Platforms for Single-Cell Collection and Analysis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
29534489
PubMed Central
PMC5877668
DOI
10.3390/ijms19030807
PII: ijms19030807
Knihovny.cz E-zdroje
- Klíčová slova
- analysis, collection, isolation, single cell,
- MeSH
- analýza jednotlivých buněk přístrojové vybavení metody MeSH
- lidé MeSH
- mikrofluidika přístrojové vybavení metody MeSH
- průtoková cytometrie přístrojové vybavení metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Single-cell analysis has become an established method to study cell heterogeneity and for rare cell characterization. Despite the high cost and technical constraints, applications are increasing every year in all fields of biology. Following the trend, there is a tremendous development of tools for single-cell analysis, especially in the RNA sequencing field. Every improvement increases sensitivity and throughput. Collecting a large amount of data also stimulates the development of new approaches for bioinformatic analysis and interpretation. However, the essential requirement for any analysis is the collection of single cells of high quality. The single-cell isolation must be fast, effective, and gentle to maintain the native expression profiles. Classical methods for single-cell isolation are micromanipulation, microdissection, and fluorescence-activated cell sorting (FACS). In the last decade several new and highly efficient approaches have been developed, which not just supplement but may fully replace the traditional ones. These new techniques are based on microfluidic chips, droplets, micro-well plates, and automatic collection of cells using capillaries, magnets, an electric field, or a punching probe. In this review we summarize the current methods and developments in this field. We discuss the advantages of the different commercially available platforms and their applicability, and also provide remarks on future developments.
Laboratory of Gene Expression Institute of Biotechnology CAS Biocev Vestec 252 50 Czech Republic
Laboratory of Growth Regulators Faculty of Science Palacky University Olomouc 783 71 Czech Republic
Zobrazit více v PubMed
Almendro V., Marusyk A., Polyak K. Cellular heterogeneity and molecular evolution in cancer. Annu. Rev. Pathol. 2013;8:277–302. doi: 10.1146/annurev-pathol-020712-163923. PubMed DOI
Heath J.R., Ribas A., Mischel P.S. Single-cell analysis tools for drug discovery and development. Nat. Rev. Drug Discov. 2016;15:204–216. doi: 10.1038/nrd.2015.16. PubMed DOI PMC
Saadatpour A., Lai S., Guo G., Yuan G.C. Single-cell analysis in cancer genomics. Trends Genet. 2015;31:576–586. doi: 10.1016/j.tig.2015.07.003. PubMed DOI PMC
Kalisky T., Blainey P., Quake S.R. Genomic analysis at the single-cell level. Annu. Rev. Genet. 2011;45:431–445. doi: 10.1146/annurev-genet-102209-163607. PubMed DOI PMC
Lovett M. The applications of single-cell genomics. Hum. Mol. Genet. 2013;22:R22–R26. doi: 10.1093/hmg/ddt377. PubMed DOI PMC
Stahlberg A., Kubista M., Aman P. Single-cell gene-expression profiling and its potential diagnostic applications. Expert Rev. Mol. Diagn. 2011;11:735–740. doi: 10.1586/erm.11.60. PubMed DOI
Stahlberg A., Rusnakova V., Kubista M. The added value of single-cell gene expression profiling. Brief. Funct. Genom. 2013;12:81–89. doi: 10.1093/bfgp/elt001. PubMed DOI
Tang F.C., Lao K.Q., Surani M.A. Development and applications of single-cell transcriptome analysis. Nat. Methods. 2011;8:S6–S11. doi: 10.1038/nmeth.1557. PubMed DOI PMC
Wang D.J., Bodovitz S. Single cell analysis: The new frontier in ‘omics’. Trends Biotechnol. 2010;28:281–290. doi: 10.1016/j.tibtech.2010.03.002. PubMed DOI PMC
