg M, Semb H. Quantitative transcription factor analysis of undifferentiated single human embryonic stem cells. Clin Chem (2009) 55:2162–7010.1373/clinchem.2009.131433 PubMed DOI

Raj A, Peskin CS, Tranchina D, Vargas DY, Tyagi S. Stochastic mRNA synthesis in mammalian cells. PLoS Biol (2006) 4:e309.10.1371/journal.pbio.0040309 PubMed DOI PMC

Stahlberg A, Andersson D, Aurelius J, Faiz M, Pekna M, Kubista M, et al. Defining cell populations with single-cell gene expression profiling: correlations and identification of astrocyte subpopulations. Nucleic Acids Res (2011) 39:e24.10.1093/nar/gkq1182 PubMed DOI PMC

Sindelka R, Jonak J, Hands R, Bustin SA, Kubista M. Intracellular expression profiles measured by real-time PCR tomography in the Xenopus laevis oocyte. Nucleic Acids Res (2008) 36:387–9210.1093/nar/gkm1024 PubMed DOI PMC

Benesova J, Rusnakova V, Honsa P, Pivonkova H, Dzamba D, Kubista M, et al. Distinct expression/function of potassium and chloride channels contributes to the diverse volume regulation in cortical astrocytes of GFAP/EGFP mice. PLoS One (2012) 7:e29725.10.1371/journal.pone.0029725 PubMed DOI PMC

Kubista M, Andrade JM, Bengtsson M, Forootan A, Jonak J, Lind K, et al. The real-time polymerase chain reaction. Mol Aspects Med (2006) 27:95–12510.1016/j.mam.2005.12.007 PubMed DOI

Nolan T, Hands RE, Bustin SA. Quantification of mRNA using real-time RT-PCR. Nat Protoc (2006) 1:1559–8210.1038/nprot.2006.236 PubMed DOI

Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem (2009) 55:611–2210.1373/clinchem.2008.112797 PubMed DOI

Bustin SA. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol (2002) 29:23–3910.1677/jme.0.0290023 PubMed DOI

Radstrom P, Knutsson R, Wolffs P, Lovenklev M, Lofstrom C. Pre-PCR processing: strategies to generate PCR-compatible samples. Mol Biotechnol (2004) 26:133–4610.1385/MB:26:2:133 PubMed DOI

Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, et al. Landscape of transcription in human cells. Nature (2012) 489:101–810.1038/nature11233 PubMed DOI PMC

Islam S, Kjallquist U, Moliner A, Zajac P, Fan JB, Lonnerberg P, et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res (2011) 21:1160–710.1101/gr.110882.110 PubMed DOI PMC

Ramskold D, Luo S, Wang YC, Li R, Deng Q, Faridani OR, et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol (2012) 30:777–8210.1038/nbt.2282 PubMed DOI PMC

Bengtsson M, Hemberg M, Rorsman P, Stahlberg A. Quantification of mRNA in single cells and modelling of RT-qPCR induced noise. BMC Mol Biol (2008) 9:63.10.1186/1471-2199-9-63 PubMed DOI PMC

Marshall LA, Wu LL, Babikian S, Bachman M, Santiago JG. Integrated printed circuit board device for cell lysis and nucleic acid extraction. Anal Chem (2012) 84:9640–510.1021/ac302622v PubMed DOI

Nolan T, Hands RE, Ogunkolade W, Bustin SA. SPUD: a quantitative PCR assay for the detection of inhibitors in nucleic acid preparations. Anal Biochem (2006) 351:308–1010.1016/j.ab.2006.01.051 PubMed DOI

Stahlberg A, Bengtsson M. Single-cell gene expression profiling using reverse transcription quantitative real-time PCR. Methods (2010) 50:282–810.1016/j.ymeth.2010.01.002 PubMed DOI

Geselowitz DA, Neckers LM. Bovine serum albumin is a major oligonucleotide-binding protein found on the surface of cultured cells. Antisense Res Dev (1995) 5:213–7 PubMed

Kreader CA. Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Appl Environ Microbiol (1996) 62:1102–6 PubMed PMC

Farell EM, Alexandre G. Bovine serum albumin further enhances the effects of organic solvents on increased yield of polymerase chain reaction of GC-rich templates. BMC Res Notes (2012) 5:257.10.1186/1756-0500-5-257 PubMed DOI PMC

Wang QT, Xiao W, Mindrinos M, Davis R. Yeast tRNA as carrier in the isolation of microscale RNA for global amplification and expression profiling. Biotechniques (2002) 33(4):788,790,792. PubMed

