Tutorial: Guidelines for Single-Cell RT-qPCR
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
Grantová podpora
GACR 20-05770S
Grantová Agentura České Republiky
GACR 19-02046S
Grantová Agentura České Republiky
CZ.1.05/1.1.00/02.0109
Ministerstvo Školství, Mládeže a Tělovýchovy
RVO 86652036
Ministerstvo Školství, Mládeže a Tělovýchovy
EJP RD COFUND-EJP N° 825575
Horizon 2020
PubMed
34685587
PubMed Central
PMC8534298
DOI
10.3390/cells10102607
PII: cells10102607
Knihovny.cz E-zdroje
- Klíčová slova
- RT-qPCR, gene expression, preamplification, quantitative PCR, reverse transcription, sample collection, single cell,
- MeSH
- analýza jednotlivých buněk metody normy MeSH
- kvantitativní polymerázová řetězová reakce metody normy MeSH
- lidé MeSH
- reverzní transkripce genetika MeSH
- senzitivita a specificita MeSH
- stanovení celkové genové exprese metody normy MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Reverse transcription quantitative PCR (RT-qPCR) has delivered significant insights in understanding the gene expression landscape. Thanks to its precision, sensitivity, flexibility, and cost effectiveness, RT-qPCR has also found utility in advanced single-cell analysis. Single-cell RT-qPCR now represents a well-established method, suitable for an efficient screening prior to single-cell RNA sequencing (scRNA-Seq) experiments, or, oppositely, for validation of hypotheses formulated from high-throughput approaches. Here, we aim to provide a comprehensive summary of the scRT-qPCR method by discussing the limitations of single-cell collection methods, describing the importance of reverse transcription, providing recommendations for the preamplification and primer design, and summarizing essential data processing steps. With the detailed protocol attached in the appendix, this tutorial provides a set of guidelines that allow any researcher to perform scRT-qPCR measurements of the highest standard.
Zobrazit více v PubMed
Swarup V., Hinz F.I., Rexach J.E., Noguchi K., Toyoshiba H., Oda A., Hirai K., Sarkar A., Seyfried N.T., Cheng C., et al. Identification of evolutionarily conserved gene networks mediating neurodegenerative dementia. Nat. Med. 2019;25:152–164. doi: 10.1038/s41591-018-0223-3. PubMed DOI PMC
Maniatis S., Äijö T., Vickovic S., Braine C., Kang K., Mollbrink A., Fagegaltier D., Andrusivová Ž., Saarenpää S., Saiz-Castro G., et al. Spatiotemporal dynamics of molecular pathology in amyotrophic lateral sclerosis. Science. 2019;364:89–93. doi: 10.1126/science.aav9776. PubMed DOI
Kelley K.W., Nakao-Inoue H., Molofsky A.V., Oldham M.C. Variation among intact tissue samples reveals the core transcriptional features of human CNS cell classes. Nat. Neurosci. 2018;21:1171–1184. doi: 10.1038/s41593-018-0216-z. PubMed DOI PMC
Habib N., McCabe C., Medina S., Varshavsky M., Kitsberg D., Dvir-Szternfeld R., Green G., Dionne D., Nguyen L., Marshall J.L., et al. Disease-associated astrocytes in Alzheimer’s disease and aging. Nat. Neurosci. 2020;23:701–706. doi: 10.1038/s41593-020-0624-8. PubMed DOI PMC
Mathys H., Davila-Velderrain J., Peng Z., Gao F., Mohammadi S., Young J.Z., Menon M., He L., Abdurrob F., Jiang X., et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature. 2019;570:332–337. doi: 10.1038/s41586-019-1195-2. PubMed DOI PMC