Alix-Panabieres C., Pantel K. Circulating tumor cells: Liquid biopsy of cancer. Clin. Chem. 2013;59:110–118. doi: 10.1373/clinchem.2012.194258. PubMed DOI
Mitra A., Mishra L., Li S.L. EMT, CTCs and CSCs in tumor relapse and drug-resistance. Oncotarget. 2015;6:10697–10711. doi: 10.18632/oncotarget.4037. PubMed DOI PMC
Pantel K., Alix-Panabieres C. Circulating tumour cells in cancer patients: Challenges and perspectives. Trends Mol. Med. 2010;16:398–406. doi: 10.1016/j.molmed.2010.07.001. PubMed DOI
Sun Y.F., Yang X.R., Zhou J., Qiu S.J., Fan J., Xu Y. Circulating tumor cells: Advances in detection methods, biological issues, and clinical relevance. J. Cancer Res. Clin. 2011;137:1151–1173. doi: 10.1007/s00432-011-0988-y. PubMed DOI
Wang H.X., Stoecklein N.H., Lin P.P., Gires O. Circulating and disseminated tumor cells: Diagnostic tools and therapeutic targets in motion. Oncotarget. 2017;8:1884–1912. doi: 10.18632/oncotarget.12242. PubMed DOI PMC
Zhang Z., Ramnath N., Nagrath S. Current status of CTCs as liquid biopsy in lung cancer and future directions. Front. Oncol. 2015;5:209. doi: 10.3389/fonc.2015.00209. PubMed DOI PMC
Gorges T.M., Kuske A., Rock K., Mauermann O., Muller V., Peine S., Verpoort K., Novosadova V., Kubista M., Riethdorf S., et al. Accession of tumor heterogeneity by multiplex transcriptome profiling of single circulating tumor cells. Clin. Chem. 2016;62:1504–1515. doi: 10.1373/clinchem.2016.260299. PubMed DOI
Navin N.E. The first five years of single-cell cancer genomics and beyond. Genome Res. 2015;25:1499–1507. doi: 10.1101/gr.191098.115. PubMed DOI PMC
Proserpio V., Lonnberg T. Single-cell technologies are revolutionizing the approach to rare cells. Immunol. Cell Biol. 2016;94:225–229. doi: 10.1038/icb.2015.106. PubMed DOI PMC
Hodzic E. Single-cell analysis: Advances and future perspectives. Bosn. J. Basic Med. Sci. 2016;16:313–314. doi: 10.17305/bjbms.2016.1371. PubMed DOI PMC
Kleparnik K., Foret F. Recent advances in the development of single cell analysis—A review. Anal. Chim. Acta. 2013;800:12–21. doi: 10.1016/j.aca.2013.09.004. PubMed DOI
Yuan G.C., Cai L., Elowitz M., Enver T., Fan G., Guo G., Irizarry R., Kharchenko P., Kim J., Orkin S., et al. Challenges and emerging directions in single-cell analysis. Genome Biol. 2017;18:84. doi: 10.1186/s13059-017-1218-y. PubMed DOI PMC
Hu P., Zhang W., Xin H., Deng G. Single cell isolation and analysis. Front. Cell Dev. Biol. 2016;4:116. doi: 10.3389/fcell.2016.00116. PubMed DOI PMC
Hodne K., Weltzien F.A. Single-cell isolation and gene analysis: Pitfalls and possibilities. Int. J. Mol. Sci. 2015;16:26832–26849. doi: 10.3390/ijms161125996. PubMed DOI PMC
Wu M., Singh A.K. Single-cell protein analysis. Curr. Opin. Biotechnol. 2012;23:83–88. doi: 10.1016/j.copbio.2011.11.023. PubMed DOI PMC
Macaulay I.C., Ponting C.P., Voet T. Single-cell multiomics: Multiple measurements from single cells. Trends Genet. 2017;33:155–168. doi: 10.1016/j.tig.2016.12.003. PubMed DOI PMC
Darmanis S., Gallant C.J., Marinescu V.D., Niklasson M., Segerman A., Flamourakis G., Fredriksson S., Assarsson E., Lundberg M., Nelander S., et al. Simultaneous multiplexed measurement of RNA and proteins in single cells. Cell Rep. 2016;14:380–389. doi: 10.1016/j.celrep.2015.12.021. PubMed DOI PMC
Stahlberg A., Thomsen C., Ruff D., Aman P. Quantitative PCR analysis of DNA, RNAs, and proteins in the same single cell. Clin. Chem. 2012;58:1682–1691. doi: 10.1373/clinchem.2012.191445. PubMed DOI
Su Y., Shi Q., Wei W. Single cell proteomics in biomedicine: High-dimensional data acquisition, visualization, and analysis. Proteomics. 2017;17 doi: 10.1002/pmic.201600267. PubMed DOI PMC