Sachdeva R, Simm M. Application of linear polyacrylamide coprecipitation of denatured templates for PCR amplification of ultra-rapidly reannealing DNA. Biotechniques (2011) 50:217–910.2144/000113654 PubMed DOI PMC

Winslow SG, Henkart PA. Polyinosinic acid as a carrier in the microscale purification of total RNA. Nucleic Acids Res (1991) 19:3251–310.1093/nar/19.12.3251 PubMed DOI PMC

Musso M, Bocciardi R, Parodi S, Ravazzolo R, Ceccherini I. Betaine, dimethyl sulfoxide, and 7-deaza-dGTP, a powerful mixture for amplification of GC-rich DNA sequences. J Mol Diagn (2006) 8:544–5010.2353/jmoldx.2006.060058 PubMed DOI PMC

Kang J, Lee MS, Gorenstein DG. The enhancement of PCR amplification of a random sequence DNA library by DMSO and betaine: application to in vitro combinatorial selection of aptamers. J Biochem Biophys Methods (2005) 64:147–5110.1016/j.jbbm.2005.06.003 PubMed DOI

Jensen MA, Fukushima M, Davis RW. DMSO and betaine greatly improve amplification of GC-rich constructs in de novo synthesis. PLoS One (2010) 5:e11024.10.1371/journal.pone.0011024 PubMed DOI PMC

Carninci P, Nishiyama Y, Westover A, Itoh M, Nagaoka S, Sasaki N, et al. Thermostabilization and thermoactivation of thermolabile enzymes by trehalose and its application for the synthesis of full length cDNA. Proc Natl Acad Sci USA (1998) 95:520–410.1073/pnas.95.2.520 PubMed DOI PMC

Spiess AN, Ivell R. A highly efficient method for long-chain cDNA synthesis using trehalose and betaine. Anal Biochem (2002) 301:168–7410.1006/abio.2001.5474 PubMed DOI

Horakova H, Polakovicova I, Shaik GM, Eitler J, Bugajev V, Draberova L, et al. 1,2-propanediol-trehalose mixture as a potent quantitative real-time PCR enhancer. BMC Biotechnol (2011) 11:41.10.1186/1472-6750-11-41 PubMed DOI PMC

Mason PE, Neilson GW, Dempsey CE, Barnes AC, Cruickshank JM. The hydration structure of guanidinium and thiocyanate ions: implications for protein stability in aqueous solution. Proc Natl Acad Sci USA (2003) 100:4557–6110.1073/pnas.0735920100 PubMed DOI PMC

Elowitz MB, Levine AJ, Siggia ED, Swain PS. Stochastic gene expression in a single cell. Science (2002) 297:1183–610.1126/science.1070919 PubMed DOI

Stahlberg A, Rusnakova V, Forootan A, Anderova M, Kubista M. RT-qPCR work-flow for single-cell data analysis. Methods (2012) 59(1):80–810.1016/j.ymeth.2012.09.007 PubMed DOI

Stahlberg A, Aman P, Ridell B, Mostad P, Kubista M. Quantitative real-time PCR method for detection of B-lymphocyte monoclonality by comparison of kappa and lambda immunoglobulin light chain expression. Clin Chem (2003) 49:51–910.1373/49.1.51 PubMed DOI

Stahlberg A, Hakansson J, Xian X, Semb H, Kubista M. Properties of the reverse transcription reaction in mRNA quantification. Clin Chem (2004) 50:509–1510.1373/clinchem.2003.026161 PubMed DOI

Fleige S, Pfaffl MW. RNA integrity and the effect on the real-time qRT-PCR performance. Mol Aspects Med (2006) 27:126–3910.1016/j.mam.2005.12.003 PubMed DOI

Fleige S, Walf V, Huch S, Prgomet C, Sehm J, Pfaffl MW. Comparison of relative mRNA quantification models and the impact of RNA integrity in quantitative real-time RT-PCR. Biotechnol Lett (2006) 28:1601–1310.1007/s10529-006-9127-2 PubMed DOI

White AK, Vaninsberghe M, Petriv OI, Hamidi M, Sikorski D, Marra MA, et al. High-throughput microfluidic single-cell RT-qPCR. Proc Natl Acad Sci USA (2011) 108:13999–400410.1073/pnas.1019446108 PubMed DOI PMC