Sala Frigerio C., Wolfs L., Fattorelli N., Thrupp N., Voytyuk I., Schmidt I., Mancuso R., Chen W.T., Woodbury M.E., Srivastava G., et al. The Major Risk Factors for Alzheimer’s Disease: Age, Sex, and Genes Modulate the Microglia Response to Aβ Plaques. Cell Rep. 2019;27:1293–1306. doi: 10.1016/j.celrep.2019.03.099. PubMed DOI PMC
Liddelow S.A., Guttenplan K.A., Clarke L.E., Bennett F.C., Bohlen C.J., Schirmer L., Bennett M.L., Münch A.E., Chung W.S., Peterson T.C., et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541:481–487. doi: 10.1038/nature21029. PubMed DOI PMC
Guttenplan K.A., Stafford B.K., El-Danaf R.N., Adler D.I., Münch A.E., Weigel M.K., Huberman A.D., Liddelow S.A. Neurotoxic Reactive Astrocytes Drive Neuronal Death after Retinal Injury. Cell Rep. 2020;31:107776. doi: 10.1016/j.celrep.2020.107776. PubMed DOI PMC
Keren-Shaul H., Spinrad A., Weiner A., Matcovitch-Natan O., Dvir-Szternfeld R., Ulland T.K., David E., Baruch K., Lara-Astaiso D., Toth B., et al. A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease. Cell. 2017;169:1276–1290. doi: 10.1016/j.cell.2017.05.018. PubMed DOI
Willis E.F., Macdonald K.P.A., Nguyen Q.H., Rose-John S., Ruitenberg M.J., Correspondence J.V. Repopulating Microglia Promote Brain Repair in an IL-6-Dependent Manner. Cell. 2020;180:833–846. doi: 10.1016/j.cell.2020.02.013. PubMed DOI
Wheeler M.A., Clark I.C., Tjon E.C., Li Z., Zandee S.E.J., Couturier C.P., Watson B.R., Scalisi G., Alkwai S., Rothhammer V., et al. MAFG-driven astrocytes promote CNS inflammation. Nature. 2020;578:593. doi: 10.1038/s41586-020-1999-0. PubMed DOI PMC
Friedman B.A., Srinivasan K., Ayalon G., Meilandt W.J., Lin H., Huntley M.A., Cao Y., Lee S.H., Haddick P.C.G., Ngu H., et al. Diverse Brain Myeloid Expression Profiles Reveal Distinct Microglial Activation States and Aspects of Alzheimer’s Disease Not Evident in Mouse Models. Cell Rep. 2018;22:832–847. doi: 10.1016/j.celrep.2017.12.066. PubMed DOI
Andersson A., Bergenstråhle J., Asp M., Bergenstråhle L., Jurek A., Fernández Navarro J., Lundeberg J. Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography. Commun. Biol. 2020;3:1–8. doi: 10.1038/s42003-020-01247-y. PubMed DOI PMC
Chung W., Eum H.H., Lee H.O., Lee K.M., Lee H.B., Kim K.T., Ryu H.S., Kim S., Lee J.E., Park Y.H., et al. Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer. Nat. Commun. 2017;8:1–12. doi: 10.1038/ncomms15081. PubMed DOI PMC
Milich L.M., Choi J.S., Ryan C., Cerqueira S.R., Benavides S., Yahn S.L., Tsoulfas P., Lee J.K. Single-cell analysis of the cellular heterogeneity and interactions in the injured mouse spinal cord. J. Exp. Med. 2021;218:1–25. doi: 10.1084/jem.20210040. PubMed DOI PMC
Bayraktar O.A., Bartels T., Holmqvist S., Kleshchevnikov V., Martirosyan A., Polioudakis D., Ben Haim L., Young A.M.H., Batiuk M.Y., Prakash K., et al. Astrocyte layers in the mammalian cerebral cortex revealed by a single-cell in situ transcriptomic map. Nat. Neurosci. 2020;23:500–509. doi: 10.1038/s41593-020-0602-1. PubMed DOI PMC
Ståhlberg A., Thomsen C., Ruff D., Åman P. Quantitative PCR Analysis of DNA, RNAs, and Proteins in the Same Single Cell. Clin. Chem. 2012;58:1682–1691. doi: 10.1373/clinchem.2012.191445. PubMed DOI