Liu S., Trapnell C. Single-cell transcriptome sequencing: Recent advances and remaining challenges. F1000Research. 2016;5 doi: 10.12688/f1000research.7223.1. PubMed DOI PMC
Gawad C., Koh W., Quake S.R. Single-cell genome sequencing: Current state of the science. Nat. Rev. Genet. 2016;17:175–188. doi: 10.1038/nrg.2015.16. PubMed DOI
Kanter I., Kalisky T. Single cell transcriptomics: Methods and applications. Front. Oncol. 2015;5:53. doi: 10.3389/fonc.2015.00053. PubMed DOI PMC
Kolodziejczyk A.A., Kim J.K., Svensson V., Marioni J.C., Teichmann S.A. The technology and biology of single-cell RNA sequencing. Mol. Cell. 2015;58:610–620. doi: 10.1016/j.molcel.2015.04.005. PubMed DOI
Gross A., Schoendube J., Zimmermann S., Steeb M., Zengerle R., Koltay P. Technologies for single-cell isolation. Int. J. Mol. Sci. 2015;16:16897–16919. doi: 10.3390/ijms160816897. PubMed DOI PMC
Adan A., Alizada G., Kiraz Y., Baran Y., Nalbant A. Flow cytometry: Basic principles and applications. Crit. Rev. Biotechnol. 2017;37:163–176. doi: 10.3109/07388551.2015.1128876. PubMed DOI
Datta S., Malhotra L., Dickerson R., Chaffee S., Sen C.K., Roy S. Laser capture microdissection: Big data from small samples. Histol. Histopathol. 2015;30:1255–1269. PubMed PMC
Lee L.M., Liu A.P. The application of micropipette aspiration in molecular mechanics of single cells. J. Nanotechnol. Eng. Med. 2014;5:0408011–0408016. doi: 10.1115/1.4029936. PubMed DOI PMC
Chattopadhyay P.K., Roederer M. Cytometry: Today’s technology and tomorrow’s horizons. Methods. 2012;57:251–258. doi: 10.1016/j.ymeth.2012.02.009. PubMed DOI PMC
Tan S.J., Li Q., Lim C.T. Manipulation and isolation of single cells and nuclei. Methods Cell Biol. 2010;98:79–96. PubMed
Lindstrom S., Andersson-Svahn H. Overview of single-cell analyses: Microdevices and applications. Lab Chip. 2010;10:3363–3372. doi: 10.1039/c0lc00150c. PubMed DOI
Espina V., Heiby M., Pierobon M., Liotta L.A. Laser capture microdissection technology. Expert Rev. Mol. Diagn. 2007;7:647–657. doi: 10.1586/14737159.7.5.647. PubMed DOI
Andersson H., van den Berg A. Microtechnologies and nanotechnologies for single-cell analysis. Curr. Opin. Biotechnol. 2004;15:44–49. doi: 10.1016/j.copbio.2004.01.004. PubMed DOI
Walch A., Specht K., Smida J., Aubele M., Zitzelsberger H., Hofler H., Werner M. Tissue microdissection techniques in quantitative genome and gene expression analyses. Histochem. Cell Biol. 2001;115:269–276. PubMed
Orfao A., RuizArguelles A. General concepts about cell sorting techniques. Clin. Biochem. 1996;29:5–9. doi: 10.1016/0009-9120(95)02017-9. PubMed DOI
Wiedenmann J., Oswald F., Nienhaus G.U. Fluorescent proteins for live cell imaging: Opportunities, limitations, and challenges. IUBMB Life. 2009;61:1029–1042. doi: 10.1002/iub.256. PubMed DOI
Day R.N., Davidson M.W. The fluorescent protein palette: Tools for cellular imaging. Chem. Soc. Rev. 2009;38:2887–2921. doi: 10.1039/b901966a. PubMed DOI PMC
Day R.N., Schaufele F. Fluorescent protein tools for studying protein dynamics in living cells: A review. J. Biomed. Opt. 2008;13:031202. doi: 10.1117/1.2939093. PubMed DOI
Abraham P., Maliekal T.T. Single cell biology beyond the era of antibodies: Relevance, challenges, and promises in biomedical research. Cell. Mol. Life Sci. 2017;74:1177–1189. doi: 10.1007/s00018-016-2382-z. PubMed DOI PMC
Bradbury A., Pluckthun A. Standardize antibodies used in research. Nature. 2015;518:27–29. doi: 10.1038/518027a. PubMed DOI
Baker M. Reproducibility crisis: Blame it on the antibodies. Nature. 2015;521:274–276. doi: 10.1038/521274a. PubMed DOI