Mazutis L, Gilbert J, Ung WL, Weitz DA, Griffiths AD, Heyman JA. Single-cell analysis and sorting using droplet-based microfluidics. Nat Protoc (2013) 8:870–9110.1038/nprot.2013.046 PubMed DOI PMC

Stahlberg A, Thomsen C, Ruff D, Aman P. Quantitative PCR analysis of DNA, RNAs, and proteins in the same single cell. Clin Chem (2012) 58(12):1682–9110.1373/clinchem.2012.191445 PubMed DOI

Fox BC, Devonshire AS, Baradez MO, Marshall D, Foy CA. Comparison of reverse transcription-quantitative polymerase chain reaction methods and platforms for single cell gene expression analysis. Anal Biochem (2012) 427(2):178–8610.1016/j.ab.2012.05.010 PubMed DOI

Silvy M, Pic G, Gabert J, Picard C. Improvement of gene expression analysis by RQ-PCR technology: addition of BSA. Leukemia (2004) 18:1022–510.1038/sj.leu.2403339 PubMed DOI

Arnedo A, Espuelas S, Irache JM. Albumin nanoparticles as carriers for a phosphodiester oligonucleotide. Int J Pharm (2002) 244:59–7210.1016/S0378-5173(02)00300-9 PubMed DOI

Abu Al-Soud W, Radstrom P. Effects of amplification facilitators on diagnostic PCR in the presence of blood, feces, and meat. J Clin Microbiol (2000) 38:4463–70 PubMed PMC

Wilson IG. Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol (1997) 63:3741–51 PubMed PMC

Guyton AC, Hall JE. Textbook of Medical Physiology. Philadelphia: Elsevier Saunders; (2006).

Rossetti S, Van Unen L, Sacchi N, Hoogeveen AT. Novel RNA-binding properties of the MTG chromatin regulatory proteins. BMC Mol Biol (2008) 9:93.10.1186/1471-2199-9-93 PubMed DOI PMC

Sharova LV, Sharov AA, Nedorezov T, Piao Y, Shaik N, Ko MS. Database for mRNA half-life of 19 977 genes obtained by DNA microarray analysis of pluripotent and differentiating mouse embryonic stem cells. DNA Res (2009) 16:45–5810.1093/dnares/dsn030 PubMed DOI PMC

Taniguchi Y, Choi PJ, Li GW, Chen H, Babu M, Hearn J, et al. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science (2010) 329:533–810.1126/science.1188308 PubMed DOI PMC

Ibrahim H, Wilusz J, Wilusz CJ. RNA recognition by 3′-to-5′ exonucleases: the substrate perspective. Biochim Biophys Acta (2008) 1779:256–6510.1016/j.bbagrm.2007.11.004 PubMed DOI PMC

Dickson KA, Haigis MC, Raines RT. Ribonuclease inhibitor: structure and function. Prog Nucleic Acid Res Mol Biol (2005) 80:349–7410.1016/S0079-6603(05)80009-1 PubMed DOI PMC

Arnold U, Schulenburg C, Schmidt D, Ulbrich-Hofmann R. Contribution of structural peculiarities of onconase to its high stability and folding kinetics. Biochemistry (2006) 45:3580–710.1021/bi0525223 PubMed DOI

Abu Al-Soud W, Radstrom P. Capacity of nine thermostable DNA polymerases to mediate DNA amplification in the presence of PCR-inhibiting samples. Appl Environ Microbiol (1998) 64:3748–53 PubMed PMC

Kermekchiev MB, Kirilova LI, Vail EE, Barnes WM. Mutants of Taq DNA polymerase resistant to PCR inhibitors allow DNA amplification from whole blood and crude soil samples. Nucleic Acids Res (2009) 37:e40.10.1093/nar/gkn1055 PubMed DOI PMC

Ferrari BC, Power ML, Bergquist PL. Closed-tube DNA extraction using a thermostable proteinase is highly sensitive, capable of single parasite detection. Biotechnol Lett (2007) 29:1831–710.1007/s10529-007-9487-2 PubMed DOI

Zhang Z, Kermekchiev MB, Barnes WM. Direct DNA amplification from crude clinical samples using a PCR enhancer cocktail and novel mutants of Taq. J Mol Diagn (2010) 12:152–6110.2353/jmoldx.2010.090070 PubMed DOI PMC

Lounsbury JA, Coult N, Miranian DC, Cronk SM, Haverstick DM, Kinnon P, et al. An enzyme-based DNA preparation method for application to forensic biological samples and degraded stains. Forensic Sci Int Genet (2012) 6:607–1510.1016/j.fsigen.2012.01.011 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...