Bustin S.A., Mueller R. Real-time reverse transcription PCR (qRT-PCR) and its potential use in clinical diagnosis. Clin. Sci. 2005;109:365–379. doi: 10.1042/CS20050086. PubMed DOI
Kubista M., Andrade J.M., Bengtsson M., Forootan A., Jonák J., Lind K., Sindelka R., Sjöback R., Sjögreen B., Strömbom L., et al. The real-time polymerase chain reaction. Mol. Aspects Med. 2006;27:95–125. doi: 10.1016/j.mam.2005.12.007. PubMed DOI
Tichopad A., Kitchen R., Riedmaier I., Becker C., Ståhlberg A., Kubista M. Design and optimization of reverse-transcription quantitative PCR experiments. Clin. Chem. 2009;55:1816–1823. doi: 10.1373/clinchem.2009.126201. PubMed DOI
Bar T., Kubista M., Tichopad A. Validation of kinetics similarity in qPCR. Nucleic Acids Res. 2012;40:1395–1406. doi: 10.1093/nar/gkr778. PubMed DOI PMC
Ståhlberg A., Kubista M. The workflow of single-cell expression profiling using quantitative real-time PCR. Expert Rev. Mol. Diagn. 2014;14:323–331. doi: 10.1586/14737159.2014.901154. PubMed DOI PMC
Ståhlberg A., Kubista M. Technical aspects and recommendations for single-cell qPCR. Mol. Aspects Med. 2018;59:28–35. doi: 10.1016/j.mam.2017.07.004. PubMed DOI
Svec D., Tichopad A., Novosadova V., Pfaffl M.W., Kubista M. How good is a PCR efficiency estimate: Recommendations for precise and robust qPCR efficiency assessments. Biomol. Detect. Quantif. 2015;3:9–16. doi: 10.1016/j.bdq.2015.01.005. PubMed DOI PMC
Bustin S., Huggett J. qPCR primer design revisited. Biomol. Detect. Quantif. 2017;14:19–28. doi: 10.1016/j.bdq.2017.11.001. PubMed DOI PMC
Ståhlberg A., Kubista M., Åman P. Single-cell gene-expression profiling and its potential diagnostic applications. Expert Rev. Mol. Diagn. 2011;11:735–740. doi: 10.1586/erm.11.60. PubMed DOI
Ståhlberg A., Bengtsson M. Single-cell gene expression profiling using reverse transcription quantitative real-time PCR. Methods. 2010;50:282–288. doi: 10.1016/j.ymeth.2010.01.002. PubMed DOI
Ståhlberg A., Rusnakova V., Kubista M. The added value of single-cell gene expression profiling. Brief. Funct. Genom. 2013;12:81–89. doi: 10.1093/bfgp/elt001. PubMed DOI
Lafzi A., Moutinho C., Picelli S., Heyn H. Tutorial: Guidelines for the experimental design of single-cell RNA sequencing studies. Nat. Protoc. 2018;13:2742–2757. doi: 10.1038/s41596-018-0073-y. PubMed DOI
Andrews T.S., Kiselev V.Y., McCarthy D., Hemberg M. Tutorial: Guidelines for the computational analysis of single-cell RNA sequencing data. Nat. Protoc. 2021;16:1–9. doi: 10.1038/s41596-020-00409-w. PubMed DOI
van den Brink S.C., Sage F., Vértesy Á., Spanjaard B., Peterson-Maduro J., Baron C.S., Robin C., van Oudenaarden A. Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations. Nat. Methods. 2017;14:935–936. doi: 10.1038/nmeth.4437. PubMed DOI
Marsh S.E., Kamath T., Walker A.J., Dissing-Olesen L., Hammond T.R., Young A.M.H., Abdulraouf A., Nadaf N., Dufort C., Murphy S., et al. Single Cell Sequencing Reveals Glial Specific Responses to Tissue Processing & Enzymatic Dissociation in Mice and Humans Single Cell Sequencing Reveals Glial Specific Responses to Tissue Processing & Enzymatic Dissociation in Mice and Humans. bioRxiv. 2020:1–13.