Gopalan V., Islam F., Lam A.K. Surface markers for the identification of cancer stem cells. Methods Mol. Biol. 2018;1692:17–29. PubMed
Ansari M.A. Temporal profile of m1 and m2 responses in the hippocampus following early 24 h of neurotrauma. J. Neurol. Sci. 2015;357:41–49. doi: 10.1016/j.jns.2015.06.062. PubMed DOI
Rusnakova V., Honsa P., Dzamba D., Stahlberg A., Kubista M., Anderova M. Heterogeneity of astrocytes: From development to injury—Single cell gene expression. PLoS ONE. 2013;8:e69734. doi: 10.1371/journal.pone.0069734. PubMed DOI PMC
Khan S.J., Abidi S.N.F., Tian Y., Skinner A., Smith-Bolton R.K. A rapid, gentle and scalable method for dissociation and fluorescent sorting of imaginal disc cells for mRNA sequencing. Fly. 2016;10:73–80. doi: 10.1080/19336934.2016.1173296. PubMed DOI PMC
Qiu X.L., De Jesus J., Pennell M., Troiani M., Haun J.B. Microfluidic device for mechanical dissociation of cancer cell aggregates into single cells. Lab Chip. 2015;15:339–350. doi: 10.1039/C4LC01126K. PubMed DOI PMC
Phelan K., May K.M. Basic techniques in mammalian cell tissue culture. Curr. Protoc. Toxicol. 2016;70:A3B1–A3B22. PubMed
Zeng J., Mohammadreza A., Gao W., Merza S., Smith D., Kelbauskas L., Meldrum D.R. A minimally invasive method for retrieving single adherent cells of different types from cultures. Sci. Rep. 2014;4:5424. doi: 10.1038/srep05424. PubMed DOI PMC
Bebarova M. Advances in patch clamp technique: Towards higher quality and quantity. Gen. Physiol. Biophys. 2012;31:131–140. doi: 10.4149/gpb_2012_016. PubMed DOI
Rubaiy H.N. A short guide to electrophysiology and ion channels. J. Pharm. Pharm. Sci. 2017;20:48–67. doi: 10.18433/J32P6R. PubMed DOI
Podgorny O.V. Live cell isolation by laser microdissection with gravity transfer. J. Biomed. Opt. 2013;18:055002. doi: 10.1117/1.JBO.18.5.055002. PubMed DOI
Decarlo K., Emley A., Dadzie O.E., Mahalingam M. Laser capture microdissection: Methods and applications. Methods Mol. Biol. 2011;755:1–15. PubMed
Aggerholm-Pedersen N., Safwat A., Baerentzen S., Nordsmark M., Nielsen O.S., Alsner J., Sorensen B.S. The importance of reference gene analysis of formalin-fixed, paraffin-embedded samples from sarcoma patients—An often underestimated problem. Transl. Oncol. 2014;7:687–693. doi: 10.1016/j.tranon.2014.09.012. PubMed DOI PMC
Kashofer K., Viertler C., Pichler M., Zatloukal K. Quality control of RNA preservation and extraction from paraffin-embedded tissue: Implications for RT-PCR and microarray analysis. PLoS ONE. 2013;8:e70714. doi: 10.1371/journal.pone.0070714. PubMed DOI PMC
Frankel A. Formalin fixation in the ‘-omics’ era: A primer for the surgeon-scientist. ANZ J. Surg. 2012;82:395–402. doi: 10.1111/j.1445-2197.2012.06092.x. PubMed DOI
Mu Y., Zhou H., Li W., Hu L., Zhang Y. Evaluation of RNA quality in fixed and unembedded mouse embryos by different methods. Exp. Mol. Pathol. 2013;95:206–212. doi: 10.1016/j.yexmp.2013.07.005. PubMed DOI
Dotti I., Bonin S., Basili G., Nardon E., Balani A., Siracusano S., Zanconati F., Palmisano S., De Manzini N., Stanta G. Effects of formalin, methacarn, and finefix fixatives on RNA preservation. Diagn. Mol. Pathol. 2010;19:112–122. doi: 10.1097/PDM.0b013e3181b520f8. PubMed DOI
Mansor M.A., Ahmad M.R. Single cell electrical characterization techniques. Int. J. Mol. Sci. 2015;16:12686–12712. doi: 10.3390/ijms160612686. PubMed DOI PMC
Lin D.M., Loveall B., Ewer J., Deitcher D.L., Sucher N.J. Characterization of mRNA expression in single neurons. Methods Mol. Biol. 2007;399:133–152. PubMed
Sucher N.J., Deitcher D.L., Baro D.J., Warrick R.M.H., Guenther E. Genes and channels: Patch/voltage-clamp analysis and single-cell RT-PCR. Cell Tissue Res. 2000;302:295–307. doi: 10.1007/s004410000289. PubMed DOI