Hodne K., Weltzien F.-A. Single-Cell Isolation and Gene Analysis: Pitfalls and Possibilities. Int. J. Mol. Sci. 2015;16:26832–26849. doi: 10.3390/ijms161125996. PubMed DOI PMC
Abaffy P., Lettlova S., Truksa J., Kubista M., Sindelka R. Preparation of single-cell suspension from mouse breast cancer focusing on preservation of original cell state information and cell type composition. bioRxiv. 2019 doi: 10.1101/824714. DOI
O’Flanagan C.H., Campbell K.R., Zhang A.W., Kabeer F., Lim J.L.P., Biele J., Eirew P., Lai D., McPherson A., Kong E., et al. Dissociation of solid tumor tissues with cold active protease for single-cell RNA-seq minimizes conserved collagenase-associated stress responses. Genome Biol. 2019;20:1–13. doi: 10.1186/s13059-019-1830-0. PubMed DOI PMC
Wu Y.E., Pan L., Zuo Y., Li X., Hong W. Detecting Activated Cell Populations Using Single-Cell RNA-Seq. Neuron. 2017;96:313–329. doi: 10.1016/j.neuron.2017.09.026. PubMed DOI
Adam M., Potter A.S., Potter S.S. Psychrophilic proteases dramatically reduce single-cell RNA-seq artifacts: A molecular atlas of kidney development. Development. 2017;144:3625–3632. doi: 10.1242/dev.151142. PubMed DOI PMC
Valihrach L., Androvic P., Kubista M. Platforms for Single-Cell Collection and Analysis. Int. J. Mol. Sci. 2018;19:807. doi: 10.3390/ijms19030807. PubMed DOI PMC
Kuhn A., Kumar A., Beilina A., Dillman A., Cookson M.R., Singleton A.B. Cell population-specific expression analysis of human cerebellum. BMC Genom. 2012;13:610. doi: 10.1186/1471-2164-13-610. PubMed DOI PMC
Datta S., Malhotra L., Dickerson R., Chaffee S., Sen C.K., Roy S. Laser capture microdissection: Big data from small samples. Histol. Histopathol. 2015;30:1255–1269. PubMed PMC
Adan A., Alizada G., Kiraz Y., Baran Y., Nalbant A. Flow cytometry: Basic principles and applications. Crit. Rev. Biotechnol. 2017;37:163–176. doi: 10.3109/07388551.2015.1128876. PubMed DOI
Tan S.J., Li Q., Lim C.T. Manipulation and Isolation of Single Cells and Nuclei. Methods Cell Biol. 2010;98:79–96. PubMed
Lee L.M., Liu A.P. The application of micropipette aspiration in molecular mechanics of single cells. J. Nanotechnol. Eng. Med. 2015;5 doi: 10.1115/1.4029936. PubMed DOI PMC
Dzamba D., Valihrach L., Kubista M., Anderova M. The correlation between expression profiles measured in single cells and in traditional bulk samples. Sci. Rep. 2016;6:37022. doi: 10.1038/srep37022. PubMed DOI PMC
Svec D., Andersson D., Pekny M., Sjöback R., Kubista M., Ståhlberg A. Direct Cell Lysis for Single-Cell Gene Expression Profiling. Front. Oncol. 2013;3:274. doi: 10.3389/fonc.2013.00274. PubMed DOI PMC
Wang Y., Zheng H., Chen J., Zhong X., Wang Y., Wang Z., Wang Y. The Impact of Different Preservation Conditions and Freezing-Thawing Cycles on Quality of RNA, DNA, and Proteins in Cancer Tissue. Biopreserv. Biobank. 2015;13:335–347. doi: 10.1089/bio.2015.0029. PubMed DOI
Ji X., Wang M., Li L., Chen F., Zhang Y., Li Q., Zhou J. The Impact of Repeated Freeze-Thaw Cycles on the Quality of Biomolecules in Four Different Tissues. Biopreserv. Biobank. 2017;15:475–483. doi: 10.1089/bio.2017.0064. PubMed DOI