Gregori G., Patsekin V., Rajwa B., Jones J., Ragheb K., Holdman C., Robinson J.P. Hyperspectral cytometry at the single-cell level using a 32-channel photodetector. Cytom. Part A. 2012;81:35–44. doi: 10.1002/cyto.a.21120. PubMed DOI
Bendall S.C., Nolan G.P., Roederer M., Chattopadhyay P.K. A deep profiler’s guide to cytometry. Trends Immunol. 2012;33:323–332. doi: 10.1016/j.it.2012.02.010. PubMed DOI PMC
Svec D., Andersson D., Pekny M., Sjoback R., Kubista M., Stahlberg A. Direct cell lysis for single-cell gene expression profiling. Front. Oncol. 2013;3:274. doi: 10.3389/fonc.2013.00274. PubMed DOI PMC
Brown R.B., Audet J. Current techniques for single-cell lysis. J. R. Soc. Interface. 2008;5:S131–S138. doi: 10.1098/rsif.2008.0009.focus. PubMed DOI PMC
Zhu S., Qing T., Zheng Y., Jin L., Shi L. Advances in single-cell RNA sequencing and its applications in cancer research. Oncotarget. 2017;8:53763–53779. doi: 10.18632/oncotarget.17893. PubMed DOI PMC
Hedlund E., Deng Q. Single-cell RNA sequencing: Technical advancements and biological applications. Mol. Asp. Med. 2018;59:36–46. doi: 10.1016/j.mam.2017.07.003. PubMed DOI
Saliba A.E., Westermann A.J., Gorski S.A., Vogel J. Single-cell RNA-seq: Advances and future challenges. Nucleic Acids Res. 2014;42:8845–8860. doi: 10.1093/nar/gku555. PubMed DOI PMC
Wu A.R., Wang J., Streets A.M., Huang Y. Single-cell transcriptional analysis. Annu. Rev. Anal. Chem. 2017;10:439–462. doi: 10.1146/annurev-anchem-061516-045228. PubMed DOI
Kalisky T., Oriel S., Bar-Lev T.H., Ben-Haim N., Trink A., Wineberg Y., Kanter I., Gilad S., Pyne S. A brief review of single-cell transcriptomic technologies. Brief. Funct. Genom. 2017;17:64–76. doi: 10.1093/bfgp/elx019. PubMed DOI
Haque A., Engel J., Teichmann S.A., Lonnberg T. A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Med. 2017;9:75. doi: 10.1186/s13073-017-0467-4. PubMed DOI PMC
Bacher R., Kendziorski C. Design and computational analysis of single-cell RNA-sequencing experiments. Genome Biol. 2016;17:63. doi: 10.1186/s13059-016-0927-y. PubMed DOI PMC
Grun D., van Oudenaarden A. Design and analysis of single-cell sequencing experiments. Cell. 2015;163:799–810. doi: 10.1016/j.cell.2015.10.039. PubMed DOI
Liang J., Cai W., Sun Z. Single-cell sequencing technologies: Current and future. J. Genet. Genom. 2014;41:513–528. doi: 10.1016/j.jgg.2014.09.005. PubMed DOI
Bheda P., Schneider R. Epigenetics reloaded: The single-cell revolution. Trends Cell Biol. 2014;24:712–723. doi: 10.1016/j.tcb.2014.08.010. PubMed DOI
Ziegenhain C., Vieth B., Parekh S., Reinius B., Guillaumet-Adkins A., Smets M., Leonhardt H., Heyn H., Hellmann I., Enard W. Comparative analysis of single-cell RNA sequencing methods. Mol. Cell. 2017;65:631–643. doi: 10.1016/j.molcel.2017.01.023. PubMed DOI
Macosko E.Z., Basu A., Satija R., Nemesh J., Shekhar K., Goldman M., Tirosh I., Bialas A.R., Kamitaki N., Martersteck E.M., et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161:1202–1214. doi: 10.1016/j.cell.2015.05.002. PubMed DOI PMC
Klein A.M., Mazutis L., Akartuna I., Tallapragada N., Veres A., Li V., Peshkin L., Weitz D.A., Kirschner M.W. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015;161:1187–1201. doi: 10.1016/j.cell.2015.04.044. PubMed DOI PMC
Islam S., Zeisel A., Joost S., La Manno G., Zajac P., Kasper M., Lonnerberg P., Linnarsson S. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat. Methods. 2014;11:163. doi: 10.1038/nmeth.2772. PubMed DOI
Kivioja T., Vaharautio A., Karlsson K., Bonke M., Enge M., Linnarsson S., Taipale J. Counting absolute numbers of molecules using unique molecular identifiers. Nat. Methods. 2012;9:72. doi: 10.1038/nmeth.1778. PubMed DOI