Marinov G.K., Williams B.A., McCue K., Schroth G.P., Gertz J., Myers R.M., Wold B.J. From single-cell to cell-pool transcriptomes: Stochasticity in gene expression and RNA splicing. Genome Res. 2014;24:496–510. doi: 10.1101/gr.161034.113. PubMed DOI PMC
Kubista M., Dreyer-Lamm J., Ståhlberg A. The secrets of the cell. Mol. Aspects Med. 2018;59:1–4. doi: 10.1016/j.mam.2017.08.004. PubMed DOI
Lindén J., Ranta J., Pohjanvirta R. Bayesian modeling of reproducibility and robustness of RNA reverse transcription and quantitative real-time polymerase chain reaction. Anal. Biochem. 2012;428:81–91. doi: 10.1016/j.ab.2012.06.010. PubMed DOI
Sieber M.W., Recknagel P., Glaser F., Witte O.W., Bauer M., Claus R.A., Frahm C. Substantial performance discrepancies among commercially available kits for reverse transcription quantitative polymerase chain reaction: A systematic comparative investigator-driven approach. Anal. Biochem. 2010;401:303–311. doi: 10.1016/j.ab.2010.03.007. PubMed DOI
Bustin S., Dhillon H.S., Kirvell S., Greenwood C., Parker M., Shipley G.L., Nolan T. Variability of the reverse transcription step: Practical implications. Clin. Chem. 2015;61:202–212. doi: 10.1373/clinchem.2014.230615. PubMed DOI
Ståhlberg A., Håkansson J., Xian X., Semb H., Kubista M. Properties of the Reverse Transcription Reaction in mRNA Quantification. Clin. Chem. 2004;50:509–515. doi: 10.1373/clinchem.2003.026161. PubMed DOI
Bengtsson M., Hemberg M., Rorsman P., Ståhlberg A. Quantification of mRNA in single cells and modelling of RT-qPCR induced noise. BMC Mol. Biol. 2008;9:63. doi: 10.1186/1471-2199-9-63. PubMed DOI PMC
Schwaber J., Andersen S., Nielsen L. Shedding light: The importance of reverse transcription efficiency standards in data interpretation. Biomol. Detect. Quantif. 2019;17:100077. doi: 10.1016/j.bdq.2018.12.002. PubMed DOI PMC
Zucha D., Androvic P., Kubista M., Valihrach L. Performance Comparison of Reverse Transcriptases for Single-Cell Studies. Clin. Chem. 2020;66:217–228. doi: 10.1373/clinchem.2019.307835. PubMed DOI
Ståhlberg A. Comparison of Reverse Transcriptases in Gene Expression Analysis. Clin. Chem. 2004;50:1678–1680. doi: 10.1373/clinchem.2004.035469. PubMed DOI
Miranda J.A., Steward G.F. Variables influencing the efficiency and interpretation of reverse transcription quantitative PCR (RT-qPCR): An empirical study using Bacteriophage MS2. J. Virol. Methods. 2017;241:1–10. doi: 10.1016/j.jviromet.2016.12.002. PubMed DOI
Nardon E., Donada M., Bonin S., Dotti I., Stanta G. Higher random oligo concentration improves reverse transcription yield of cDNA from bioptic tissues and quantitative RT-PCR reliability. Exp. Mol. Pathol. 2009;87:146–151. doi: 10.1016/j.yexmp.2009.07.005. PubMed DOI
Levesque-Sergerie J.-P., Duquette M., Thibault C., Delbecchi L., Bissonnette N. Detection limits of several commercial reverse transcriptase enzymes: Impact on the low- and high-abundance transcript levels assessed by quantitative RT-PCR. BMC Mol. Biol. 2007;8:93. doi: 10.1186/1471-2199-8-93. PubMed DOI PMC
Bagnoli J.W., Ziegenhain C., Janjic A., Wange L.E., Vieth B., Parekh S., Geuder J., Hellmann I., Enard W. Sensitive and powerful single-cell RNA sequencing using mcSCRB-seq. Nat. Commun. 2018;9:2937. doi: 10.1038/s41467-018-05347-6. PubMed DOI PMC
Skirgaila R., Pudzaitis V., Paliksa S., Vaitkevicius M., Janulaitis A. Compartmentalization of destabilized enzyme-mRNA-ribosome complexes generated by ribosome display: A novel tool for the directed evolution of enzymes. Protein Eng. Des. Sel. 2013;26:453–461. doi: 10.1093/protein/gzt017. PubMed DOI
Mohr S., Ghanem E., Smith W., Sheeter D., Qin Y., King O., Polioudakis D., Iyer V.R., Hunicke-Smith S., Swamy S., et al. Thermostable group II intron reverse transcriptase fusion proteins and their use in cDNA synthesis and next-generation RNA sequencing. Rna. 2013;19:958–970. doi: 10.1261/rna.039743.113. PubMed DOI PMC
Arezi B., Hogrefe H. Novel mutations in Moloney Murine Leukemia Virus reverse transcriptase increase thermostability through tighter binding to template-primer. Nucleic Acids Res. 2009;37:473–481. doi: 10.1093/nar/gkn952. PubMed DOI PMC
Nolan T., Hands R.E., Bustin S.A. Quantification of mRNA using real-time RT-PCR. Nat. Protoc. 2006;1:1559–1582. doi: 10.1038/nprot.2006.236. PubMed DOI
Álvarez M., Menéndez-Arias L. Temperature effects on the fidelity of a thermostable HIV-1 reverse transcriptase. FEBS J. 2014;281:342–351. doi: 10.1111/febs.12605. PubMed DOI
Forootan A., Sjöback R., Björkman J., Sjögreen B., Linz L., Kubista M. Methods to determine limit of detection and limit of quantification in quantitative real-time PCR (qPCR) Biomol. Detect. Quantif. 2017;12:1–6. doi: 10.1016/j.bdq.2017.04.001. PubMed DOI PMC
Svensson V., Natarajan K.N., Ly L.-H., Miragaia R.J., Labalette C., Macaulay I.C., Cvejic A., Teichmann S.A. Power analysis of single-cell RNA-sequencing experiments. Nat. Methods. 2017;14:381–387. doi: 10.1038/nmeth.4220. PubMed DOI PMC
Baranauskas A., Paliksa S., Alzbutas G., Vaitkevicius M., Lubiene J., Letukiene V., Burinskas S., Sasnauskas G., Skirgaila R. Generation and characterization of new highly thermostable and processive M-MuLV reverse transcriptase variants. Protein Eng. Des. Sel. 2012;25:657–668. doi: 10.1093/protein/gzs034. PubMed DOI
Ziegenhain C., Vieth B., Parekh S., Reinius B., Guillaumet-Adkins A., Smets M., Leonhardt H., Heyn H., Hellmann I., Enard W. Comparative Analysis of Single-Cell RNA Sequencing Methods. Mol. Cell. 2017;65:631–643. doi: 10.1016/j.molcel.2017.01.023. PubMed DOI
Bustin S.A., Nolan T. Pitfalls of quantitative real- time reverse-transcription polymerase chain reaction. J. Biomol. Tech. 2004;15:155–166. PubMed PMC
Picelli S., Faridani O.R., Björklund A.K., Winberg G., Sagasser S., Sandberg R. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 2014;9:171–181. doi: 10.1038/nprot.2014.006. PubMed DOI
Attwater J., Wochner A., Pinheiro V.B., Coulson A., Holliger P. Ice as a protocellular medium for RNA replication. Nat. Commun. 2010;1:1–9. doi: 10.1038/ncomms1076. PubMed DOI
Aicher T.P., Carroll S., Raddi G., Gierahn T., Wadsworth M.H., Hughes T.K., Love C., Shalek A.K. Seq-Well: A sample-efficient, portable picowell platform for massively parallel single-cell RNA sequencing. Methods Mol. Biol. 2019;1979:111–132. PubMed PMC
Hashimshony T., Senderovich N., Avital G., Klochendler A., de Leeuw Y., Anavy L., Gennert D., Li S., Livak K.J., Rozenblatt-Rosen O., et al. CEL-Seq2: Sensitive highly-multiplexed single-cell RNA-Seq. Genome Biol. 2016;17:1–7. doi: 10.1186/s13059-016-0938-8. PubMed DOI PMC