Fu G.K., Hu J., Wang P.H., Fodor S.P.A. Counting individual DNA molecules by the stochastic attachment of diverse labels. Proc. Natl. Acad. Sci. USA. 2011;108:9026–9031. doi: 10.1073/pnas.1017621108. PubMed DOI PMC
Zheng G.X., Terry J.M., Belgrader P., Ryvkin P., Bent Z.W., Wilson R., Ziraldo S.B., Wheeler T.D., McDermott G.P., Zhu J., et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 2017;8:14049. doi: 10.1038/ncomms14049. PubMed DOI PMC
Pellegrino M., Sciambi A., Yates J.L., Mast J.D., Silver C., Eastburn D.J. RNA-seq following PCR-based sorting reveals rare cell transcriptional signatures. BMC Genom. 2016;17:361. doi: 10.1186/s12864-016-2694-2. PubMed DOI PMC
Goldstein L.D., Chen Y.J., Dunne J., Mir A., Hubschle H., Guillory J., Yuan W., Zhang J., Stinson J., Jaiswal B., et al. Massively parallel nanowell-based single-cell gene expression profiling. BMC Genom. 2017;18:519. doi: 10.1186/s12864-017-3893-1. PubMed DOI PMC
Swennenhuis J.F., Tibbe A.G., Stevens M., Katika M.R., van Dalum J., Tong H.D., van Rijn C.J., Terstappen L.W. Self-seeding microwell chip for the isolation and characterization of single cells. Lab Chip. 2015;15:3039–3046. doi: 10.1039/C5LC00304K. PubMed DOI
Attayek P.J., Waugh J.P., Hunsucker S.A., Grayeski P.J., Sims C.E., Armistead P.M., Allbritton N.L. Automated microraft platform to identify and collect non-adherent cells successfully gene-edited with crispr-cas9. Biosens. Bioelectron. 2017;91:175–182. doi: 10.1016/j.bios.2016.12.019. PubMed DOI PMC
Wang Y., Phillips C., Xu W., Pai J.H., Dhopeshwarkar R., Sims C.E., Allbritton N. Micromolded arrays for separation of adherent cells. Lab Chip. 2010;10:2917–2924. doi: 10.1039/c0lc00186d. PubMed DOI PMC
Abonnenc M., Manaresi N., Borgatti M., Medoro G., Fabbri E., Romani A., Altomare L., Tartagni M., Rizzo R., Baricordi O., et al. Programmable interactions of functionalized single bioparticles in a dielectrophoresis-based microarray chip. Anal. Chem. 2013;85:8219–8224. doi: 10.1021/ac401296m. PubMed DOI
Borgatti M., Altomare L., Abonnec M., Fabbri E., Manaresi N., Medoro G., Romani A., Tartagni M., Nastruzzi C., Di Croce S., et al. Dielectrophoresis-based ‘lab-on-a-chip’ devices for programmable binding of microspheres to target cells. Int. J. Oncol. 2005;27:1559–1566. PubMed
Haupt S., Grutzner J., Thier M.C., Kallweit T., Rath B.H., Laufenberg I., Forgber M., Eberhardt J., Edenhofer F., Brustle O. Automated selection and harvesting of pluripotent stem cell colonies. Biotechnol. Appl. Biochem. 2012;59:77–87. doi: 10.1002/bab.1014. PubMed DOI
Choi J.H., Ogunniyi A.O., Du M., Du M., Kretschmann M., Eberhardt J., Love J.C. Development and optimization of a process for automated recovery of single cells identified by microengraving. Biotechnol. Prog. 2010;26:888–895. doi: 10.1002/btpr.374. PubMed DOI
Eisenstein M. Startups use short-read data to expand long-read sequencing market. Nat. Biotechnol. 2015;33:433–435. doi: 10.1038/nbt0515-433. PubMed DOI
Eastburn D.J., Sciambi A., Abate A.R. Identification and genetic analysis of cancer cells with PCR-activated cell sorting. Nucleic Acids Res. 2014;42:e128. doi: 10.1093/nar/gku606. PubMed DOI PMC
Habib N., Avraham-Davidi I., Basu A., Burks T., Shekhar K., Hofree M., Choudhury S.R., Aguet F., Gelfand E., Ardlie K., et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat. Methods. 2017;14:955–958. doi: 10.1038/nmeth.4407. PubMed DOI PMC
BD . BD Expands Genomics Portfolio with New Single Cell Platform for RNA Expression Analysis. Becton Dickinson; Franklin Lakes, NJ, USA: 2017.
De Wit S., van Dalum G., Lenferink A.T., Tibbe A.G., Hiltermann T.J., Groen H.J., van Rijn C.J., Terstappen L.W. The detection of epcam(+) and epcam(−) circulating tumor cells. Sci. Rep. 2015;5:12270. doi: 10.1038/srep12270. PubMed DOI PMC
Yang Y., Rho H.S., Stevens M., Tibbe A.G., Gardeniers H., Terstappen L.W. Microfluidic device for DNA amplification of single cancer cells isolated from whole blood by self-seeding microwells. Lab Chip. 2015;15:4331–4337. doi: 10.1039/C5LC00816F. PubMed DOI
Attayek P.J., Hunsucker S.A., Sims C.E., Allbritton N.L., Armistead P.M. Identification and isolation of antigen-specific cytotoxic t lymphocytes with an automated microraft sorting system. Integr. Biol. 2016;8:1208–1220. doi: 10.1039/C6IB00168H. PubMed DOI PMC
Carpenter E.L., Rader J., Ruden J., Rappaport E.F., Hunter K.N., Hallberg P.L., Krytska K., O’Dwyer P.J., Mosse Y.P. Dielectrophoretic capture and genetic analysis of single neuroblastoma tumor cells. Front. Oncol. 2014;4:201. doi: 10.3389/fonc.2014.00201. PubMed DOI PMC
Paterlini-Brechot P., Benali N.L. Circulating tumor cells (CTC) detection: Clinical impact and future directions. Cancer Lett. 2007;253:180–204. doi: 10.1016/j.canlet.2006.12.014. PubMed DOI
Liddelow S.A., Barres B. Reactive astrocytes: Production, function, and therapeutic potential. Immunity. 2017;46:957–967. doi: 10.1016/j.immuni.2017.06.006. PubMed DOI
Martinez F.O., Gordon S. The m1 and m2 paradigm of macrophage activation: Time for reassessment. F1000Prime Rep. 2014;6:13. doi: 10.12703/P6-13. PubMed DOI PMC
Harouaka R.A., Nisic M., Zheng S.Y. Circulating tumor cell enrichment based on physical properties. J. Lab. Autom. 2013;18:455–468. doi: 10.1177/2211068213494391. PubMed DOI PMC
Low W.S., Wan Abas W.A. Benchtop technologies for circulating tumor cells separation based on biophysical properties. Biomed. Res. Int. 2015;2015 doi: 10.1155/2015/239362. PubMed DOI PMC
Myung J.H., Hong S. Microfluidic devices to enrich and isolate circulating tumor cells. Lab Chip. 2015;15:4500–4511. doi: 10.1039/C5LC00947B. PubMed DOI PMC
Williams A., Balic M., Datar R., Cote R. Size-based enrichment technologies for CTC detection and characterization. Recent Results Cancer Res. 2012;195:87–95. PubMed
Yeo T., Tan S.J., Lim C.L., Lau D.P.X., Chua Y.W., Krisna S.S., Iyer G., Tan G.S., Lim T.K.H., Tan D.S.W., et al. Microfluidic enrichment for the single cell analysis of circulating tumor cells. Sci. Rep. 2016;6:22076. doi: 10.1038/srep22076. PubMed DOI PMC
Ferreira M.M., Romani V.C., Jeffrey S.S. Circulating tumor cell technologies. Mol. Oncol. 2016;10:374–394. doi: 10.1016/j.molonc.2016.01.007. PubMed DOI PMC
Song Y.L., Tian T., Shi Y.Z., Liu W.L., Zou Y., Khajvand T., Wang S.L., Zhu Z., Yang C.Y. Enrichment and single-cell analysis of circulating tumor cells. Chem. Sci. 2017;8:1736–1751. doi: 10.1039/C6SC04671A. PubMed DOI PMC
Miltenyi S., Muller W., Weichel W., Radbruch A. High-gradient magnetic cell-separation with macs. Cytometry. 1990;11:231–238. doi: 10.1002/cyto.990110203. PubMed DOI