Nolan T., Hands R.E., Ogunkolade W., Bustin S.A. SPUD: A quantitative PCR assay for the detection of inhibitors in nucleic acid preparations. Anal. Biochem. 2006;351:308–310. doi: 10.1016/j.ab.2006.01.051. PubMed DOI
External RNA Controls Consortium Proposed methods for testing and selecting the ERCC external RNA controls. BMC Genomics. 2005;6:150. doi: 10.1186/1471-2164-6-150. PubMed DOI PMC
Livak K.J., Wills Q.F., Tipping A.J., Datta K., Mittal R., Goldson A.J., Sexton D.W., Holmes C.C. Methods for qPCR gene expression profiling applied to 1440 lymphoblastoid single cells. Methods. 2013;59:71–79. doi: 10.1016/j.ymeth.2012.10.004. PubMed DOI PMC
Andersson D., Akrap N., Svec D., Godfrey T.E., Kubista M., Landberg G., Ståhlberg A. Properties of targeted preamplification in DNA and cDNA quantification. Expert Rev. Mol. Diagn. 2015;15:1085–1100. doi: 10.1586/14737159.2015.1057124. PubMed DOI PMC
Kroneis T., Jonasson E., Andersson D., Dolatabadi S., Ståhlberg A. Global preamplification simplifies targeted mRNA quantification. Sci. Rep. 2017;7:45219. doi: 10.1038/srep45219. PubMed DOI PMC
Korenková V., Scott J., Novosadová V., Jindřichová M., Langerová L., Švec D., Šídová M., Sjöback R. Pre-amplification in the context of high-throughput qPCR gene expression experiment. BMC Mol. Biol. 2015;16:5. doi: 10.1186/s12867-015-0033-9. PubMed DOI PMC
Laurell H., Iacovoni J.S., Abot A., Svec D., Maoret J.J., Arnal J.F., Kubista M. Correction of RT-qPCR data for genomic DNA-derived signals with ValidPrime. Nucleic Acids Res. 2012;40:e51. doi: 10.1093/nar/gkr1259. PubMed DOI PMC
Okello J.B.A., Rodriguez L., Poinar D., Bos K., Okwi A.L., Bimenya G.S., Sewankambo N.K., Henry K.R., Kuch M., Poinar H.N. Quantitative assessment of the sensitivity of various commercial reverse transcriptases based on armored HIV RNA. PLoS ONE. 2010;5:e13931. doi: 10.1371/journal.pone.0013931. PubMed DOI PMC
Suslov O., Steindler D.A. PCR inhibition by reverse transcriptase leads to an overestimation of amplification efficiency. Nucleic Acids Res. 2005;33:1–12. doi: 10.1093/nar/gni176. PubMed DOI PMC
Ye J., Coulouris G., Zaretskaya I., Cutcutache I., Rozen S., Madden T.L. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 2012;13:134. doi: 10.1186/1471-2105-13-134. PubMed DOI PMC
Burns M., Valdivia H. Modelling the limit of detection in real-time quantitative PCR. Eur. Food Res. Technol. 2008;226:1513–1524. doi: 10.1007/s00217-007-0683-z. DOI
Ståhlberg A., Rusnakova V., Forootan A., Anderova M., Kubista M. RT-qPCR work-flow for single-cell data analysis. Methods. 2013;59:80–88. doi: 10.1016/j.ymeth.2012.09.007. PubMed DOI
Bergkvist A., Rusnakova V., Sindelka R., Garda J.M.A., Sjögreen B., Lindh D., Forootan A., Kubista M. Gene expression profiling—Clusters of possibilities. Methods. 2010;50:323–335. doi: 10.1016/j.ymeth.2010.01.009. PubMed DOI
Riedmaier I., Pfaffl M.W. Transcriptional biomarkers—High throughput screening, quantitative verification, and bioinformatical validation methods. Methods. 2013;59:3–9. doi: 10.1016/j.ymeth.2012.08.012. PubMed DOI