Frey O., Petrow P.K., Gajda M., Siegmund K., Huehn J., Scheffold A., Hamann A., Radbruch A., Brauer R. The role of regulatory t cells in antigen-induced arthritis: Aggravation of arthritis after depletion and amelioration after transfer of CD4+CD25+ t cells. Arthritis Res. Ther. 2005;7:R291–R301. doi: 10.1186/ar1484. PubMed DOI PMC
Holt L.M., Olsen M.L. Novel applications of magnetic cell sorting to analyze cell-type specific gene and protein expression in the central nervous system. PLoS ONE. 2016;11:e0150290. doi: 10.1371/journal.pone.0150290. PubMed DOI PMC
Prieto P.A., Durflinger K.H., Wunderlich J.R., Rosenberg S.A., Dudley M.E. Enrichment of cd8+ cells from melanoma tumor-infiltrating lymphocyte cultures reveals tumor reactivity for use in adoptive cell therapy. J. Immunother. 2010;33:547–556. doi: 10.1097/CJI.0b013e3181d367bd. PubMed DOI PMC
Kirchner R., Alunni-Fabbroni M. The single-cell lab or how to perform single-cell molecular analysis. Whole Genome Amplif. Methods Protoc. 2015;1347:43–55. PubMed
Gabriel M.T., Calleja L.R., Chalopin A., Ory B., Heymann D. Circulating tumor cells: A review of non-epcam-based approaches for cell enrichment and isolation. Clin. Chem. 2016;62:571–581. doi: 10.1373/clinchem.2015.249706. PubMed DOI
Kulasinghe A., Kenny L., Perry C., Thiery J.P., Jovanovic L., Vela I., Nelson C., Punyadeera C. Impact of label-free technologies in head and neck cancer circulating tumour cells. Oncotarget. 2016;7:71223–71234. doi: 10.18632/oncotarget.12086. PubMed DOI PMC
Byron S.A., Van Keuren-Jensen K.R., Engelthaler D.M., Carpten J.D., Craig D.W. Translating RNA sequencing into clinical diagnostics: Opportunities and challenges. Nat. Rev. Genet. 2016;17:257–271. doi: 10.1038/nrg.2016.10. PubMed DOI PMC
Chen H., Luthra R., Goswami R.S., Singh R.R., Roy-Chowdhuri S. Analysis of pre-analytic factors affecting the success of clinical next-generation sequencing of solid organ malignancies. Cancers. 2015;7:1699–1715. doi: 10.3390/cancers7030859. PubMed DOI PMC
Plebani M., Sciacovelli L., Aita A., Padoan A., Chiozza M.L. Quality indicators to detect pre-analytical errors in laboratory testing. Clin. Chim. Acta. 2014;432:44–48. doi: 10.1016/j.cca.2013.07.033. PubMed DOI
Lee J.H., Daugharthy E.R., Scheiman J., Kalhor R., Ferrante T.C., Terry R., Turczyk B.M., Yang J.L., Lee H.S., Aach J., et al. Fluorescent in situ sequencing (fisseq) of RNA for gene expression profiling in intact cells and tissues. Nat. Protoc. 2015;10:442–458. doi: 10.1038/nprot.2014.191. PubMed DOI PMC
Stahl P.L., Salmen F., Vickovic S., Lundmark A., Navarro J.F., Magnusson J., Giacomello S., Asp M., Westholm J.O., Huss M., et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science. 2016;353:78–82. doi: 10.1126/science.aaf2403. PubMed DOI
Tutorial: Guidelines for Single-Cell RT-qPCR
OMICs, Epigenetics, and Genome Editing Techniques for Food and Nutritional Security
Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition)