Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition)
Jazyk angličtina Země Německo Médium print
Typ dokumentu časopisecké články
Grantová podpora
109965/Z/15/Z
Wellcome Trust - United Kingdom
MR/P011136/1
Medical Research Council - United Kingdom
R50 CA211108
NCI NIH HHS - United States
PubMed
31633216
PubMed Central
PMC7350392
DOI
10.1002/eji.201970107
Knihovny.cz E-zdroje
- MeSH
- alergologie a imunologie normy MeSH
- fenotyp MeSH
- konsensus MeSH
- lidé MeSH
- průtoková cytometrie metody normy MeSH
- separace buněk metody normy MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells. The latest flow cytometry techniques and applications are also described, featuring examples of the data that can be generated and, importantly, how the data can be analysed. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid, all written and peer-reviewed by leading experts in the field, making this an essential research companion.
A·P·E Applied Physics and Electronics Berlin Germany
Alicante Institute for Health and Biomedical Research Alicante Spain
AsedaSciences West Lafayette IN USA
Barts and The London School of Medicine and Dentistry Queen Mary University of London UK
BC Children's Hospital Research Institute Vancouver Canada
BD Biosciences San Jose CA USA
BD Life Sciences Ashland OR USA
BD Life Sciences San Diego CA USA
Beckman Coulter Inc Miami FL USA
Berlin Institute of Health Berlin Germany
Bindley Biosciences Center Purdue University West Lafayette IN USA
Biophysics R and D Engineering Miltenyi Biotec GmbH Bergisch Gladbach Germany
Burnet Institute AMREP Flow Cytometry Core Facility Melbourne Victoria Australia
Cancer and Stem Cell Biology Duke NUS Medical School Singapore
Cancer Immunology Research Genentech South San Francisco CA USA
Caprion Biosciences ImmuneCarta Montréal Quebec Canada
Cell Biology Unit IRCCS Ospedale Policlinico San Martino Genova Italy
Cell Clearance in Health and Disease Lab VIB Center for Inflammation Research Ghent Belgium
Center for Immunology University of Minnesota Minneapolis MN USA
Center for Life Nano Istituto Italiano di Tecnologia Rome Italy
Centre d'Immunophénomique CIPHE Marseille France
Centre de Recherches des Cordeliers Equipe Cancer et Immunité anti tumorale Paris France
Centre for Environmental Research UFZ Department Environmental Microbiology Leipzig Germany
Chair for Immunology University Regensburg Germany
Christine Kühne Center for Allergy Research and Education Davos Switzerland
Chromocyte Limited Electric Works Sheffield UK
Clinic for Orthopedics and Trauma Surgery University Hospital Bonn Bonn Germany
Clinical Research Unit Berlin Institute of Health Charite Universitätsmedizin Berlin Berlin Germany
Clinical Trial Center Leipzig University Leipzig Leipzig Germany
Comprehensive Cancer Center Zurich Switzerland
Computer Graphics and Visualization Department of Intelligent Systems TU Delft Delft The Netherlands
Core Facility Flow Cytometry Biomedical Center Ludwig Maximilians University Munich Germany
Cytomics Technological Service Principe Felipe Research Center Valencia Spain
Data Mining and Modeling for Biomedicine VIB UGent Center for Inflammation Research Ghent Belgium
Department of Applied Mathematics Computer Science and Statistics Ghent University Ghent Belgium
Department of Biochemistry and Molecular Biology Monash University Clayton Victoria Australia
Department of Biochemistry Institute of Chemistry University of São Paulo São Paulo SP Brazil
Department of Bioengineering University of California Los Angeles California USA
Department of Biomedical Molecular Biology Ghent University Ghent Belgium
Department of Cell Biology Albert Einstein College of Medicine Bronx NY USA
Department of Chemical and Materials Engineering New Mexico State University Las Cruces NM USA
Department of Chemistry University of Tokyo Tokyo Japan
Department of Clinical and Experimental Medine Linköping University Linköping Sweden
Department of Experimental and Clinical Medicine University of Florence Florence Italy
Department of Hematology Oncology and Rheumatology University Heidelberg Heidelberg Germany
Department of Hematology Singapore General Hospital Singapore
Department of Immunobiology School of Immunology and Microbial Sciences King's College London UK
Department of Immunology and Pathology Monash University Melbourne Victoria Australia
Department of Immunology Graduate School of Medicine Chiba University Chiba city Chiba Japan
Department of Immunology IRCCS Bambino Gesu Children's Hospital Rome Italy
Department of Immunology Rady Faculty of Health Sciences University of Manitoba Winnipeg MB Canada
Department of Immunology University L Eotvos Budapest Hungary
Department of Immunology University of Toronto Toronto ON Canada
Department of Immunology University of Udine Udine Italy
Department of Infectious Disease Imperial College London UK
Department of Internal Medicine 3 University Hospital Regensburg Germany
Department of Internal Medicine Groene Hart Hospital Gouda The Netherlands
Department of Life Sciences University of Modena and Reggio Emilia Modena Italy
Department of Life Sciences University of Siena Siena Italy
Department of Mecicine University of Massachusetts Medical School Worcester MA USA
Department of Medical Biotechnologies and Translational Medicine University of Milan Milan Italy
Department of Medical Genetics University of British Columbia Vancouver BC Canada
Department of Medical Microbiology and Immunology University of Alberta Alberta Canada
Department of Medicine Albert Einstein College of Medicine Bronx NY USA
Department of Medicine Cancer Research Centre Salamanca Spain
Department of Medicine The University of British Columbia Vancouver Canada
Department of Microbial Infection and Immunity Ohio State University Columbus OH USA
Department of Microbiology and Immunology University of Gothenburg Gothenburg Sweden
Department of Molecular Medicine Sapienza University of Rome IRCCS Neuromed Pozzilli Italy
Department of Neurology Technical University of Munich Munich Germany
Department of Neuropathology Universitätsklinikum Erlangen Germany
Department of Oncology University of Lausanne and CHUV Epalinges Switzerland
Department of Parasitology Leiden University Medical Center Leiden The Netherlands
Department of Pathology and Rogel Cancer Center the University of Michigan Ann Arbor Michigan USA
Department of Pathology University of Cambridge Cambridge UK
Department of Physiopathology and Transplants University of Milan Milan Italy
Department of Precision Instruments Tsinghua University Beijing China
Department of Respiratory Sciences University of Leicester Leicester UK
Department of Rheumatology and Clinical Immunology Berlin Institute of Health Berlin Germany
Department of Rheumatology Erasmus MC University Medical Center Rotterdam Rotterdam The Netherlands
Department of Rheumatology Leiden University Medical Center Leiden The Netherlands
Department of Surgery The University of British Columbia Vancouver Canada
Dept Medicine Rheumatology and Clinical Immunology Charité Universitätsmedizin Berlin Germany
Dept Molecular Translational Medicine University of Brescia Brescia Italy
Dept of Hematopathology The University of Texas MD Anderson Cancer Center Houston TX USA
Deutsches Rheuma Forschungszentrum an Institute of the Leibniz Association Berlin Germany
Dipartimento di Medicina Interna e Specialità Mediche Sapienza Università di Roma Rome Italy
Discipline of Dermatology University of Sydney Sydney New South Wales Australia
Division of Medical Sciences National Cancer Centre Singapore Singapore
Division of Oncology Washington University School of Medicine St Louis MO USA
Divsion of Medical Oncology and Hematology Princess Margaret Hospital Toronto Ontario Canada
e Duve Institute Université catholique de Louvain Brussels Belgium
ETH Zurich Institute of Microbiology Zurich Switzerland
Executive Offices National Cancer Centre Singapore Singapore
Experimental Immunology Helmholtz Centre for Infection Research Braunschweig Germany
Experimental Medicine Division Nuffield Department of Medicine University of Oxford Oxford UK
FACS and Imaging Core Facility Max Planck Institute for Biology of Ageing Cologne Germany
Faculty of Biological Sciences Friedrich Schiller University Jena Jena Germany
Flow and Image Cytometry Shared Resource Roswell Park Comprehensive Cancer Center Buffalo NY USA
Flow Cytometry Core Facility Blizard Institute Queen Mary London University London UK
Flow Cytometry Core Facility European Molecular Biology Laboratory Heidelberg Germany
Flow Cytometry Core Facility German Cancer Research Centre Heidelberg Germany
Flow Cytometry Core Facility Institute of Experimental Immunology University of Bonn Bonn Germany
Flow Cytometry Core Humanitas Clinical and Research Center Milan Italy
Flow Cytometry Core Technologies UCD Conway Institute University College Dublin Dublin Ireland
Flow Cytometry Facility Babraham Institute Cambridge UK
Flow Cytometry Houston Methodist Hospital Research Institute Houston TX USA
Flow Cytometry Scientific Technology Platform The Francis Crick Institute London UK
Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico University of Milan
Fred Hutchinson Cancer Research Center Vaccine and Infectious Disease Division Seattle WA USA
Fundação Oswaldo Cruz Minas Laboratory of Immunopatology Belo Horizonte MG Brazil
Genome Biology Unit European Molecular Biology Laboratory Heidelberg Germany
Genomics Core Facility European Molecular Biology Laboratory Heidelberg Germany
German Cancer Consortium partner site Berlin Berlin Germany
German Cancer Research Center Division of Theoretical Systems Biology Heidelberg Germany
German Cancer Research Center Heidelberg Germany
German Center for Infection Research Munich Germany
Heidelberg Institute for Stem Cell Technology and Experimental Medicine Heidelberg Germany
Heidelberg University Institute of Immunology Section of Molecular Immunology Heidelberg Germany
Honorary Dean of Life Sciences Henan University Kaifeng China
IMIM University Pompeu Fabra Barcelona Spain
Immunobiology Laboratory The Francis Crick Institute London UK
Immunology and Environment LIMES Institute University of Bonn Bonn Germany
Immunology Section Lund University Lund Sweden
Inflammation and Oncology Research Amgen Inc South San Francisco USA
INGM Fondazione Istituto Nazionale di Genetica Molecolare Ronmeo ed Enrica Invernizzi Milan Italy
Innate Immunty Unit Department of Immunology Institut Pasteur Paris France
INSERM U932 PSL University Institut Curie Paris France
Inst f Med Mikrobiology and Hospital Hygiene University of Marburg Germany
Institut für Genetik Universität zu Köln Köln Germany
Institut für Immunologie Christian Albrechts Universität zu Kiel Kiel Germany
Institut für Klinische Molekularbiologie Christian Albrechts Universität zu Kiel Germany
Institut für Transfusionsmedizin Universitätsklinik Schleswig Holstein Kiel Germany
Institut Pasteur Cellular Lymphocytes Biology Immunology Departement Paris France
Institut Pasteur Inserm U1223 Paris France
Institute for Advanced Study Shenzhen University Shenzhen China
Institute for Medical Informatics Statistics and Epidemiology University of Leipzig Leipzig Germany
Institute for Molecular Medicine Goethe University Frankfurt Frankfurt am Main Germany
Institute for Systemic Inflammation Research University of Luebeck Luebeck Germany
Institute of Bioinnovation BSRC Alexander Fleming Vari Greece
Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
Institute of Experimental Immunology University of Bonn Germany
Institute of Experimental Immunology University of Zurich Zurich Switzerland
Institute of Immunobiology Kantonsspital St Gallen St Gallen Switzerland
Institute of Immunology Department of Pathobiology University of Veterinary Medicine Vienna Austria
Institute of Immunology Hannover Medical School Hannover Germany
Institute of Molecular and Clinical Immunology Otto von Guericke University Magdeburg Germany
Institute of Molecular Health Sciences ETH Zurich Zürich Switzerland
Institute of Technological Sciences Wuhan University Wuhan China
Institute of Transplant Immunology Hannover Medical School MHH Hannover Germany
Institute of Virology Technical University of Munich Munich Germany
Internal Medicine 1 University Hospital Regensburg Germany
IRCCS Fondazione Don Carlo Gnocchi Milan Italy
IRCCS Fondazione Santa Lucia Rome Italy
IRCCS Istituto Giannina Gaslini Genova Italy
Isaac and Laura Perlmutter Cancer Center NYU Langone Medical Center New York USA
Istituto Clinico Humanitas IRCCS and Humanitas University Pieve Emanuele Milan Italy
Istituto Pasteur Fondazione Cenci Bolognetti Rome Italy
Jena University Hospital Institute of Immunology Jena Germany
John van Geest Cancer Research Centre Nottingham Trent University Nottingham UK
Karolinska Institutet Biomedicum Solna Sweden
Kennedy Institute of Rheumatology University of Oxford Oxford UK
King's College London Peter Gorer Department of Immunobiology London UK
Laboratory of Cytomics Joint Research Unit CIPF UVEG Principe Felipe Research Center Valencia Spain
Laboratory of Translational Immunology Humanitas Clinical and Research Center Rozzano Italy
Leibniz Research Institute for Environmental Medicine Düsseldorf Germany
Leiden Computational Biology Center Leiden University Medical Center Leiden The Netherlands
Luxembourg Centre for Systems Biomedicine University of Luxembourg Belvaux Luxembourg
Macrophage Biology Group School of Biology University of Barcelona Barcelona Spain
Max Planck Institute for Infection Biology Berlin Germany
Medinfomatics Ltd West Drayton Middlesex UK
Milan Center for Neuroscience University of Milano Bicocca Milan Italy
Murdoch Children's Research Institute Parkville Victoria Australia
Nanobiophotonics Department Leibniz Institute of Photonic Technology Jena Germany
National Institute for Health Migration and Poverty Rome Italy
National Institutes of Health Bethesda MD USA
National Key Laboratory of Medical Immunology Nankai University Tianjin China
Networked Biomedical Research Center for Hepatic and Digestive Diseases Madrid Spain
Neuroimmunology and Flow Cytometry Units Fondazione Santa Lucia IRCCS Rome Italy
Owl Biomedical Inc Santa Barbara USA
Preparative Flow Cytometry Max Delbrück Centrum für Molekulare Medizin Berlin Germany
Program in Emerging Infectious Disease Duke NUS Medical School Singapore
Purdue University Cytometry Laboratories Purdue University West Lafayette IN USA
Quantitative Systems Biology Life and Medical Sciences Institute University of Bonn Bonn Germany
R and D Reagents Miltenyi Biotec GmbH Bergisch Gladbach Germany
Regeneration in Hematopoiesis Leibniz Institute on Aging Fritz Lipmann Institute Jena Germany
Regensburg Center for Interventional Immunology Regensburg Germany
RIKEN Center for Integrative Medical Sciences Yokohama Japan
Roswell Park Comprehensive Cancer Center Elm and Carlton Streets Buffalo NY USA
School of Biological Sciences Nanyang Technological University Singapore
School of Biomedical and Health Sciences RMIT University Bundoora Victoria Australia
School of Biomedical Engineering The University of British Columbia Vancouver Canada
School of Computing Science Simon Fraser University Burnaby Canada
School of Plant Sciences and Bio5 Institute University of Arizona Tucson USA
Section of Immunology Vetsuisse Faculty University of Zurich Zurich Switzerland
Singapore Immunology Network Biopolis Singapore
Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
Terry Fox Laboratory BC Cancer Vancouver BC Canada
The FIRC Institute of Molecular Oncology Milan Italy
Theodor Kocher Institute University of Bern Bern Switzerland
Thermo Fisher Scientific Eugene Oregon USA
Translational Immunology Institute SingHealth Duke NUS Academic Medical Centre Singapore
TranslaTUM Technical University of Munich Munich Germany
TRI Flow Cytometry Suite Translational Research Institute Wooloongabba QLD Australia
Tuberculosis Laboratory The Francis Crick Institute London UK
Unit Lymphopoiesis Department of Immunology Institut Pasteur Paris France
Université Paris Descartes Institut National de la Santé et de la Recherche Médicale Paris France
University Bonn Medical Faculty Bonn Germany
University of Auckland School of Biological Sciences Maurice Wilkins Center Auckland New Zealand
University of Birmingham Birmingham UK
University of Cambridge Cambridge Institute for Medical Research Cambridge UK
University of Verona Department of Medicine Section of General Pathology Verona Italy
VIB Flow Core VIB Center for Inflammation Research Ghent Belgium
William Harvey Research Institute Queen Mary University London United Kingdom
WPI Immunology Frontier Research Center Osaka University Osaka Japan
Zobrazit více v PubMed
Cossarizza A, Chang H-D, Radbruch A, Akdis M, Andrä I, Annunziato F, Bacher P et al., Guidelines for the use of flow cytometry and cell sorting in immunological studies. Eur. J. Immunol 2017. 47: 1584–1797. PubMed PMC
Mack J, Fulwyler Particle Separator. US patent US 3380584 A.
Kachel V, Fellner-Feldegg H and Menke E, Hydrodynamic properties of flow cytometry instruments In Melamed MR, Lindmo T and Mendelsohn ML (Eds.), Flow cytometry and sorting, 2nd ed., Wiley, New York, NY, 1990, pp. 27–44.
Crosland-Taylor PJ, A device for counting small particles suspended in a fluid through a tube. Nature 1953. 171: 37–38. PubMed
Gucker FT Jr., O’Konski CT, Pickard HB and Pitts JN Jr., A photoelectronic counter for colloidal particles. J. Am. Chem. Soc 1947. 69: 2422–2431. PubMed
Van den Engh GJ, Flow cytometer droplet formation system. US patent US 6861265 B1.
Van den Engh GJ, Particle separating apparatus and method. US patent US 5819948 A.
Norton PO, Vane DR and Javadi S, Fixed mounted sorting cuvette with user replaceable nozzle. US patent US 7201875 B2.
Doležel J and Göhde W, Sex determination in dioecious plants Melandrium album and M. rubrum using high-resolution flow cytometry. Cytometry 1995. 19: 103–106. PubMed
Steen HB, Lindau T and Sorensen O, A simple, high resolution flow cytometer based on a standard fluorescence microscope. In Laerum OD, Lindmo T and Thorud E (Eds.), Proceedings of the IVth international symposium on flow cytometry (pulse cytophotometry), Bergen, Norway, 1980, pp. 31–33.
Pinkel D and Stovel R, Flow chambers and sample handling In Van Dilla MA, Dean PN, Laerum OD, and Melame MR (Eds.), Flow cytometry: Instrumentation and data analysis, Academic Press, London, 1985, pp. 77–128.
Kaduchak G et al., Ultrasonic analyte concentration and application in flow cytometry. US patent US 7340957 B2.
Kaduchak G et al., System and method for acoustic focusing hardware and implementations. US patent US 8714014 B2.
Ward M, Turner P, DeJohn M and Kaduchak G, Fundamentals of acoustic cytometry. Curr. Protoc. Cytometry 2009. 53: 1.22.1–1.22.12. PubMed
Sweet RG, Fluid droplet recorder. US patent US 3596275 A.
Göttlinger C, Mechtold B, Meyer KL and Radbruch A, Setup of a flow sorter In Radbruch A (Ed.), Flow cytometry and cell sorting. Springer Laboratory, Berlin, Germany: 1992, pp. 153–158.
Petersen TW and Van den Engh G, Stability of the breakoff point in a high-speed cell sorter. Cytometry Part A 2003. 56: 63–70. PubMed
Kaiser T, Raba K, Scheffold A and Radbruch A, A sheathcooling system to stabilize side-streams and drop delay during long-term sorts for FACS-Aria® cell-sorter, http://fccf.drfz.de/uploads/pdf/poster_zentrallabor_A0.pdf
Lawrence WG, Varadi G, Entine G, Podniesinski E and Wallace PK, Enhanced red and near infrared detection in flow cytometry using avalanche photodiodes. Cytometry A 2008. 73: 767–776. PubMed PMC
Kester W, Understand SINAD ENOB, SNR THD, THD+ N, and SFDR so you don’t get lost in the noise floor. MT-003 Tutorial, 2009, http://www.analog.com/media/en/training-seminars/tutorials/MT-003.pdf
AD9240AS by Analog Devices | Data Acquisition, Arrow.com. [Online]. Available: https://www.arrow.com/de-de/products/ad9240as/analogdevices. [Accessed: 18-Jan-2017].
Snow C, Flow cytometer electronics. Cytometry Part A 2004. 57A: 63–69. PubMed
Asbury CL, Uy JL and van den Engh G, Polarization of scatter and fluorescence signals in flow cytometry. Cytometry 2000. 40: 88–101. PubMed
Shapiro HM, Practical flow cytometry, 4th ed., John Wiley & Sons, Inc., Hoboken, NJ: 2003, pp. 184–197.
Watson DA, Brown LO, Gaskill DF, Naivar M, Graves SW, Doorn SK and Nolan JP, A flow cytometer for the measurement of Raman spectra. Cytometry A 2008. 73A: 119–128. PubMed
Nolan JP, Condello D, Duggan E, Naivar M and Novo D, Visible and near infrared fluorescence spectral flow cytometry. Cytometry A 2012. 83: 253–264. PubMed PMC
Wade CG, Rhyne RH, Woodruff WH, Bloch DP and Bartholomew JC, Spectra of cells in flow cytometry using a vidicon detector. J. Histochem. Cytochem 1979. 27: 1049–1052. PubMed
Robinson JP, Multispectral cytometry: the next generation. Biophoton. Int 2004, 36–40.
Robinson JP, Rajwa B, Gregori G, Jones V and Patsekin V, Multispectral cytometry of single bio-particles using a 32-channel detector In Tuan Vo-Dinh T, Grundfest WS, Benaron DA and Cohn GE, (Eds.), Advanced biomedical and clinical diagnostic systems III, 5692 ed. Springer, Berlin/Heidelberg, 2005, Pp. 359–365.
Robinson JP, Rajwa B, Patsekin V, Gregori G and Jones J Multispectral detector and analysis system US patent US7280204 B2.
Grégori G, Patsekin V, Rajwa B, Jones J, Ragheb K, Holdman C, Robinson JP et al., Hyperspectral cytometry at the single cell level using a 32 channel photodetector. Cytometry A 2012. 81A: 35–44. PubMed
Goddard G, Martin JC, Naivar M, Goodwin PM, Graves SW, Habbersett R, Nolan JP et al., Single particle high resolution spectral analysis flow cytometry. Cytometry 2006. 69A: 842–851. PubMed
Futamura K, Sekino M, Hata A, Ikebuchi R, Nakanishi Y, Egawa G, Kabashima K et al., Novel full-spectral flow cytometry with multiple spectrally-adjacent fluorescent proteins and fluorochromes and visualization of in vivo cellular movement. Cytometry 2015. 87: 830–842. PubMed PMC
Feher K, von Volkmann K, Kirsch J, Radbruch A, Popien J and Kaiser T, Multispectral flow cytometry: The consequences of increased light collection. Cytometry 2016. 89: 681–689. PubMed
Roederer M, Distributions of autofluorescence after compensation: Be panglossian, fret not. Cytometry A 2016. 89: 398–402. PubMed
Szalóki G and Goda K, Compensation in multicolor flow cytometry. Cytometry A 2015. 87: 982–985. PubMed
Novo D, Grégori G and Rajwa B, Generalized unmixing model for multispectral flow cytometry utilizing nonsquare compensation matrices. Cytometry A 2013. 83: 508–520. PubMed PMC
Nguyen R, Perfetto S, Mahnke YD, Chattopadhyay P and Roederer M, Quantifying spillover spreading for comparing instrument performance and aiding in multicolor panel design. Cytometry A 2013. 83: 306–315. PubMed PMC
Lee JA, Spidlen J, Boyce K, Cai J, Crosbie N, Dalphin M, Furlong J, et al. MIFlowCyt: the Minimum Information about a Flow Cytometry Experiment. Cytometry A 2008. 73: 926–930. PubMed PMC
Tung JW, Parks DR, Moore WA and Herzenberg LA, New approaches to fluorescence compensation and visualization of FACS data. Clin. Immunol 2004. 110: 277–283. PubMed
BD Cytometer Setup and Tracking Application Guide V3.0, 2013, BD Biosciences, San Jose, CA.
Wood J and Hoffman R, Evaluating fluorescence sensitivity on flow cytometers: an overview. Cytometry 1998. 33: 256–259. PubMed
Wood J, Fundamental flow cytometer properties governing sensitivity and resolution. Cytometry 1998. 33: 260–266. PubMed
Hoffman RA, Standardization, calibration, and control in flow cytometry. Curr. Protoc. Cytom 2005. 79: 1.3.1–1.3.21. PubMed
Wood JCS, 2009, Establishing and maintaining system linearity. Curr. Protoc. Cytom Chapter 1: 1.4.1–1.4.14. PubMed
Jett JH, Martin JC, Habbersett RC, Techniques for flow cytometer alignment. Curr. Protoc. Cytom 2009. Chapter 1: 1.10.1–1.10.7. PubMed
Perfetto SP, Chattopadhyay PK, Wood J, Nguyen R, Ambrozak D, Hill JP and Roederer M, Q and B Values are Critical Measurements Required for Inter-Instrument Standardization and Development of Multicolor Flow Cytometry Staining Panels. Cytometry 2014. 85A: 1037–1048. PubMed
Perfetto SP, Ambrozak D, Nguyen R, Chattopadhyay PK and Roederer M, Quality assurance for polychromatic flow cytometry using a suite of calibration beads. Nat. Protoc 2012. 7: 2067–2079. PubMed
Steen HB, Noise, Sensitivity, and Resolution of Flow Cytometers. Cytometry 1992. 13: 822–830. PubMed
Friend M, Franklin GB and Quinn B, An LED pulser for measuring photomultiplier linearity. Nucl. Instr. And Meth. A 2012. 676: 66–69.
Giesecke C, Feher K, von Volkmann K, Kirsch J, Radbruch A and Kaiser T, Determination of background, signal-to-noise, and dynamic range of a flow cytometer: a novel practical method for instrument characterization and standardization. Cytometry 2017. 91A: 1104–1114. PubMed
ReferenceManuals for discussed instruments: a) BD FACSCanto II Flow Cytometer Reference Manual, 2006, BD Biosciences, San Jose, USA; b) MACSQuant Instrument User Manual, V6, 2015, Miltenyi Biotec, Bergisch Gladbach, Germany; c) CyFlow Cube 6 Instrument Operating Manual, 2012, Partec GmbH, Germany; d) Attune NxT Acoustic Focusing Cytometer User Guide, 2015, Life Technologies, USA part of Thermo Fisher Scientific; e) Gallios Flow Cytometer Instructions for use, 2009, Beckman Coulter, USA.
Flow Cell Care & Maintenance; Feb 2011, Precision Cells, Inc; http://ezinearticles.com/?Flow-Cytometry—Flow-Cell-Care-and-Maintenance&id=5898431
A Guide to Absolute Counting Using the BD Accuri C6 Flow Cytometer, January 2012, BD Biosciences, Technical Bulletin.
BD FACSDIVA Software v 8.0 Reference Manual.
Maciorowski Z, Chattopadhyay PK and Jain P, Basic Multicolor Flow Cytometry. Curr. Protoc. Immunol 2017. 117: 5.4.1–5.4.38. PubMed
Maecker HT and Trotter J, Flow cytometry controls, instrument setup, and the determination of positivity. Cytometry A 2006. 69: 1037–1042. PubMed
Chase ES and Hoffman RA, Resolution of dimly fluorescent particles: a practical measure of fluorescence sensitivity. Cytometry 1998. 33: 267–279. PubMed
Meinelt E, Reunanen M, Edinger M, Jaimes M, Stall A, Sasaki D and Trotter J, Standardizing Application Setup Across Multiple Flow Cytometers Using BD FACSDivaTM Version 6. Software. BD Biosciences Technical Bulletin. 2012.
Roederer M, Compensation in flow cytometry. Curr. Protoc. Cytom 2002. 22: 1.14.1–1.14.20. PubMed
Biburger M, Trenkwald I and Nimmerjahn F, Three blocks are not enough—blocking of the murine IgG receptor FcgammaRIV is crucial for proper characterization of cells by FACS analysis. Eur. J. Immunol 2015. 45: 2694–2697. PubMed
Maecker HT, Frey T, Nomura LE and Trotter J, Selecting fluorochrome conjugates for maximum sensitivity. Cytometry A 2004. 62: 169–173. PubMed
Nüsse M, Beisker W, Kramer J, Miller BM, Schreiber GA, Viaggi S, Weller EM et al., Measurement of micronuclei by flow cytometry. Methods Cell Biol. 1994. 42: 149–158. PubMed
Hengst J, Theorell J, Deterding K, Potthoff, Dettmer A, Ljunggren HG, Wedemeyer H and Björkström NK, High-resolution determination of human immune cell signatures from fine-needle liver aspirates. Eur. J. Immunol 2015. 45: 2154–2157. PubMed
Johnson S, Nguyen V and Coder D, Assessment of cell viability. Curr. Protoc. Cytom 201364: 9.2.1–9.2.26 PubMed
Edward R and Dimmick I, Compensation-free dead cell exclusion: multi-beam excitation of the far-red DNA binding viability dye-DRAQ7.(TECH2P. 873). J. Immunol 2014. 192: 135.4
Pieper IL, Radley G, Chan CH, Friedmann Y, Foster G and Thornton CA, Quantification methods for human and large animal leukocytes using DNA dyes by flow cytometry. Cytometry A 2016. 89: 565–574. PubMed
Reardon AJ, Elliott JA and McGann LE, Fluorescence as an alternative to light-scatter gating strategies to identify frozen-thawed cells with flow cytometry. Cryobiology 2014. 69: 91–99. PubMed
Hønge BL, Petersen MS, Olesen R, Møller BK and Erikstrup C Optimizing recovery of frozen human peripheral blood mononuclear cells for flow cytometry. PLoS One. 2017. 12: e0187440. PubMed PMC
Alsayed H, Owaidah T and Al Rawas F, Validation of a modifiedcry-opreservation method for leukemic blasts for flow cytometry assessment. Hematol. Oncol. Stem Cell Ther 2008. 1: 94–97. PubMed
Chow S, Hedley D, Grom P, Magari R, Jacobberger JW and Shankey TV, Whole blood fixation and permeabilization protocol with red blood cell lysis for flow cytometry of intracellular phosphorylated epitopes in leukocyte subpopulations. Cytometry A. 2005. 67: 4–17. PubMed
Woost PC, Solchaga LA, Meyerson HJ, Shankey TV, Goolsby CL and Jacobberger JW, High-resolution kinetics of cytokine signaling in human CD34/CD117-positive cells in unfractionated bone marrow. Blood 2011. 117: e131–e141. PubMed PMC
Marvin J, Swiminathan S, Kraker G, Chadburn A, Jacobberger JW and Goolsby C, Normal bone marrow signal-transduction profiles: a requisite for enhanced detection of signaling dysregulations in AML. Blood 2011. 117: e120–e130. PubMed PMC
Shankey TV, Forman MF, Scibelli P, Cobb J, Smith CM, Mills R, Holdiway K et al., An optimized whole blood method for flow cytometric measurement of ZAP-70 protein expression in chronic lymphocytic leukemia. Cytometry 2006. 70: 259–269. PubMed
Jacobberger JW, Sramkowski RM, Frisa PS, Peng Ye P, Gottlieb MA, Hedley DW, Shankey TV et al., Immunoreactivity of STAT5 phosphorylated on tyrosine as a cell-based measure of Bcr/Abl kinase activity. Cytometry 2003. 54: 75–88. PubMed
Boehm T, McCurley N, Sutoh Y, Schorpp M, Kasahara M and Cooper MD, VLR-based adaptive immunity. Annu. Rev. Immunol 2012. 30: 203–220. PubMed PMC
Pancer Z, Amemiya CT, Ehrhardt GR, Ceitlin J, Gartland GL and Cooper MD, Somatic diversification of variable lymphocyte receptors in the Agnathan sea lamprey. Nature 2004. 430: 174–180. PubMed
Velikovsky CA, Deng L, Tasumi S, Iyer LM, Kerzic MC, Aravind L, Pancer Z et al., Structure of a lamprey variable lymphocyte receptor in complex with a protein antigen. Nat. Struct. Mol. Biol 2009. 16: 725–730. PubMed PMC
Han BW, Herrin BR, Cooper MD and Wilson IA, Antigen recognition by variable lymphocyte receptors. Science 2008. 321: 1834–1837. PubMed PMC
Luo M, Velikovsky CA, Yang X, Siddiqui MA, Hong X, Barchi JJ Jr., Gildersleeve JC et al., Recognition of the Thomsen-Friedenreich pancarcinoma carbohydrate antigen by a lamprey variable lymphocyte receptor. J. Biol. Chem 2013. 288: 23597–23606. PubMed PMC
Collins BC, Gunn RJ, McKitrick TR, Cummings RD, Cooper MD, Herrin BR and Wilson IA, Structural Insights into VLR Fine Specificity for Blood Group Carbohydrates. Structure 2017. 25: 1667–1678. PubMed PMC
Chan JTH, Liu Y, Khan S, St-Germain JR, Zou C, Leung LY, Yang T et al., A tyrosine sulfation-dependent HLA-I modification identifies memory B cells and plasma cells. Sci. Adv 2018. 4: eaar7653. PubMed PMC
Herrin BR, Alder MN, Roux KH, Sina C, Ehrhardt GR, Boydston JA, Turnbough CL Jr. et al., Structure and specificity of lamprey monoclonal antibodies. Proc. Natl. Acad. Sci. USA 2008. 105: 2040–2045. PubMed PMC
Haas J, Roth S, Arnold K, Kiefer F, Schmidt T, Bordoli L and Schwede T, The Protein Model Portal–a comprehensive resource for protein structure and model information. Database 2013. 2013: bat031. PubMed PMC
Yu C, Liu Y, Chan JT, Tong J, Li Z, Shi M, Davani D et al., Identification of human plasma cells with a lamprey monoclonal antibody. JCI Insight 2016. 1: e84738. PubMed PMC
Alder MN, Rogozin IB, Iyer LM, Glazko GV, Cooper MD and Pancer Z, Diversity and function of adaptive immune receptors in a jawless vertebrate. Science 2005. 310: 1970–1973. PubMed
Yu C, Ali S, St-Germain J, Liu Y, Yu X, Jaye DL, Moran MF et al., Purification and identification of cell surface antigens using lamprey monoclonal antibodies. J. Immunol. Methods 2012. 386: 43–49. PubMed PMC
Baker M, Antibody anarchy: a call to order. Nature 2015. 527: 545–551. PubMed
Zhang X, Calvert RA, Sutton BJ and Dore KA, IgY: a key isotype in antibody evolution. Biol. Rev. Camb. Philos. Soc 2017. 92: 2144–2156. PubMed
Mucci I, Legitimo A, Compagnino M, Consolini R, Miglidaccio P, Metelli MR and Scatena F, The methodological approach for the generation of human dendritic cells from monocytes affects the maturation state of the resultant dendritic cells. Biologicals 2009. 37: 288–96. PubMed
Delirezh N and Shojaeefar E, Phenotypic and functional comparison between flask adherent and magnetic activated cell sorted monocytes derived dendritic cells. Iran J. Immunol 2012. 9: 98–108. PubMed
Pribush A, Meyerstein D and Meyerstein N, Kinetics of erythrocyte swelling and membrane hole formation in hypotonic media. BBABiomembrane 2002. 1558: 119–132. PubMed
Tiirikainen MI, Evaluation of red blood cell lysing solutions for the detection of intracellular antigens by flow cytometry. Cytometry 1995. 20: 341–348. PubMed
Einwallner E, Subasic A, Strasser A, Augustin D, Thalhammer R, Steiner I and Schwarzinger I, Lysis matters: red cell lysis with FACS Lyse affects the flow cytometric enumeration of circulating leukemic blasts. J. Immunol. Methods 2013. 390: 127–132. PubMed
Lindahl PE, Principle of a counter-streaming centrifuge for the separation of particles of different sizes. Nature 1948. 161: 648–649. PubMed
McEwen CR, Stallard RW and Juhos ET, Separation of biological particles by centrifugal elutriation. Anal. Biochem 1968. 23: 369–77. PubMed
Pretlow TG and Pretlow TP, Centrifugal elutriation (counter-streaming centrifugation) of cells. Cell Biophys. 1979. 1: 195–210. PubMed
www.biologydiscussion.com/cell-biology/8-methods-involved-inseparation-of-whole-cells-with-diagram/3494.
Ferrone S, Cooper NR, Pellegrino MA and Reisfeld RA, Interaction of histocompatibility (HL-A) antibodies and complement with synchronized human lymphoid cells in continuous culture. J. Exp. Med 1973. 137: 55–68. PubMed PMC
Lustig H and Bianco C, Antibody-mediated cell cytotoxicity in a defined system: regulation by antigen, antibody, and complement. J. Immunol 1976. 116: 253–60. PubMed
Esser C, Historical and useful methods of preselection and preparative scale cell sorting In Recktenwald D and Radbruch A (Eds.), Cell separation methods and applications. Marcel Dekker Inc, New York/Basel/Hong Kong, 1998, pp. 1–14.
www.pluriselect.com.
www.miltenyibiotec.com.
Thomas TE, Miller CL and Eaves CJ, Purification of hematopoietic stem cells for further biological study. Methods. 1999. 17: 202–218. PubMed
Van der Toom EE, Verdone JE, Gorin MA and Pienta KJ, Technical challenges in the isolation and analysis of circulating tumor cells. Oncotarget 2016. 7: 62754–62766. PubMed PMC
Donnenberg VS and Donnenberg AD, Identification, rare-event detection and analysis of dendritic cell subsets in bronchio-alveolar lavage fluid and peripheral blood by flow cytometry. Front. Biosci 2003. 8: s1175–s1180. PubMed
Bacher P and Scheffold A, New technologies for monitoring human antigen-specific T cells and regulatory T cells by flow-cytometry. Curr. Opin. Pharmacol 2015. 23: 17–24. PubMed
www.thermofisher.com/de/de/home/brands/productbrand/dynal.html.
www.bdbiosciences.com/us/reagents/research/magnetic-cellseparation/other-species-cell-separation-reagents/cell-separationmagnet/p/552311.
Recktenwald D and Radbruch A (Eds.), Cell separation methods and applications. Marcel Dekker Inc., New York/Basel/Hong Kong, 1998.
Miltenyi S and Pflueger E, High gradient magnetic cell sorting In Radbruch A (Ed.), Flow cytometry and sorting. Springer-Verlag, Berlin/Heidelberg, 1992, pp. 141–152.
Ruffert C, Magnetic bead—Magic bullet (review). Micromachines 2016. 7: 21. PubMed PMC
McCloskey KE, Chalmers JJ and Zborowski M, Magnetic cell separation: Characterization ofmagnetophoretic mobility. Anal. Chem 2003. 75: 6868–6874. PubMed
Boyum A, Isolation of leucocytes from human blood. Further observations. Methylcellulose, dextran, and ficoll as erythrocyteaggregating agents. Scand. J. Clin. Lab. Invest. Suppl 1968. 97: 31–50. PubMed
Boyum A, Isolation of lymphocytes, granulocytes and macrophages. Scand. J. Immunol 1976. Suppl 5: 9–15. PubMed
Yeo C, Saunders N, Locca D, Flett A, Preston M, Brookman P, Davy B et al., Ficoll-Paque versus Lymphoprep: A comparative study of two density gradient media for therapeutic bone marrow mononuclear cell preparations. Regen. Med 2009. 4: 689–696. PubMed
Boyum A, Brincker FH, Martinsen I, Lea T and Lovhaug D, Separation of human lymphocytes from citrated blood by density gradient (NycoPrep) centrifugation: Monocyte depletion depending upon activation of membrane potassium channels. Scand. J. Immunol 2002. 56: 76–84. PubMed
Kuhns DB, Priel DA, Chu J and Zarember KA, Isolation and functional analysis of human neutrophils. Curr. Protoc. Immunol 2015. 111: 7.23.1–7.23.16. PubMed PMC
Maqbool M, Vidyadaran S, George E and Ramasamy R, Optimisation of laboratory procedures for isolating human peripheral blood derived neutrophils. Med. J. Malaysia 2011. 66: 296–299. PubMed
Bruyninckx WJ and Blancquaert AM, Isolation of horse mononuclear cells, especially of monocytes, on Isopaque-Ficoll neutral density gradient. Vet. Immunol. Immunopathol 1983. 4: 493–504. PubMed
Pertoft H, Fractionation of cells and subcellular particles with Percoll. J. Biochem. Biophys. Methods 2000. 44: 1–30. PubMed
Yu L, Warner P, Warner B, Recktenwald D, Yamanishi D, Guia A and Ghetti A, Whole blood leukocytes isolation with microfabricated filter for cell analysis, Cytometry 2011. 79A: 1009–1015. PubMed
Higuchi A, Wang C-T, Ling Q-D, Lee HH-C, Suresh Kumar S, Chang Y, Alarfaj AA et al., A hybrid-membrane migration method to isolate high-purity adipose-derived stem cells from fat tissues. Sci. Rep 2015. 5: 10217. PubMed PMC
Huang LR, Cox EC, Austin RH and Sturm JC, Continuous particle separation through deterministic lateral displacement. Science 2004. 304: 987–990. PubMed
Davis JA, Inglis DW, Morton KJ, Lawrence DA, Huang LR, Chou SY, Sturm JC et al., Deterministic hydrodynamics: Taking blood apart, Proc. Nat. Acad. Sci 2008. 103: 14779–14784. PubMed PMC
Loutherback K, D’Silva1 J, Liu L, Wu A, Austin RH and Sturm JC, Deterministic separation of cancer cells from blood at 10 mL/min. AIP Adv. 2012. 2: 042107.1–042107.7. PubMed PMC
D’Silva J, Austin H and Sturm C, Inhibition of clot formation in deterministic lateral displacement arrays for processing large volumes of blood for rare cell capture. Lab Chip 2015. 15: 2240–2247. PubMed PMC
Civin CI, Ward T, Skelley AM, Gandhi K, Peilun Lee Z, Dosier CR, D’Silva JL et al., Automated leukocyte processing by microfluidic deterministic lateral displacement. Cytometry A. 2016. 89: 1073–1083. PubMed PMC
Campos-González R, Skelley AM, Gandhi K, Inglis DW, Sturm JC, Civin CI and Ward T, Deterministic lateral displacement: the next-generation CAR T-cell processing? SLAS Technol. 2018. 23: 338–351. PubMed
Laurell T, Petersson F and Nilsson A, Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chem. Soc. Rev 2007. 36: 492–506. PubMed
Dykes J, Lenshof A, Åstrand-Grundström I-B, Laurell T and Scheding S, Efficient removal of platelets from peripheral blood progenitor cell products using a novel micro-chip based acoustophoretic platform. PLoS ONE 2011. 6: e23074. PubMed PMC
Urbansky A, Ohlsson P, Lenshof A, Garofalo F, Scheding S and Laurell T, Rapid and effective enrichment of mononuclear cells from blood using acoustophoresis. Sci. Rep 2017. 7: 17161. PubMed PMC
Wysocki LJ and Sato VL, Panning for lymphocytes: A method for cell selection. Proc. Natl. Acad. Sci. U S A 1978. 75: 2844–2848. PubMed PMC
Weiner MS, Bianco C and Nussenzweig V, Enhanced binding of neuraminidase-treated sheep erythrocytes to human T lymphocytes. Blood 1973. 42: 939–946. PubMed
Indiviri F, Huddlestone J, Pellegrino MA and Ferroni S, Isolation of human T lymphocytes: Comparison between wool filtration and rosetting with neuraminidase (VCN) and 2-aminoethylisothiouronium (AET)-treated sheep red blood cells. J. Immunol. Methods 1980. 34: 107–112. PubMed
Lepe-Zuniga JL, Zigler JS and Gery I, Toxicity of light-exposed Hepes media. J. Immunol. Methods 1987. 103: 145. PubMed
Cowan CM and Basu S, Heng BC, Comparison of enzymatic and nonenzymatic means of dissociating adherent monolayers of mesenchymal stem cells. Biol. Proc. Online 2009. 11: 161–169. PubMed PMC
Amaral K, Rogero M, Fock R, Borelli P and Gavini G, Cytotoxicity analysis of EDTA and citric acid applied on murine resident macrophages culture. Int. Endod. J 2007. 40(5): 338–343. PubMed
Wiesman U, Segregating cells—proteases in tissue culture In Sterchi EE and Stöcker W (Eds.), Proteolytic enzymes: Tools and targets. Springer, Berlin, Germany, 1999, pp. 298–311.
Stovel RT, The influence of particles on jet breakoff. J. Histochem. Cytochem 1977. 25: 813–820. PubMed
Pinkel D and Stovel R, Flow chambers and sample handling In Van Dilla MA, Dean PN, Laerum OD and Melame MR (Eds.), Flow cytometry: Instrumentation and data analysis, Academic Press, London, UK, 1985, pp. 77–128.
Houtz B, Trotter J and Sasaki D, Tips on cell preparation for flow cytometric analysis and sorting. BD FACService Technotes 2004. 9.
Holmes KL, Fontes B, Hogarth P, Konz R, Monard S, Pletcher CH Jr., Wadley RB et al., International Society for the Advancement of Cytometry cell sorter biosafety standards. Cytometry A 2014. 85: 434–453. PubMed PMC
van derMaaten LJP and Hinton GE, Visualizing high-dimensional data using t-SNE. J. Mach. Learn. Res 2008. 9: 2579–2605.
McInnes L, Healy J and Melville J, UMAP: uniform manifold approximation and projection for dimension reduction arXiv:1802.03426
Aghaeepour N, Simonds EF, Knapp DJHF, Bruggner RV, Sachs K, Culos A, Gherardini PF et al., GateFinder: projection-based gating strategy optimization for flow and mass cytometry. Bioinformatics 2018. 34(23): 4131–4133. PubMed PMC
Becht E, Simoni Y, Coustan-Smith E, Maximilien E, Cheng Y, Ng LG, Campana D et al., Reverse-engineering flow-cytometry gating strategies for phenotypic labelling and high-performance cell sorting. Bioinformatics 2019. 35: 301–308. PubMed
Samusik N, Irvine A, Aghaeepour A, Spidlen J and Trotter J Computational Sorting with HyperFinder, CYTO 2019, Session Parallel 06, 24 June 2019.
Bøyum A, Løvhaug D, Tresland L and Nordlie EM, Separation of leucocytes: improved cell purity by fine adjustments of gradient medium density and osmolality. Scand. J. Immunol 1991. 34: 697–712. PubMed
Loos H, Blok-Schut B, van Doorn R, Hoksbergen R, Brutel de la Rivière, A. and Meerhof, L., A method for the recognition and separation of human blood monocytes on density gradients. Blood 1976. 48: 731–742. PubMed
BD FACSAria user’s guide, BD Biosciences, San Jose, USA, 2006.
Wixforth A, Acoustically driven programmable microfluidics for biological and chemical applications. J. Lab. Automat 2006. 11: 399–405.
Kaiser T, Raba K, Sickert M, Radbruch A and Scheffold A, Integration of an ultrasonic wave device in a FACS-Aria cell sorter for continuous, noninvasive mixing of cell suspensions Poster, Budapest, 2008. ISAC congress; 10.13140/RG.2.1.1760.2966 DOI
Radbruch A (Ed.), Flow cytometry and cell sorting, 2nd ed., Springer, Berlin/Heidelberg: 2000.
Freyer JP, Fillak D and Jett JH, Use of xantham gum to suspend large particles during flow cytometric analysis and sorting. Cytometry 1989. 10: 803–806. PubMed
Fu L-M, Yang R-J, Lin C-H, Pan Y-J and Gwo-Bin L, Electrokinetically driven micro flow cytometers with integrated fiber optics for on-line cell/particle detection. Anal. Chim. Acta 2004. 507: 163–169.
Telleman P, Larsen UD, Philip J, Blankenstein G and Wolff A, Cell Sorting in Microfluidic Systems In Jed Harrison D and van den Berg A (Eds.). Micro total analysis systems ’98 Springer, Amsterdam, the Netherlands, 1998, pp. 39–44.
Wang X, Chen S, Kong M, Wang Z, Costa KD, Li RA and Sun D, Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies. Lab Chip 2011. 11: 3656–3662. PubMed
Bhagat AA, Bow H, Hou HW, Tan SJ, Han J and Lim CT, Microfluidics for cell separation. Med. Biol. Eng. Comput 2010. 48: 999–1014. PubMed
Chapman GV, Instrumentation for flow cytometry. J. Immunol. Methods 2000. 243: 3–12. PubMed
Abate AR, Agresti JJ and Weitz DA, Microfluidic sorting with highspeed single-layer membrane valves. Appl. Phys. Lett 2010. 96: 203509.
Shemesh J, Bransky A, Khoury M and Levenberg S, Advanced microfluidic droplet manipulation based on piezoelectric actuation. Biomed. Microdevices 2010. 12: 907–914. PubMed
Chen CH, Cho SH, Tsai F, Erten A and Lo YH, Microfluidic cell sorter with integrated piezoelectric actuator. Biomed. Microdevices 2009. 11: 1223–1231. PubMed PMC
Wang MM, Tu E, Raymond DE, Yang JM, Zhang H, Hagen N, Dees B et al., Microfluidic sorting of mammalian cells by optical force switching. Nat. Biotechnol 2005. 23: 83–87. PubMed
Roederer M, Spectral compensation for flow cytometry: visualization artifacts, limitations, and caveats. Cytometry 2001. 45: 194–205. PubMed
Rockefeller University BD FACSAria2–3 Water-Cooled Sort Collection Integrated Tube Holder 5–15-;5–5 | NIH 3D Print Exchange. Available at: http://3dprint.nih.gov/discover/3dpx-002415. (Accessed: 20th April 2016)
Sasaki DT, Tichenor EH, Lopez F, Combs J, Uchida N, Smith CR, Stokdijk W et al., Development of a clinically applicable high-speed flow cytometer for the isolation of transplantable human hematopoietic stem cells. J. Hematother 1995. 4: 503–514. PubMed
June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC, CAR T cell immunotherapy for human cancer. Science 2018. 359: 1361–1365. PubMed
Hoffmann P, Eder R, Boeld TJ, Doser K, Piseshka B, Andreesen R et al., Only the CD45RA+ subpopulation of CD4+CD25high T cells gives rise to homogeneous regulatory T-cell lines upon in vitro expansion. Blood 2006. 108: 4260–4267. PubMed
GMP EudraLex Volume 4, Part I, with guidance in Annex 1 on ‘Manufacture of Sterile Medicinal Products’ and Annex 2 on ‘Manufacture of Biological active substances and Medicinal Products for Human Use’; https://ec.europa.eu/health/documents/eudralex/vol-4_de.
Good Manufacturing Practice for Advanced Therapy Medicinal Products, published in Part IV of Eudralex Volume 4; https://ec.europa.eu/health/documents/eudralex/vol-4_de
Reflection paper on classification of advanced therapy medicinal products. EMA/CAT/600280/2010 (ed. EMA) (EMA-CAT, http://www.ema.europa.eu/docs/en_GB/document_library/Regulatory_and_procedural_guideline/2012/04/WC500126681.pdf, 2012).
Commission Directive 2009/120/EC of 14 September 2009 amending Directive 2001/83/EC of the European Parliament and of the Council on the Community code relating to medicinal products for human use as regards advanced therapy medicinal product.
Regulation (EC) No 1394/2007 of the European Parliament and of the Council of 13 November 2007 on advanced therapy medicinal products and amending Directive 2001/83/EC and Regulation (EC) No 726/2004.
Guideline on process validation for finished products - information and data to be provided in regulatory submissions, EMA/CHMP/CVMP/QWP/BWP/70278/2012-Rev1. 27 February 2014: European Medicines Agency (EMA).
USFDA. Guidance for industry Process validation: General principles and practices, U.S. Department of Health and Human Services Food and Drug Administration; Washington, DC: 2011.
ICH Q6B: Specifications: Test Procedures and Acceptance Criteria for Biotechnological / Biological Products, ICH Harmonised Tripartite Guideline. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use.
ICH Q2(R1): Validation of Analytical Procedures: Text and Methodology, ICH Harmonised Tripartite Guideline. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use.
Leslie DS, Johnston WW, Daly L, Ring DB, Shpall EJ, Peters WP and Bast RC Jr., Detection of breast carcinoma cells in human bone marrow using fluorescence-activated cell sorting and conventional cytology. Am. J. Clin. Pathol 1990. 94: 8–13. PubMed
Frantz CN, Ryan DH, Cheung NV, Duerst RE and Wilbur DC, Sensitive detection of rare metastatic human neuroblastoma cells in bone marrow by two-color immunofluorescence and cell sorting. Prog. Clin. Biol. Res 1988. 271: 249–262. PubMed
Ryan DH, Mitchell SJ, Hennessy LA, Bauer KD, Horan PK and Cohen HJ, Improved detection of rare CALLA-positive cells in peripheral blood using multiparameter flow cytometry. J. Immunol. Methods 1984. 74: 115–128. PubMed
Visser JW and De Vries P, Identification and purification of murine hematopoietic stem cells by flow cytometry. Methods Cell Biol. 1990. 33: 451–468. PubMed
Cory JM, Ohlsson-Wilhelm BM, Brock EJ, Sheaffer NA, Steck ME, Eyster ME and Rapp F, Detection of human immunodeficiency virus-infected lymphoid cells at low frequency by flow cytometry. J. Immunol. Methods 1987. 105: 71–78. PubMed
Jensen RH and Leary JF, Mutagenesis as measured by flow cytometry and cell sorting In Melamed MR, Mendelsohn ML and Lindmo T (Eds.) Flow cytometry and sorting, 2nd ed., Wiley-LISS, New York, NY, 1990.
Cossarizza A and Cousins D, Overcoming challenges in cellular analysis: multiparameter analysis of rare cells. Science 2015. 347: 443.
Gross HJ, Verwer B, Houck D, Hoffman RA and Recktenwald D, Model study detecting breast cancer cells in peripheral blood mononuclear cells at frequencies as low as 10–7. Proc. Natl. Acad. Sci. U.S.A 1995. 92: 537–541. PubMed PMC
Donnenberg AD and Donnenberg VS, Rare-event analysis in flow cytometry. Clin. Lab. Med 2007. 27: 627–652. PubMed
De Biasi S, Bianchini E, Nasi M, Digaetano M, Gibellini L, Carnevale G, Borghi V et al., Th1 and Th17 pro-inflammatory profile characterizes iNKT cells in virologically suppressed HIV+ patients with low CD4/CD8 ratio. AIDS 2016. 30: 2599–2610. PubMed
Duda DG, Cohen KS, Scadden DT and Jain RK, A protocol for phenotypic detection and enumeration of circulating endothelial cells and circulating progenitor cells in human blood. Nat. Protoc 2007. 2: 805–810. PubMed PMC
Mancuso P, Antoniotti P, Quarna J, Calleri A, Rabascio C, Tacchetti C and Braidotti P, Validation of a standardized method for enumerating circulating endothelial cells and progenitors: flow cytometry and molecular and ultrastructural analyses. Clin. Cancer Res 2009. 15: 267–273. PubMed
Van Craenenbroeck EM, Conraads VM, Van Bockstaele DR, Haine SE, Vermeulen K, Van Tendeloo VF and Vrints CJ, Quantification of circulating endothelial progenitor cells: A methodological comparison of six flow cytometric approaches. J. Immunol. Methods 2008. 332: 31–40. PubMed
Estes ML, Mund JA, Ingram DA and Case J, Identification of endothelial cells and progenitor cell subsets in human peripheral blood. Curr. Protoc. Cytom 2010. 52: 9.33.1–9.33.11. PubMed
De Biasi S, Cerri S, Bianchini E, Gibellini L, Persiani E, Montanari G and Luppi F, Levels of circulating endothelial cells are low in idiopathic pulmonary fibrosis and are further reduced by anti-fibrotic treatments. BMC Med. 2015. 13: 277. PubMed PMC
Cox C, Reeder JE, Robinson RD, Suppes SB and Wheeless LL, Comparison of frequency distribution in flow cytometry. Cytometry 1988. 9: 291–298. PubMed
Haight FA, Handbook of the Poisson distribution. John Wiley & Sons, New York, NY, 1967.
Roederer M, How many events is enough? Are you positive? Cytometry 2008. 73: 384–385. PubMed
Boyd WA, Smith MV and Freedman JH, Caenorhabditis elegans as a model in developmental toxicology. Methods Cell. Biol 2012. 889: 15–24. PubMed PMC
Steffen A, Ludwig B, Krautz C, Bornstein S and Solimena M, Functional assessment of automatically sorted pancreatic islets using large particle flow cytometry. Islet. 2011. 3: 67–270. PubMed PMC
Li CY, Wood DK, Huang JH and Bhatia SN, Flow-based pipeline for systematic modulation and analysis of 3D tumor microenvironments. Lab. Chip 2013. 13: 1969–1978. PubMed PMC
Coder DM, Assessment of cell viability. Curr. Protoc. Cytom 2001. 15: 9.2:9.2.1–9.2.14. PubMed
Perfetto SP, Chattopadhyay PK, Lamoreaux L, Nguyen R, Ambrozak D, Koup RA and Roederer M Amine reactive dyes: an effective tool to discriminate live and dead cells in polychromatic flow cytometry. J. Immunol. Methods 2006. 313: 199–208. PubMed
Zuba-Surman EK, Kucia M and Ratajczak MZ, Decoding the dots: the ImageStream system (ISS) as a novel and powerful tool for flow cytometric analysis. Cent. Eur. J. Biol 2008. 3: 1–10.
Vindelov LL, Christensen IJ and Nissen NI, A detergent-trypsin method for the preparation of nuclei for flow cytometric DNA analysis. Cytometry 1983. 3: 323–327. PubMed
Hedley DW, Friedlander ML, Taylor IW, Rugg CA and Musgrove EA, Method for analysis of cellular DNA content of paraffin-embedded pathological material using flow cytometry. J. Histochem. Cytochem 1983. 31: 1333–1335. PubMed
Degtyarev M, Reichelt M and Lin K, Novel quantitative autophagy analysis by organelle flow cytometry after cell sonication. PLoS One. 2014. 9: e87707. PubMed PMC
Poot M, Gibson LL and Singer VL, Detection of apoptosis in live cells by MitoTracker CMXRos and SYTO dye flow cytometry. Cytometry. 1997. 27: 358–364. PubMed
Poot M, Analysis of intracellular organelles by flow cytometry or microscopy. Curr. Protoc. Cytom 2001. 14: 9.4:9.4.1–9.4.24. PubMed
Bailey S and Macardle PJ, A flow cytometric comparison of Indo-1 to fluo-3 and Fura Red excited with low power lasers for detecting Ca(2+) flux. J. Immunol. Methods 2006. 311: 220–225. PubMed
Leverrier S, Bergamaschi D, Ghali L, Ola A, Warnes G, Akgul B et al., Role of HPV E6 proteins in preventing UVB-induced release of pro-apoptotic factors from the mitochondria. Apoptosis. 2007. 12: 549–560. PubMed
Dolezel J, Vrana J, Safar J, Bartos J, Kubalakova M and Simkova H, Chromosomes in the flow to simplify genome analysis. Funct. Integr. Genomics 2012. 12: 97–416. PubMed PMC
Davies DC, Monard SP and Young BD Chromosome analysis and sorting by flow cytometry In Ormerod MG (Ed.), Flow cytometry: A practical approach, 3rd edition, Oxford University Press, Oxford, U.K., 2000.
Ng BL, Fu B, Graham J, Hall C and Thompson S, Chromosome analysis using benchtop cell analysers and high speed cell sorters. Cytometry A 2018. 95: 323–331. PubMed PMC
Rhys HI, Dell’Accio F, Pitzalis C, Moore A, Norling LV and Perretti M, Neutrophil microvesicles from healthy control and rheumatoid arthritis patients prevent the inflammatory activation of macrophages. EBioMedicine. 2018. 29: 60–69. PubMed PMC
Orozco A and Lewis D, Flow cytometric analysis of circulating microparticles in plasma. Cytometry A. 2010. 77A: 502–514. PubMed PMC
Zucker RM, Ortenzio JNR, Boyes WK, Characterization, detection, and counting of metal nanoparticles using flow cytometry. Cytometry A. 2016. 89A: 69–183. PubMed
Morales-Kastresana A, Telford W, Musich TA, McKinnon K, Clayborne C, Braig Z, Rosner A et al., Labeling extracellular vesicles for nanoscale flow cytometry. Sci. Rep 2017. 7: 1878. PubMed PMC
Kastelowitz N and Yin H, Exosomes and microvesicles: identification and targeting by particle size and lipid chemical probes. ChemBioChem. 2014. 15: 923–928. PubMed PMC
Erdbrügger U, Rudy CK, Etter ME, Dryden KA, Yeager M, Kibanov AL and Lannigan J, Imaging flow cytometry elucidates limitations of microparticle analysis by conventional flow cytometry. Cytometry A. 2014. 85A: 756–770. PubMed
Marcoux G, Duchez AC, Clouthier N, Provost P, Nigrovic PA and Boilard E, Revealing the diversity of extracellular vesicles using high-dimensional flow cytometry analyses. Sci. Rep 2016. 6: 35928. PubMed PMC
Wallace DC, Mitochondria and cancer. Nat. Rev. Cancer 2012. 12: 685–698. PubMed PMC
Wallace DC, Mitochondrial diseases in man and mouse. Science 1999. 283: 1482–1488. PubMed
Brand MD and Nicholls DG, Assessing mitochondrial dysfunction in cells. Biochem. J 2011. 435: 297–312. PubMed PMC
Cottet-Rousselle C, Ronot X, Leverve X and Mayol JF, Cytometric assessment of mitochondria using fluorescent probes. Cytometry A 2011. 79: 405–425. PubMed
Lay AWL and Burton AC, Direct measurement of potential difference across the human red blood cell membrane. Biophys. J 1969. 9: 115–121. PubMed PMC
Perry SW, Norman JP, Barbieri J, Brown EB and Gelbard HA, Mitochondrial membrane potential probes and the proton gradient: A practical usage guide. Biotechniques 2011. 50: 98–115. PubMed PMC
Petit PX, Susin SA, Zamzami N, Mignotte B and Kroemer G, Mitochondria and programmed cell death: Back to the future. FEBS Lett. 1996. 396: 7–13. PubMed
Rottenberg H and Wu S, Quantitative assay by flow cytometry of the mitochondrial membrane potential in intact cells. Biochim. Biophys. Acta 1998. 1404: 393–404. PubMed
Johnson LV, Walsh ML and Chen LB, Localization of mitochondria in living cells with rhodamine 123. Proc. Natl. Acad. Sci. U.S.A 1980. 77: 990–994. PubMed PMC
Troiano L, Granata AR, Cossarizza A, Kalashnikova G, Bianchi R, Pini G, Tropea F et al., Mitochondrial membrane potential and DNA stainability in human sperm cells: a flow cytometry analysis with implications for male infertility. Exp. Cell. Res 1998. 241: 384–393. PubMed
Ehrenberg B, Montana V, Wei MD, Wuskell JP and Loew LM, Membrane potential can be determined in individual cells from the nernstian distribution of cationic dyes. Biophys. J 1988. 53: 785–794. PubMed PMC
Nicholls DG and Ward MW, Mitochondrial membrane potential and neuronal glutamate excitotoxicity: Mortality and millivolts. Trends Neurosci. 2000. 23: 166–174. PubMed
Cossarizza A, Baccarani-Contri M, Kalashnikova G and Franceschi C, A new method for the cytofluorimetric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5,5′,6,6′-tetrachloro-1,1′,3,3′;-tetraethylbenzimidazolcarbocyanine iodide (JC-1). Biochem. Biophys. Res. Commun 1993. 197: 40–45. PubMed
Smiley ST, Reers M, Mottola-Hartshorn C, Lin M, Chen A, Smith TW, Steele GD et al., Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc. Natl. Acad. Sci. U.S.A 1991. 88: 3671–3675. PubMed PMC
Reers M, Smith TW and Chen LB, J-aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane potential. Biochemistry 1991. 30: 4480–4486. PubMed
Moudy AM, Handran SD, Goldberg MP, Ruffin N, Karl I, Kranz-Eble P, DeVivo DC et al., Abnormal calcium homeostasis and mitochondrial polarization in a human encephalomyopathy. Proc. Natl. Acad. Sci. U.S.A 1995. 92: 729–733. PubMed PMC
Perelman A, Wachtel C, Cohen M, Haupt S, Shapiro H and Tzur A, JC-1: alternative excitation wavelengths facilitate mitochondrial membrane potential cytometry. Cell Death Dis. 2012. 3: e430. PubMed PMC
De Biasi S, Gibellini L and Cossarizza A, Uncompensated polychromatic analysis of mitochondrial membrane potential using JC-1 and multilaser excitation. Curr. Prot. Cytom 2015. 72: 7.32.1–7.32.11. PubMed
Troiano L, Ferraresi R, Lugli E, Nemes E, Roat E, Nasi M, Pinti M et al., Multiparametric analysis of cells with different mitochondrial membrane potential during apoptosis by polychromatic flow cytometry. Nat. Protoc 2007. 2: 2719–2727. PubMed
Poot M, Zhang YZ, Kramer JA, Wells KS, Jones LJ, Hanzel DK, Lugade AG et al., Analysis of mitochondrial morphology and function with novel fixable fluorescent stains. J. Histochem. Cytochem 1996. 44: 1363–1372. PubMed
Septinus M, Seiffert W and Zimmermann HW, Hydrophobic acridine dyes for fluorescence staining of mitochondria in living cells. 1. Thermodynamic and spectroscopic properties of 10-n-alkylacridine orange chlorides. Histochemistry 1983. 79: 443–456. PubMed
Dickinson BC, Lin VS and Chang CJ, Preparation and use of MitoPY1 for imaging hydrogen peroxide in mitochondria of live cells. Nat. Protoc 2013. 8: 1249–1259. PubMed PMC
Mukhopadhyay P, Rajesh M, Hasko G, Hawkins BJ, Madesh M and Pacher P, Simultaneous detection of apoptosis and mitochondrial superoxide production in live cells by flow cytometry and confocal microscopy. Nat. Protoc 2007. 2: 2295–2301. PubMed PMC
Mukhopadhyay P, Rajesh M, Yoshihiro K, Hasko G and Pacher P, Simple quantitative detection of mitochondrial superoxide production in live cells. Biochem. Biophys. Res. Commun 2007. 358: 203–208. PubMed PMC
Robinson KM, Janes MS, Pehar M, Monette JS, Ross MF, Hagen TM, Murphy MP et al., Selective fluorescent imaging of superoxide in vivo using ethidium-based probes. Proc. Natl. Acad. Sci. U.S.A 2006. 103: 15038–15043. PubMed PMC
Cossarizza A, Ferraresi R, Troiano L, Roat E, Gibellini L, Bertoncelli L, Nasi M et al., Simultaneous analysis of reactive oxygen species and reduced glutathione content in living cells by polychromatic flow cytometry. Nat. Protoc 2009. 4: 1790–1797. PubMed
Gibellini L, Pinti M, Bartolomeo R, De Biasi S, Cormio A, Musicco C, Carnevale G et al., Inhibition of Lon protease by triterpenoids alters mitochondria and is associated to cell death in human cancer cells. Oncotarget 2015. 6: 25466–25483. PubMed PMC
Hawkins BJ, Madesh M, Kirkpatrick CJ and Fisher AB, Superoxide flux in endothelial cells via the chloride channel-3 mediates intracellular signaling. Mol. Biol. Cell 2007. 18: 2002–2012. PubMed PMC
Iuso A, Scacco S, Piccoli C, Bellomo F, Petruzzella V, Trentadue R, Minuto M et al., Dysfunctions of cellular oxidative metabolism in patients with mutations in the NDUFS1 and NDUFS4 genes of complex I. Biol. Chem 2006. 281: 10374–10380. PubMed
Rezvani HR, Dedieu S, North S, Belloc F, Rossignol R, Letellier T, de Verneuil H et al., Hypoxia-inducible factor-1alpha, a key factor in the keratinocyte response to UVB exposure. J. Biol. Chem 2007. 282: 16413–16422. PubMed
van der Pol E, Böing AN, Harrison P, Sturk A and Nieuwland R, Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol. Rev 2012. 64: 676–705. PubMed
van der Pol E, Coumans FAW, Grootemaat AE, Gardiner C, Sargent IL, Harrison P, Sturk A et al., Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J. Thromb. Haemost 2014. 12: 1182–1192. PubMed
De Rond L, Coumans FAW, Nieuwland R, Van Leeuwen TG and van der Pol E, Deriving extracellular vesicle size from scatter intensities measured by flow cytometry. Blood Coagul. Fibrinolysis 2018. 1–14. PubMed
van der Pol E, de Rond L, Coumans FAW, Gool EL, Böing AN, Sturk A, Nieuwland R et al., Absolute sizing and label-free identification of extracellular vesicles by flow cytometry. Nanomed. Nanotechnol. Biol. Med 2018. 14: 801–810. PubMed
White JG, Platelet structure In: Michelson AD, ed. Platelets. 2nd ed. Academic Press, San Diego, CA: 2006:45–73.
Arraud N, Linares R, Tan S, Gounou C, Pasquet JM, Mornet S and Brisson AR, Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration. J. Thromb. Haemost 2014. 12: 614–627. PubMed
Brisson AR, Tan S, Linares R, Gounou C and Arraud N, Extracellular vesicles from activated platelets: a semiquantitative cryoelectron microscopy and immuno-gold labeling study. Platelets. 2017. 28: 263–271. PubMed
Dragovic RA, Gardiner C, Brooks AS, Tannetta DS, Ferguson DJP, Hole P, Carr B et al., Sizing and phenotyping of cellulars vesicles using nanoparticle tracking analysis. Nanomed. Nanotechnol. Biol. Med 2011. 7: 780–788. PubMed PMC
van der Pol E, Hoekstra AG, Sturk A, Otto C, van Leeuwen TG and Nieuwland R, Optical and non-optical methods for detection and characterization of microparticles and exosomes. J. Thromb. Haemost 2010. 8: 2596–2607. PubMed
van der Pol E, Sturk A, van Leeuwen TG, Nieuwland R and Coumans FAW, Standardization of extracellular vesicle measurements by flow cytometry through vesicle diameter approximation. J. Thromb. Haemost 2018. 16: 1236–1245. PubMed
van der Pol E, van Gemert MJC, Sturk A, Nieuwland R and van Leeuwen TG, Single vs. swarm detection of microparticles and exosomes by flow cytometry. J. Thromb. Haemost 2012. 10: 919–930. PubMed
Chandler WL, Yeung W and Tait JF, A new microparticle size calibration standard for use in measuring smaller microparticles using a new flow cytometer. J. Thromb. Haemost 2011. 9: 1216–1224. PubMed
Coumans FAW, Brisson AR, Buzas EI, Dignat-George F, Drees EEE, El-Andaloussi S, Emanueli C et al., Methodological guidelines to study extracellular vesicles. Circ. Res 2017. 120: 1632–1648. PubMed
Yuana Y, Böing AN, Grootemaat AE, van der Pol E, Hau CM, Cizmar P, Buhr E et al., Handling and storage of human body fluids for analysis of extracellular vesicles. J. Extracell. Vesicles 2015. 4: 29260. PubMed PMC
Witwer KW, Buzás EI, Bemis LT, Bora A, Lässer C, Lötvall J, Nolte-’t Hoen EN et al., Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J. Extracell. Vesicles 2013. 2: 1–25. PubMed PMC
Lacroix R, Judicone C, Mooberry M, Boucekine M, Key NS, Dignat-George F, Ambrozic A et al., Standardization of preanalytical variables in plasma microparticle determination: results of the International Society on Thrombosis and Haemostasis SSC collaborative workshop. J. Thromb. Haemost 2013. 11: 1190–1193. PubMed PMC
Wachalska M, Koppers-Lalic D, van Eijndhoven M, Pegtel M, Geldof AA, Lipinska AD, van Moorselaar RJ et al., Protein complexes in urine interfere with extracellular vesicle biomarker studies. J. Circ. biomarkers 2016. 5: 4. PubMed PMC
Berckmans RJ, Sturk A, Schaap MC and Nieuwland R, Cell-derived vesicles exposing coagulant tissue factor in saliva. Blood. 2011. 117: 3172–3180. PubMed
Lippi G, Salvagno GL, Montagnana M, Franchini M and Guidi GC, Venous stasis and routine hematologic testing. Clin. Lab. Haematol 2006. 28: 332–337. PubMed
Jy W, Horstman LL, Jimenez JJ and Ahn YS, Measuring circulating cell-derived microparticles. J. Thromb. Haemost 2004. 2: 1842–1843. PubMed
Lippi G, Salvagno GL, Montagnana M, Poli G and Guidi GC, Influence of the needle bore size on platelet count and routine coagulation testing. Blood Coagul. Fibrinolysis 2006. 17: 557–561. PubMed
Piccin A, Murphy WG and Smith OP, Circulating microparticles: pathophysiology and clinical implications. Blood Rev. 2007. 21: 157–171. PubMed
Hefler L, Grimm C, Leodolter S and Tempfer C, To butterfly or to needle: the pilot phase. Ann. Intern. Med 2004. 140: 935–936. PubMed
Van Ierssel SH, Van Craenenbroeck EM, Conraads VM, Van Tendeloo VF, Vrints CJ, Jorens PG and Hoymans VY, Flow cytometric detection of endothelial microparticles (EMP): effects of centrifugation and storage alter with the phenotype studied. Thromb. Res 2010. 125: 332–339. PubMed
Rikkert LG, van der Pol E, van Leeuwen TG, Nieuwland R and Coumans FAW, Centrifugation affects the purity of liquid biopsybased tumor biomarkers. Cytometry A 2018. 93: 1207–1212. PubMed PMC
Stoner SA, Duggan E, Condello D, Guerrero A, Turk JR, Narayanan PK and Nolan JP, High sensitivity flow cytometry of membrane vesicles. Cytometry A 2016. 89: 196–206. PubMed
Böing AN, van der Pol E, Grootemaat AE, Coumans FAW, Sturk A and Nieuwland R, Single-step isolation of extracellular vesicles by size-exclusion chromatography. J. Extracell. Vesicles 2014. 3: 23430. PubMed PMC
Yuana Y, Bertina RM and Osanto S, Pre-analytical and analytical issues in the analysis of blood microparticles. Thromb. Haemost 2011. 105: 396–408. PubMed
Biro E, Sturk-Maquelin KN, Vogel GMT, Meuleman DG, Smit MJ, Hack CE, Sturk A et al., Human cell-derived microparticles promote thrombus formation in vivo in a tissue factor-dependent manner. J. Thromb. Haemost 2003. 1: 2561–2568. PubMed
Simak J and Gelderman MP, Cell membrane microparticles in blood and blood products: Potentially pathogenic agents and diagnostic markers. Transfus. Med. Rev 2006. 20: 1–26. PubMed
Trummer A, De Rop C, Tiede A, Ganser A and Eisert R, Recovery and composition of microparticles after snap-freezing depends on thawing temperature. Blood Coagul. Fibrinolysis 2009. 20: 52–56. PubMed
de Rond L, van der Pol E, Hau CM, Varga Z, Sturk A, van Leeuwen TG, Nieuwland R et al., Comparison of generic fluorescent markers for detection of extracellular vesicles by flow cytometry. Clin. Chem 2018. 64: 680–689. PubMed
Baumgarth N and Roederer M, A practical approach to multicolor flow cytometry for immunophenotyping. J. Immunol. Methods 2000. 243: 77–97. PubMed
Chattopadhyay PK, Gaylord B, Palmer A, Jiang N, Raven MA, Lewis G, Reuter MA et al., Brilliant violet fluorophores: a new class of ultrabright fluorescent compounds for immunofluorescence experiments. Cytometry A 2012. 81: 456–466. PubMed
Pieragostino D, Lanuti P, Cicalini I, Cufaro MC, Ciccocioppo F, Ronci M, Simeone P et al., Proteomics characterization of extracellular vesicles sorted by flow cytometry reveals a disease-specific molecular cross-talk from cerebrospinal fluid and tears inmultiple sclerosis. Proteomics. 2019. In press 10.1016/j.jprot.2019.103403 PubMed DOI
Nolan JP and Stoner SA, A trigger channel threshold artifact in nanoparticle analysis. Cytometry A 2013. 83: 301–305. PubMed PMC
Arraud N, Gounou C, Turpin D and Brisson AR Fluorescence triggering: a general strategy for enumerating and phenotyping extracellular vesicles by flow cytometry. Cytometry A 2016. 89: 184–195. PubMed
Steen HB, Noise, sensitivity, and resolution of flow cytometers. Cytometry 1992. 13: 822–830. PubMed
Giesecke C, Feher K, von Volkmann K, Kirsch J, Radbruch A and Kaiser T, Determination of background, signal-to-noise, and dynamic range of a flow cytometer: A novel practical method for instrument characterization and standardization. Cytometry A 2017. 91: 1104–1114. PubMed
Poncelet P, Robert S, Bouriche T, Bez J, Lacroix R and Dignat-George F, Standardized counting of circulating platelet microparticles using currently available flow cytometers and scatter-based triggering: Forward or side scatter? Cytometry A 2016. 89: 148–158. PubMed
Hoen ENM, van der Vlist EJ, Aalberts M, Mertens HCH, Bosch BJ, Bartelink W, Mastrobattista E et al., Quantitative and qualitative flow cytometric analysis of nanosized cell-derived membrane vesicles. Nanomed. Nanotechnol. Biol. Med 2012. 8: 712–720. PubMed PMC
Lanuti P, Rotta G, Almici C, Avvisati G, Budillon A, Doretto P, Malara N et al., Endothelial progenitor cells, defined by the simultaneous surface expression of VEGFR 2 and CD 133, are not detectable in healthy peripheral and cord blood. Cytometry A 2016. 89: 259–270. PubMed
van der Vlist EJ, Nolte-’t Hoen ENM, Stoorvogel W, Arkesteijn GJA and Wauben MHM, Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry. Nat. Protoc 2012. 7: 1311–26. PubMed
Osteikoetxea X, Sódar B, Németh A, Szabó-Taylor K, Pálóczi K, Vukman KV, Tamási V et al., Differential detergent sensitivity of extracellular vesicle subpopulations. Org. Biomol. Chem 2015. 13: 9775–9782. PubMed
Schwartz A, Gaigalas AK, Wang L, Marti GE, Vogt RF and Fernandez-Repollet E, Formalization of the MESF unit of fluorescence intensity. Cytometry B Clin. Cytom 2004. 57: 1–6. PubMed
Wang L, Gaigalas AK, Abbasi F, Marti GE, Vogt RF and Schwartz A, Quantitating fluorescence intensity from fluorophores: practical use of MESF values. J. Res. Natl. Inst. Stand. Technol 2002. 107: 339. PubMed PMC
Wang L and Gaigalas AK, Development of multicolor flow cytometry calibration standards: assignment of equivalent reference fluorophores (ERF) unit. J. Res. Natl. Inst. Stand. Technol 2011. 116: 671. PubMed PMC
Welsh J, Kepley J, Rosner A, Horak P, Berzofsky J and Jones J, Prospective use of high-refractive index materials for single molecule detection in flow cytometry. Sensors. 2018. 18: 2461. PubMed PMC
Lacroix R, Robert S, Poncelet P, Kasthuri RS, Key NS and Dignat-George F, Standardization of platelet-derived microparticle enumeration by flow cytometry with calibrated beads: results of the International Society on Thrombosis and Haemostasis SSC Collaborative workshop. J. Thromb. Haemost 2010. 8: 2571–2574. PubMed
Lacroix R, Robert S, Poncelet P and Dignat-George F, Overcoming limitations of microparticle measurement by flow cytometry. Semin. Thromb. Hemost 2010. 36: 807–818. PubMed
Zhu S, Ma L, Wang S, Chen C, Zhang W, Yang L, Hang W et al., Light-scattering detection below the level of single fluorescent molecules for high-resolution characterization of functional nanoparticles. ACS Nano. 2014. 8: 10998–11006. PubMed PMC
Welsh JA, Horak P, Wilkinson JS, Ford VJ, Jones JC, Smith D, Holloway JA, and Englyst NA, FCMPASS Software Aids Extracellular Vesicle Light Scatter Standardization. Cytometry Part A. 2019. 10.1002/cyto.a.23782 PubMed DOI PMC
Scheffold A, Radbruch A and Assenmacher M, Phenotyping and separation of leukocyte populations based on affinity labelling. Methods Microbiol. 2002. 32: 23–58.
Bradbury AM and Plückthun A, Antibodies: validate recombinants once. Nature. 2015. 520: 295. PubMed
Jain R and Gray DH, Isolation of thymic epithelial cells and analysis by flow cytometry. Curr. Protoc. Immunol 2014107: 3.26.1–3.26.15. PubMed
Grützkau A, Krüger-Krasagakes S, Baumeister H, Schwarz C, Kögel H, Welker P, Lippert U et al., Synthesis, storage, and release of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) by human mast cells: implications for the biological significance of VEGF206. Mol. Biol. Cell 1998. 9: 875–84. PubMed PMC
Santangelo C, Worthington Biochemical Corporation tissue dissociation guide. Worthington Biochemical Corporation, Lakewood, NJ: 2008.
Wong KHK, Sandlin RD, Carey TR, Miller KL, Shank AT, Oklu R, Maheswaran S et al., The role of physical stabilization in whole blood preservation. Sci. Rep 2016. 6: 21023. PubMed PMC
Plate MM, Louzao R, Steele PM, Greengrass V, Morris LM, Lewis J, Barnett D et al., Evaluation of the blood stabilizers Trans-Fix and Cyto-Chex BCT for low-cost CD4 T-cell methodologies. Viral Immunol. 2009. 22: 329–32. PubMed
Hayashida K, Bartlett AH, Chen Y, Park PW, Molecular and cellular mechanisms of ectodomain shedding. Anat. Rec 2010. 293: 925–37. PubMed PMC
Berhanu D, Mortari F, De Rosa SC and Roederer M, Optimized lymphocyte isolation methods for analysis of chemokine receptor expression. J. Immunol. Methods 2003. 279: 199–207. PubMed
Kivisäkk P, Liu Z, Trebst C, Tucky B, Wu L, Stine J, Mack M et al., Flow cytometric analysis of chemokine receptor expression on cerebrospinal fluid leukocytes. Methods 2003. 29: 319–325. PubMed
Liu H, Rhodes M, Wiest DL, Vignali DA, On the dynamic of TCR:CD3 complex cell surface expression and downmodulation. Immunity 2000. 192: 1529–1534. PubMed
Mueller A, Kelly E and Strange PG, Pathways for internalization and recycling of the chemokine receptor CCR5. Blood 200299: 785–791. PubMed
Campana S, De Pasquale C, Carrega P, Ferlazzo G and Bonaccorsi I, Cross-dressing: an alternative mechanism for antigen presentation. Immunol. Lett 2015. 168: 349–354. PubMed
Anselmo A, Mazzon C, Borroni EM, Bonecchi R, Graham GJ and Locati M, Flow cytometry applications for the analysis of chemokine receptor expression and function. Cytometry A 2014. 85: 292–301. PubMed
Pockley AG, Foulds GA, Oughton JA, Kerkvliet NI and Multhoff G, Immune cell phenotyping using flow cytometry. Curr. Protoc. Toxicol 2015. 66:18.8.1–18.8.34. PubMed
Darzynkiewicz Z, Halicka HD and Zhao H, Analysis of cellular DNA content by flow and laser scanning cytometry. Adv. Exp. Med. Biol 2010. 676: 137–147. PubMed PMC
Hamelik RM and Krishan A, Click-iT assay with improved DNA distribution histograms. Cytometry A. 2009. 75: 862–865. PubMed
Krishan A and Hamelik RM, Click-iT proliferation assay with improved DNA histograms. Curr. Protoc. Cytom 2010. Chapter 7:Unit7 36. PubMed
Lyons AB and Parish CR, Determination of lymphocyte division by flow cytometry. J. Immunol. Methods 1994. 171: 131–137. PubMed
Wersto RP, Chrest FJ, Leary JF, Morris C, Stetler-Stevenson MA and Gabrielson E, Doublet discrimination in DNA cell-cycle analysis. Cytometry 2001. 46: 296–306. PubMed
van Engeland M, Nieland LJ, Ramaekers FC, Schutte B and Reutelingsperger CP, Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry 1998. 31: 1–9. PubMed
Gehrmann M, Doss BT, Wagner M, Zettlitz KA, Kontermann RE, Foulds G et al., A novel expression and purification system for the production of enzymatic and biologically active human granzyme B. J. Immunol. Methods 2011. 371: 8–17. PubMed
Gehrmann M, Stangl S, Kirschner A, Foulds GA, Sievert W, Doss BT et al., Immunotherapeutic targeting of membrane HSP70-expressing tumors using recombinant human granzyme B. PLoS One 2012. 7: e41341. PubMed PMC
Abate M, Festa A, Falco M, Lombardi A, Luce A, Grimaldi A, Zappavigna S et al., Mitochondria as playmakers of apoptosis, autophagy and senescence. Semin Cell Dev Biol. 2019. S1084–9521(18)30187–3. PubMed
Shalini S, Dorstyn L, Dawar S and Kumar S, Old, new and emerging functions of caspases. Cell Death Differ. 2015. 22: 526–539. PubMed PMC
Galluzzi L, Lopez-Soto A, Kumar S and Kroemer G, Caspases connect cell-death signaling to organismal homeostasis. Immunity 2016. 44: 221–231. PubMed
Van Opdenbosch N and Lamkanfi M, Caspases in cell death, inflammation, and disease. Immunity. 2019. 50: 1352–1364. PubMed PMC
Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES et al., Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018 25: 486–541. PubMed PMC
Galluzzi L, Kepp O, Chan FK and Kroemer G, Necroptosis: mechanisms and relevance to disease. Annu. Rev. Pathol. Mech. Dis 2017. 12: 103–130. PubMed PMC
He S and Wang X, RIP kinases as modulators of inflammation and immunity. Nat. Immunol 2018. 19: 912–922. PubMed
Frank D and Vince JE, Pyroptosis versus necroptosis: similarities, differences, and crosstalk. Cell Death Differ. 2019. 26: 99–114. PubMed PMC
Weinlich R, Oberst A, Beere HM and Green DR, Necroptosis in development, inflammation and disease. Nat. Rev. Mol. Cell Biol 2017. 18: 127–136. PubMed
Fuchslocher Chico J, Saggau C and Adam D, Proteolytic control of regulated necrosis. Biochim. Biophys. Acta 2017. 1864: 2147–2161. PubMed
Newton K and Manning G, Necroptosis and inflammation. Annu. Rev. Biochem 2016. 85: 743–763. PubMed
Lin Y, Devin A, Rodriguez Y and Liu ZG, Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev. 1999. 13: 2514–2526. PubMed PMC
Feng S, Yang Y, Mei Y, Ma L, Zhu DE, Hoti N, Castanares M et al., Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain. Cell Signal. 2007. 19: 2056–2067. PubMed
O’Donnell MA, Perez-Jimenez E, Oberst A, Ng A, Massoumi R, Xavier R, Green DR et al., Caspase 8 inhibits programmed necrosis by processing CYLD. Nat. Cell Biol 2011. 13: 1437–1442. PubMed PMC
Vandenabeele P, Galluzzi L, Vanden Berghe T and Kroemer G, Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat. Rev. Mol. Cell Biol 2010. 11: 700–714. PubMed
Tait SW, Oberst A, Quarato G, Milasta S, Haller M, Wang R, Karvela M et al., Widespread mitochondrial depletion via mitophagy does not compromise necroptosis. Cell Rep. 2013. 5: 878–885. PubMed PMC
He S, Huang S and Shen Z, Biomarkers for the detection of necroptosis. Cell Mol. Life Sci 2016. 73: 2177–2181. PubMed PMC
Ting AT (Ed.), Programmed necrosis—Methods and protocols. Humana Press, New York, NY, 2018.
Zargarian S, Shlomovitz I, Erlich Z, Hourizadeh A, Ofir-Birin Y, Croker BA, Regev-Rudzki N et al., Phosphatidylserine externalization, “necroptotic bodies" release, and phagocytosis during necroptosis. PLoS Biol. 2017. 15: e2002711. PubMed PMC
Gong YN, Guy C, Olauson H, Becker JU, Yang M, Fitzgerald P, Linkermann A et al., Escrt-III acts downstream of MLKL to regulate necroptotic cell death and its consequences. Cell 2017. 169: 286–300. PubMed PMC
Lee HL, Pike R, Chong MHA, Vossenkamper A and Warnes G, Simultaneous flow cytometric immunophenotyping of necroptosis, apoptosis and RIP1-dependent apoptosis. Methods 2018. 134–135: 56–66. PubMed
Moriwaki K, Balaji S, Bertin J, Gough PJ and Chan FK, Distinct kinase-independent role of RIPK3 in CD11c+ mononuclear phagocytes in cytokine-induced tissue repair. Cell Rep. 2017. 18: 2441–2451. PubMed PMC
Pietkiewicz S, Schmidt JH and Lavrik IN, Quantification of apoptosis and necroptosis at the single cell level by a combination of Imaging Flow Cytometry with classical Annexin V/propidium iodide staining. J. Immunol. Methods 2015. 423: 99–103. PubMed
Giampietri C, Starace D, Petrungaro S, Filippini A and Ziparo E, Necroptosis: molecular signalling and translational implications. Int. J. Cell Biol 2014. 2014: 490275. PubMed PMC
Richter J, Schlesner M, Hoffmann S, Kreuz M, Leich E, Burkhardt B, Rosolowski M et al., Recurrent mutation of the ID3 gene in Burkitt lymphoma identified by integrated genome, exome and transcriptome sequencing. Nat. Genet 2012. 44: 1316–1320. PubMed
Lüschen S, Ussat S, Scherer G, Kabelitz D and Adam-Klages S, Sensitization to death receptor cytotoxicity by inhibition of Fasassociated death domain protein (FADD)/caspase signaling - Requirement of cell cycle progression. J. Biol. Chem 2000. 275: 24670–24678. PubMed
Falk M, Ussat S, Reiling N, Wesch D, Kabelitz D and Adam-Klages S, Caspase inhibition blocks human T cell proliferation by suppressing appropriate regulation of IL-2, CD25, and cell cycle-associated proteins. J. Immunol 2004. 173: 5077–5085. PubMed
Philipp S, Sosna J, Plenge J, Kalthoff H and Adam D, Homoharringtonine, a clinically approved anti-leukemia drug, sensitizes tumor cells for TRAIL-induced necroptosis. Cell Commun. Signal 2015. 13: 25. PubMed PMC
Aglietti RA and Dueber EC, Recent insights into the molecular mechanisms underlying pyroptosis and gasdermin family functions. Trends Immunol. 2017. 38: 261–271. PubMed
Man SM, Karki R and Kanneganti TD, Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol. Rev 2017. 277: 61–75. PubMed PMC
Jorgensen I, Rayamajhi M and Miao EA, Programmed cell death as a defence against infection. Nat. Rev. Immunol 2017. 17: 151–164. PubMed PMC
den Hartigh AB and Fink SL, Pyroptosis induction and detection. Curr. Protoc. Immunol 2018. e52. PubMed PMC
Zhang Y, Chen X, Gueydan C and Han J, Plasma membrane changes during programmed cell deaths. Cell Res. 2018. 28: 9–21. PubMed PMC
Yuan J, Najafov A and Py BF, Roles of caspases in necrotic cell death. Cell 2016. 167: 1693–1704. PubMed PMC
Sester DP, Zamoshnikova A, Thygesen SJ, Vajjhala PR, Cridland SO, Schroder K and Stacey KJ, Assessment of inflammasome formation by flow cytometry. Curr. Protoc. Immunol 2016. 114: 14.40.11–14.40.29. PubMed
Cui J, Zhou Z, Yang H, Jiao F, Li N, Gao Y, Wang L et al., MST1 suppresses pancreatic cancer progression via ROS-induced pyroptosis. Mol. Cancer Res 2019. 17: 1316–1325. PubMed
Paddenberg R, Wulf S, Weber A, Heimann P, Beck LA and Mannherz HG, Internucleosomal DNA fragmentation in cultured cells under conditions reported to induce apoptosis may be caused by mycoplasma endonucleases. Eur. J. Cell Biol 1996. 71: 105–119. PubMed
Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC, Dong MQ et al., RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 2009. 325: 332–336. PubMed
Pozarowski P, Huang X, Halicka DH, Lee B, Johnson G and Darzynkiewicz Z, Interactions of fluorochrome-labeled caspase inhibitors with apoptotic cells: a caution in data interpretation. Cytometry A 2003. 55: 50–60. PubMed
Darzynkiewicz Z, Zhao H, Dorota Halicka H, Pozarowski P and Lee B, Fluorochrome-labeled inhibitors of caspases: expedient in vitro and in vivo markers of apoptotic cells for rapid cytometric analysis. Methods Mol. Biol 2017. 1644: 61–73. PubMed
Tran TAT, Grievink HW, Lipinska K, Kluft C, Burggraaf J, Moerland M, Tasev D et al., Whole blood assay as a model for in vitro evaluation of inflammasome activation and subsequent caspase-mediated interleukin-1 beta release. PLoS One 2019. 14: e0214999. PubMed PMC
Sokolovska A, Becker CE, Ip WK, Rathinam VA, Brudner M, Paquette N, Tanne A et al., Activation of caspase-1 by the NLRP3 inflammasome regulates the NADPH oxidase NOX2 to control phagosome function. Nat. Immunol 2013. 14: 543–553. PubMed PMC
Fuchslocher Chico J, Falk-Paulsen M, Luzius A, Ruder B, Bolik J, Schmidt-Arras D, Linkermann A et al., The enhanced susceptibility of ADAM-17 hypomorphic mice to DSS-induced colitis is not ameliorated by loss of RIPK3, revealing an unexpected function of ADAM-17 in necroptosis. Oncotarget 2018. 9: 12941–12958. PubMed PMC
Gordon S, Phagocytosis: An Immunobiologic Process. Immunity. 2016. 44: 463–475. PubMed
Cooper EL, Kauschke E and Cossarizza A, Digging for innate immunity since Darwin and Metchnikoff. Bioessays 2002. 24: 319–333. PubMed
Navarre WW and Zychlinsky A, Pathogen-induced apoptosis of macrophages: a common end for different pathogenic strategies. Cell Microbiol. 2000. 2: 265–273. PubMed
Savill J, Recognition and phagocytosis of cells undergoing apoptosis. Br. Med. Bull 1997. 53: 491–508. PubMed
Brown GC, Vilalta A and Fricker M, Phagoptosis—cell death by phagocytosis plays central roles in physiology, host defense and pathology. Curr. Mol. Med 2015. 15: 842–851. PubMed
Lunov O, Syrovets T, Loos C, Beil J, Delacher M, Tron K, Nienhaus GU et al., Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line, ACS Nano 2011. 5: 1657–1669. PubMed
Valet G, Jenssen HL, Krefft M and Ruhenstroth-Baued G, Flow-cytometric measurements of the transmembrane potential, the surface charge density and the phagocytic activity of guinea pig macrophages after incubation with lymphokines. Blut 1981. 42: 379–382. PubMed
Dunn PA and Tyrer HW, Quantitation of neutrophil phagocytosis, using fluorescent latex beads. Correlation of microscopy and flow cytometry. J. Lab. Clin. Med 1981. 98: 374–381. PubMed
Bjerknes R and Bassøe CF, Human leukocyte phagocytosis of zymosan particles measured by flow cytometry. Acta Pathol. Microbiol. Immunol. Scand. C 1983. 91: 341–348. PubMed
Lehmann AK, Sørnes S and Halstensen A, Phagocytosis: measurement by flow cytometry. J. Immunol. Methods 2000. 243: 229–242. PubMed
Bassøe CF, Assessment of phagocyte functions by flow cytometry. Curr. Prot. Cytom 2002. 21: 9.19.1–9.19.22. PubMed
Simons ER, Measurement of phagocytosis and of the phagosomal environment in polymorphonuclear phagocytes by flow cytometry. Curr. Protoc. Cytom 2010. 9.31.1–9.31.10. PubMed PMC
Sokolovska A, Becker CE and Stuart LM, Measurement of phagocytosis, phagosome acidification, and intracellular killing of Staphylococcus aureus. Curr. Protoc. Immunol 2012. 99: 14.30.1–14.30.12. PubMed
Elbim C and Lizard G, Flow cytometric investigation of neutrophil oxidative burst and apoptosis physiological and pathological situation. Cytometry Part A. 2009. 75A: 475–481. PubMed
Thomason J, Archer T, Mackin A, Stokes J and Pinchuk L, Applications of flow cytometry in veterinary research and small animal clinical practice. J. Vet. Med. Res 2014. 1: 1004–1012.
Keogh MJ, Spoon T, Ridgway SH, Jensen E, Van Bonn W and Romano TA, Simultaneous measurement of phagocytosis and respiratory burst of leukocytes in whole blood from bottlenose dolphins (Tursiops truncatus) utilizing flow cytometry. Vet. Immunol. Immunopathol 2011. 144: 468–475. PubMed
Frankenberg T, Kirschnek S, Häcker H and Häcker G, Phagocytosis-induced apoptosis of macrophages is linked to uptake, killing and degradation of bacteria. Eur. J. Immunol 2008. 38: 204–215. PubMed
Tartaro K, VanVolkenburg M, Wilkie D, Coskran TM, Kreeger JM, Kawabata TT and Casinghino S, Development of a fluorescence-based in vivo phagocytosis assay to measure mononuclear phagocyte system function in the rat. J. Immunotoxicol 2015. 12: 239–246. PubMed
Webb C, McCord K and Dow S, Neutrophil function in septic dogs. J. Vet. Intern. Med. 2007. 21: 982–989. PubMed
Rossi G, Capitani L, Ceciliani F, Restelli L and Paltrinieri S, Hyposialylated α1-acid glycoprotein inhibits phagocytosis of feline neutrophils. Res. Vet. Sci 2013. 95: 465–471. PubMed PMC
Moya SL, Gómez MA, Boyle LA, Mee JF, O’Brien B and Arkins S, Effects of milking frequency on phagocytosis and oxidative burst activity of phagocytes from primiparous and multiparous dairy cows during early lactation. J. Dairy Sci 2008. 91: 587–595. PubMed
Stent G, Reece JC, Baylis DC, Ivinson K, Paukovics G, Thomson M and Cameron PU, Heterogeneity of freshly isolated human tonsil dendritic cells demonstrated by intracellular markers, phagocytosis, and membrane dye transfer. Cytometry. 2002. 48: 167–176. PubMed
Becker S, Halme J and Haskill S, Heterogeneity of human peritoneal macrophages: Cytochemical and flow cytometric studies. J. Reticuloendothelial Soc 1983. 33: 127–138. PubMed
Jersmann HPA, Ross KA, Vivers S, Brown SB, Haslett C and Dransfield I, Phagocytosis of apoptotic cells by human macrophages: analysis by multiparameter flow cytometry. Cytometry A. 2003. 51A: 7–15. PubMed
Linehan E, Dombrowski Y, Snoddy R, Fallon PG, Kissenpfennig A and Fitzgerald DC, Aging impairs peritoneal but not bone marrow-derived macrophage phagocytosis. Aging Cell. 2014. 13: 699–708. PubMed PMC
Fuller-Espie SL, Using flow cytometry to measure phagocytic uptake in earthworms. J. Microbiol. Biol. Educ 2010. 11: 144–151. PubMed PMC
http://www.lgcstandards-atcc.org/
Rothwell DJ and Doumas BT, The effect of heparin and EDTA on the NBT test. J. Lab. Clin. Med 1975. 85: 950–956. PubMed
Li W and Chung SC, Flow cytometric evaluation of leukocyte function in rat whole blood. In Vitro Cell Dev. Biol. Anim. 2003. 39(10):413–419. PubMed
Ducusin RJ, Sarashina T, Uzuka Y, Tanabe S and Ohtani M, Phagocytic response of bovine polymorphonuclear leukocytes to different incubation conditions and following exposure to some effectors of phagocytosis and different anticoagulants in vitro. Can. J. Vet. Res 2001. 65: 38–44. PubMed PMC
van der Maten E, de Jonge MI, de Groot R, van der Flier M and Langereis JD, A versatile assay to determine bacterial and host factors contributing to opsonophagocytotic killing in hirudin-anticoagulated whole blood. Sci. Rep 20177: 42137. PubMed PMC
Sustrova T, Ondrackova P, Leva L and Sladek Z, Isolation techniques of neutrophils and peripheral blood mononuclear cells for the comparative experiments in humans and pigs model organisms in flow cytometry. Mendelnet 2014. 516–521.
Carneiro C, Vaz C, Carvalho-Pereira J, Pais C and Sampaio P, A new method for yeast phagocytosis analysis by flow cytometry. J. Microbiol. Methods 2014. 101: 56–62. PubMed
Murciano C, Villamón E, O’Connor JE, Gozalbo D and Gil ML, Killed candida albicans yeasts and hyphae inhibit gamma interferon release by murine natural killer cells. Infect. Immun 2006. 74: 1403–1406. PubMed PMC
Anding K, Rost JM, Jacobs E and Daschner FD, Flow cytometric measurements of neutrophil functions: the dependence on the stimulus to cell ratio. FEMS Immunol. Med. Microbiol 2003. 35: 147–152. PubMed
Chan CL, Rénia L and Tan KSW, A simplified, sensitive phagocytic assay for malaria cultures facilitated by flow cytometry of differentially-stained cell populations. PLoS One. 2012. 7: e38523. PubMed PMC
Lee CY, Herant M and Heinrich M, Target-specific mechanics of phagocytosis: Protrusive neutrophil response to zymosan differs from the uptake of antibody-tagged pathogens. Cell Sci. 2011. 124: 1106–1114. PubMed PMC
Salih HR, Husfeld L and Adam D, Simultaneous cytofluorometric measurement of phagocytosis, burst production and killing of human phagocytes using Candida albicans and Staphylococcus aureus as target organisms. Clin. Microbiol. Infect 2000. 6: 251–258. PubMed
Li F, Yang M, Wang L, Williamson I, Tian F, Qin M, Shah PK et al., Autofluorescence contributes to false-positive intracellular Foxp3 staining in macrophages: a lesson learned from flow cytometry. J. Immunol. Meth 2012. 386: 101–107. PubMed PMC
Yáñez A, Flores A, Murciano C, O’Connor JE, Gozalbo D and Gil ML, Signalling through TLR2/MyD88 induces differentiation of murine bone marrow stem and progenitor cells to functional phagocytes in response to Candida albicans. Cell. Microbiol 201012: 114–128. PubMed
Bicker H, Höflich C, Wolk K, Vogt K, Volk HD and Sabat R, A simple assay to measure phagocytosis of live bacteria. Clin. Chem 2008. 54: 5 911–915. PubMed
Schreiner L, Huber-Lang M, Weiss ME, Hohmann H, Schmolz M and Schneider EM, Phagocytosis and digestion of pH-sensitive fluorescent dye (Eos-FP) transfected E. coli in whole blood assays from patients with severe sepsis and septic shock. J. Cell. Commun. Signal 2011. 5: 135–144. PubMed PMC
Bajno L and Grinstein S, Fluorescent proteins: powerful tools in phagocyte biology. J. Immunol. Methods 1999. 232: 67–75. PubMed
Zawada AM, Rogacev KS, Schirmer SH, Sester M, Böhm M, Fliser D and Heine GH, Monocyte heterogeneity in human cardiovascular disease. Immunobiology. 2012. 217: 1273–1284. PubMed
Neaga A, Lefor J, Lich KE, Liparoto SF and Xiao YQ, Development and validation of a flow cytometric method to evaluate phagocytosis of pHrodo™ BioParticles® by granulocytes in multiple species. J. Immunol. Methods 2013. 390: 9–17. PubMed
Schrijvers DM, Martinet W, De Meyer GRY, Andries L, Herman and Kockx MM, Flow cytometric evaluation of a model for phagocytosis of cells undergoing apoptosis. J. Immunol. Methods 2004. 287: 101–108. PubMed
Basiji DA, Ortyn WE, Liang L, Venkatachalam V and Morrissey P, Cellular image analysis and imaging by flow cytometry. Clin. Lab. Med 2007. 27: 653–670. PubMed PMC
Kapellos TS, Taylor L, Lee H, Cowley SA, James WS, Iqbal AJ and Greaves DR, A novel real time imaging platform to quantify macrophage phagocytosis. Biochem. Pharmacol 2016. 116: 107–119. PubMed PMC
Lu SM, Grinstein S and Fairn GD, Quantitative live-cell fluorescence microscopy during phagocytosis. Methods Mol. Biol 2017. 1519: 79–91. PubMed
McFarlin BK, Williams RR, Venable AS, Dwyer KC and, Haviland DL, Image-based cytometry reveals three distinct subsets of activated granulocytes based on phagocytosis and oxidative burst. Cytometry A. 2013. 83A: 745–751. PubMed
Pul R, Morbiducci F, Škuljec J, Skripuletz T, Singh V, Diederichs U, Garde N et al., Glatiramer acetate increases phagocytic activity of human monocytes in vitro and in multiple sclerosis patients. PLoS One. 2012. 7: e51867. PubMed PMC
Boya P, Reggiori F and Codogno P, Emerging regulation and functions of autophagy. Nat. Cell Biol 2013. 15: 713–720. PubMed PMC
Cuervo AM and Wong E, Chaperone-mediated autophagy: roles in disease and aging. Cell Res. 2014. 24: 92–104. PubMed PMC
Li WW, Li J, Bao JK, Microautophagy: lesser-known self-eating. Cell Mol. Life Sci 2012. 69: 1125–1136. PubMed PMC
Mizushima N, Yoshimori T and Ohsumi Y, The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol 2011. 27: 107–132. PubMed
Zhang H, Puleston DJ and Simon AK, Autophagy and immune senescence. Trends Mol. Med 2016. 22: 671–686. PubMed
Pasquier B, Autophagy inhibitors. Cell Mol. Life Sci 2016. 73: 985–1001. PubMed PMC
Mauthe M, Orhon I, Rocchi C, Zhou X, Luhr M, Hijlkema KJ, Coppes RP et al., Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy 2018. 14: 1435–1455. PubMed PMC
Mauvezin C, Nagy P, Juhasz G and Neufeld TP, Autophagosome-lysosome fusion is independent of V-ATPase-mediated acidification. Nat. Commun 2015. 6: 7007. PubMed PMC
Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, Adachi H et al., Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 2016. 12: 1–222. PubMed PMC
Eng KE, Panas MD, Karlsson Hedestam GB and McInerney GM, A novel quantitative flow cytometry-based assay for autophagy. Autophagy 2010. 6: 634–641. PubMed
Chikte S, Panchal N and Warnes G, Use of LysoTracker dyes: a flow cytometric study of autophagy. Cytometry A 2014. 85: 169–178. PubMed
Phadwal K, Alegre-Abarrategui J, Watson AS, Pike L, Anbalagan S, Hammond EM, Wade-Martins R et al., A novel method for autophagy detection in primary cells: impaired levels of macroautophagy in immunosenescent T cells. Autophagy 2012. 8: 677–689. PubMed PMC
Puleston DJ, Zhang H, Powell TJ, Lipina E, Sims S, Panse I, Watson AS et al., Autophagy is a critical regulator of memory CD8(+) T cell formation. eLife 2014. 3: 03706. PubMed PMC
Watson AS, Riffelmacher T, Stranks A, Williams O, De Boer J, Cain K, MacFarlane M et al., Autophagy limits proliferation and glycolytic metabolism in acute myeloid leukemia. Cell Death Discov. 2015. 1: 15008. PubMed PMC
Clarke AJ and Simon AK, Autophagy in the renewal, differentiation and homeostasis of immune cells. Nat. Rev. Immunol 2018. 19: 170–183. PubMed
Song YM, Song SO, Jung YK, Kang ES, Cha BS, Lee HC and Lee BW, Dimethyl sulfoxide reduces hepatocellular lipid accumulation through autophagy induction. Autophagy 2012. 8: 1085–1097. PubMed PMC
Caro LH, Plomp PJ, Wolvetang EJ, Kerkhof C and Meijer AJ, 3-Methyladenine, an inhibitor of autophagy, has multiple effects on metabolism. Eur. J. Biochem 1988. 175: 325–329. PubMed
Klionsky DJ, Elazar Z, Seglen PO and Rubinsztein DC, Does bafilomycin A1 block the fusion of autophagosomes with lysosomes? Autophagy 2008. 4: 849–850. PubMed
Spielberg SP, Boxer LA, Oliver JM, Allen JM and Schulman JD, Oxidative damage to neutrophils in glutathione synthetase deficiency. Br. J. Haematol 1979. 42: 215–223. PubMed
Min-Wen JC, Jun-Hao ET and Shyh-Chang N, Stem cell mitochondria during aging. Semin Cell Dev. Biol 2016. 52: 110–118. PubMed
Watanabe R, Fujii H, Shirai T, Saito S, Ishii T and Harigae H, Autophagy plays a protective role as an anti-oxidant system in human T cells and represents a novel strategy for induction of T-cell apoptosis. Eur. J. Immunol 2014. 44: 2508–2520. PubMed
Chen LM, Peng F, Li GD, Jie XM, Cai KR, Cai C, Zhong Y et al., The studies on the cytotoxicity in vitro, cellular uptake, cell cycle arrest and apoptosis-inducing properties of ruthenium methylimidazole complex [Ru(MeIm)4(p-cpip)](2.). J. Inorg. Biochem 2016. 156: 64–74. PubMed
Alfadda AA and Sallam RM, Reactive oxygen species in health and disease. J. Biomed. Biotechnol 2012. 2012: 936486. PubMed PMC
Ilkun O and Boudina S, Cardiac dysfunction and oxidative stress in the metabolic syndrome: an update on antioxidant therapies. Curr. Pharm. Des 2013. 19: 4806–4817. PubMed PMC
Zhou T, Chuang CC and Zuo L, Molecular characterization of reactive oxygen species inmyocardial ischemia-reperfusion injury. Biomed. Res. Int 2015. 2015: 864946. PubMed PMC
Gabelloni ML, Sabbione F, Jancic C, Fuxman Bass J, Keitelman I, Iula L, Oleastro M et al., NADPH oxidase derived reactive oxygen species are involved in human neutrophil IL-1beta secretion but not in inflammasome activation. Eur. J. Immunol 2013. 43: 3324–3335. PubMed
Vogel DY, Kooij G, Heijnen PD, Breur M, Peferoen LA, van der Valk P, de Vries HE, Amor S and Dijkstra CD, GM-CSF promotes migration of human monocytes across the blood brain barrier. Eur. J. Immunol 2015. 45: 1808–1819. PubMed
D’Autreaux B and Toledano MB, ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol 2007. 8: 813–824. PubMed
Ray PD, Huang BW and Tsuji Y, Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012. 24: 981–990. PubMed PMC
Reth M, Hydrogen peroxide as second messenger in lymphocyte activation. Nat. Immunol 2002. 3: 1129–1134. PubMed
Nathan C, Specificity of a third kind: reactive oxygen and nitrogen intermediates in cell signaling. J. Clin. Invest 2003. 111: 769–778. PubMed PMC
Nathan C and Cunningham-Bussel A, Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat. Rev. Immunol 2013. 13: 349–361. PubMed PMC
Solaini G, Baracca A, Lenaz G and Sgarbi G, Hypoxia and mitochondrial oxidative metabolism. Biochim. Biophys. Acta 2010. 1797: 1171–1177. PubMed
Wang L, Duan Q, Wang T, Ahmed M, Zhang N, Li Y, Li L et al., Mitochondrial respiratory chain inhibitors involved in ROS production induced by acute high concentrations of iodide and the effects of SOD as a protective factor. Oxid. Med. Cell Longev 2015. 2015: 217670. PubMed PMC
Halliwell B and Gutteridge JM, Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J 1984. 219: 1–14. PubMed PMC
Diacovich L and Gorvel JP, Bacterial manipulation of innate immunity to promote infection. Nat. Rev. Microbiol 2010. 8: 117–128. PubMed
Nauseef WM, Biological roles for the NOX family NADPH oxidases. J. Biol. Chem 2008. 283: 16961–16965. PubMed PMC
Belaaouaj A, Neutrophil elastase-mediated killing of bacteria: lessons from targeted mutagenesis. Microbes Infect 2002. 4: 1259–1264. PubMed
Nathan C and Shiloh MU, Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc. Natl. Acad. Sci. U.S.A 2000. 97(16):8841–8848. PubMed PMC
Bogdan C, Röllinghoff M and Diefenbach A, Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr. Opin. Immunol 2000. 12(1): 64–76. PubMed
Nauseef WM, Nox enzymes in immune cells. Semin. Immunopathol 2008. 30(3): 195–208. PubMed
Gonzalez-Navajas JM, Corr MP and Raz E, The immediate protective response to microbial challenge. Eur. J. Immunol 2014. 44: 2536–2549. PubMed
Fang FC, Antimicrobial actions of reactive oxygen species. MBio. 2011. 2: e00141–11. PubMed PMC
Rahal A, Kumar A, Singh V, Yadav B, Tiwari R, Chakraborty S and Dhama K, Oxidative stress, prooxidants, and antioxidants: the interplay. Biomed. Res. Int 2014. 2014: 761264. PubMed PMC
Schieber M and Chandel NS, ROS function in redox signaling and oxidative stress. Curr. Biol 2014. 24: R453–R462. PubMed PMC
Wu Z, Zhao Y and Zhao B, Superoxide anion, uncoupling proteins and Alzheimer’s disease. J. Clin. Biochem. Nutr 2010. 46: 187–194. PubMed PMC
Baehner RL, Murrmann SK, Davis J and Johnston RB Jr., The role of superoxide anion and hydrogen peroxide in phagocytosis-associated oxidative metabolic reactions. J. Clin. Invest 1975. 56: 571–576. PubMed PMC
Kohen R and Nyska A, Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol. Pathol 2002. 30: 620–650. PubMed
Tafazoli S and O’Brien PJ, Amodiaquine-induced oxidative stress in a hepatocyte inflammation model. Toxicology 2009. 256: 101–109. PubMed
Klebanoff SJ, Kettle AJ, Rosen H, Winterbourn CC and Nauseef WM, Myeloperoxidase: a front-line defender against phagocytosed microorganisms. J. Leukoc. Biol 2013. 93(2): 185–198. PubMed PMC
Okado-Matsumoto A and Fridovich I, Assay of superoxide dismutase: cautions relevant to the use of cytochrome c, a sulfonated tetrazolium, and cyanide. Anal. Biochem 2001. 298: 337–342. PubMed
Trevithick JR and Dzialoszynski T, A new technique for enhancing luminol luminescent detection of free radicals and reactive oxygen species. Biochem. Mol. Biol. Int 1994. 33: 1179–1190. PubMed
Soh N, Recent advances in fluorescent probes for the detection of reactive oxygen species. Anal. Bioanal. Chem 2006. 386: 532–543. PubMed
Emmendorffer A, Hecht M, Lohmann-Matthes ML and Roesler J, A fast and easy method to determine the production of reactive oxygen intermediates by human and murine phagocytes using dihydrorhodamine 123. J. Immunol. Methods 1990. 131: 269–275. PubMed
Amini P, Stojkov D, Wang X, Wicki S, Kaufmann T, Wong WW, Simon HU et al., NET formation can occur independently of RIPK3 and MLKL signaling. Eur. J. Immunol 2016. 46: 178–184. PubMed PMC
Sheyn U, Rosenwasser S, Ben-Dor S, Porat Z and Vardi A, Modulation of host ROS metabolism is essential for viral infection of a bloom-forming coccolithophore in the ocean. ISME J. 2016. 10: 1742–1754. PubMed PMC
van Eeden SF, Klut ME, Walker BA and Hogg JC, The use of flow cytometry to measure neutrophil function. J. Immunol. Methods 1999. 232: 23–43. PubMed
Fornas O, Garcia J and Petriz J, Flow cytometry counting of CD34+ cells in whole blood. Nat. Med 2000. 6: 833–836. PubMed
Fornas O, Domingo JC, Marin P and Petriz J, Flow cytometric-based isolation of nucleated erythroid cells during maturation: an approach to cell surface antigen studies. Cytometry 2002. 50: 305–312. PubMed
Berridge MJ, Lipp P and Bootman MD, The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol 2000. 1: 11–21. PubMed
Feske S, Okamura H, Hogan PG and Rao A, Ca2+/calcineurin signalling in cells of the immune system. Biochem. Biophys. Res. Commun 2003. 311: 1117–1132. PubMed
Gwack Y, Feske S, Srikanth S, Hogan PG and Rao A, Signalling to transcription: store-operated Ca2+ entry and NFAT activation in lymphocytes. Cell Calcium 2007. 42: 145–156. PubMed
Trebak M and Kinet JP, Calcium signalling in T cells. Nat. Rev. Immunol 2019. 19: 154–169. PubMed PMC
Varga-Szabo D, Braun A and Nieswandt B, Calcium signaling in platelets. J. Thromb. Haemost 2009. 7: 1057–1066. PubMed
Feske S, Skolnik EY and Prakriya M, Ion channels and transporters in lymphocyte function and immunity. Nat. Rev. Immunol 12: 532–547. PubMed PMC
Putney JW Jr., A model for receptor-regulated calcium entry. Cell Calcium 1986. 7: 1–12. PubMed
Armstrong DL, Erxleben C and White JA, Patch clamp methods for studying calcium channels. Methods Cell Biol. 2010. 99: 183–197. PubMed
Hoth M and Penner R, Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 1992. 355: 353–356. PubMed
Grynkiewicz G, Poenie M and Tsien RY, A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem 1985. 260: 3440–3450. PubMed
Greimers R, Trebak M, Moutschen M, Jacobs N and Boniver J, Improved four-color flow cytometry method using fluo-3 and triple immunofluorescence for analysis of intracellular calcium ion ([Ca2+]i) fluxes among mouse lymph node B- and T-lymphocyte subsets. Cytometry 1996. 23: 205–217. PubMed
Minta A and Tsien RY, Fluorescent indicators for cytosolic sodium. J. Biol. Chem 1989. 264: 19449–19457. PubMed
Burchiel SW, Edwards BS, Kuckuck FW, Lauer FT, Prossnitz ER, Ransom JT and Sklar LA Analysis of free intracellular calcium by flow cytometry: multiparameter and pharmacologic applications. Methods 2000. 21: 221–230. PubMed
Wendt ER, Ferry H, Greaves DR and Keshav S, Ratiometric analysis of fura red by flow cytometry: a technique for monitoring intracellular calcium flux in primary cell subsets. PLoS One 2015. 10:e0119532. PubMed PMC
Foerster C, Voelxen N, Rakhmanov M, Keller B, Gutenberger S, Goldacker S, Thiel J et al., B cell receptor-mediated calcium signaling is impaired in B lymphocytes of type Ia patients with common variable immunodeficiency. J. Immunol 184: 7305–7313. PubMed
Dolmetsch RE, Lewis RS, Goodnow CC and Healy JI, Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 1997. 386: 855–858. PubMed
Griesbeck M, Ziegler S, Laffont S, Smith N, Chauveau L, Tomezsko P, Sharei A et al., Sex differences in plasmacytoid dendritic cell levels of IRF5 drive higher IFNα production in women. J. Immunol 2015. 195: 5327–5336. PubMed PMC
Martrus G, Niehrs A, Cornelis R, Rechtien A, García-Beltran W, Löutgehetmann M, Hoffmann C et al., Kinetics of HIV-1 latency reversal quantified on the single-cell level using a novel flow-based technique. J. Virol. Sep 2016. 90: 9018–9028. PubMed PMC
Baxter AE, Niessl J, Fromentin R, Richard J, Porichis F, Charlebois R, Massanella M et al., Single-cell characterization of viral translation-competent reservoirs in HIV-infected individuals. Cell Host Microbe 2016. 20: 368–380. PubMed PMC
Taghizadeh RR, Cetrulo KJ and Cetrulo CL, Collagenase impacts the quantity and quality of native mesenchymal stem/stromal cells derived during processing of umbilical cord tissue. Cell Transplant. 2018. 27: 181–193. PubMed PMC
Martrus G, Kautz T, Lunemann S, Richert L, Glau L, Salzberger W, Goebels H et al., Proliferative capacity exhibited by human liver-resident CD49a+CD25+ NK cells. PLoS One. 2017. 12:e0182532. PubMed PMC
Sun H, Sun R, Hao M, Wang Y, Zhang X, Liu Y, Cong X, Effect of duration of ex vivo ischemia time and storage period on RNA quality in biobanked human renal cell carcinoma tissue. Ann. Surg. Oncol 2016. 23: 297–304. PubMed
Garcia-Beltran WF, Hölzemer A, Martrus G, Chung AW, Pacheco Y, Simoneau CR, Rucevic M et al., Open conformers of HLA-F are high-affinity ligands of the activating NK-cell receptor KIR3DS1. Nat. Immunol. Sep 2016. 17: 1067–1074. PubMed PMC
Thaler B, Hohensinner PJ, Krychtiuk KA, Matzneller P, Koller L, Brekalo M, Maurer G et al., Differential in vivo activation of monocyte subsets during low-grade inflammation through experimental endotoxemia in humans. Sci. Rep 2016. 6: 30162. PubMed PMC
Krutzik PO and Nolan GP, Intracellular phospho-protein staining techniques for flow cytometry: monitoring single cell signaling events. Cytometry 2003. 55: 61–70. PubMed
Pozarowski P and Darzykiewicz Z, Analysis of cell cycle by flow cytometry In Schönthal AH, (Ed.) Checkpoint controls and cancer. Methods in molecular biology, vol 281 Humana Press, Totowa, NJ: 2004, 301–311. PubMed
Schmid I and Sakamoto KM, Analysis of DNA content and green fluorescent protein expression. Curr. Protoc. Cytom. 2001. 16: 7.16.1–7.16.10. PubMed
Lanier LL and Warner NL, Paraformaldehyde fixation of hematopoietic cells for quantitative flow cytometry (FACS) analysis. J. Immunol. Methods 1981. 47: 25–30. PubMed
Filby A, Seddon B, Kleczkowska J, Salmond R, Tomlinson P, Smida M, Lindquist JA et al., Fyn regulates the duration of TCR engagement needed for commitment to effector function. The J. Immunol 2007. 179: 4635–4644. PubMed
Filby A, Perucha E, Summers H, Rees P, Chana P, Heck S, Lord GM et al., An imaging flow cytometric method for measuring cell division history and molecular symmetry duringmitosis. Cytometry Part A 2011. 79: 496–506. PubMed
Fan J, Nishanian P, Breen EC, McDonald M and Fahey JL, Cytokine gene expression in normal human lymphocytes in response to stimulation. Clin. Diagn. Lab. Immunol 1998. 5: 335–340. PubMed PMC
Löhning M, Richter A and Stamm T, Establishment of memory for IL-10 expression in developing T helper 2 cells requires repetitive IL-4 costimulation and does not impair proliferation. Proc. Natl. Acad. Sci. U.S.A 2003. 100: 12307–12312. PubMed PMC
Sanos SL, Vonarbourg C, Mortha A and Diefenbach A, Control of epithelial cell function by interleukin-22-producing RORgammat+ innate lymphoid cells. Immunology 2011. 132: 453–465. PubMed PMC
Nussbaum JC, Dyken SJ and Moltke J, Type 2 innate lymphoid cells control eosinophil homeostasis. Nature 2013. 502: 245–248. PubMed PMC
Robinson D, Shibuya K, Mui A, Zonin F, Murphy E, Sana T, Hartley SB et al., IGIF does not drive Th1 development but synergizes with IL-12 for interferon-gamma production and activates IRAK and NFκB. Immunity 1997. 7: 571–581. PubMed
Sattler A, Wagner U, Rossol M, Sieper J, Wu P, Krause A, Schmidt WA et al., Cytokine-induced human IFN-γ-secreting effector-memory Th cells in chronic autoimmune inflammation. Blood 2009. 113: 1948–1956. PubMed
Zimmermann J, Radbruch A and Chang HD, A Ca(2+) concentration of 1.5 mM, as present in IMDM but not in RPMI, is critical for maximal response of Th cells to PMA/ionomycin. Eur. J. Immunol 2015. 45: 1270–1273. PubMed PMC
Lohning M, Richter A, Stamm T, Hu-Li J, Assenmacher M, Paul WE and Radbruch A, Establishment of memory for IL-10 expression in developing T helper 2 cells requires repetitive IL-4 costimulation and does not impair proliferation. Proc. Natl. Acad. Sci. U. S. A 2003. 100: 12307–12312. PubMed PMC
Assenmacher M, Schmitz J and Radbruch A, Flow cytometric determination of cytokines in activated murine T helper lymphocytes: Expression of interleukin-10 in interferon-gamma and in interleukin-4-expressing cells. Eur. J. Immunol 1994. 24: 1097–1101. PubMed
Lorenz H, Hailey DW, Wunder C and Lippincott-Schwartz J, The fluorescence protease protection (FPP) assay to determine protein localization and membrane topology. Nat. Protoc 2006. 1: 276–279. PubMed
Francis G, Kerem Z, Makkar HP and Becker K, The biological action of saponins in animal systems: a review. Br. J. Nutr 2002. 88: 587–605. PubMed
Moller BK, Andresen BS, Christensen EI and Petersen CM, Surface membrane CD4 turnover in phorbol ester stimulated Tlymphocytes. Evidence of degradation and increased synthesis. FEBS Lett. 1990. 276: 59–62. PubMed
Boyer C, Auphan N, Luton F, Malburet JM, Barad M, Bizozzero JP, Reggio H et al., T cell receptor/CD3 complex internalization following activation of a cytolytic T cell clone: evidence for a protein kinase C-independent staurosporine-sensitive step. Eur. J. Immunol 1991. 21: 1623–1634. PubMed
Grupillo M, Lakomy R, Geng X, Styche A, Rudert WA, Trucco M and Fan Y, An improved intracellular staining protocol for efficient detection of nuclear proteins in YFP-expressing cells. Biotechniques 2011. 51: 417–420. PubMed
Heinen AP, Wanke F, Moos S, Attig S, Luche H, Pal PP, Budisa N et al., Improved method to retain cytosolic reporter protein fluorescence while staining for nuclear proteins: transcription factor staining with retention of fluorescent proteins. Cytometry 2014. 85: 621–627. PubMed
Watson M, Chow S, Barsyte D, Arrowsmith C, Shankey TV, Minden M and Hedley D, The study of epigenetic mechanisms based on the analysis of histone modification patterns by flow cytometry. Cytometry 2013. 85: 78–87. PubMed
Guha M and Mackman N, LPS induction of gene expression in human monocytes. Cell. Signal 2001. 13: 85–94. PubMed
Gantke T, Sriskantharajah S and Ley SC, Regulation and function of TPL-2, an IκB kinase-regulated MAP Kinase Kinase. Cell Res. 2011. 21: 131–134. PubMed PMC
Dufner A and Thomas G, Ribosomal S6 kinase signaling and the control of translation. Exp. Cell Res 1999. 253: 100–109. PubMed
Firaguay GF and Nunès JA, Analysis of signaling events by dynamic phosphoflow cytometry. Sci. Signal 2009. 2: pl3. PubMed
West MA, Koons A, Crandall M, Skinner R, Worley M and Shapiro MB, Whole blood leukocyte mitogen activated protein kinases activation differentiates intensive care unit patients with systemic inflammatory response syndrome and sepsis. J. Trauma 2007. 62: 805–811. PubMed
Donnelly RP and Finlay DK, Glucose, glycolysis and lymphocyte responses. Mol. Immunol 2015. 68: 513–519. PubMed
Caro-Maldonado A, Wang R, Nichols AG, Kuraoka M, Milasta S, Sun LD, Gavin AL et al., Metabolic reprogramming is required for antibody production that is suppressed in anergic but exaggerated in chronically BAFF-exposed B cells. J. Immunol 2014. 192: 3626–3636. PubMed PMC
Warburg O On the Origin of Cancer Cells. Science 1956. 123: 309–14. PubMed
Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, Mason EF, Sullivan SA et al., CD4+, cutting edge: distinct glycolytic and lipid oxidativemetabolic programs are essential for effector and regulatory cell, T subsets. J Immunol. Author 2012. 186: 3299–3303. PubMed PMC
Berod L, Friedrich C, Nandan A, Freitag J, Hagemann S, Harmrolfs K, Sandouk A et al., De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat. Med 2014. 20: 1327–1333. PubMed
Hale LP, Braun RODD, Gwinn WM, Greer PK, Dewhirst MW, Laura P, Braun RODD et al., Hypoxia in the thymus: role of oxygen tension in thymocyte survival. Am. J. Physiol. Heart Circ. Physiol 2002. 282: H1467–H1477. PubMed
Parmar K, Mauch P, Vergilio J-A, Sackstein R and Down JD, Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc. Natl. Acad. Sci. U.S.A 2007. 104: 5431–5436. PubMed PMC
Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM and Schumacker PT, Reactive oxygen species generated at mitochondrial Complex III stabilize hypoxiainducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J. Biol. Chem 2000. 275: 25130–25138. PubMed
Bigarella CL, Liang R and Ghaffari S, Stem cells and the impact of ROS signaling. Development. 2014. 141: 4206–4218. PubMed PMC
Jang K-J, Mano H, Aoki K, Hayashi T, Muto A, Nambu Y, Takahashi K et al., Mitochondrial function provides instructive signals for activation-induced B-cell fates. Nat. Commun 2015. 6: 6750. PubMed PMC
Barros LF, Bittner CX, Loaiza A, Ruminot I, Larenas V, Moldenhauer H, Oyarzún C et al., Kinetic validation of 6-NBDG as a probe for the glucose transporter GLUT1 in astrocytes. J Neurochem. 2009. 109: 94–100. PubMed
Zou C, Wang Y and Shen Z, 2-NBDG as a fluorescent indicator for direct glucose uptake measurement. J. Biochem. Biophys. Methods 2005. 64: 207–215. PubMed
Lam WY, Jash A, Yao CH, D’Souza L, Wong R, Nunley RM, Meares GP et al., Metabolic and transcriptional modules independently diversify plasma cell lifespan and function. Cell Rep. 2018. 24: 2479–2492.e6. PubMed PMC
Byersdorfer CA, Tkachev V, Opipari AW, Goodell S, Swanson J, Sandquist S, Glick GD et al., Effector T cells require fatty acid metabolism during murine graft-versus-host disease. Blood. 2013. 122: 3230–3237. PubMed PMC
Kolahi K, Louey S, Varlamov O and Thornburg K, Real-time tracking of BODIPY-C12 long-chain fatty acid in human term placenta reveals unique lipid dynamics in cytotrophoblast cells. PLoS One. 2016. 11: e0153522. PubMed PMC
Muroski ME, Miska J, Chang AL, Zhang P, Rashidi A, Moore H, Lopez-Rosas A et al., Fatty acid uptake in T cell subsets using a quantum dot fatty acid conjugate. Sci. Rep 2017. 7: 5790. PubMed PMC
Xiao B, Deng X, Zhou W and Tan E-K, Flow cytometry-based assessment of mitophagy using MitoTracker. Front. Cell. Neurosci 2016. 10: 76. PubMed PMC
Avramidou A, Kroczek C, Lang C, Schuh W, Jäck H-M and Mielenz D, The novel adaptor protein Swiprosin-1 enhances BCR signals and contributes to BCR-induced apoptosis. Cell Death Differ. 2007. 14: 1936–1947. PubMed
Pracht K, Meinzinger J, Daum P, Schulz SR, Reimer D, Hauke M, Roth E et al., A new staining protocol for detection of murine antibody-secreting plasma cell subsets by flow cytometry. Eur. J. Immunol 2017. 47: 1389–1392. PubMed
Eruslanov E and Kusmartsev S Identification of ROS using oxidized DCFDA and flow-cytometry. Methods Mol. Biol 2010. 594: 57–72. PubMed
Kalyanaraman B, Darley-Usmar V, Davies KJA, Dennery PA, Forman HJ, Grisham MB, Mann GE et al., Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic. Biol. Med 2012. 52: 1–6. PubMed PMC
Hempel SL, Buettner GR, O’Malley YQ, Wessels DA and Flaherty DM, Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: comparison with 2’,7’-dichlorodihydrofluorescein diacetate, 5 (and 6)-caboxy-2’,7’-dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123. Free Radic. Biol. Med 1999. 27: 146–159. PubMed
Anon. Thermo Fisher. CellROX® Oxidative Stress Reagents: User manual. Available at: https://assets.thermofisher.com/TFSAssets/LSG/manuals/mp10422.pdf
Anon. Thermo Fisher. MitoSOXTM Red mitochondrial superoxide indicator *for live-cell imaging* (M36008): User manual. Available at: https://assets.thermofisher.com/TFSAssets/LSG/manuals/mp36008.pdf
Tzur A, Moore JK, Jorgensen P, Shapiro HM and Kirschner MW, Optimizing optical flow cytometry for cell volume-based sorting and analysis. PLoS One. 2011. 6: 1–9. PubMed PMC
Stein M, Dütting S, Di M, Bösl M, Fritsch K, Reimer D, Urbanczyk S et al., A defined metabolic state in pre B cells governs B-cell development and is counterbalanced by Swiprosin-2/EFhd1. Cell Death Differ. 2017. 24: 1239–1252. PubMed PMC
Henzi T and Schwaller B Antagonistic regulation of parvalbumin expression and mitochondrial calcium handling capacity in renal epithelial cells. PLoS One. 2015. 10: e0142005. PubMed PMC
Santarlasci V, Maggi L, Capone M, Querci V, Beltrame L, Cavalieri D, D’Aiuto E et al., Rarity of human T helper 17 cells is due to retinoic acid orphan receptor-dependent mechanisms that limit their expansion. Immunity. 2012. 36: 201–214. PubMed
Santarlasci V, Mazzoni A, Capone M, Rossi MC, Maggi L, Montaini G, Rossettini B et al., Musculin inhibits human T-helper 17 cell response to interleukin 2 by controlling STAT5B activity. Eur. J. Immunol 2017. 47: 1427–1442. PubMed
Altman JD, Moss PA, Goulder PJ, Barouch DH, McHeyzer-Williams MG, Bell JI, McMichael AJ et al., Phenotypic analysis of antigen-specific T lymphocytes. Science 1996. 274: 94–96. PubMed
Newell EW, Klein LO, Yu W and Davis MM, Simultaneous detection of many T-cell specificities using combinatorial tetramer staining. Nat. Methods 2009. 6: 497–499. PubMed PMC
Hadrup SR, Bakker AH, Shu CJ, Andersen RS, van Veluw J, Hombrink P, Castermans E et al., Parallel detection of antigenspecific T-cell responses by multidimensional encoding of MHC multimers. Nat. Methods 2009. 6: 520–526. PubMed
Newell EW, Sigal N, Nair N, Kidd BA, Greenberg HB and Davis MM, Combinatorial tetramer staining and mass cytometry analysis facilitate T-cell epitope mapping and characterization. Nat. Biotechnol 2013. 31: 623–629. PubMed PMC
Bentzen AK, Marquard AM, Lyngaa R, Saini SK, Ramskov S, Donia M, Such L et al., Large-scale detection of antigen-specific T cells using peptide-MHC-I multimers labeled with DNA barcodes. Nat. Biotechnol 2016. 34: 1037–1045. PubMed
Dolton G, Zervoudi E, Rius C, Wall A, Thomas HL, Fuller A, Yeo L et al., Optimized peptide–MHC multimer protocols for detection and isolation of autoimmune T-cells. Front Immunol. 2018. 9: 1378. PubMed PMC
Zhang SQ, Ma KY, Schonnesen AA, Zhang M, He C, Sun E, Williams CM et al., High-throughput determination of the antigen specificities of T cell receptors in single cells. Nat. Biotechnol 2018. 36: 1156. PubMed PMC
Toebes M, Coccoris M, Bins A, Rodenko B, Gomez R, Nieuwkoop NJ, van de Kasteele W et al., Design and use of conditional MHC class I ligands. Nat. Med 2006. 12: 246–251. PubMed
Luimstra JJ, Garstka MA, Roex MC, Redeker A, Janssen GM, van Veelen PA and Neefjes J, A flexible MHC class I multimer loading system for large-scale detection of antigen-specific T cells. J. Exp. Med 2018. 215(5): 1493–1504. PubMed PMC
Amore A, Wals K, Koekoek E, Hoppes R, Toebes M, Schumacher TN, Rodenko B et al., Development of a hypersensitive periodate-cleavable amino acid that is methionine-and disulfide-compatible and its application in MHC exchange reagents for T cell characterisation. ChemBioChem 2013. 14: 123–131. PubMed PMC
Choo JA, Thong SY, Yap J, van Esch WJ, Raida M, Meijers R, Lescar J et al., Bioorthogonal cleavage and exchange of major histocompatibility complex ligands by employing azobenzene-containing peptides. Angew. Chem. Int. Ed 2014. 53: 13390–13394. PubMed
Saini SK, Schuster H, Ramnarayan VR, Rammensee H-G, Stevanović S and Springer S, Dipeptides catalyze rapid peptide exchange on MHC class I molecules. Proc. Natl. Acad. Sci. USA 2015. 112: 202–207. PubMed PMC
Kuball J, Hauptrock B, Malina V, Antunes E, Voss RH, Wolfl M, Strong R et al., Increasing functional avidity of TCR-redirected T cells by removing defined N-glycosylation sites in the TCR constant domain. J. Exp. Med 2009. 206: 463–475. PubMed PMC
Kvistborg P, Philips D, Kelderman S, Hageman L, Ottensmeier C, Joseph-Pietras D, Welters MJ et al., Anti-CTLA-4 therapy broadens the melanoma-reactive CD8+ T cell response. Sci. Transl. Med 2014. 6: 254ra128. PubMed
Kvistborg P, Shu CJ, Heemskerk B, Fankhauser M, Thrue CA, Toebes M, van Rooij N et al., TIL therapy broadens the tumorreactive CD8(+) T cell compartment in melanoma patients. Oncoimmunology 2012. 1: 409–418. PubMed PMC
Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W et al., Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 2015. 348: 124–128. PubMed PMC
van Rooij N, van Buuren MM, Philips D, Velds A, Toebes M, Heemskerk B, van Dijk LJ et al., Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. J. Clin. Oncol 2013. 31: e439–442. PubMed PMC
Schneck JP, Monitoring antigen-specific T cells using MHC-Ig dimers. Immunol. Invest 2000. 29: 163–169. PubMed
Selin LK, Vergilis K, Welsh RM and Nahill SR, Reduction of otherwise remarkably stable virus-specific cytotoxic T lymphocyte memory by heterologous viral infections. J. Exp. Med 1996. 183: 2489–2499. PubMed PMC
Martinez RJ, Andargachew R, Martinez HA and Evavold BD, Low-affinity CD4+T cells are major responders in the primary immune response. Nat. Commun 2016. 7: 13848. PubMed PMC
Xiao Z, Mescher MF and Jameson SC, Detuning CD8 T cells: down-regulation of CD8 expression, tetramer binding, and response during CTL activation. J. Exp. Med 2007. 204: 2667–2677. PubMed PMC
Bakker AH, Schumacher TNM. MHC multimer technology: current status and future prospects. Curr. Opin. Immunol 2005. 17: 428–433. PubMed
McMichael AJ and O’Callaghan CA, A new look at T cells. J. Exp. Med 1998. 187: 1367–1371. PubMed PMC
Ogg GS, King AS, Dunbar PR and McMichael AJ, Isolation of HIV-1-specific cytotoxic T lymphocytes using human leukocyte antigen-coated beads. AIDS 1999. 13: 1991–1993. PubMed
Luxembourg AT, Borrow P, Teyton L, Brunmark AB, Peterson PA and Jackson MR, Biomagnetic isolation of antigen-specific CD8+ T cells usable in immunotherapy. Nat. Biotechnol 1998. 16: 281–285. PubMed
Xu XN, Purbhoo MA, Chen N, Mongkolsapaya J, Cox JH, Meier UC, Tafuro S et al., A novel approach to antigen-specific deletion of CTL with minimal cellular activation using alpha3 domain mutants of MHC class I/peptide complex. Immunity 2001. 14: 591–602. PubMed
Whelan JA, Dunbar PR, Price DA, Purbhoo MA, Lechner F, Ogg GS, Griffiths G et al., Specificity of CTL interactions with peptide-MHC class I tetrameric complexes is temperature dependent. J. Immunol 1999. 163: 4342–4348. PubMed
Daniels MA and Jameson SC Critical role for CD8 in T cell receptor binding and activation by peptide/major histocompatibility complex multimers. J. Exp. Med 2000. 191: 335–346. PubMed PMC
Knabel M, Franz TJ, Schiemann M, Wulf A, Villmow B, Schmidt B, Bernhard H et al., Reversible MHC multimer staining for functional isolation of T-cell populations and effective adoptive transfer. Nat. Med 2002. 8: 631–637. PubMed
Neuenhahn M, Albrecht J, Odendahl M, Schlott F, Dössinger G, Schiemann M, Lakshmipathi S et al., Transfer of minimally manipulated CMV-specific T cells from stem cell or third-party donors to treat CMV infection after allo-HSCT. Leukemia 2017. 31: 2161–2171. PubMed
Nauerth M, Weißbrich B, Knall R, Franz T, Dössinger G, Bet J, Paszkiewicz PJ et al., TCR-ligand koff rate correlates with the protective capacity of antigen-specific CD8+ T cells for adoptive transfer. Sci. Transl. Med 2013. 5: 192ra87. PubMed PMC
Nauerth M, Stemberger C, Mohr F, Weißbrich B, Schiemann M, Germeroth L and Busch DH, Flow cytometry-based TCR-ligand K off -rate assay for fast avidity screening of even very small antigen-specific T cell populations ex vivo. Cytometry A 2016. 89: 816–825. PubMed
Stemberger C, Dreher S, Tschulik C, Piossek C, Bet J, Yamamoto TN, Schiemann M et al., Novel serial positive enrichment technology enables clinical multiparameter cell sorting. PLoS One 2012. 7: e35798. PubMed PMC
Davis DM, Reyburn HT, Pazmany L, Chiu I, Mandelboim O and Strominger JL, Impaired spontaneous endocytosis of HLA-G. Eur. J. Immunol 1997. 27: 2714–2719. PubMed
Effenberger M, Stengl A, Schober K, Gerget M, Kampick M, Müller TR, Schumacher D et al., FLEXamers: a double tag for universal generation of versatile peptide-MHC multimers. J. Immunol 2019. 10.4049/jimmunol.1801435 PubMed DOI
Lund-Johansen F, Bjerknes R and Laerum OD, Flow cytometric assay for the measurement of human bone marrow phenotype, function and cell cycle. Cytometry 1990. 11: 610–616. PubMed
Vollers SS and Stern LJ, Class II major histocompatibility complex tetramer staining: progress, problems, and prospects. Immunology 2008. 123: 305–313. PubMed PMC
James EA, LaFond R, Durinovic-Bello I and Kwok W, Visualizing antigen specific CD4+ T cells using MHC class II tetramers. J. Vis. Exp 2009: 1–4. PubMed PMC
Scheffold A, Busch DH and Kern F, Detection of antigen-specific T-cells using major histocompatibility complex multimers or functional parameters In Sack U (Eds.), Cellular diagnostics. KARGER, Basel: 2008: 476–502.
Chattopadhyay PK, Gierahn TM, Roederer M and Love JC, Single-cell technologies for monitoring immune systems. Nat. Immunol 2014. 15: 128–135. PubMed PMC
Chattopadhyay PK and Roederer M, A mine is a terrible thing to waste: high content, single cell technologies for comprehensive immune analysis. Am. J. Transplant 2015. 15: 1155–1161. PubMed
Kvistborg P, Gouttefangeas C, Aghaeepour N, Cazaly A, Chattopadhyay PK, Chan C, Eckl J et al., Thinking outside the gate: single-cell assessments in multiple dimensions. Immunity 2015. 42: 591–592. PubMed PMC
Mahnke YD and Roederer M, Optimizing a multicolor immunophenotyping assay. Clin. Lab. Med 2007. 27: 469–485. PubMed PMC
Newell EW and Davis MM, Beyond model antigens: high-dimensional methods for the analysis of antigen-specific T cells. Nat. Biotechnol 2014. 32: 149–157. PubMed PMC
Bacher P and Scheffold A, Flow-cytometric analysis of rare antigen-specific T cells. Cytometry A 2013. 83: 692–701. PubMed
Dimitrov S, Gouttefangeas C, Besedovsky L, Jensen ATR, Chandran PA, Rusch E, Businger R et al., Activated integrins identify functional antigen-specific CD8(+) T cells within minutes after antigen stimulation. Proc. Natl. Acad. Sci. USA 2018. 115: E5536–E5545. PubMed PMC
Kutscher S, Dembek CJ, Deckert S, Russo C, Korber N, Bogner JR, Geisler F et al., Overnight resting of PBMC changes functional signatures of antigen specific T-cell responses: impact for immune monitoring within clinical trials. PLoS One 2013. 8: e76215. PubMed PMC
Owen RE, Sinclair E, Emu B, Heitman JW, Hirschkorn DF, Epling CL, Tan QX et al., Loss of T cell responses following long-term cryopreservation. J. Immunol. Methods 2007. 326: 93–115. PubMed PMC
Romer PS, Berr S, Avota E, Na SY, Battaglia M, ten Berge I, Einsele H et al., Preculture of PBMCs at high cell density increases sensitivity of T-cell responses, revealing cytokine release by CD28 super-agonist TGN1412. Blood 2011. 118: 6772–6782. PubMed
Wegner J, Hackenberg S, Scholz CJ, Chuvpilo S, Tyrsin D, Matskevich AA, Grigoleit GU et al., High-density preculture of PBMCs restores defective sensitivity of circulating CD8 T cells to virus-and tumor-derived antigens. Blood 2015. 126: 185–194. PubMed
Lamoreaux L, Roederer M and Koup R, Intracellular cytokine optimization and standard operating procedure. Nat. Protoc 2006. 1: 1507–1516. PubMed
Maecker HT, Rinfret A, D’Souza P, Darden J, Roig E, Landry C, Hayes P et al., Standardization of cytokine flow cytometry assays. BMC Immunol. 2005. 6: 13. PubMed PMC
Reddy M, Eirikis E, Davis C, Davis HM and Prabhakar U, Comparative analysis of lymphocyte activation marker expression and cytokine secretion profile in stimulated human peripheral blood mononuclear cell cultures: an in vitro model to monitor cellular immune function. J. Immunol. Methods 2004. 293: 127–142. PubMed
Redmond WL, Ruby CE and Weinberg AD, The role of OX40-mediated co-stimulation in T-cell activation and survival. Crit. Rev. Immunol 2009. 29: 187–201. PubMed PMC
Zaunders JJ, Munier ML, Seddiki N, Pett S, Ip S, Bailey M, Xu Y et al., High levels of human antigen-specific CD4+ T cells in peripheral blood revealed by stimulated coexpression of CD25 and CD134 (OX40). J. Immunol 2009. 183: 2827–2836. PubMed
Chattopadhyay PK, Yu J and Roederer M, A live-cell assay to detect antigen-specific CD4+ T cells with diverse cytokine profiles. Nat. Med 2005. 11: 1113–1117. PubMed
Frentsch M, Arbach O, Kirchhoff D, Moewes B, Worm M, Rothe M, Scheffold A et al., Direct access to CD4+ T cells specific for defined antigens according to CD154 expression. Nat. Med 2005. 11: 1118–1124. PubMed
Bacher P, Kniemeyer O, Schonbrunn A, Sawitzki B, Assenmacher M, Rietschel E, Steinbach A et al., Antigen-specific expansion of human regulatory T cells as a major tolerance mechanism against mucosal fungi. Mucosal. Immunol 2014. 7: 916–928. PubMed
Schoenbrunn A, Frentsch M, Kohler S, Keye J, Dooms H, Moewes B, Dong J et al., A converse 4–1BB and CD40 ligand expression pattern delineates activated regulatory T cells (Treg) and conventional T cells enabling direct isolation of alloantigen-reactive natural Foxp3+ Treg. J. Immunol 2012. 189: 5985–5994. PubMed
Bacher P, Heinrich F, Stervbo U, Nienen M, Vahldieck M, Iwert C, Vogt K et al., Regulatory T cell specificity directs tolerance versus allergy against aeroantigens in humans. Cell 2016. 167: 1067–1078. PubMed
Wolfl M, Kuball J, Eyrich M, Schlegel PG and Greenberg PD, Use of CD137 to study the full repertoire of CD8+ T cells without the need to know epitope specificities. Cytometry A 2008. 73: 1043–1049. PubMed PMC
Wolfl M, Kuball J, Ho WY, Nguyen H, Manley TJ, Bleakley M and Greenberg PD, Activation-induced expression of CD137 permits detection, isolation, and expansion of the full repertoire of CD8+ T cells responding to antigen without requiring knowledge of epitope specificities. Blood 2007. 110: 201–210. PubMed PMC
Brosterhus H, Brings S, Leyendeckers H, Manz RA, Miltenyi S, Radbruch A, Assenmacher M et al., Enrichment and detection of live antigen-specific CD4(+) and CD8(+) T cells based on cytokine secretion. Eur. J. Immunol 1999. 29: 4053–4059. PubMed
Manz R, Assenmacher M, Pfluger E, Miltenyi S and Radbruch A, Analysis and sorting of live cells according to secreted molecules, relocated to a cell-surface affinity matrix. Proc. Natl. Acad. Sci. USA 1995. 92: 1921–1925. PubMed PMC
Jung T, Schauer U, Heusser C, Neumann C and Rieger C, Detection of intracellular cytokines by flow cytometry. J. Immunol. Methods 1993. 159: 197–207. PubMed
O’Neil-Andersen NJ and Lawrence DA, Differential modulation of surface and intracellular protein expression by T cells after stimulation in the presence of monensin or brefeldin A. Clin. Diagn. Lab. Immunol 2002. 9: 243–250. PubMed PMC
Bacher P, Schink C, Teutschbein J, Kniemeyer O, Assenmacher M, Brakhage AA and Scheffold A, Antigen-reactive T cell enrichment for direct, high-resolution analysis of the human naive and memory Th cell repertoire. J. Immunol 2013. 190: 3967–3976. PubMed
Bacher P, Hohnstein T, Beerbaum E, Rocker M, Blango MG, Kaufmann S, Rohmel J et al., Human Anti-fungal Th17 Immunity and Pathology Rely on Cross-Reactivity against Candida albicans. Cell 2019. 176: 1340–1355.e1315. PubMed
Wehler TC, Karg M, Distler E, Konur A, Nonn M, Meyer RG, Huber C et al., Rapid identification and sorting of viable virus-reactive CD4(+) and CD8(+) T cells based on antigen-triggered CD137 expression. J. Immunol. Methods 2008. 339: 23–37. PubMed
Betts MR, Brenchley JM, Price DA, De Rosa SC, Douek DC, Roederer M and Koup RA, Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J. Immunol. Methods 2003. 281: 65–78. PubMed
Betts MR and Koup RA, Detection of T-cell degranulation: CD107a and b. Methods Cell Biol. 2004. 75: 497–512. PubMed
Dimitrov S, Benedict C, Heutling D, Westermann J, Born J and Lange T, Cortisol and epinephrine control opposing circadian rhythms in T cell subsets. Blood 2009. 113: 5134–5143. PubMed PMC
Dimitrov S, Lange T and Born J, Selective mobilization of cytotoxic leukocytes by epinephrine. J. Immunol 2010. 184: 503–511. PubMed
Day CL, Seth NP, Lucas M, Appel H, Gauthier L, Lauer GM, Robbins GK et al., Ex vivo analysis of human memory CD4 T cells specific for hepatitis C virus using MHC class II tetramers. J. Clin. Invest 2003. 112: 831–842. PubMed PMC
Miltenyi S, Muller W, Weichel W and Radbruch A, High gradient magnetic cell separation with MACS. Cytometry 1990. 11: 231–238. PubMed
Moon JJ, Chu HH, Pepper M, McSorley SJ, Jameson SC, Kedl RM and Jenkins MK, Naive CD4(+) T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity 2007. 27: 203–213. PubMed PMC
Obar JJ, Khanna KM and Lefrancois L, Endogenous naive CD8+ T cell precursor frequency regulates primary and memory responses to infection. Immunity 2008. 28: 859–869. PubMed PMC
Macey MG, Flow cytometry: Principles and applications. Humana Press, New York, NY, 2007.
Krensky AM, The HLA system, antigen processing and presentation. Kidney Int. Suppl 1997. 58: S2–7. PubMed
Kern F, Faulhaber N, Frommel C, Khatamzas E, Prosch S, Schonemann C, Kretzschmar I et al., Analysis of CD8 T cell reactivity to cytomegalovirus using protein-spanning pools of overlapping pentadecapeptides. Eur. J. Immunol 2000. 30: 1676–1682. PubMed
Maecker HT, Dunn HS, Suni MA, Khatamzas E, Pitcher CJ, Bunde T, Persaud N et al., Use of overlapping peptide mixtures as antigens for cytokine flow cytometry. J. Immunol. Methods 2001. 255: 27–40. PubMed
Eberl G, Renggli J, Men Y, Roggero MA, Lopez JA and Corradin G, Extracellular processing and presentation of a 69-mer synthetic polypetide to MHC class I-restricted T cells. Mol. Immunol 1999. 36: 103–112. PubMed
Sherman LA, Burke TA and Biggs JA, Extracellular processing of peptide antigens that bind class I major histocompatibility molecules. J. Exp. Med 1992. 175: 1221–1226. PubMed PMC
Alanio C, Lemaitre F, Law HK, Hasan M and Albert ML, Enumeration of human antigen-specific naive CD8+ T cells reveals conserved precursor frequencies. Blood 2010. 115: 3718–3725. PubMed
Campion SL, Brodie TM, Fischer W, Korber BT, Rossetti A, Goonetilleke N, McMichael AJ et al., Proteome-wide analysis of HIV specific naive and memory CD4(+) T cells in unexposed blood donors. J. Exp. Med 2014. 211: 1273–1280. PubMed PMC
Geiger R, Duhen T, Lanzavecchia A and Sallusto F, Human naive and memory CD4+ T cell repertoires specific for naturally processed antigens analyzed using libraries of amplified T cells. J. Exp. Med 2009. 206: 1525–1534. PubMed PMC
Su LF, Kidd BA, Han A, Kotzin JJ and Davis MM, Virus-specific CD4(+) memory-phenotype T cells are abundant in unexposed adults. Immunity 2013. 38: 373–383. PubMed PMC
Annunziato F, Romagnani C and Romagnani S, The 3 major types of innate and adaptive cell-mediated effector immunity. J. Allergy Clin. Immunol 2015. 135: 626–635. PubMed
Brugnolo F, Sampognaro S, Liotta F, Cosmi L, Annunziato F, Manuelli C, Campi P et al., The novel synthetic immune response modifier R-848 (Resiquimod) shifts human allergen-specific CD4+ TH2 lymphocytes into IFN-gamma-producing cells. J. Allergy Clin. Immunol 2003. 111: 380–388. PubMed
Annunziato F, Cosmi L, Santarlasci V, Maggi L, Liotta F, Mazzinghi B, Parente E et al., Phenotypic and functional features of human Th17 cells. J. Exp. Med 2007. 204: 1849–1861. PubMed PMC
Cosmi L, Maggi L, Santarlasci V, Capone M, Cardilicchia E, Frosali F, Querci V et al., Identification of a novel subset of human circulating memory CD4(+) T cells that produce both IL-17A and IL-4. J. Allergy Clin. Immunol 2010. 125(1): 222–230.e1–4. PubMed
Becattini S, Latorre D, Mele F, Foglierini M, De Gregorio C, Cassotta A, Fernandez B et al., T cell immunity. Functional heterogeneity of human memory CD4+ T cell clones primed by pathogens or vaccines. Science 2015. 347: 400–406. PubMed
Mazzoni A, Maggi L, Siracusa F, Ramazzotti M, Rossi MC, Santarlasci V, Montaini G et al., Eomes controls the development of Th17-derived (non-classic) Th1 cells during chronic inflammation. Eur. J. Immunol 2019. 49: 79–95. PubMed
Mazzoni A, Santarlasci V, Maggi L, Capone M, Rossi MC, Querci V, De Palma R et al., Demethylation of the RORC2 and IL17A in human CD4+ T lymphocytes defines Th17 origin of nonclassic Th1 cells. J. Immunol 2015. 194: 3116–3126. PubMed
Mueller SN, Gebhardt T, Carbone FR and Heath WR, Memory T cell subsets, migration patterns, and tissue residence. Annu. Rev. Immunol 2013. 31: 137–161. PubMed
Masopust D and Schenkel JM, The integration of T cell migration, differentiation and function. Nat. Rev. Immunol. 2013. 13: 309–320. PubMed
Murali-Krishna K, Altman JD, Suresh M, Sourdive DJ, Zajac AJ, Miller JD, Slansky J et al., Immunity 1998. 8: 177–187. PubMed
Masopust D, Vezys V, Marzo AL and Lefrancois L, Preferential localization of effector memory cells in nonlymphoid tissue. Science 2001. 291: 2413–2417. PubMed
Barber DL, Wherry EJ and Ahmed R, J. Immunol 2003. 171: 27–31. PubMed
Brunner KT, Mauel J, Cerottini JC and Chapuis B, Immunology 1968. 14: 181–196. PubMed PMC
Nagata S and Golstein P, The Fas death factor. Science 1995. 267: 1449–1456. PubMed
Lopez JA, Susanto O, Jenkins MR, Lukoyanova N, Sutton VR, Law RH, Johnston A et al., Blood 2013. 121: 2659–2668. PubMed
Liu L, Chahroudi A, Silvestri G, Wernett ME, Kaiser WJ, Safrit JT, Komoriya A et al., Visualization and quantification of T cell-mediated cytotoxicity using cell-permeable fluorogenic caspase substrates. Nat. Med 2002. 8: 185–189. PubMed
Bedner E, Smolewski P, Amstad P and Darzynkiewicz Z, Exp. Cell Res 2000. 259: 308–313. PubMed
Amstad PA, Yu G, Johnson GL, Lee BW, Dhawan S and Phelps DJ, BioTechniques 2001. 31: 608–10, 612, 614, passim PubMed
Sheehy ME, McDermott AB, Furlan SN, Klenerman P and Nixon DF, J. Immunol. Methods 2001. 249: 99–110. PubMed
Michonneau D, Sagoo P, Breart B, Garcia Z, Celli S and Bousso P, Immunity 2016. 44: 143–154. PubMed
Aichele P, Brduscha-Riem K, Oehen S, Odermatt B, Zinkernagel RM, Hengartner H and Pircher H, Immunity 1997. 6: 519–529. PubMed
Coles RM, Mueller SN, Heath WR, Carbone FR and Brooks AG, Progression of armed CTL from draining lymph node to spleen shortly after localized infection with herpes simplex virus 1. J. Immunol 2002. 168: 834–838. PubMed
Wabnitz GH, Balta E, Schindler S, Kirchgessner H, Jahraus B, Meuer S and Samstag Y, The pro-oxidative drug WF-10 inhibits serial killing by primary human cytotoxic T-cells. Cell Death Discov. 2016. 2: 16057. PubMed PMC
Wabnitz GH, Kirchgessner H and Samstag Y Multiparametric analysis of molecular mechanism involved in the cytotoxicity of human CD8 T-cells. J. Cell. Biochem 2017. 118: 2528–2533. PubMed
Mahnke YD, Devevre E, Baumgaertner P, Matter M, Rufer N, Romero P and Speiser DE, Human melanoma-specific CD8(+) Tcells from metastases are capable of antigen-specific degranulation and cytolysis directly ex vivo. Oncoimmunology 2012. 1: 467–530. PubMed PMC
Kurioka A, Ussher JE, Cosgrove C, Clough C, Fergusson JR, Smith K, Kang YH et al., MAIT cells are licensed through granzyme exchange to kill bacterially sensitized targets. Mucosal. Immunol 2015. 8: 429–440. PubMed PMC
Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, Nomura T et al., CTLA-4 control over Foxp3(+) regulatory T cell function. Science 2008. 322: 271–275. PubMed
McMurchy AN and Levings MK, Suppression assays with human T regulatory cells: a technical guide. Eur. J. Immunol 2012. 42: 27–34. PubMed
Cammarata I, Martire C, Citro A, Raimondo D, Fruci D, Melaiu O, D’Oria V et al., Counter-regulation of regulatory T cells by autoreactive CD8(+) T cells in rheumatoid arthritis. J. Autoimmun 2019. 99: 81–97. PubMed
Walker LS, Regulatory T cells overturned: the effectors fight back. Immunology 2009. 126: 466–474. PubMed PMC
Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A, Parizot C et al., Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 2009. 30: 899–911. PubMed
Wing JB, Kitagawa Y, Locci M, Hume H, Tay C, Morita T, Kidani Y et al., A distinct subpopulation of CD25(−) T-follicular regulatory cells localizes in the germinal centers. Proc. Natl. Acad. Sci. USA 2017. 114: E6400–E6409. PubMed PMC
Roederer M, Interpretation of cellular proliferation data: avoid the panglossian. Cytometry A 2011. 79: 95–101. PubMed
Grossman WJ, Verbsky JW, Barchet W, Colonna M, Atkinson JP and Ley TJ, Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity 2004. 21: 589–601. PubMed
Koristka S, Cartellieri M, Arndt C, Feldmann A, Topfer K, Michalk I, Temme A et al., Cytotoxic response of human regulatory T cells upon T-cell receptor-mediated activation: a matter of purity. Blood Cancer J. 2014. 4: e199. PubMed PMC
Pircher H, Burki K, Lang R, Hengartner H and Zinkernagel RM, Tolerance induction in double specific T-cell receptor transgenic mice varies with antigen. Nature 1989. 342: 559–561. PubMed
Hogquist KA, Jameson SC, Heath WR, Howard JL, Bevan MJ and Carbone FR, T cell receptor antagonist peptides induce positive selection. Cell 1994. 76: 17–27. PubMed
Oxenius A, Bachmann MF, Zinkernagel RM and Hengartner H, Virus-specific MHC-class II-restricted TCR-transgenic mice: effects on humoral and cellular immune responses after viral infection. Eur. J. Immunol 1998. 28: 390–400. PubMed
Barnden MJ, Allison J, Heath WR and Carbone FR, Defective TCR expression in transgenic mice constructed using cDNA-based alpha- and beta-chain genes under the control of heterologous regulatory elements. Immunol. Cell. Biol 1998. 76: 34–40. PubMed
Murphy KM, Heimberger AB and Loh DY, Induction by antigen of intrathymic apoptosis of CD4+CD8+TCRlo thymocytes in vivo. Science 1990. 250: 1720–1723. PubMed
Kagi D, Odermatt B, Ohashi PS, Zinkernagel RM and Hengartner H, Development of insulitis without diabetes in transgenic mice lacking perforin-dependent cytotoxicity. J. Exp. Med 1996. 183: 2143–2152. PubMed PMC
Bettelli E, Pagany M, Weiner HL, Linington C, Sobel RA and Kuchroo VK, Myelin oligodendrocyte glycoprotein-specific T cell receptor transgenic mice develop spontaneous autoimmune optic neuritis. J. Exp. Med 2003. 197: 1073–1081. PubMed PMC
Mason DY, Jones M and Goodnow CC, Development and follicular localization of tolerant B lymphocytes in lysozyme/anti-lysozyme IgM/IgD transgenic mice. Int. Immunol 1992. 4: 163–175. PubMed
Phan TG, Amesbury M, Gardam S, Crosbie J, Hasbold J, Hodgkin PD, Basten A et al., B cell receptor-independent stimuli trigger immunoglobulin (Ig) class switch recombination and production of IgG autoantibodies by anergic self-reactive B cells. J. Exp. Med 2003. 197: 845–860. PubMed PMC
Allen CD, Okada T, Tang HL and Cyster JG, Imaging of germinal center selection events during affinity maturation. Science 2007. 315: 528–531. PubMed
Shih TA, Roederer M and Nussenzweig MC, Role of antigen receptor affinity in T cell-independent antibody responses in vivo. Nat. Immunol 2002. 3: 399–406. PubMed
Garside P, Ingulli E, Merica RR, Johnson JG, Noelle RJ and Jenkins MK, Visualization of specific B and T lymphocyte interactions in the lymph node. Science 1998. 281: 96–99. PubMed
Litzenburger T, Fassler R, Bauer J, Lassmann H, Linington C, Wekerle H and Iglesias A, B lymphocytes producing demyelinating autoantibodies: development and function in gene-targeted transgenic mice. J. Exp. Med 1998. 188: 169–180. PubMed PMC
Bettelli E, Baeten D, Jager A, Sobel RA and Kuchroo VK, Myelin oligodendrocyte glycoprotein-specific T and B cells cooperate to induce a Devic-like disease in mice. J. Clin. Invest 2006. 116: 2393–2402. PubMed PMC
Jenkins MK and Moon JJ, The role of naive T cell precursor frequency and recruitment in dictating immune response magnitude. J. Immunol 2012. 188: 4135–4140. PubMed PMC
Buchholz VR, Schumacher TN and Busch DH, T cell fate at the single-cell level. Annu. Rev. Immunol 2016. 34: 65–92. PubMed
Stemberger C, Huster KM, Koffler M, Anderl F, Schiemann M, Wagner H and Busch DH, A single naive CD8+ T cell precursor can develop into diverse effector and memory subsets. Immunity 2007. 27: 985–997. PubMed
Baumjohann D and Ansel KM, Tracking early T follicular helper cell differentiation in vivo. Methods Mol. Biol 2015. 1291: 27–38. PubMed PMC
Paus D, Phan TG, Chan TD, Gardam S, Basten A and Brink R, Antigen recognition strength regulates the choice between extrafollicular plasma cell and germinal center B cell differentiation. J. Exp. Med 2006. 203: 1081–1091. PubMed PMC
Boesch M, Cosma A and Sopper S, Flow cytometry: to dump or not to dump. J. Immunol 2018. 201: 1813. PubMed
Beura LK, Hamilton SE, Bi K, Schenkel JM, Odumade OA, Casey KA, Thompson EA et al., Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature 2016. 532: 512–516. PubMed PMC
Akondy RS, Monson ND, Miller JD, Edupuganti S, Teuwen D, Wu H, Quyyumi F et al., The yellow fever virus vaccine induces a broad and polyfunctional human memory CD8+ T cell response. J. Immunol 2009. 183: 7919–7930. PubMed PMC
Schulz AR, Malzer JN, Domingo C, Jurchott K, Grutzkau A, Babel N, Nienen M et al., Low thymic activity and dendritic cell numbers are associated with the immune response to primary viral infection in elderly humans. J. Immunol 2015. 195: 4699–4711. PubMed
van Leeuwen EM, de Bree GJ, Remmerswaal EB, Yong SL, Tesselaar K, ten Berge IJ and van Lier RA, IL-7 receptor alpha chain expression distinguishes functional subsets of virus-specific human CD8+ T cells. Blood 2005. 106: 2091–2098. PubMed
Zhou L, Chong MM and Littman DR, Plasticity of CD4+ T cell lineage differentiation. Immunity 2009. 30: 646–655. PubMed
Luckheeram RV, Zhou R, Verma AD and Xia B, CD4(+) T cells: differentiation and functions. Clin. Dev. Immunol 2012. 2012: 925135. PubMed PMC
Zhu J, Yamane H and Paul WE, Differentiation of effector CD4 T cell populations (*). Annu. Rev. Immunol 2010. 28: 445–489. PubMed PMC
Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B, Lucian L et al., Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 2003. 421: 744–748. PubMed
Murphy CA, Langrish CL, Chen Y, Blumenschein W, McClanahan T, Kastelein RA, Sedgwick JD et al., Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J. Exp. Med 2003. 198: 1951–1957. PubMed PMC
Iwakura Y, Ishigame H, Saijo S and Nakae S, Functional specialization of interleukin-17 family members. Immunity 2011. 34: 149–162. PubMed
Brown DM, Dilzer AM, Meents DL and Swain SL, CD4 T cell mediated protection from lethal influenza: perforin and antibodymediated mechanisms give a one-two punch. J. Immunol 2006. 177: 2888–2898. PubMed
Lord GM, Rao RM, Choe H, Sullivan BM, Lichtman AH, Luscinskas FW and Glimcher LH, T-bet is required for optimal proinflammatory CD4+ T-cell trafficking. Blood 2005. 106: 3432–3439. PubMed PMC
Sundrud MS, Grill SM, Ni D, Nagata K, Alkan SS, Subramaniam A and Unutmaz D, Genetic reprogramming of primary human T cells reveals functional plasticity in Th cell differentiation. J. Immunol 2003. 171: 3542–3549. PubMed
Hirota K, Yoshitomi H, Hashimoto M, Maeda S, Teradaira S, Sugimoto N, Yamaguchi T et al., Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model. J. Exp. Med 2007. 204: 2803–2812. PubMed PMC
Breitfeld D, Ohl L, Kremmer E, Ellwart J, Sallusto F, Lipp M and Forster R, Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J. Exp. Med 2000. 192: 1545–1552. PubMed PMC
Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O’Garra A and Murphy KM, Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 1993. 260: 547–549. PubMed
Lighvani AA, Frucht DM, Jankovic D, Yamane H, Aliberti J, Hissong BD, Nguyen BV et al., T-bet is rapidly induced by interferon-gamma in lymphoid and myeloid cells. Proc. Natl. Acad. Sci. U S A 2001. 98: 15137–15142. PubMed PMC
Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG and Glimcher LH, A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 2000. 100: 655–669. PubMed
Le Gros G, Ben-Sasson SZ, Seder R, Finkelman FD and Paul WE, Generation of interleukin 4 (IL-4)-producing cells in vivo and in vitro: IL-2 and IL-4 are required for in vitro generation of IL-4-producing cells. J. Exp. Med 1990. 172: 921–929. PubMed PMC
Swain SL, Weinberg AD, English M and Huston G, IL-4 directs the development of Th2-like helper effectors. J. Immunol 1990. 145: 3796–3806. PubMed
Zheng W and Flavell RA, The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 1997. 89: 587–596. PubMed
Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ et al., The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+Thelper cells. Cell 2006. 126: 1121–1133. PubMed
Baba N, Rubio M, Kenins L, Regairaz C, Woisetschlager M, Carballido JM and Sarfati M, The aryl hydrocarbon receptor (AhR) ligand VAF347 selectively acts on monocytes and naive CD4(+) Th cells to promote the development of IL-22-secreting Th cells. Hum. Immunol 2012. 73: 795–800. PubMed
Gerlach K, Hwang Y, Nikolaev A, Atreya R, Dornhoff H, Steiner S, Lehr HA et al., TH9 cells that express the transcription factor PU.1 drive T cell-mediated colitis via IL-9 receptor signaling in intestinal epithelial cells. Nat. Immunol 2014. 15: 676–686. PubMed
Chtanova T, Tangye SG, Newton R, Frank N, Hodge MR, Rolph MS and Mackay CR, T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B cells. J. Immunol 2004. 173: 68–78. PubMed
Zhu J, Jankovic D, Oler AJ, Wei G, Sharma S, Hu G, Guo L et al., The transcription factor T-bet is induced by multiple pathways and prevents an endogenous Th2 cell program during Th1 cell responses. Immunity 2012. 37: 660–673. PubMed PMC
Mosmann TR, Cherwinski H, Bond MW, Giedlin MA and Coffman RL, Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol 1986. 136: 2348–2357. PubMed
Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM and Weaver CT, Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol 2005. 6: 1123–1132. PubMed
Grewal IS, Xu J and Flavell RA, Impairment of antigen-specific T-cell priming in mice lacking CD40 ligand. Nature 1995. 378: 617–620. PubMed
Liu F and Whitton JL, Cutting edge: re-evaluating the in vivo cytokine responses of CD8+ T cells during primary and secondary viral infections. J. Immunol 2005. 5936–5940. PubMed
Kirchhoff D, Frentsch M, Leclerk P, Bumann D, Rausch S, Hartmann S, Thiel A et al., Identification and isolation of murine antigenreactive T cells according to CD154 expression. Eur J Immunol 2007. 37: 2370–2377. PubMed
Shore DA, Issafras H, Landais E, Teyton L and Wilson IA, The crystal structure of CD8 in complex with YTS156.7.7 Fab and interaction with other CD8 antibodies define the binding mode of CD8 alphabeta to MHC class I. J. Mol. Biol 2008. 384: 1190–1202. PubMed PMC
Joshi NS, Cui W, Chandele A, Lee HK, Urso DR, Hagman J, Gapin L et al., Inflammation directs memory precursor and short-lived effector CD8(+) T cell fates via the graded expression of T-bet transcription factor. Immunity 2007. 27: 281–295. PubMed PMC
Kaech SM, Tan JT, Wherry EJ, Konieczny BT, Surh CD and Ahmed R, Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat. Immunol 2003. 1191–1198. PubMed
Obar JJ, Jellison ER, Sheridan BS, Blair DA, Pham QM, Zickovich JM and Lefrancois L, Pathogen-induced inflammatory environment controls effector and memory CD8+ T cell differentiation. J. Immunol 2011. 4967–4978. PubMed PMC
Gerlach C, Moseman EA, Loughhead SM, Alvarez D, Zwijnenburg AJ, Waanders L, Garg R et al., The chemokine receptor CX3CR1 defines three antigen-experienced CD8 T cell subsets with distinct roles in immune surveillance and homeostasis. Immunity 2016. 45: 1270–1284. PubMed PMC
Sosinowski T, White JT, Cross EW, Haluszczak C, Marrack P, Gapin L and Kedl RM, CD8α+ dendritic cell trans presentation of IL-15 to naive CD8+ T cells produces antigen-inexperienced T cells in the periphery with memory phenotype and function. J. Immunol 2013. 190: 1936–1947. PubMed PMC
White JT, Cross EW and Kedl RM, Antigen-inexperienced memory CD8(+) T cells: where they come from and why we need them. Nat. Rev. Immunol 2017. 17: 391–400. PubMed PMC
Chiu BC, Martin BE, Stolberg VR and Chensue SW, Cutting edge: central memory CD8 T cells in aged mice are virtual memory cells. J. Immunol 2013. 191: 5793–5796. PubMed PMC
Quinn KM, Fox A, Harland KL, Russ BE, Li J, Nguyen THO, Loh L et al., Age-related decline in primary CD8(+) T cell responses is associated with the development of senescence in virtual memory CD8(+) T cells. Cell Rep 2018. 23: 3512–3524. PubMed
Tsukumo S. i., Unno M, Muto A, Takeuchi A, Kometani K, Kurosaki T, Igarashi K et al., Bach2 maintains T cells in a naive state by suppressing effector memory-related genes. Proc. Natl. Acad. Sci. USA 2013. 10735–10740. PubMed PMC
Kaech SM and Cui W, Transcriptional control of effector and memory CD8+ T cell differentiation. Nat. Rev. Immunol 2012. 12: 749–761. PubMed PMC
Mackay LK, Minnich M, Kragten NA, Liao Y, Nota B, Seillet C, Zaid A et al., Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science 2016. 352: 459–463. PubMed
Mittrucker HW, Visekruna A and Huber M, Heterogeneity in the differentiation and function of CD8(+) T cells. Arch. Immunol. Ther. Exp 2014. 62: 449–458. PubMed
Frentsch M, Stark R, Matzmohr N, Meier S, Durlanik S, Schulz AR, Stervbo U et al., CD40L expression permits CD8+ T cells to execute immunologic helper functions. Blood 2013. 122: 405–412. PubMed PMC
van Stipdonk MJ, Hardenberg G, Bijker MS, Lemmens EE, Droin NM, Green DR and Schoenberger SP, Dynamic programming of CD8+ T lymphocyte responses. Nat. Immunol 2003. 4: 361–365. PubMed
Masopust D, Murali-Krishna K and Ahmed R, Quantitating the magnitude of the lymphocytic choriomeningitis virus-specific CD8 T cell response: it is even bigger than we thought. J. Virol 2007. 81: 2002–2011. PubMed PMC
Mueller SN and Mackay LK, Tissue-resident memory T cells: local specialists in immune defence. Nat. Rev. Immunol 2016. 16: 79–89. PubMed
Behr FM, Chuwonpad A, Stark R and van Gisbergen K, Armed and ready: transcriptional regulation of tissue-resident memory CD8 T cells. Front. Immunol 2018. 9: 1770. PubMed PMC
Beura LK, Fares-Frederickson NJ, Steinert EM, Scott MC, Thompson EA, Fraser KA, Schenkel JM et al., CD4(+) resident memory T cells dominate immunosurveillance and orchestrate local recall responses. J. Exp. Med 2019. PubMed PMC
Autengruber A, Gereke M, Hansen G, Hennig C and Bruder D, Impact of enzymatic tissue disintegration on the level of surface molecule expression and immune cell function. Eur. J. Microbiol. Immunol 2012. 2: 112–120. PubMed PMC
Rissiek B, Haag F, Boyer O, Koch-Nolte F and Adriouch S, P2X7 on mouse T cells: one channel, many functions. Front. Immunol 2015. 6: 204. PubMed PMC
Rissiek B, Lukowiak M, Raczkowski F, Magnus T, Mittrucker HW and Koch-Nolte F, In vivo blockade of murine ARTC2.2 during cell preparation preserves the vitality and function of liver tissue-resident memory T cells. Front. Immunol 2018. 9: 1580. PubMed PMC
Stark R, Wesselink TH, Behr FM, Kragten NAM, Arens R, Koch-Nolte F, van Gisbergen K and van Lier RAW, T RM maintenance is regulated by tissue damage via P2RX7. Sci. Immunol 2018. 3: eaau1022. PubMed
Steinert EM, Schenkel JM, Fraser KA, Beura LK, Manlove LS, Igyarto BZ, Southern PJ et al., Quantifying memory CD8 T cells reveals regionalization of immunosurveillance. Cell 2015. 161: 737–749. PubMed PMC
Anderson KG, Mayer-Barber K, Sung H, Beura L, James BR, Taylor JJ, Qunaj L et al., Intravascular staining for discrimination of vascular and tissue leukocytes. Nat. Protoc. 2014. 9: 209–222. PubMed PMC
Nikolich-Žugich J and Čičin-Šain L, Aging of the Immune System Across Different Species In Wolf NS (Ed.), The comparative biology of aging, Springer Netherlands, Dordrecht, the Netherlands, 2010. pp. 353–376.
Calado RT and Dumitriu B, Telomere dynamics in mice and humans. Semin. Hematol 2013. 50: 165–174. PubMed PMC
Cicin-Sain L, Brien JD, Uhrlaub JL, Drabig A, Marandu TF and Nikolich-Zugich J, Cytomegalovirus infection impairs immune responses and accentuates T-cell pool changes observed in mice with aging. PLoS Pathog. 2012. 8: e1002849. PubMed PMC
Reese TA, Bi K, Kambal A, Filali-Mouhim A, Beura LK, Burger MC, Pulendran B et al., Sequential infection with common pathogens promotes human-like immune gene expression and altered vaccine response. Cell Host Microbe 2016. 19: 713–719. PubMed PMC
Pinchuk LM and Filipov NM, Differential effects of age on circulating and splenic leukocyte populations in C57BL/6 and BALB/c male mice. Immun. Ageing: I&A 2008. 5: 1–1. PubMed PMC
Yuan R, Meng Q, Nautiyal J, Flurkey K, Tsaih SW, Krier R, Parker MG et al., Genetic coregulation of age of female sexual maturation and lifespan through circulating IGF1 among inbred mouse strains. Proc. Natl. Acad. Sci. USA 2012. 109: 8224–8229. PubMed PMC
Xu W and Larbi A, Markers of T cell senescence in humans. Int. J. Mol. Sci 2017. 18: 1742. PubMed PMC
Lanna A, Gomes DC, Muller-Durovic B, McDonnell T, Escors D, Gilroy DW, Lee JH et al., A sestrin-dependent Erk-Jnk-p38 MAPK activation complex inhibits immunity during aging. Nat. Immunol 2017. 18: 354–363. PubMed PMC
White JT, Cross EW, Burchill MA, Danhorn T, McCarter MD, Rosen HR, O’Connor B et al., Virtual memory T cells develop and mediate bystander protective immunity in an IL-15-dependent manner. Nat. Commun 2016. 7: 11291. PubMed PMC
Marandu TF, Oduro JD, Borkner L, Dekhtiarenko I, Uhrlaub JL, Drabig A, Kroger A et al., Immune protection against virus challenge in aging mice is not affected by latent herpesviral infections. J. Virol 2015. 89: 11715–11717. PubMed PMC
Sakaguchi S, Sakaguchi N, Asano M, Itoh M and Toda M, Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol 1995. 155: 1151–1164. PubMed
Hori S, Nomura T and Sakaguchi S, Control of regulatory T cell development by the transcription factor Foxp3. Science 2003. 299: 1057–1061. PubMed
Fontenot JD, Gavin MA and Rudensky AY, Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol 2003. 4: 330–336. PubMed
Hill JA, Feuerer M, Tash K, Haxhinasto S, Perez J, Melamed R, Mathis D et al., Foxp3 transcription-factor-dependent and - independent regulation of the regulatory T cell transcriptional signature. Immunity 2007. 27: 786–800. PubMed
Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L, Kelly TE et al., The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet 2001. 27: 20–21. PubMed
Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA, Wilkinson JE et al., Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet 2001. 27: 68–73. PubMed
Bacchetta R, Passerini L, Gambineri E, Dai M, Allan SE, Perroni L, Dagna-Bricarelli F et al., Defective regulatory and effector T cell functions in patients with FOXP3 mutations. J. Clin. Invest 2006. 116: 1713–1722. PubMed PMC
Klein L, Robey EA and Hsieh CS, Central CD4+ T cell tolerance: deletion versus regulatory T cell differentiation. Nat. Rev. Immunol 2019. 19: 7–18. PubMed
Tanoue T, Atarashi K and Honda K, Development and maintenance of intestinal regulatory T cells. Nat. Rev. Immunol 2016. 16: 295–309. PubMed
Thornton AM, Korty PE, Tran DQ, Wohlfert EA, Murray PE, Belkaid Y and Shevach EM, Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J. Immunol 2010. 184: 3433–3441. PubMed PMC
Weiss JM, Bilate AM, Gobert M, Ding Y, Curotto de Lafaille MA, Parkhust CN, Xiong H et al., Neuropilin-1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ Treg cells. J. Exp. Med 2012. 209: 1723–1742. PubMed PMC
Sefik E, Geva-Zatorsky N, Oh S, Konnikova L, Zemmour D, McGuire AM, Burzyn D et al., Individual intestinal symbionts induce a distinct population of RORgamma+ regulatory T cells. Science 2015. 349: 993–997. PubMed PMC
Ohnmacht C, Park JH, Cording S, Wing JB, Atarashi K, Obata Y, Gaboriau-Routhiau V et al., The microbiota regulates type 2 immunity through RORgammat+ T cells. Science 2015. 349: 989–993. PubMed
Akimova T, Beier UH, Wang L, Levine MH and Hancock WW, Helios expression is amarker of T cell activation and proliferation. PLoS One 2011. 6: e24226. PubMed PMC
Kim B-S, Lu H, Ichiyama K, Chen X, Zhang Y-B, Mistry NA, Tanaka K et al., Generation of RORγt+ Antigen-Specific T Regulatory 17 Cells from Foxp3+ Precursors in Autoimmunity. Cell Rep. 2017. 21: 195–207. PubMed PMC
Yang J, Zou M, Pezoldt J, Zhou X and Huehn J, Thymus-derived Foxp3+ regulatory T cells upregulate RORgammat expression under inflammatory conditions. J. Mol. Med. (Berl) 2018. 96: 1387–1394. PubMed
Delacher M, Schreiber L, Richards DM, Farah C, Feuerer M and Huehn J, Transcriptional Control of Regulatory T cells. Curr. Topics Microbiol. Immunol 2014. 381: 83–124. PubMed
Owen DL, Mahmud SA, Sjaastad LE, Williams JB, Spanier JA, Simeonov DR, Ruscher R et al., Thymic regulatory T cells arise via two distinct developmental programs. Nat. Immunol 2019. 20: 195–205. PubMed PMC
Toker A, Engelbert D, Garg G, Polansky JK, Floess S, Miyao T, Baron U et al., Active demethylation of the Foxp3 locus leads to the generation of stable regulatory T cells within the thymus. J. Immunol 2013. 190: 3180–3188. PubMed
Thiault N, Darrigues J, Adoue V, Gros M, Binet B, Perals C, Leobon B et al., Peripheral regulatory T lymphocytes recirculating to the thymus suppress the development of their precursors. Nat. Immunol 2015. 16: 628–634. PubMed
Cowan JE, McCarthy NI and Anderson G, CCR7 controls thymus recirculation, but not production and emigration, of Foxp3+ T cells. Cell Rep. 2016. 14: 1041–1048. PubMed PMC
Panduro M, Benoist C and Mathis D, Tissue Tregs. Annu. Rev. Immunol 2016. 34: 609–633. PubMed PMC
Feuerer M, Herrero L, Cipolletta D, Naaz A, Wong J, Nayer A, Lee J et al., Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med 2009. 15: 930–939. PubMed PMC
Cipolletta D, Feuerer M, Li A, Kamei N, Lee J, Shoelson SE, Benoist C et al., PPAR-gamma is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 2012. 486: 549–553. PubMed PMC
Kolodin D, van Panhuys N, Li C, Magnuson AM, Cipolletta D, Miller CM, Wagers A, Germain RN et al., Antigen- and cytokinedriven accumulation of regulatory T cells in visceral adipose tissue of lean mice. Cell Metab. 2015. 21: 543–557. PubMed PMC
Burzyn D, Kuswanto W, Kolodin D, Shadrach JL, Cerletti M, Jang Y, Sefik E et al., A special population of regulatory T cells potentiates muscle repair. Cell 2013. 155: 1282–1295. PubMed PMC
Arpaia N, Green JA, Moltedo B, Arvey A, Hemmers S, Yuan S, Treuting PM et al., A distinct function of regulatory T cells in tissue protection. Cell 2015. 162: 1078–1089. PubMed PMC
Dombrowski Y, O’Hagan T, Dittmer M, Penalva R, Mayoral SR, Bankhead P, Fleville S et al., Regulatory T cells promote myelin regeneration in the central nervous system. Nat Neurosci 2017. 20: 674–680. PubMed PMC
Ali N, Zirak B, Rodriguez RS, Pauli ML, Truong HA, Lai K, Ahn R et al., Regulatory T cells in skin facilitate epithelial stem cell differentiation. Cell 2017. 169: 1119–1129 e1111. PubMed PMC
Delacher M, Imbusch CD, Weichenhan D, Breiling A, Hotz-Wagenblatt A, Trager U, Hofer AC et al., Genome-wide DNA-methylation landscape defines specialization of regulatory T cells in tissues. Nat. Immunol 2017. PubMed PMC
Delacher M, Schmidl C, Herzig Y, Breloer M, Hartmann W, Brunk F, Kägebein D et al., Rbpj expression in regulatory T cells is critical for restraining TH2 responses. Nat. Commun 2019. 10: 1621. PubMed PMC
Carding SR and Egan PJ, Gammadelta T cells: functional plasticity and heterogeneity. Nat. Rev. Immunol 2002. 2: 336–345. PubMed
Bonneville M, O’Brien RL and Born WK, γδ T cell effector functions: a blend of innate programming and acquired plasticity. Nat. Rev. Immunol 2010. 10: 467–478. PubMed
Prinz I, Silva-Santos B and Pennington DJ, Functional development of gammadelta T cells. Eur. J. Immunol 2013. 43: 1988–1994. PubMed
Heilig JS and Tonegawa S, Diversity of murine gamma genes and expression in fetal and adult T lymphocytes. Nature 1986. 322: 836–840. PubMed
Garman RD, Doherty PJ and Raulet DH, Diversity, rearrangement, and expression of murine T cell gamma genes. Cell 1986. 45: 733–742. PubMed
Pereira P, Hermitte V, Lembezat MP, Boucontet L, Azuara V and Grigoriadou K, Developmentally regulated and lineage-specific rearrangement of T cell receptor Valpha/delta gene segments. Eur. J. Immunol 2000. 30: 1988–1997. PubMed
Mallick-Wood CA, Lewis JM, Richie LI, Owen MJ, Tigelaar RE and Hayday AC, Conservation of T cell receptor conformation in epidermal gammadelta cells with disrupted primary Vgamma gene usage. Science 1998. 279: 1729–1733. PubMed
Roark CL, Aydintug MK, Lewis J, Yin X, Lahn M, Hahn YS, Born WK et al., Subset-specific, uniform activation among V gamma 6/V delta 1+ gamma delta T cells elicited by inflammation. J. Leukoc. Biol 2004. 75: 68–75. PubMed
Goodman T and Lefrancois L, Intraepithelial lymphocytes. Anatomical site, not T cell receptor form, dictates phenotype and function. J. Exp. Med 1989. 170: 1569–1581. PubMed PMC
Prinz I, Sansoni A, Kissenpfennig A, Ardouin L, Malissen M and Malissen B, Visualization of the earliest steps of gammadelta T cell development in the adult thymus. Nat. Immunol 2006. 7: 995–1003. PubMed
Koenecke C, Chennupati V, Schmitz S, Malissen B, Forster R and Prinz I, In vivo application of mAb directed against the gammadelta TCR does not deplete but generates “invisible” gammadelta T cells. Eur. J. Immunol 2009. 39: 372–379. PubMed
Sandrock I, Reinhardt A, Ravens S, Binz C, Wilharm A, Martins J, Oberdorfer L et al., Genetic models reveal origin, persistence and non-redundant functions of IL-17-producing gammadelta T cells. J. Exp. Med 2018. 215: 3006–3018. PubMed PMC
Ribot JC, deBarros A, Pang DJ, Neves JF, Peperzak V, Roberts SJ, Girardi M et al., CD27 is a thymic determinant of the balance between interferon-gamma- and interleukin 17-producing gammadelta T cell subsets. Nat. Immunol 2009. 10: 427–436. PubMed PMC
Haas JD, Gonzalez FH, Schmitz S, Chennupati V, Fohse L, Kremmer E, Forster R et al., CCR6 and NK1.1 distinguish between IL-17A and IFN-gamma-producing gammadelta effector T cells. Eur. J. Immunol 2009. 39: 3488–3497. PubMed
Lombes A, Durand A, Charvet C, Riviere M, Bonilla N, Auffray C, Lucas B et al., Adaptive Immune-like gamma/delta T Lymphocytes Share Many Common Features with Their alpha/beta T Cell Counterparts. J. Immunol 2015. 195: 1449–1458. PubMed
Itohara S, Farr AG, Lafaille JJ, Bonneville M, Takagaki Y, Haas W and Tonegawa S, Homing of a gamma delta thymocyte subset with homogeneous T-cell receptors to mucosal epithelia. Nature 1990. 343: 754–757. PubMed
Shibata K, Yamada H, Hara H, Kishihara K and Yoshikai Y, Resident Vdelta1+ gammadelta T cells control early infiltration of neutrophils after Escherichia coli infection via IL-17 production. J. Immunol. 2007. 178: 4466–4472. PubMed
Papotto PH, Reinhardt A, Prinz I and Silva-Santos B, Innately versatile: gammadelta17 T cells in inflammatory and autoimmune diseases. J. Autoimmun 2018. 87: 26–37. PubMed
Ohteki T and MacDonald HR, Major histocompatibility complex class I related molecules control the development of CD4+8- and CD4–8- subsets of natural killer 1.1+ T cell receptor-alpha/beta+ cells in the liver of mice. J. Exp. Med 1994. 180: 699–704. PubMed PMC
Makino Y, Kanno R, Ito T, Higashino K and Taniguchi M, Predominant expression of invariant V alpha 14+ TCR alpha chain in NK1.1+ T cell populations. Int. Immunol 1995. 7: 1157–1161. PubMed
Wei DG, Curran SA, Savage PB, Teyton L and Bendelac A, Mechanisms imposing the Vbeta bias of Valpha14 natural killer T cells and consequences for microbial glycolipid recognition. J. Exp. Med 2006. 203: 1197–1207. PubMed PMC
Lantz O and Bendelac A, An invariant T cell receptor alpha chain is used by a unique subset of major histocompatibility complex class I-specific CD4+ and CD4–8- T cells in mice and humans. J. Exp. Med 1994. 180: 1097–1106. PubMed PMC
Bendelac A, Lantz O, Quimby ME, Yewdell JW, Bennink JR and Brutkiewicz RR, CD1 recognition by mouse NK1+T lymphocytes. Science. 1995. 268: 863–865. PubMed
Benlagha K, Weiss A, Beavis A, Teyton L and Bendelac A, In vivo identification of glycolipid antigen–specific T cells using fluorescent Cd1d tetramers. J. Exp. Med 2000. 191: 1895–1904. PubMed PMC
Matsuda JL, Naidenko OV, Gapin L, Nakayama T, Taniguchi M, Wang CR, Koezuka Y et al., Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J. Exp. Med 2000. 192: 741–754. PubMed PMC
Moran AE, Holzapfel KL, Xing Y, Cunningham NR, Maltzman JS, Punt J and Hogquist KA, T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. J. Exp. Med 2011. 208: 1279–1289. PubMed PMC
Savage AK, Constantinides MG, Han J, Picard D, Martin E, Li B, Lantz O et al., The transcription factor PLZF directs the effector program of the NKT cell lineage. Immunity 2008. 29: 391–403. PubMed PMC
Kovalovsky D, Uche OU, Eladad S, Hobbs RM, Yi W, Alonzo E, Chua K et al., The BTB-zinc finger transcriptional regulator PLZF controls the development of invariant natural killer T cell effector functions. Nat. Immunol 2008. 9: 1055–1064. PubMed PMC
Benlagha K, Kyin T, Beavis A, Teyton L and Bendelac A, A thymic precursor to the NK T cell lineage. Science 2002. 296: 553–555. PubMed
Benlagha K, Wei DG, Veiga J, Teyton L and Bendelac A, Characterization of the early stages of thymic NKT cell development. J. Exp. Med 2005. 202: 485–492. PubMed PMC
Pellicci DG, Hammond KJL, Uldrich AP, Baxter AG, Smyth MJ and Godfrey DI, A natural killer T (NKT) cell developmental pathway iInvolving a thymus-dependent NK1.1(-)CD4(+) CD1d-dependent precursor stage. J. Exp. Med 2002. 195: 835–844. PubMed PMC
Wang H and Hogquist KA, CCR7 defines a precursor for murine iNKT cells in thymus and periphery. Elife 2018. 7. PubMed PMC
Berzins SP, McNab FW, Jones CM, Smyth MJ and Godfrey DI, Long-term retention of mature NK1.1+ NKT cells in the thymus. J. Immunol 2006. 176: 4059–4065. PubMed
Lee YJ, Holzapfel KL, Zhu J, Jameson SC and Hogquist KA, Steady-state production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of iNKT cells. Nat. Immunol 2013. 14: 1146–1154. PubMed PMC
Crosby CM and Kronenberg M, Tissue-specific functions of invariant natural killer T cells. Nat. Rev. Immunol 2018. 18: 559–574. PubMed PMC
Salou M, Legoux F, Gilet J, Darbois A, Du Halgouet A, Alonso R, Richer W et al., A common transcriptomic program acquired in the thymus defines tissue residency of MAIT and NKT subsets. J. Exp. Med 2019. 216: 133–151. PubMed PMC
Brigl M, Tatituri RVV, Watts GFM, Bhowruth V, Leadbetter EA, Barton N, Cohen NR et al., Innate and cytokine-driven signals, rather than microbial antigens, dominate in natural killer T cell activation during microbial infection. J. Exp. Med 2011. 208: 1163–1177. PubMed PMC
Velazquez P, Cameron TO, Kinjo Y, Nagarajan N, Kronenberg M and Dustin ML, Cutting edge: activation by innate cytokines or microbial antigens can cause arrest of natural killer T cell patrolling of liver sinusoids. J. Immunol 2008. 180: 2024–2028. PubMed
Salio M, Silk JD, Jones EY and Cerundolo V, Biology of CD1- and MR1-restricted T cells. Annu. Rev. Immunol 2014. 32: 323–366. PubMed
Wang H and Hogquist KA, How lipid-specific T cells become effectors: the differentiation of iNKT subsets. Front. Immunol 2018. 9: 1450. PubMed PMC
Jungblut M, Oeltze K, Zehnter I, Hasselmann D and Bosio A, Standardized preparation of single-cell suspensions from mouse lung tissue using the gentleMACS dissociator. J. Vis. Exp 2009. PubMed PMC
Liu Y, Goff RD, Zhou D, Mattner J, Sullivan BA, Khurana A, Cantu C et al., A modified alpha-galactosyl ceramide for staining and stimulating natural killer T cells. J. Immunol. Methods 2006. 312: 34–39. PubMed
Lee YJ, Wang H, Starrett GJ, Phuong V, Jameson SC and Hogquist KA, Tissue-specific distribution of iNKT cells impacts their cytokine response. Immunity 2015. 43: 566–578. PubMed PMC
Ziętara N, Łyszkiewicz M, Witzlau K, Naumann R, Hurwitz R, Langemeier J, Bohne J et al., Critical role formiR-181a/b-1 in agonist selection of invariant natural killer T cells. Proc. Natl. Acad. Sci. U S A 2013. 110: 7407–7412. PubMed PMC
Winter SJ, Kunze-Schumacher H, Imelmann E, Grewers Z, Osthues T and Krueger A, MicroRNA miR-181a/b-1 controls MAIT cell development. Immunol. Cell. Biol 2019. 97: 190–202. PubMed
Treiner E, Duban L, Bahram S, Radosavljevic M, Wanner V, Tilloy F, Affaticati P et al., Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 2003. 422: 164–169. PubMed
Porcelli S, Yockey CE, Brenner MB and Balk SP, Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD4–8- alpha/beta T cells demonstrates preferential use of several V beta genes and an invariant TCR alpha chain. J. Exp. Med 1993. 178: 1–16. PubMed PMC
Tilloy F, Treiner E, Park SH, Garcia C, Lemonnier F, La Salle H. de, Bendelac A, Bonneville M et al., An invariant T cell receptor alpha chain defines a novel TAP-independent major histocompatibility complex class Ib-restricted alpha/beta T cell subpopulation in mammals. J. Exp. Med 1999. 189: 1907–1921. PubMed PMC
Rahimpour A, Koay HF, Enders A, Clanchy R, Eckle SBG, Meehan B, Chen Z et al., Identification of phenotypically and functionally heterogeneous mouse mucosal-associated invariant T cells using MR1 tetramers. J. Exp. Med 2015. 212: 1095–1108. PubMed PMC
Reantragoon R, Corbett AJ, Sakala IG, Gherardin NA, Furness JB, Chen Z, Eckle SBG et al., Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells. J. Exp. Med 2013. 210: 2305–2320. PubMed PMC
Koay HF, Gherardin NA, Enders A, Loh L, Mackay LK, Almeida CF, Russ BE et al., A three-stage intrathymic development pathway for the mucosal-associated invariant T cell lineage. Nat. Immunol 2016. 17: 1300–1311. PubMed
Cui Y, Franciszkiewicz K, Mburu YK, Mondot S, Le Bourhis L, Premel V, Martin E et al., Mucosal-associated invariant T cell-rich congenic mouse strain allows functional evaluation. J. Clin. Invest 2015. 125: 4171–4185. PubMed PMC
Salou M, Franciszkiewicz K and Lantz O, MAIT cells in infectious diseases. Curr. Opin. Immunol 2017. 48: 7–14. PubMed
Corbett AJ, Eckle SB, Birkinshaw RW, Liu L, Patel O, Mahony J, Chen Z et al., T-cell activation by transitory neo-antigens derived from distinct microbial pathways. Nature 2014. 509: 361–365. PubMed
Olivares-Villagomez D and Van Kaer L, Intestinal Intraepithelial Lymphocytes: Sentinels of the Mucosal Barrier. Trends Immunol. 2018. 39: 264–275. PubMed PMC
Ma H, Tao W and Zhu S, T lymphocytes in the intestinal mucosa: defense and tolerance. Cell Mol. Immunol 2019. PubMed PMC
Cheroutre H, Lambolez F and Mucida D, The light and dark sides of intestinal intraepithelial lymphocytes. Nat. Rev. Immunol 2011. 11: 445–456. PubMed PMC
Georgiev H, Ravens I, Papadogianni G, Malissen B, Forster R and Bernhardt G, Blocking the ART2.2/P2X7-system is essential to avoid a detrimental bias in functional CD4 T cell studies. Eur. J. Immunol 2018. 48: 1078–1081. PubMed
Konjar S, Ferreira C, Blankenhaus B and Veldhoen M, Intestinal Barrier Interactions with Specialized CD8 T Cells. Front. Immunol 2017. 8: 1281. PubMed PMC
Chennupati V, Worbs T, Liu X, Malinarich FH, Schmitz S, Haas JD, Malissen B et al., Intra- and intercompartmental movement of gammadelta T cells: intestinal intraepithelial and peripheral gammadelta T cells represent exclusive nonoverlapping populations with distinct migration characteristics. J. Immunol 2010. 185: 5160–5168. PubMed
Malinarich FH, Grabski E, Worbs T, Chennupati V, Haas JD, Schmitz S, Candia E et al., Constant TCR triggering suggests that the TCR expressed on intestinal intraepithelial gammadelta T cells is functional in vivo. Eur. J. Immunol 2010. 40: 3378–3388. PubMed
Martina MN, Noel S, Saxena A, Rabb H and Hamad AR, Double negative (DN) alphabeta T cells: misperception and overdue recognition. Immunol. Cell Biol 2015. 93: 305–310. PubMed PMC
Gerlach C, van Heijst JW, Swart E, Sie D, Armstrong N, Kerkhoven RM, Zehn D et al., One naive T cell, multiple fates in CD8+ T cell differentiation. J. Exp. Med 2010. 207: 1235–1246. PubMed PMC
Appay V, van Lier RA, Sallusto F and Roederer M, Phenotype and function of human T lymphocyte subsets: consensus and issues. Cytometry A 2008. 73: 975–983. PubMed
Costantini A, Mancini S, Giuliodoro S, Butini L, Regnery CM, Silvestri G and Montroni M, Effects of cryopreservation on lymphocyte immunophenotype and function. J. Immunol. Methods 2003. 278: 145–155. PubMed
van den Broek T, Borghans JAM and van Wijk F, The full spectrum of human naive T cells. Nat. Rev. Immunol 2018. 18: 363–373. PubMed
Sallusto F, Lenig D, Mackay CR and Lanzavecchia A, Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J. Exp. Med 1998. 187: 875–883. PubMed PMC
Cosmi L, Annunziato F, Galli MIG, Maggi RME, Nagata K and Romagnani S, CRTH2 is the most reliable marker for the detection of circulating human type 2 Th and type 2 T cytotoxic cells in health and disease. Eur. J. Immunol 2000. 30: 2972–2979. PubMed
Mahnke YD, Beddall MH and Roederer M, OMIP-017: human CD4(+) helper T-cell subsets including follicular helper cells. Cytometry A 2013. 83: 439–440. PubMed PMC
Ouyang W, Ranganath SH, Weindel K, Bhattacharya D, Murphy TL, Sha WC and Murphy KM, Inhibition of Th1 development mediated by GATA-3 through an IL-4-independent mechanism. Immunity 1998. 9: 745–755. PubMed
Kanhere A, Hertweck A, Bhatia U, Gokmen MR, Perucha E, Jackson I, Lord GM et al., T-bet and GATA3 orchestrate Th1 and Th2 differentiation through lineage-specific targeting of distal regulatory elements. Nat. Commun 2012. 3: 1268. PubMed PMC
Staudt V, Bothur E, Klein M, Lingnau K, Reuter S, Grebe N, Gerlitzki B et al., Interferon-regulatory factor 4 is essential for the developmental program of T helper 9 cells. Immunity 2010. 33: 192–202. PubMed
Maggi L, Santarlasci V, Capone M, Peired A, Frosali F, Crome SQ, Querci V et al., CD161 is a marker of all human IL-17-producing T-cell subsets and is induced by RORC. Eur. J. Immunol 2010. 40: 2174–2181. PubMed
Zielinski CE, Mele F, Aschenbrenner D, Jarrossay D, Ronchi F, Gattorno M, Monticelli S et al., Pathogen-induced human TH17 cells produce IFN-gamma or IL-10 and are regulated by IL-1beta. Nature 2012. 484: 514–518. PubMed
Cosmi L, Maggi L, Santarlasci V, Liotta F and Annunziato F, T helper cells plasticity in inflammation. Cytometry A 2014. 85: 36–42. PubMed
Acosta-Rodriguez EV, Rivino L, Geginat J, Jarrossay D, Gattorno M, Lanzavecchia A, Sallusto F et al., Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat. Immunol 2007. 8: 639–646. PubMed
Gagliani N, Amezcua Vesely MC, Iseppon A, Brockmann L, Xu H, Palm NW, de Zoete MR, Licona-Limon P et al., Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation. Nature 2015. 523: 221–225. PubMed PMC
Jankovic D, Kugler DG and Sher A, IL-10 production by CD4+ effector T cells: a mechanism for self-regulation. Mucosal Immunol 2010. 3: 239–246. PubMed PMC
Zhang P, Lee JS, Gartlan KH, Schuster IS, Comerford I, Varelias A, Ullah MA et al., Eomesodermin promotes the development of type 1 regulatory T (TR1) cells. Sci. Immunol 2017. 2: eaah7152. PubMed PMC
Gruarin P, Maglie S, De Simone M, Haringer B, Vasco C, Ranzani V, Bosotti R, Noddings JS et al., Eomesodermin controls a unique differentiation program in human IL-10 and IFN-gamma coproducing regulatory T cells. Eur. J. Immunol 2019. 49: 96–111. PubMed
Basu R, O’Quinn DB, Silberger DJ, Schoeb TR, Fouser L, Ouyang W, Hatton RD et al., Th22 cells are an important source of IL-22 for host protection against enteropathogenic bacteria. Immunity 2012. 37: 1061–1075. PubMed PMC
Duhen T, Geiger R, Jarrossay D, Lanzavecchia A and Sallusto F, Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat. Immunol 2009. 10: 857–863. PubMed
Morita R, Schmitt N, Bentebibel SE, Ranganathan R, Bourdery L, Zurawski G, Foucat E et al., Human blood CXCR5(+)CD4(+) T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity 2011. 34: 108–121. PubMed PMC
Glatman Zaretsky A, Taylor JJ, King IL, Marshall FA, Mohrs M and Pearce EJ, T follicular helper cells differentiate from Th2 cells in response to helminth antigens. J. Exp. Med 2009. 206: 991–999. PubMed PMC
Oja AE, Vieira Braga FA, Remmerswaal EB, Kragten NA, Hertoghs KM, Zuo J, Moss PA, van Lier RA, van Gisbergen KP et al., The transcription factor Hobit identifies human cytotoxic CD4(+) T cells. Front. Immunol 2017. 8: 325. PubMed PMC
Hamann D, Baars PA, Rep MH, Hooibrink B, Kerkhof-Garde SR, Klein MR and van Lier RA, Phenotypic and functional separation of memory and effector human CD8+ T cells. J. Exp. Med 1997. 186: 1407–1418. PubMed PMC
Appay V, Dunbar PR, Callan M, Klenerman P, Gillespie GM, Papagno L, Ogg GS et al., Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat. Med 2002. 8: 379–385. PubMed
Sallusto F, Lenig D, Forster R, Lipp M and Lanzavecchia A, Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999. 401: 708–712. PubMed
van Aalderen MC, Remmerswaal EB, Verstegen NJ, Hombrink P, ten Brinke A, Pircher H, Kootstra NA, ten Berge IJ et al., Infection history determines the differentiation state of human CD8+ T cells. J. Virol 2015. 89: 5110–5123. PubMed PMC
van Leeuwen EM, Remmerswaal EB, Vossen MT, Rowshani AT, Wertheim-van Dillen PM, van Lier RA and ten Berge IJ, Emergence of a CD4+CD28- granzyme B+, cytomegalovirus-specific T cell subset after recovery of primary cytomegalovirus infection. J. Immunol 2004. 173: 1834–1841. PubMed
Huster KM, Busch V, Schiemann M, Linkemann K, Kerksiek KM, Wagner H and Busch DH, Selective expression of IL-7 receptor on memory T cells identifies early CD40L-dependent generation of distinct CD8+ memory T cell subsets. Proc. Natl. Acad. Sci. U. S. A 2004. 101: 5610–5615. PubMed PMC
Hand TW, Morre M and Kaech SM, Expression of IL-7 receptor alpha is necessary but not sufficient for the formation of memory CD8 T cells during viral infection. Proc. Natl. Acad. Sci. USA 2007. 104: 11730–11735. PubMed PMC
Shay T, Jojic V, Zuk O, Rothamel K, Puyraimond-Zemmour D, Feng T, Wakamatsu E et al., Conservation and divergence in the transcriptional programs of the human and mouse immune systems. Proc. Natl. Acad. Sci. USA 2013. 110: 2946–2951. PubMed PMC
Remmerswaal EBM, Hombrink P, Nota B, Pircher H, Ten Berge IJM, van Lier RAW and van Aalderen MC, Expression of IL-7Ralpha and KLRG1 defines functionally distinct CD8(+) T-cell populations in humans. Eur. J. Immunol 2019. 49: 694–708. PubMed PMC
Intlekofer AM, Takemoto N, Wherry EJ, Longworth SA, Northrup JT, Palanivel VR, Mullen AC et al., Effector and memory CD8+T cell fate coupled by T-bet and eomesodermin. Nat. Immunol 2005. 6: 1236–1244. PubMed
Kragten NAM, Behr FM, Vieira Braga FA, Remmerswaal EBM, Wesselink TH, Oja AE, Hombrink P et al., Blimp-1 induces and Hobit maintains the cytotoxic mediator granzyme B in CD8 T cells. Eur. J. Immunol 2018. 48: 1644–1662. PubMed
Vieira Braga FA, Hertoghs KM, Kragten NA, Doody GM, Barnes NA, Remmerswaal EB, Hsiao CC et al., Blimp-1 homolog Hobit identifies effector-type lymphocytes in humans. Eur. J. Immunol 2015. 45: 2945–2958. PubMed
Kim HJ, Barnitz RA, Kreslavsky T, Brown FD, Moffett H, Lemieux ME, Kaygusuz Y et al., Stable inhibitory activity of regulatory T cells requires the transcription factor Helios. Science 2015. 350: 334–339. PubMed PMC
Sathaliyawala T, Kubota M, Yudanin N, Turner D, Camp P, Thome JJ, Bickham KL et al., Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity 2013. 38: 187–197. PubMed PMC
Thome JJC, Yudanin N, Ohmura Y, Kubota M, Grinshpun B, Sathaliyawala T, Kato T et al., Spatialmap of human t cell compartmentalization and maintenance over decades of life. Cell 2014. 159: 814–828. PubMed PMC
Okhrimenko A, Grün JR, Westendorf K, Fang Z, Reinke S, von Roth P, Wassilew G et al., Human memory T cells from the bone marrow are resting and maintain long-lasting systemic memory. 2014. 111: 9229–9234. PubMed PMC
Watanabe R, Gehad A, Yang C, Scott LL, Teague JE, Schlapbach C, Elco CP et al., Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells. Sci. Transl. Med 2015. 7: 279ra39. PubMed PMC
Hombrink P, Helbig C, Backer RA, Piet B, Oja AE, Stark R, Brasser G, Jongejan A, Jonkers RE, Nota B, Basak O, Clevers HC, Moerland PD, Amsen D, van Lier RA Programs for the persistence, vigilance and control of human CD8+ lung-resident memory T cells. Nat. Immunol 2016. 17: 1467–1478. PubMed
Kumar BV, Ma W, Miron M, Granot T, Guyer RS, Carpenter DJ, Senda T et al., Human tissue-resident memory T cells are defined by core transcriptional and functional signatures in lymphoid and mucosal sites. Cell Rep. 2017. 20: 2921–2934. PubMed PMC
Oja AE, Piet B, Helbig C, Stark R, van der Zwan D, Blaauwgeers H, Remmerswaal EBM et al., Trigger-happy resident memory CD4+ T cells inhabit the human lungs. Mucosal Immunol. 2018. 11: 654–667. PubMed
Smolders J, Heutinck KM, Fransen NL, Remmerswaal EBM, Hombrink P, Ten Berge IJM, van Lier RAW et al., Tissue-resident memory T cells populate the human brain. Nat. Commun 2018. 9: 4593. PubMed PMC
Pascutti MF, Geerman S, Collins N, Brasser G, Nota B, Stark R, Behr F et al., Peripheral and systemic antigens elicit an expandable pool of resident memory CD8+ T cells in the bone marrow. Eur. J. Immunol 2019. 49: 853–872. PubMed PMC
Snyder ME, Finlayson MO, Connors TJ, Dogra P, Senda T, Bush E, Carpenter D et al., Generation and persistence of human tissue-resident memory T cells in lung transplantation. Sci. Immunol 2019. 4: eaav5581. PubMed PMC
Skon CN, Lee JY, Anderson KG, Masopust D, Hogquist KA and Jameson SC, Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells. Nat. Immunol 2013. 14: 1285–1293. PubMed PMC
Steinert EM et al., Quantifying memory CD8 T cells reveals regionalization of immunosurveillance. Cell 2015. 161: 737–749. PubMed PMC
Kumar BV, Connors TJ and Farber DL, Human T Cell Development, Localization, and Function throughout Life. Immunity 2018. 48: 202–213. PubMed PMC
Cepek KL et al., Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the alpha E beta 7 integrin. Nature 1994. 372: 190–193. PubMed
Cheuk S, Schlums H, Bryceson YT, Eidsmo L and Tjernlund A, CD49a Expression Defines Tissue-Resident CD8 + T Cells Poised for Cytotoxic Function in Human Skin. Immunity 2017. 1–14. 10.1016/j.immuni.2017.01.009 PubMed DOI PMC
Webb JR, Milne K, Watson P, DeLeeuw RJ and Nelson BH, Tumor-infiltrating lymphocytes expressing the tissue resident memory marker cd103 are associated with increased survival in high-grade serous ovarian cancer. Clin. Cancer Res 2014. 20: 434–444. PubMed
Djenidi F, Adam J, Goubar A, Durgeau A, Meurice G, de Montpréville V, Validire P et al., CD8 + CD103 + Tumor–Infiltrating Lymphocytes Are Tumor-Specific Tissue-Resident Memory T Cells and a Prognostic Factor for Survival in Lung Cancer Patients. J. Immunol 2015. 194: 3475–3486. PubMed
Koh J, Kim S, Kim MY, Go H, Jeon YK and Chung DH, Prognostic implications of intratumoral CD103+ tumor-infiltrating lymphocytes in pulmonary squamous cell carcinoma. Oncotarget 2017. 8: 13762–13769. PubMed PMC
Ganesan A-P, Clarke J, Wood O, Garrido-Martin EM, Chee SJ, Mellows T, Samaniego-Castruita D, Singh D et al., Tissue-resident memory features are linked to the magnitude of cytotoxic T cell responses in human lung cancer. Nat. Immunol 2017. 18: 940–950. PubMed PMC
Oja AE, Piet B, van der Zwan D, Blaauwgeers H, Mensink M, de Kivit S, Borst J et al., Functional heterogeneity of CD4+ tumor-infiltrating lymphocytes with a resident memory phenotype in NSCLC. Front. Immunol 2018. 9: 2654. PubMed PMC
Gu-Trantien C et al., CXCL13-producing T FH cells link immune suppression and adaptive memory in human breast cancer. JCI Insight 2017. 2: 1–17. PubMed PMC
Thommen DD, Koelzer VH, Herzig P, Roller A, Trefny M, Dimeloe S, Kiialainen A et al., A transcriptionally and functionally distinct PD-1 + CD8 + T cell pool with predictive potential in non-small cell lung cancer treated with PD-1 blockade. Nat. Med 201824. PubMed PMC
Simoni Y et al., Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 2018. 557: 575–579. PubMed
Holt PG, Robinson BW, Reid M, Kees UR, Warton A, Dawson VH, Rose A, Schon-Hegrad M et al., Extraction of immune and inflammatory cells from human lung parenchyma: evaluation of an enzymatic digestion procedure. Clin. Exp. Immunol 1986. 66: 188–200. PubMed PMC
Piet B, de Bree GJ, Smids-Dierdorp BS, van der Loos CM, Remmerswaal EB, von der Thüsen JH, van Haarst JM et al., CD8+ T cells with an intraepithelial phenotype upregulate cytotoxic function upon influenza infection in human lung. J. Clin. Invest 2011. 121: 2254–2263. PubMed PMC
Clark RA, Chong B, Mirchandani N, Brinster NK, Yamanaka K, Dowgiert RK and Kupper TS, The Vast Majority of CLA + T Cells Are Resident in Normal Skin. J. Immunol 2006. 176: 4431–4439. PubMed
Bektas A, Schurman SH, Sen R and Ferrucci L, Human T cell immunosenescence and inflammation in aging. J. Leukoc. Biol 2017. 102: 977–988. PubMed PMC
Costantini E, D’Angelo C and Reale M, The role of immunosenescence in neurodegenerative diseases. Mediators Inflamm. 2018. 2018: 6039171. PubMed PMC
Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F, Panourgia MP et al., Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech. Ageing Dev 2007. 128: 92–105. PubMed
Derhovanessian E, Maier AB, Hahnel K, Zelba H, de Craen AJ, Roelofs H, Slagboom EP et al., Lower proportion of naive peripheral CD8+ T cells and an unopposed pro-inflammatory response to human Cytomegalovirus proteins in vitro are associated with longer survival in very elderly people. Age (Dordr) 2013. 35: 1387–1399. PubMed PMC
Naylor K, Li G, Vallejo AN, Lee WW, Koetz K, Bryl E, Witkowski J et al., The influence of age on T cell generation and TCR diversity. J. Immunol 2005. 174: 7446–7452. PubMed
Olsson J, Wikby A, Johansson B, Lofgren S, Nilsson BO and Ferguson FG, Age-related change in peripheral blood T-lymphocyte subpopulations and cytomegalovirus infection in the very old: the Swedish longitudinal OCTO immune study. Mech. Ageing Dev 2000. 121: 187–201. PubMed
Rubino G, Bulati M, Aiello A, Aprile S, Gambino CM, Gervasi F, Caruso C et al., Sicilian centenarian offspring are more resistant to immune ageing. Aging Clin. Exp. Res 2019. 31: 125–133. PubMed
Sanderson SL and Simon AK, In aged primary T cells, mitochondrial stress contributes to telomere attrition measured by a novel imaging flow cytometry assay. Aging Cell 2017. 16: 1234–1243. PubMed PMC
Arnold CR, Pritz T, Brunner S, Knabb C, Salvenmoser W, Holzwarth B, Thedieck K et al., T cell receptor-mediated activation is a potent inducer of macroautophagy in human CD8(+)CD28(+) T cells but not in CD8(+)CD28(-) T cells. Exp. Gerontol 2014. 54: 75–83. PubMed
Pellicano M, Buffa S, Goldeck D, Bulati M, Martorana A, Caruso C, Colonna-Romano G et al., Evidence for less marked potential signs of T-cell immunosenescence in centenarian offspring than in the general age-matched population. J. Gerontol. A Biol. Sci. Med. Sci 2014. 69: 495–504. PubMed
Derhovanessian E, Maier AB, Beck R, Jahn G, Hahnel K, Slagboom PE, de Craen AJ et al., Hallmark features of immunosenescence are absent in familial longevity. J. Immunol 2010. 185: 4618–4624. PubMed
Raz Y, Guerrero-Ros I, Maier A, Slagboom PE, Atzmon G, Barzilai N and Macian F, Activation-induced autophagy is preserved in CD4+ T-cells in familial longevity. J. Gerontol. A Biol. Sci. Med. Sci 2017. 72: 1201–1206. PubMed PMC
Duggal NA, Pollock RD, Lazarus NR, Harridge S and Lord JM, Major features of immunesenescence, including reduced thymic output, are ameliorated by high levels of physical activity in adulthood. Aging Cell 2018. 17. PubMed PMC
Senda T, Dogra P, Granot T, Furuhashi K, Snyder ME, Carpenter DJ, Szabo PA et al., Microanatomical dissection of human intestinal T-cell immunity reveals site-specific changes in gut-associated lymphoid tissues over life. Mucosal Immunol. 2019. 12(2): 378–389. PubMed PMC
Thome JJ, Bickham KL, Ohmura Y, Kubota M, Matsuoka N, Gordon C, Granot T et al., Early-life compartmentalization of human T cell differentiation and regulatory function inmucosal and lymphoid tissues. Nat. Med 2016. 22(1): 72–77. PubMed PMC
Seddiki N, Santner-Nanan B, Martinson J, Zaunders J, Sasson S, Landay A, Solomon M et al., Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J. Exp. Med 2006. 203(7): 1693–1700. PubMed PMC
Kverneland AH, Streitz M, Geissler E, Hutchinson J, Vogt K, Boes D, Niemann N et al., Age and gender leucocytes variances and references values generated using the standardized ONE-Study protocol. Cytometry A 2016. 89(6): 543–564. PubMed
Abbas AK, Benoist C, Bluestone JA, Campbell DJ, Ghosh S, Hori S, Jiang S et al., Regulatory T cells: recommendations to simplify the nomenclature. Nat. Immunol 2013. 14(4): 307–308. PubMed
Himmel ME, MacDonald KG, Garcia RV, Steiner TS and Levings MK, Helios+ and Helios-cells coexist within the natural FOXP3+ T regulatory cell subset in humans. J. Immunol 2013. 190(5): 2001–2008. PubMed
Bin Dhuban K, d’Hennezel E, Nashi E, Bar-Or A, Rieder S, Shevach EM, Nagata S et al., Coexpression of TIGIT and FCRL3 identifies Helios+ human memory regulatory T cells. J. Immunol 2015. 194(8): 3687–3696. PubMed PMC
Milpied P, Renand A, Bruneau J, Mendes-da-Cruz DA, Jacquelin S, Asnafi V, Rubio MT et al., Neuropilin-1 is not a marker of human Foxp3+ Treg. Eur. J. Immunol 2009. 39(6): 1466–1471. PubMed
Duhen T, Duhen R, Lanzavecchia A, Sallusto F and Campbell DJ, Functionally distinct subsets of human FOXP3+ Treg cells that phenotypically mirror effector Th cells. Blood 2012. 119(19): 4430–4440. PubMed PMC
MacDonald KG, Dawson NA, Huang Q, Dunne JV, Levings MK and Broady R, Regulatory T cells produce profibrotic cytokines in the skin of patients with systemic sclerosis. J. Allergy Clin. Immunol 2015. 135(4): e946–e949. PubMed
Pesenacker AM, Bending D, Ursu S, Wu Q, Nistala K and Wedderburn LR, CD161 defines the subset of FoxP3+ T cells capable of producing proinflammatory cytokines. Blood 2013. 121(14): 2647–2658. PubMed PMC
Ferreira RC, Rainbow DB, Rubio Garcia A, Pekalski ML, Porter L, Oliveira JJ, Waldron-Lynch F et al., Human IL-6R(hi)TIGIT(-) CD4(+)CD127(low)CD25(+) T cells display potent in vitro suppressive capacity and a distinct Th17 profile. Clin. Immunol 2017. 179: 25–39. PubMed PMC
Hoeppli RE, MacDonald KN, Leclair P, Fung VCW, Mojibian M, Gillies J, Rahavi SMR et al., Tailoring the homing capacity of human Tregs for directed migration to sites of Th1-inflammation or intestinal regions. Am. J. Transplant 2019. 19: 62–76. PubMed
Allan SE, Crome SQ, Crellin NK, Passerini L, Steiner TS, Bacchetta R, Roncarolo MG et al., Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Int. Immunol 2007. 19(4): 345–354. PubMed
Pesenacker AM, Wang AY, Singh A, Gillies J, Kim Y, Piccirillo CA, Nguyen D et al., A regulatory T-cell gene signature is a specific and sensitive biomarker to identify children with new-onset type 1 diabetes. Diabetes 2016. 65(4): 1031–1039. PubMed
Spreafico R, Rossetti M, van den Broek T, Jansen NJ, Zhang H, Moshref M, Prakken B, van Loosdregt J, van Wijk F and Albani S, A sensitive protocol for FOXP3 epigenetic analysis in scarce human samples. Eur. J. Immunol 2014. 44(10): 3141–3143. PubMed
Rainbow DB, Yang X, Burren O, Pekalski ML, Smyth DJ, Klarqvist MD, Penkett CJ et al., Epigenetic analysis of regulatory T cells using multiplex bisulfite sequencing. Eur. J. Immunol 2015. 45(11): 3200–3203. PubMed PMC
Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S, Gottlieb PA et al., CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J. Exp. Med 2006. 203(7): 1701–1711. PubMed PMC
Wang J, Ioan-Facsinay A, van der Voort EI, Huizinga TW and Toes RE, Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur. J. Immunol 2007. 37(1): 129–138. PubMed
Wu D, Han JM, Yu X, Lam AJ, Hoeppli RE, Pesenacker AM, Huang Q et al., Characterization of regulatory T cells in obese omental adipose tissue in humans. Eur. J. Immunol 2019. 49(2): 336–347. PubMed
Dijke IE, Hoeppli RE, Ellis T, Pearcey J, Huang Q, McMurchy AN, Boer K et al., Discarded human thymus is a novel source of stable and long-lived therapeutic regulatory T cells. Am. J. Transplant 2016. 16(1): 58–71. PubMed
Mason GM, Lowe K, Melchiotti R, Ellis R, de Rinaldis E, Peakman M, Heck S, Lombardi G et al., Phenotypic complexity of the human regulatory T cell compartment revealed by mass cytometry. J. Immunol 2015. 195(5): 2030–2037. PubMed
Dawson NAJ, Lam AJ, Cook L, Hoeppli RE, Broady R, Pesenacker AM and Levings MK, An optimized method to measure human FOXP3(+) regulatory T cells from multiple tissue types using mass cytometry. Eur. J. Immunol 2018. 48(8): 1415–1419. PubMed
Chen X and Oppenheim JJ, Resolving the identity myth: key markers of functional CD4+FoxP3+ regulatory T cells. Int. Immunopharmacol 2011. 11(10): 1489–1496. PubMed PMC
Ward-Hartstonge KA and Kemp RA, Regulatory T-cell heterogeneity and the cancer immune response. Clin. Transl. Immunol 2017. 6(9): e154. PubMed PMC
Groux H, O’Garra A, Bigler M, Rouleau M, Antonenko S, de Vries JE and Roncarolo MG, A CD4+ T-cell subset inhibits antigenspecific T-cell responses and prevents colitis. Nature 1997. 389(6652): 737–742. PubMed
Jeurink PV, Vissers YM, Rappard B and Savelkoul HF, T cell responses in fresh and cryopreserved peripheral blood mononuclear cells: kinetics of cell viability, cellular subsets, proliferation, and cytokine production. Cryobiology 2008. 57(2): 91–103. PubMed
White AM and Wraith DC, Tr1-like T cells—an enigmatic regulatory T cell lineage. Front. Immunol 2016. 7: 355. PubMed PMC
Tran DQ, Andersson J, Wang R, Ramsey H, Unutmaz D and Shevach EM, GARP (LRRC32) is essential for the surface expression of latent TGF-beta on platelets and activated FOXP3+regulatory T cells. Proc. Natl. Acad. Sci. USA 2009. 106(32): 13445–13450. PubMed PMC
Wang R, Kozhaya L, Mercer F, Khaitan A, Fujii H and Unutmaz D, Expression of GARP selectively identifies activated human FOXP3+ regulatory T cells. Proc. Natl. Acad. Sci. USA 2009. 106(32): 13439–13444. PubMed PMC
Camisaschi C, Casati C, Rini F, Perego M, De Filippo A, Triebel F, Parmiani G et al., LAG-3 expression defines a subset of CD4(+)CD25(high)Foxp3(+) regulatory T cells that are expanded at tumor sites. J. Immunol 2010. 184(11): 6545–6551. PubMed
Gagliani N, Magnani CF, Huber S, Gianolini ME, Pala M, Licona-Limon P, Guo B et al., Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells. Nat. Med 2013. 19(6): 739–746. PubMed
Raimondi G, Shufesky WJ, Tokita D, Morelli AE and Thomson AW, Regulated compartmentalization of programmed cell death-1 discriminates CD4+CD25+ resting regulatory T cells from activated T cells. J. Immunol 2006. 176(5): 2808–2816. PubMed
Lam A, MacDonald JKN, Pesenacker AM, Juvet SC, Morishita KA, Bressler B, iGenoMed C et al., Innate control of tissue-reparative human regulatory T cells. J. Immunol 2019. 202: 2195–2209. PubMed
Borsellino G, Kleinewietfeld M, Di Mitri D, Sternjak A, Diamantini A, Giometto R, Hopner S et al., Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 2007. 110(4): 1225–1232. PubMed
Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, Chen JF et al., Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med 2007. 204(6): 1257–1265. PubMed PMC
Rissiek A, Baumann I, Cuapio A, Mautner A, Kolster M, Arck PC, Dodge-Khatami A et al., The expression of CD39 on regulatory T cells is genetically driven and further upregulated at sites of inflammation. J. Autoimmun 2015. 58: 12–20. PubMed
Baecher-Allan C, Wolf E and Hafler DA, MHC class II expression identifies functionally distinct human regulatory T cells. J. Immunol 2006. 176(8): 4622–4631. PubMed
Linsley PS, Brady W, Urnes M, Grosmaire LS, Damle NK and Ledbetter JA, CTLA-4 is a second receptor for the B cell activation antigen B7. J. Exp. Med 1991. 174(3): 561–569. PubMed PMC
Qureshi OS, Zheng Y, Nakamura K, Attridge K, Manzotti C, Schmidt EM, Baker J et al., Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 2011. 332(6029): 600–603. PubMed PMC
Norton SE, Ward-Hartstonge KA, McCall JL, Leman JKH, Taylor ES, Munro F, Black MA et al., High-dimensional mass cytometric analysis reveals an increase in effector regulatory T cells as a distinguishing feature of colorectal tumors. J. Immunol 2019. 202: 1871–1884. PubMed
Kleinewietfeld M, Starke M, Di Mitri D, Borsellino G, Battistini L, Rotzschke O and Falk K, CD49d provides access to ”untouched" human Foxp3+ Treg free of contaminating effector cells. Blood 2009. 113(4): 827–836. PubMed
Santegoets SJ, Dijkgraaf EM, Battaglia A, Beckhove P, Britten CM, Gallimore A, Godkin A et al., Monitoring regulatory T cells in clinical samples: consensus on an essential marker set and gating strategy for regulatory T cell analysis by flow cytometry. Cancer Immunol. Immunother 2015. 64(10): 1271–1286. PubMed PMC
Dwyer KM, Hanidziar D, Putheti P, Hill PA, Pommey S, McRae JL, Winterhalter A et al., Expression of CD39 by human peripheral blood CD4+ CD25+ T cells denotes a regulatory memory phenotype. Am. J. Transplant 2010. 10(11): 2410–2420. PubMed PMC
Schuler PJ, Schilling B, Harasymczuk M, Hoffmann TK, Johnson J, Lang S and Whiteside TL, Phenotypic and functional characteristics of CD4+ CD39+ FOXP3+ and CD4+ CD39+ FOXP3neg T-cell subsets in cancer patients. Eur. J. Immunol 2012. 42(7): 1876–1885. PubMed PMC
Iellem A, Colantonio L and D’Ambrosio D, Skin-versus gut-skewed homing receptor expression and intrinsic CCR4 expression on human peripheral blood CD4+CD25+ suppressor T cells. Eur. J. Immunol 2003. 33(6): 1488–1496. PubMed
Battaglia A, Buzzonetti A, Monego G, Peri L, Ferrandina G, Fanfani F, Scambia G et al., Neuropilin-1 expression identifies a subset of regulatory T cells in human lymph nodes that is modulated by preoperative chemoradiation therapy in cervical cancer. Immunology 2008. 123(1): 129–138. PubMed PMC
Griseri T, Asquith M, Thompson C and Powrie F, OX40 is required for regulatory T cell-mediated control of colitis. J. Exp. Med 2010. 207(4): 699–709. PubMed PMC
Seddiki N, Cook L, Hsu DC, Phetsouphanh C, Brown K, Xu Y, Kerr SJ et al., Human antigen-specific CD4(+) CD25(+) CD134(+) CD39(+) T cells are enriched for regulatory T cells and comprise a substantial proportion of recall responses. Eur. J. Immunol 2014. 44(6): 1644–1661. PubMed
Ivison S, Malek M, Garcia RV, Broady R, Halpin A, Richaud M, Brant RF et al., A standardized immune phenotyping and automated data analysis platform for multicenter biomarker studies. JCI Insight 2018. 3(23). PubMed PMC
Fox BC, Bignone PA, Brown PJ and Banham AH, Defense of the clone: antibody 259D effectively labels human FOXP3 in a variety of applications. Blood 2008. 111(7): 3897–3899. PubMed
Pillai V and Karandikar NJ, Attack on the clones? Human FOXP3 detection by PCH101, 236A/E7, 206D, and 259D reveals 259D as the outlier with lower sensitivity. Blood 2008. 111(1): 463–464; author reply 464–466. PubMed PMC
Law JP, Hirschkorn DF, Owen RE, Biswas HH, Norris PJ and Lanteri MC, The importance of Foxp3 antibody and fixation/permeabilization buffer combinations in identifying CD4+CD25+Foxp3+ regulatory T cells. Cytometry A 2009. 75(12): 1040–1050. PubMed PMC
Kaur G, Goodall JC, Jarvis LB and Hill Gaston JS, Characterisation of Foxp3 splice variants in human CD4+ and CD8+ T cells–identification of Foxp3Delta7 in human regulatory T cells. Mol. Immunol. 2010. 48(1–3): 321–332. PubMed
Mahnke YD, Beddall MH and Roederer M, OMIP-015: human regulatory and activated T-cells without intracellular staining. Cytometry A 2013. 83(2): 179–181. PubMed
Terstappen LW, Meiners H and Loken MR, A rapid sample preparation technique for flow cytometric analysis of immunofluorescence allowing absolute enumeration of cell subpopulations. J. Immunol. Methods 1989. 123(1): 103–112. PubMed
Bonecchi R, Bianchi G, Bordignon PP, D’Ambrosio D, Lang R, Borsatti A, Sozzani S et al., Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J. Exp. Med 1998. 187(1): 129–134. PubMed PMC
Gosselin A, Monteiro P, Chomont N, Diaz-Griffero F, Said EA, Fonseca S, Wacleche V et al., Peripheral blood CCR4+CCR6+ and CXCR3+CCR6+CD4+ T cells are highly permissive to HIV-1 infection. J. Immunol 2010. 184(3): 1604–1616. PubMed PMC
Halim L, Romano M, McGregor R, Correa I, Pavlidis P, Grageda N, Hoong SJ et al., An atlas of human regulatory T helper-like cells reveals features of Th2-like Tregs that support a tumorigenic environment. Cell Rep. 2017. 20(3): 757–770. PubMed PMC
Bowcutt R, Malter LB, Chen LA, Wolff MJ, Robertson I, Rifkin DB, Poles M et al., Isolation and cytokine analysis of lamina propria lymphocytes from mucosal biopsies of the human colon. J. Immunol. Methods 2015. 421: 27–35. PubMed PMC
Zheng J, Liu Y, Lau YL and Tu W, γδ-T cells: An unpolished sword in human anti-infection immunity. Cell. Mol. Immunol 2013. 10: 50–57. PubMed PMC
Silva-Santos B, Serre K and Norell H, γδ T cells in cancer. Nat. Rev. Immunol 2015. 15: 23–38. PubMed
Tanaka Y, Sano S, Nieves E, De Libero G, Rosa D, Modlin RL, Brenner MB et al., Nonpeptide ligands for γδ T cells. Proc. Natl. Acad. Sci. USA 1994. 91: 8175–8179. PubMed PMC
Godfrey DI, Uldrich AP, McCluskey J, Rossjohn J and Moody DB, The burgeoning family of unconventional T cells. Nat. Immunol 2015. 16: 1114–1123. PubMed
Halary F, Pitard V, Dlubek D, Krzysiek R, de la Salle H, Merville P, Dromer C et al., Shared reactivity of Vδ2neg γδ T cells against cytomegalovirus-infected cells and tumor intestinal epithelial cells. J. Exp. Med 2005. 201: 1567–1578. PubMed PMC
Morita CT, Chenggang J, Sarikonda G and Wong H, Nonpeptide antigens, presentation mechanisms, and immunological memory of human Vγ2Vδ2 T cells: discriminating friend from foe through the recognition of prenyl pyrophosphate antigens. Immunol. Rev 2007. 215: 59–76. PubMed
Davey MS, Willcox CR, Hunter S, Kasatskaya SA, Remmerswaal EBM, Salim M, Mohammed F et al., The human Vδ2+ T-cell compartment comprises distinct innate-like Vγ9+ and adaptive Vγ9- subsets. Nat. Commun 2018. 9: 1–14. PubMed PMC
Riganti C, Massaia M, Davey MS and Eberl M, Human gammadelta T-cell responses in infection and immunotherapy: common mechanisms, common mediators? Eur. J. Immunol 2012. 42: 1668–1676. PubMed
Chien YH, Meyer C and Bonneville M, γδ T cells: first line of defense and beyond. Annu. Rev. Immunol 2014. 32: 121–155. PubMed
Davodeau F, Peyrat MA, Hallet MM, Houde I, And HV and Bonneville M, Peripheral selection of antigen receptor junctional features in a major human γδ subset. Eur. J. Immunol 1993. 23: 804–808. PubMed
Parker CM, Groh V, Band H, Porcelli SA, Morita C, Fabbi M, Glass D et al., Evidence for extrathymic changes in the T cell receptor gamma/delta repertoire. J. Exp. Med 1990. 171: 1597–1612. PubMed PMC
Dimova T, Brouwer M, Gosselin F, Tassignon J, Leo O, Donner C, Marchant A et al., Effector Vγ9Vδ2 T cells dominate the human fetal γδ T-cell repertoire. Proc. Natl. Acad. Sci. USA 2015. 112: E556–E565. PubMed PMC
Willcox CR, Davey MS and Willcox BE, Development and selection of the human Vγ9Vδ2+T-cell repertoire. Front. Immunol 2018. 9: 1501. PubMed PMC
Hunter S, Willcox CR, Davey MS, Kasatskaya, Sofya A, Jeffery HC, Chudakov DM et al., Human liver infiltrating γδ T cells are composed of clonally expanded circulating and tissue-resident populations. J. Hepatol 2018. 69: 654–665. PubMed PMC
Davey MS, Willcox CR, Baker AT, Hunter S and Willcox BE, Recasting human Vδ1 lymphocytes in an adaptive role. Trends Immunol. 2018. 39: 446–459. PubMed PMC
Davey MS, Willcox CR, Joyce SP, Ladell K, Kasatskaya SA, McLaren JE, Hunter S et al., Clonal selection in the human Vδ1 T cell repertoire indicates γδ TCR-dependent adaptive immune surveillance. Nat. Commun 2017. 8: 1–15. PubMed PMC
Ravens S, Schultze-Florey C, Raha S, Sandrock I, Drenker M, Oberdörfer L, Reinhardt A et al., Human γδ T cells are quickly reconstituted after stem-cell transplantation and show adaptive clonal expansion in response to viral infection. Nat. Immunol 2017. 18: 393–401. PubMed
Correia D, Fogli M, Hudspeth K, Gomes da Silva M, Mavilio D and Silva-Santos B, Differentiation of human peripheral blood Vδ1+ T cell expressing the natural cytotoxicity receptor NKp30 for recognition of lymphoid leukemia cells. Blood 2011. 118: 992–1001. PubMed
Bouet-Toussaint F, Cabillic F, Toutirais O, Le Gallo M, Thomas de la Pintiere, C., Genetet, N., Meunier, B. et al., Vγ9Vδ2 T cell-mediated recognition of human solid tumors. Potential for immunotherapy of hepatocellular and colorectal carcinomas. Cancer Immunol. Immunother 2008. 57: 531–539. PubMed PMC
Mattarollo SR, Kenna T, Nieda M and Nicol AJ, Chemotherapy and zoledronate sensitize solid tumour cells to Vγ9Vδ2 T cell cytotoxicity. Cancer Immunol. Immunother 2007. 56: 1285–1297. PubMed PMC
Almeida ARM, Correia DV, Fernandes-Platzgummer A, da Silva CL, Gomes da Silva M, Anjos DR and Silva-Santos B, Delta one T cells for immunotherapy of chronic lymphocytic leukemia: clinical-grade expansion/differentiation and preclinical proof-of-concept. Clin. Cancer Res 2016. 22: 5795–5804. PubMed
Ryan PL, Sumaria N, Holland CJ, Bradford CM, Izotova N, Grandjean CL, Jawad AS et al., Heterogeneous yet stable Vδ2(+) T-cell profiles define distinct cytotoxic effector potentials in healthy human individuals. Proc. Natl. Acad. Sci. USA 2016. 113: 14378–14383. PubMed PMC
Kinjo Y and Ueno K, iNKT cells in microbial immunity: recognition of microbial glycolipids. Microbiol. Immunol 2011. 55: 472–482. PubMed
Shissler SC, Bollino DR, Tiper IV, Bates JP, Derakhshandeh R and Webb TJ, Immunotherapeutic strategies targeting natural killer T cell responses in cancer. Immunogenetics 2016. 68: 623–638. PubMed PMC
Godfrey DI, Le Nours J, Andrews DM, Uldrich AP and Rossjohn J, Unconventional T cell targets for cancer immunotherapy. Immunity 2018. 48: 453–473. PubMed
Pellicci DG and Uldrich AP, Unappreciated diversity within the pool of CD1d-restricted T cells. Semin. Cell. Dev. Biol 2018. 84: 42–47. PubMed
Godfrey DI, MacDonald HR, Kronenberg M, Smyth MJ and Van Kaer L, NKT cells: what’s in a name? Nat. Rev. Immunol 2004. 4: 231–237. PubMed
Thierry A, Robin A, Giraud S, Minouflet S, Barra A, Bridoux F, Hauet T et al., Identification of invariant natural killer T cells in porcine peripheral blood. Vet. Immunol. Immunopathol 2012. 149: 272–279. PubMed
Monzon-Casanova E, Paletta D, Starick L, Muller I, Sant’Angelo DB, Pyz E and Herrmann T, Direct identification of rat iNKT cells reveals remarkable similarities to human iNKT cells and a profound deficiency in LEW rats. Eur. J. Immunol 2013. 43: 404–415. PubMed PMC
Gansuvd B, Hubbard WJ, Hutchings A, Thomas FT, Goodwin J, Wilson SB, Exley MA et al., Phenotypic and functional characterization of long-term cultured rhesus macaque spleen-derived NKT cells. J. Immunol 2003. 171: 2904–2911. PubMed
Yasuda N, Masuda K, Tsukui T, Teng A and Ishii Y, Identification of canine natural CD3-positive T cells expressing an invariant T-cell receptor alpha chain. Vet. Immunol. Immunopathol 2009. 132: 224–231. PubMed
Kawano T, Cui J, Koezuka Y, Toura I, Kaneko Y, Motoki K, Ueno H et al., CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science 1997. 278: 1626–1629. PubMed
Lopez-Sagaseta J, Kung JE, Savage PB, Gumperz J and Adams EJ, The molecular basis for recognition of CD1d/alphagalactosylceramide by a human non-Valpha24 T cell receptor. PLoS Biol. 2012. 10: e1001412. PubMed PMC
Gadola SD, Dulphy N, Salio M and Cerundolo V, Valpha24-JalphaQ-independent, CD1d-restricted recognition of alphagalactosylceramide by human CD4(+) and CD8alphabeta(+) T lymphocytes. J. Immunol 2002. 168: 5514–5520. PubMed
Le Nours J, Praveena T, Pellicci DG, Gherardin NA, Ross FJ, Lim RT, Besra GS, Keshipeddy S et al., Atypical natural killer T-cell receptor recognition of CD1d-lipid antigens. Nat. Commun 2016. 7: 10570. PubMed PMC
Gadola SD, Koch M, Marles-Wright J, Lissin NM, Shepherd D, Matulis G, Harlos K et al., Structure and binding kinetics of three different human CD1d-alpha-galactosylceramide-specific T cell receptors. J. Exp. Med 2006. 203: 699–710. PubMed PMC
Brigl M, van den Elzen P, Chen X, Meyers JH, Wu D, Wong CH, Reddington F et al., Conserved and heterogeneous lipid antigen specificities of CD1d-restricted NKT cell receptors. J. Immunol 2006. 176: 3625–3634. PubMed
Uldrich AP, Le Nours J, Pellicci DG, Gherardin NA, McPherson KG, Lim RT, Patel O, Beddoe T et al., CD1d-lipid antigen recognition by the gammadelta TCR. Nat. Immunol 2013. 14: 1137–1145. PubMed
Kobayashi E, Motoki K, Uchida T, Fukushima H and Koezuka Y, KRN7000, a novel immunomodulator, and its antitumor activities. Oncol. Res 1995. 7: 529–534. PubMed
Morita M, Motoki K, Akimoto K, Natori T, Sakai T, Sawa E, Yamaji K et al., Structure-activity relationship of alphagalactosylceramides against B16-bearing mice. J. Med. Chem 1995. 38: 2176–2187. PubMed
Nair S and Dhodapkar MV, Natural killer T cells in cancer immunotherapy. Front. Immunol 2017. 8: 1178. PubMed PMC
Rossjohn J, Pellicci DG, Patel O, Gapin L and Godfrey DI, Recognition of CD1d-restricted antigens by natural killer T cells. Nat. Rev. Immunol 2012. 12: 845–857. PubMed PMC
Miyamoto K, Miyake S and Yamamura T, A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 2001. 413: 531–534. PubMed
Yu KO, Im JS, Molano A, Dutronc Y, Illarionov PA, Forestier C, Fujiwara N et al., Modulation of CD1d-restricted NKT cell responses by using N-acyl variants of alpha-galactosylceramides. Proc. Natl. Acad. Sci. USA 2005. 102: 3383–3388. PubMed PMC
Schmieg J, Yang G, Franck RW and Tsuji M, Superior protection against malaria and melanoma metastases by a C-glycoside analogue of the natural killer T cell ligand alpha-Galactosylceramide. J. Exp. Med 2003. 198: 1631–1641. PubMed PMC
Wun KS, Cameron G, Patel O, Pang SS, Pellicci DG, Sullivan LC, Keshipeddy S et al., A molecular basis for the exquisite CD1drestricted antigen specificity and functional responses of natural killer T cells. Immunity 2011. 34: 327–339. PubMed PMC
Wun KS, Ross F, Patel O, Besra GS, Porcelli SA, Richardson SK, Keshipeddy S et al., Human and mouse type I natural killer T cell antigen receptors exhibit different fine specificities for CD1d-antigen complex. J. Biol. Chem 2012. 287: 39139–39148. PubMed PMC
Freigang S, Landais E, Zadorozhny V, Kain L, Yoshida K, Liu Y, Deng S et al., Scavenger receptors target glycolipids for natural killer T cell activation. J. Clin. Invest 2012. 122: 3943–3954. PubMed PMC
http://tetramer.yerkes.emory.edu/reagents/cd1.
Gumperz JE, Miyake S, Yamamura T and Brenner MB, Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J. Exp. Med 2002. 195: 625–636. PubMed PMC
Sidobre S and Kronenberg M, CD1 tetramers: a powerful tool for the analysis of glycolipid-reactive T cells. J. Immunol. Methods 2002. 268: 107–121. PubMed
Boyson JE, Rybalov B, Koopman LA, Exley M, Balk SP, Racke FK, Schatz F et al., CD1d and invariant NKT cells at the human maternal-fetal interface. Proc. Natl. Acad. Sci. USA 2002. 99: 13741–13746. PubMed PMC
Thomas SY, Hou R, Boyson JE, Means TK, Hess C, Olson DP, Strominger JL et al., CD1d-restricted NKT cells express a chemokine receptor profile indicative of Th1-type inflammatory homing cells. J. Immunol 2003. 171: 2571–2580. PubMed
Aricescu AR, Lu W and Jones EY, A time- and cost-efficient system for high-level protein production in mammalian cells. Acta Crystallogr. D Biol. Crystallogr 2006. 62: 1243–1250. PubMed
Ng SS, Souza-Fonseca-Guimaraes F, Rivera FL, Amante FH, Kumar R, Gao Y, Sheel M et al., Rapid loss of group 1 innate lymphoid cells during blood stage Plasmodium infection. Clin. Transl. Immunol 2018. 7: e1003. PubMed PMC
http://www.enzolifesciences.com/BML-SL232/krn7000/
https://avantilipids.com/product/867000.
Boyum A, Separation of leukocytes from blood and bone marrow. Introduction. Scand. J. Clin. Lab. Invest. Suppl 1968. 97: 7. PubMed
Lee PT, Benlagha K, Teyton L and Bendelac A, Distinct functional lineages of human V(alpha)24 natural killer T cells. J. Exp. Med 2002. 195: 637–641. PubMed PMC
Montoya CJ, Pollard D, Martinson J, Kumari K, Wasserfall C, Mulder CB, Rugeles MT et al., Characterization of human invariant natural killer T subsets in health and disease using a novel invariant natural killer T cell-clonotypic monoclonal antibody, 6B11. Immunology 2007. 122: 1–14. PubMed PMC
Cameron G, Pellicci DG, Uldrich AP, Besra GS, Illarionov P, Williams SJ, La Gruta NL et al., Antigen Specificity of Type I NKT Cells Is Governed by TCR beta-Chain Diversity. J Immunol 2015. 195: 4604–4614. PubMed
https://www.miltenyibiotec.com/AU-en/products/macs-cellseparation/cell-separation-reagents/microbeads-and-isolationkits/any-cell-type/anti-pe-microbeads.html.
Rossjohn J, Gras S, Miles JJ, Turner SJ, Godfrey DI and McCluskey J, T cell antigen receptor recognition of antigen-presenting molecules. Annu. Rev. Immunol 2015. 33: 169–200. PubMed
Kjer-Nielsen L, Patel O, Corbett AJ, Le Nours J, Meehan B, Liu L, Bhati M, Chen Z et al., MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 2012. 491: 717–723. PubMed
Kjer-Nielsen L, Corbett AJ, Chen Z, Liu L, Mak JY, Godfrey DI, Rossjohn J et al., An overview on the identification of MAIT cell antigens. Immunol. Cell. Biol 2018. 96: 573–587. PubMed
Koay HF, Godfrey DI and Pellicci DG, Development of mucosal-associated invariant T cells. Immunol. Cell. Biol 2018. PubMed PMC
Gherardin NA, Souter MN, Koay HF, Mangas KM, Seemann T, Stinear TP, Eckle SB et al., Human blood MAIT cell subsets defined using MR1 tetramers. Immunol. Cell. Biol 2018. 96: 507–525. PubMed PMC
Le Bourhis L, Martin E, Peguillet I, Guihot A, Froux N, Core M, Levy E, Dusseaux M et al., Antimicrobial activity of mucosal-associated invariant T cells. Nat. Immunol 2010. 11: 701–708. PubMed
Tang XZ, Jo J, Tan AT, Sandalova E, Chia A, Tan KC, Lee KH et al., IL-7 licenses activation of human liver intrasinusoidal mucosal-associated invariant T cells. J. Immunol 2013. 190: 3142–3152. PubMed
Dusseaux M, Martin E, Serriari N, Peguillet I, Premel V, Louis D, Milder M et al., Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells. Blood 2011. 117: 1250–1259. PubMed
Walker LJ, Kang YH, Smith MO, Tharmalingham H, Ramamurthy N, Fleming VM, Sahgal N et al., Human MAIT and CD8alphaalpha cells develop from a pool of type-17 precommitted CD8+ T cells. Blood 2012. 119: 422–433. PubMed PMC
Le Bourhis L, Dusseaux M, Bohineust A, Bessoles S, Martin E, Premel V, Core M, Sleurs D et al., MAIT cells detect and efficiently lyse bacterially-infected epithelial cells. PLoS Pathog. 2013. 9: e1003681. PubMed PMC
Meermeier EW, Harriff MJ, Karamooz E and Lewinsohn DM, MAIT cells and microbial immunity. Immunol. Cell. Biol 2018. PubMed PMC
Wang H, D’Souza C, Lim XY, Kostenko L, Pediongco TJ, Eckle SBG, Meehan BS et al., MAIT cells protect against pulmonary Legionella longbeachae infection. Nat. Commun 2018. 9: 3350. PubMed PMC
D’Souza C, Chen Z and Corbett AJ, Revealing the protective and pathogenic potential of MAIT cells. Mol. Immunol 2018. 103: 46–54. PubMed
Ussher JE, Bilton M, Attwod E, Shadwell J, Richardson R, de Lara C, Mettke E, Kurioka A et al., CD161++ CD8+ T cells, including the MAIT cell subset, are specifically activated by IL-12+IL-18 in a TCR-independent manner. Eur. J. Immunol 2014. 44: 195–203. PubMed PMC
Ussher JE, Willberg CB and Klenerman P, MAIT cells and viruses. Immunol. Cell. Biol 2018. 96: 630–641. PubMed PMC
van Wilgenburg B, Scherwitzl I, Hutchinson EC, Leng T, Kurioka A, Kulicke C, de Lara C, Cole S, Vasanawathana S et al., MAIT cells are activated during human viral infections. Nat. Commun 2016. 7: 11653. PubMed PMC
Loh L, Wang Z, Sant S, Koutsakos M, Jegaskanda S, Corbett AJ, Liu L et al., Human mucosal-associated invariant T cells contribute to antiviral influenza immunity via IL-18-dependent activation. Proc. Natl. Acad. Sci. USA 2016. 113: 10133–10138. PubMed PMC
Rouxel O and Lehuen A, Mucosal-associated invariant T cells in autoimmune and immune-mediated diseases. Immunol. Cell. Biol 2018. 96: 618–629. PubMed
Gibbs A, Leeansyah E, Introini A, Paquin-Proulx D, Hasselrot K, Andersson E, Broliden K et al., MAIT cells reside in the female genital mucosa and are biased towards IL-17 and IL-22 production in response to bacterial stimulation. Mucosal Immunol. 2017. 10: 35–45. PubMed PMC
Dias J, Boulouis C, Gorin JB, van den Biggelaar R, Lal KG, Gibbs A, Loh L et al., The CD4(-)CD8(-) MAIT cell subpopulation is a functionally distinct subset developmentally related to the main CD8(+) MAIT cell pool. Proc. Natl. Acad. Sci. USA 2018. 115: E11513–E11522. PubMed PMC
Brozova J, Karlova I and Novak J, Analysis of the phenotype and function of the subpopulations of mucosal-associated invariant T cells. Scand. J. Immunol 2016. 84: 245–251. PubMed
Davanian H, Gaiser RA, Silfverberg M, Hugerth LW, Sobkowiak MJ, Lu L, Healy K et al., Mucosal-associated invariant T cells and oral microbiome in persistent apical periodontitis. Int. J. Oral. Sci 2019. 11: 16. PubMed PMC
Mori L, Lepore M and De Libero G, The immunology of CD1- and MR1-restricted T cells. Annu. Rev. Immunol 2016. 34: 479–510. PubMed
Gherardin NA, McCluskey J, Rossjohn J and Godfrey DI, The diverse family of MR1-restricted T cells. J. Immunol 2018. 201: 2862–2871. PubMed
Martin E, Treiner E, Duban L, Guerri L, Laude H, Toly C, Premel V et al., Stepwise development of MAIT cells in mouse and human. PLoS Biol. 2009. 7: e54. PubMed PMC
Sharma PK, Wong EB, Napier RJ, Bishai WR, Ndung’u T, Kasprowicz VO, Lewinsohn DA et al., High expression of CD26 accurately identifies human bacteria-reactive MR1-restricted MAIT cells. Immunology 2015. 145: 443–453. PubMed PMC
Gold MC, Eid T, Smyk-Pearson S, Eberling Y, Swarbrick GM, Langley SM, Streeter PR et al., Human thymic MR1-restricted MAIT cells are innate pathogen-reactive effectors that adapt following thymic egress. Mucosal Immunol. 2013. 6: 35–44. PubMed PMC
Leeansyah E, Ganesh A, Quigley MF, Sonnerborg A, Andersson J, Hunt PW, Somsouk M et al., Activation, exhaustion, and persistent decline of the antimicrobial MR1-restricted MAIT-cell population in chronic HIV-1 infection. Blood 2013. 121: 1124–1135. PubMed PMC
Koppejan H, Jansen D, Hameetman M, Thomas R, Toes REM and van Gaalen FA, Altered composition and phenotype of mucosal-associated invariant T cells in early untreated rheumatoid arthritis. Arthritis Res. Ther 2019. 21: 3. PubMed PMC
Eckle SB, Birkinshaw RW, Kostenko L, Corbett AJ, McWilliam HE, Reantragoon R, Chen Z et al., A molecular basis underpinning the T cell receptor heterogeneity of mucosal-associated invariant T cells. J. Exp. Med 2014. 211: 1585–1600. PubMed PMC
Kurioka A, Jahun AS, Hannaway RF, Walker LJ, Fergusson JR, Sverremark-Ekstrom E, Corbett AJ et al., Shared and distinct phenotypes and functions of human CD161++ Valpha7.2+ T cell subsets. Front. Immunol 2017. 8: 1031. PubMed PMC
Ben Youssef G, Tourret M, Salou M, Ghazarian L, Houdouin V, Mondot S, Mburu Y et al., Ontogeny of human mucosal-associated invariant T cells and related T cell subsets. J. Exp. Med 2018. 215: 459–479. PubMed PMC
Koay HF, Gherardin NA, Xu C, Seneviratna R, Zhao Z, Chen Z, Fairlie DP et al., Diverse MR1-restricted T cells in mice and humans. Nat. Commun. 2019. 10: 2243. PubMed PMC
NTCF, NIH Tetramer Core Facility: Human MR1 Tetramer Staining 2016. https://tetramer.yerkes.emory.edu/sites/default/files/shared/human_mr1_tetramer_staining.pdf
NTCF, NIH Tetramer Core Facility: Tetramer Preparation - Addition of streptavidin, emory.edu 2010. https://tetramer.yerkes.emory.edu/support/protocols#10
Gherardin NA, Keller AN, Woolley RE, Le Nours J, Ritchie DS, Neeson PJ, Birkinshaw RW et al., Diversity of T cells restricted by the MHC class I-related molecule MR1 facilitates differential antigen recognition. Immunity 2016. 44: 32–45. PubMed
Dias J, Leeansyah E and Sandberg JK, Multiple layers of heterogeneity and subset diversity in human MAIT cell responses to distinct microorganisms and to innate cytokines. Proc. Natl. Acad. Sci. USA 2017. 114: E5434–E5443. PubMed PMC
Lissina A, Ladell K, Skowera A, Clement M, Edwards E, Seggewiss R, van den Berg HA, Gostick E et al., Protein kinase inhibitors substantially improve the physical detection of T-cells with peptide-MHC tetramers. J. Immunol. Methods 2009. 340: 11–24. PubMed PMC
Wood GS and Warnke R, Suppression of endogenous avidin-binding activity in tissues and its relevance to biotin-avidin detection systems. J. Histochem. Cytochem 1981. 29: 1196–1204. PubMed
Harriff MJ, McMurtrey C, Froyd CA, Jin H, Cansler M, Null M, Worley A et al., MR1 displays the microbial metabolome driving selective MR1-restricted T cell receptor usage. Sci. Immunol 2018. 3. PubMed PMC
Lepore M, Kalinichenko A, Calogero S, Kumar P, Paleja B, Schmaler M, Narang V et al., Functionally diverse human T cells recognize non-microbial antigens presented by MR1. Elife 2017. 6. PubMed PMC
Tung JW, Mrazek MD, Yang Y, Herzenberg LA and Herzenberg LA, Phenotypically distinct B cell development pathways map to the three B cell lineages in the mouse. Proc. Natl. Acad. Sci. USA 2006. 103: 6293–6298. PubMed PMC
Manz RA, Hauser AE, Hiepe F and Radbruch A, Maintenance of serum antibody levels. Annu. Rev. Immunol 2005. 23: 367–386. PubMed
Wen L, Brill-Dashoff J, Shinton SA, Asano M, Hardy RR and Hayakawa K, Evidence of marginal-zone B cell-positive selection in spleen. Immunity 2005. 23: 297–308. PubMed
Fillatreau S and Manz RA, Tolls for B cells. Eur. J. Immunol 2006. 36: 798–801. PubMed
Tornberg UC and Holmberg D, B-1a, B-1b and B-2 B cells display unique VHDJH repertoires formed at different stages of ontogeny and under different selection pressures. EMBO J. 1995. 14: 1680–1689. PubMed PMC
Ochsenbein AF, Fehr T, Lutz C, Suter M, Brombacher F, Hengartner H and Zinkernagel RM, Control of early viral and bacterial distribution and disease by natural antibodies. Science 1999. 286: 2156–2159. PubMed
Stall AM, Adams S, Herzenberg LA and Kantor AB, Characteristics and development of the murine B-1b (Ly-1 B sister) cell population. Ann. N. Y. Acad. Sci 1992. 651: 33–43. PubMed
Kristiansen TA, Jaensson Gyllenbäck E, Zriwil A, Björklund T, Daniel JA, Sitnicka E, Soneji S et al., Cellular barcoding links B-1a B cell potential to a fetal hematopoietic stem cell state at the single-cell level. Immunity 2016. 45: 346–357. PubMed
Pedersen GK, Li X, Khoenkhoen S, Ádori M, Beutler B and Karlsson Hedestam GB, B-1a cell development in splenectomized neonatal mice. Front. Immunol 2018. 9: 1738. PubMed PMC
Melchers F, ten Boekel E, Seidl T, Kong XC, Yamagami T, Onishi K, Shimizu T et al., Repertoire selection by pre-B-cell receptors and B-cell receptors, and genetic control of B-cell development from immature to mature B cells. Immunol. Rev 2000. 175: 33–46. PubMed
Montecino-Rodriguez E, Leathers H and Dorshkind K, Identification of a B-1 B cell-specified progenitor. Nat. Immunol 2006. 7: 293–301. PubMed
Rajewsky K, Early and late B-cell development in the mouse. Curr. Opin. Immunol. 1992. 4: 171–176. PubMed
ten Boekel E, Melchers F and Rolink A, The status of Ig loci rearrangements in single cells from different stages of B cell development. Int. Immunol 1995. 7: 1013–1019. PubMed
Grawunder U, Leu TM, Schatz DG, Werner A, Rolink AG, Melchers F and Winkler TH, Down-regulation of RAG1 and RAG2 gene expression in preB cells after functional immunoglobulin heavy chain rearrangement. Immunity 1995. 3: 601–608. PubMed
Rolink A and Melchers F, Molecular and cellular origins of B lymphocyte diversity. Cell 1991. 66: 1081–1094. PubMed
Lu L, Smithson G, Kincade PW and Osmond DG, Two models of murine B lymphopoiesis: a correlation. Eur. J. Immunol 1998. 28: 1755–1761. PubMed
Hardy RR, Carmack CE, Shinton SA, Kemp JD and Hayakawa K, Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow. J. Exp. Med 1991. 173: 1213–1225. PubMed PMC
Melchers F, Rolink A, Grawunder U, Winkler TH, Karasuyama H, Ghia P and Andersson J, Positive and negative selection events during B lymphopoiesis. Curr. Opin. Immunol 1995. 7: 214–227. PubMed
Ghia P, ten Boekel E, Sanz E, de la Hera A, Rolink A and Melchers F, Ordering of human bone marrow B lymphocyte precursors by single-cell polymerase chain reaction analyses of the rearrangement status of the immunoglobulin H and L chain gene loci. J. Exp. Med 1996. 184: 2217–2229. PubMed PMC
Allman D, Lindsley RC, DeMuth W, Rudd K, Shinton SA and Hardy RR, Resolution of three nonproliferative immature splenic B cell subsets reveals multiple selection points during peripheral B cell maturation. J. Immunol 2001. 167: 6834–6840. PubMed
Hao Z and Rajewsky K, Homeostasis of peripheral B cells in the absence of B cell influx from the bone marrow. J. Exp. Med 2001. 194: 1151–1164. PubMed PMC
Wells SM, Kantor AB and Stall AM, CD43 (S7) expression identifies peripheral B cell subsets. J. Immunol 1994. 153: 5503–5515. PubMed
Hart G, Flaishon L, Becker-Herman S and Shachar I, Ly49D receptor expressed on immature B cells regulates their IFN-gamma secretion, actin polymerization, and homing. J. Immunol 2003. 171: 4630–4638. PubMed
Kozmik Z, Wang S, Dörfler P, Adams B and Busslinger M, The promoter of the CD19 gene is a target for the B-cell-specific transcription factor BSAP. Mol. Cell. Biol 1992. 12: 2662–2672. PubMed PMC
Li YS, Wasserman R, Hayakawa K and Hardy RR, Identification of the earliest B lineage stage in mouse bone marrow. Immunity 1996. 5: 527–535. PubMed
Koni PA, Joshi SK, Temann U-A, Olson D, Burkly L and Flavell RA, Conditional Vascular Cell Adhesion Molecule 1 Deletion in Mice: Impaired Lymphocyte Migration to Bone Marrow. J. Exp. Med 2001. 193: 741–754. PubMed PMC
Kikuchi K, Lai AY, Hsu C-L and Kondo M, IL-7 receptor signaling is necessary for stage transition in adult B cell development through up-regulation of EBF. J. Exp. Med 2005. 201: 1197–1203. PubMed PMC
Rolink A, ten Boekel E, Melchers F, Fearon DT, Krop I and Andersson J, A subpopulation of B220+ cells in murine bone marrow does not express CD19 and contains natural killer cell progenitors. J. Exp. Med 1996. 183: 187–194. PubMed PMC
Osmond DG, Rolink A and Melchers F, Murine B lymphopoiesis: towards a unified model. Immunol. Today 1998. 19: 65–68. PubMed
Melchers F, Haasner D, Grawunder U, Kalberer C, Karasuyama H, Winkler T and Rolink AG, Roles of IgH and L chains and of surrogate H and L chains in the development of cells of the B lymphocyte lineage. Annu. Rev. Immunol 1994. 12: 209–225. PubMed
Rolink A, Streb M, Nishikawa S and Melchers F, The c-kit-encoded tyrosine kinase regulates the proliferation of early pre-B cells. Eur. J. Immunol 1991. 21: 2609–2612. PubMed
Tonegawa S, Somatic generation of antibody diversity. Nature 1983. 302: 575–581. PubMed
ten Boekel E, Melchers F and Rolink AG, Precursor B cells showing H chain allelic inclusion display allelic exclusion at the level of pre-B cell receptor surface expression. Immunity 1998. 8: 199–207. PubMed
Rumfelt LL, Zhou Y, Rowley BM, Shinton SA and Hardy RR, Lineage specification and plasticity in CD19- early B cell precursors. J. Exp. Med 2006. 203: 675–687. PubMed PMC
Osmond DG, B cell development in the bone marrow. Semin. Immunol 1990. 2: 173–180. PubMed
Cancro MP, Peripheral B-cell maturation: the intersection of selection and homeostasis. Immunol. Rev 2004. 197: 89–101. PubMed
Oliver AM, Martin F, Gartland GL, Carter RH and Kearney JF, Marginal zone B cells exhibit unique activation, proliferative and immunoglobulin secretory responses. Eur. J. Immunol 1997. 27: 2366–2374. PubMed
Krzyzak L, Seitz C, Urbat A, Hutzler S, Ostalecki C, Gläsner J, Hiergeist A et al., CD83 modulates B cell activation and germinal center responses. J. Immunol 2016. 196: 3581–3594. PubMed
Dogan I, Bertocci B, Vilmont V, Delbos F, Mégret J, Storck S, Reynaud C-A et al., Multiple layers of B cell memory with different effector functions. Nat. Immunol 2009. 10: 1292–1299. PubMed
Bell J and Gray D, Antigen-capturing cells can masquerade as memory B cells. J. Exp. Med 2003. 197: 1233–1244. PubMed PMC
Schittek B and Rajewsky K, Maintenance of B-cell memory by long-lived cells generated from proliferating precursors. Nature 1990. 346: 749–751. PubMed
Anderson SM, Tomayko MM, Ahuja A, Haberman AM and Shlomchik MJ, New markers for murine memory B cells that define mutated and unmutated subsets. J. Exp. Med 2007. 204: 2103–2114. PubMed PMC
Good-Jacobson KL, Song E, Anderson S, Sharpe AH and Shlomchik MJ, CD80 expression on B cells regulates murine T follicular helper development, germinal center B cell survival, and plasma cell generation. J. Immunol 2012. 188: 4217–4225. PubMed PMC
Zuccarino-Catania GV, Sadanand S, Weisel FJ, Tomayko MM, Meng H, Kleinstein SH, Good-Jacobson KL et al., CD80 and PD-L2 define functionally distinct memory B cell subsets that are independent of antibody isotype. Nat. Immunol 2014. 15: 631–637. PubMed PMC
Tomayko MM, Steinel NC, Anderson SM and Shlomchik MJ, Cutting edge: Hierarchy of maturity of murine memory B cell subsets. J. Immunol 2010. 185: 7146–7150. PubMed PMC
Weisel FJ, Zuccarino-Catania GV, Chikina M and Shlomchik MJ, A temporal switch in the germinal center determines differential output of memory B and plasma cells. Immunity 2016. 44: 116–130. PubMed PMC
Weisel F and Shlomchik M, Memory B cells of mice and humans. Annu. Rev. Immunol 2017. 35: 255–284. PubMed
Loder F, Mutschler B, Ray RJ, Paige CJ, Sideras P, Torres R, Lamers MC et al., B cell development in the spleen takes place in discrete steps and is determined by the quality of B cell receptor-derived signals. J. Exp. Med 1999. 190: 75–89. PubMed PMC
Carsetti R, Köhler G and Lamers MC, Transitional B cells are the target of negative selection in the B cell compartment. J. Exp. Med 1995. 181: 2129–2140. PubMed PMC
Baumgarth N, The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat. Rev. Immunol 2011. 11: 34–46. PubMed
Haas KM, Poe JC, Steeber DA and Tedder TF, B-1a and B-1b cells exhibit distinct developmental requirements and have unique functional roles in innate and adaptive immunity to S. pneumoniae. Immunity 2005. 23: 7–18. PubMed
Hardy RR, Hayakawa K, Parks DR, Herzenberg LA and Herzenberg LA, Murine B cell differentiation lineages. J. Exp. Med 1984. 159: 1169–1188. PubMed PMC
Pedersen GK, Àdori M, Khoenkhoen S, Dosenovic P, Beutler B and Karlsson Hedestam GB, B-1a transitional cells are phenotypically distinct and are lacking in mice deficient in IκBNS. Proc. Natl. Acad. Sci. USA 2014. 111: E4119–4126. PubMed PMC
Herzenberg LA, Stall AM, Braun J, Weaver D, Baltimore D, Herzenberg LA and Grosschedl R, Depletion of the predominant B-cell population in immunoglobulin mu heavy-chain transgenic mice. Nature 1987. 329: 71–73. PubMed
Shinall SM, Gonzalez-Fernandez M, Noelle RJ and Waldschmidt TJ, Identification of murine germinal center B cell subsets defined by the expression of surface isotypes and differentiation antigens. J. Immunol 2000. 164: 5729–5738. PubMed
Naito Y, Takematsu H, Koyama S, Miyake S, Yamamoto H, Fujinawa R, Sugai M et al., Germinal center marker GL7 probes activation-dependent repression of N-glycolylneuraminic acid, a sialic acid species involved in the negative modulation of B-cell activation. Mol. Cell. Biol 2007. 27: 3008–3022. PubMed PMC
Grötsch B, Brachs S, Lang C, Luther J, Derer A, Schlötzer-Schrehardt U, Bozec A et al., The AP-1 transcription factor Fra1 inhibits follicular B cell differentiation into plasma cells. J. Exp. Med 2014. 211: 2199–2212. PubMed PMC
Arnold LW, Pennell CA, McCray SK and Clarke SH, Development of B-1 cells: segregation of phosphatidyl choline-specific B cells to the B-1 population occurs after immunoglobulin gene expression. J. Exp. Med 1994. 179: 1585–1595. PubMed PMC
Rauch PJ, Chudnovskiy A, Robbins CS, Weber GF, Etzrodt M, Hilgendorf I, Tiglao E et al., Innate response activator B cells protect against microbial sepsis. Science 2012. 335: 597–601. PubMed PMC
Bouaziz J-D, Yanaba K and Tedder TF, Regulatory B cells as inhibitors of immune responses and inflammation. Immunol. Rev 2008. 224: 201–214. PubMed
Shen P and Fillatreau S, Antibody-independent functions of B cells: a focus on cytokines. Nat. Rev. Immunol 2015. 15: 441–451. PubMed
Bermejo DA, Jackson SW, Gorosito-Serran M, Acosta-Rodriguez EV, Amezcua-Vesely MC, Sather BD, Singh AK et al., Trypanosoma cruzi trans-sialidase initiates a program independent of the transcription factors RORγt and Ahr that leads to IL-17 production by activated B cells. Nat. Immunol 2013. 14: 514–522. PubMed PMC
Shen P, Roch T, Lampropoulou V, O’Connor RA, Stervbo U, Hilgenberg E, Ries S et al., IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases. Nature 2014. 507: 366–370. PubMed PMC
Fillatreau S, Pathogenic functions of B cells in autoimmune diseases: IFN-γ production joins the criminal gang. Eur. J. Immunol 2015. 45: 966–970. PubMed
Mizoguchi A and Bhan AK, A case for regulatory B cells. J. Immunol 2006. 176: 705–710. PubMed
Rosser EC and Mauri C, Regulatory B cells: origin, phenotype, and function. Immunity 2015. 42: 607–612. PubMed
Maseda D, Smith SH, DiLillo DJ, Bryant JM, Candando KM, Weaver CT and Tedder TF, Regulatory B10 cells differentiate into antibody-secreting cells after transient IL-10 production in vivo. J. Immunol 2012. 188: 1036–1048. PubMed PMC
Kulkarni U, Karsten CM, Kohler T, Hammerschmidt S, Bommert K, Tiburzy B, Meng L et al., IL-10 mediates plasmacytosis-associated immunodeficiency by inhibiting complement-mediated neutrophil migration. J. Allergy Clin. Immunol 2016. 137: 1487–1497.e6. PubMed
Matsumoto M, Baba A, Yokota T, Nishikawa H, Ohkawa Y, Kayama H, Kallies A et al., Interleukin-10-producing plasmablasts exert regulatory function in autoimmune inflammation. Immunity 2014. 41: 1040–1051. PubMed
Blanc P, Moro-Sibilot L, Barthly L, Jagot F, This S, de Bernard S, Buffat L et al., Mature IgM-expressing plasma cells sense antigen and develop competence for cytokine production upon antigenic challenge. Nat. Commun 2016. 7: 13600. PubMed PMC
Lino AC, Dang VD, Lampropoulou V, Welle A, Joedicke J, Pohar J, Simon Q et al., LAG-3 inhibitory receptor expression identifies immunosuppressive natural regulatory plasma cells. Immunity 2018. 49: 120–133.e129. PubMed PMC
Evans JG, Chavez-Rueda KA, Eddaoudi A, Meyer-Bahlburg A, Rawlings DJ, Ehrenstein MR and Mauri C, Novel suppressive function of transitional 2 B cells in experimental arthritis. J. Immunol 2007. 178: 7868–7878. PubMed
Blair PA, Chavez-Rueda KA, Evans JG, Shlomchik MJ, Eddaoudi A, Isenberg DA, Ehrenstein MR et al., Selective targeting of B cells with agonistic anti-CD40 is an efficacious strategy for the generation of induced regulatory T2-like B cells and for the suppression of lupus in MRL/lpr mice. J. Immunol 2009. 182: 3492–3502. PubMed PMC
Miles K, Heaney J, Sibinska Z, Salter D, Savill J, Gray D and Gray M, A tolerogenic role for Toll-like receptor 9 is revealed by B-cell interaction with DNA complexes expressed on apoptotic cells. Proc. Natl. Acad. Sci. USA 2012. 109: 887–892. PubMed PMC
Bankoti R, Gupta K, Levchenko A and Stäger S, Marginal zone B cells regulate antigen-specific T cell responses during infection. J. Immunol 2012. 188: 3961–3971. PubMed
Tedder TF, B10 cells: a functionally defined regulatory B cell subset. J. Immunol 2015. 194: 1395–1401. PubMed
Ding Q, Yeung M, Camirand G, Zeng Q, Akiba H, Yagita H, Chalasani G et al., Regulatory B cells are identified by expression of TIM-1 and can be induced through TIM-1 ligation to promote tolerance in mice. J. Clin. Invest 2011. 121: 3645–3656. PubMed PMC
Xiao S, Brooks CR, Sobel RA and Kuchroo VK, Tim-1 is essential for induction and maintenance of IL-10 in regulatory B cells and their regulation of tissue inflammation. J. Immunol 2015. 194: 1602–1608. PubMed PMC
Fillatreau S, Natural regulatory plasma cells. Curr. Opin. Immunol 2018. 55: 62–66. PubMed PMC
Mills DM and Cambier JC, B lymphocyte activation during cognate interactions with CD4+ T lymphocytes: molecular dynamics and immunologic consequences. Semin. Immunol 2003. 15: 325–329. PubMed
Okada T, Miller M, Parker I, Krummel MF, Neighbors M, Hartley SB, O’Garra A et al., Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells. PLoS Biol. 2005. 3: e150. PubMed PMC
MacLennan I, Germinal centers. Annu. Rev. Immunol 1994. 12: 117–139. PubMed
Victora GD and Nussenzweig MC, Germinal centers. Annu. Rev. Immunol 2012. 30: 429–457. PubMed
Nieuwenhuis P and Opstelten D, Functional anatomy of germinal centers. Am. J. Anat 1984. 170: 421–435. PubMed
Wagner S and Neuberger, Somatic hypermutation of immunoglobulin genes. Annu. Rev. Immunol 1996. 14: 441–457. PubMed
Li Z, Woo CJ, Iglesias-Ussel MD, Ronai D and Scharff MD, The generation of antibody diversity through somatic hypermutation and class switch recombination. Genes Dev. 2004. 18: 1–11. PubMed
Wu J, Qin D, Burton G, Szakal A and Tew J, Follicular dendritic cell-derived antigen and accessory activity in initiation ofmemory IgG responses in vitro. J. Immunol 1996. 157: 3404–3411. PubMed
Yeh C-HH, Nojima T, Kuraoka M and Kelsoe G, Germinal center entry not selection of B cells is controlled by peptide-MHCII complex density. Nat. Commun 2018. 9: 928. PubMed PMC
Klaus G, Humphrey J, Kunkl A and Dongworth D, The follicular dendritic cell: its role in antigen presentation in the generation of immunological memory. Immunol. Rev 1980. 53: 3–28. PubMed
Coico R, Bhogal B and Thorbecke G, Relationship of germinal centers in lymphoid tissue to immunologic memory. VI. Transfer of B cell memory with lymph node cells fractionated according to their receptors for peanut agglutinin. J. Immunol 1983. 131: 2254–2257. PubMed
Benner R, Hijmans W and Haaijman J, The bone marrow: the major source of serum immunoglobulins, but still a neglected site of antibody formation. Clin. Exp. Immunol 1981. 46: 1–8. PubMed PMC
Dilosa R, Maeda K, Masuda A, Szakal A and Tew J, Germinal center B cells and antibody production in the bone marrow. J. Immunol 1991. 146: 4071–4077. PubMed
Meyer-Hermann M, Deutsch A and Or-Guil M, Recycling probability and dynamical properties of germinal center reactions. J. Theor. Biol 2001. 210: 265–285. PubMed
Oprea M and Perelson A, Somatic mutation leads to efficient affinity maturation when centrocytes recycle back to centroblasts. J. Immunol 1997. 158: 5155–5162. PubMed
Oliver A, Martin F and Kearney J, Mouse CD38 is down-regulated on germinal center B cells and mature plasma cells. J. Immunol 1997. 158: 1108–1115. PubMed
Laszlo G, Hathcock K, Dickler H and Hodes R, Characterization of a novel cell-surface molecule expressed on subpopulations of activated T and B cells. J. Immunol 1993. 150: 5252–5262. PubMed
Reichert R, Gallatin W, Weissman I and Butcher E, Germinal center B cells lack homing receptors necessary for normal lymphocyte recirculation. J Exp. Med 1983. 157: 813–827. PubMed PMC
Butcher E et al., Surface phenotype of Peyer’s patch germinal center cells: implications for the role of germinal centers in B cell differentiation. J. Immunol 1982. 129: 2698–2707. PubMed
Davies A, Forrester J, Rose M, Birbeck V, Peanut lectin binding properties of germinal centers of mouse lymphoid tissue. Nature 1980. 284: 364. PubMed
Kraal G, Weissman I and Butcher E, Germinal centre B cells: antigen specificity and changes in heavy chain class expression. Nature 1982. 298: 377–379. PubMed
Smith K, Nossal G and Tarlinton D, FAS is highly expressed in the germinal center but is not required for regulation of the B-cell response to antigen. Proc. Natl. Acad. Sci. USA 1995. 92: 11628–11632. PubMed PMC
Bourgois A, Kitajima K, Hunter I and Askonas, Surface immunoglobulins of lipopolysaccharide-stimulated spleen cells. The behavior of IgM, IgD and IgG. Eur. J. Immunol 1977. 7: 151–153. PubMed
Monroe J, Havran W and Cambier J, B lymphocyte activation: entry into cell cycle is accompanied by decreased expression of IgD but not IgM. Eur. J. Immunol 1983. 13: 208–213. PubMed
Hathcock K et al., Identification of an alternative CTLA-4 ligand costimulatory for T cell activation. Science 1993. 262: 905–907. PubMed
Freeman G, Borriello F, Hodes RJ, Reiser H, Hathcock KS, Laszlo G, McKnight AJ et al., Uncovering of functional alternative CTLA-4 counter-receptor in B7-deficient mice. Science (New York, N.Y.) 1993. 262: 907–909. PubMed
Freeman G, Borriello F, Hodes RJ, Reiser H, Gribben JG, Ng JW, Kim J et al., Murine B7–2, an alternative CTLA4 counter-receptor that costimulates T cell proliferation and interleukin 2 production. J. Exp. Med 1993. 178: 2185–2192. PubMed PMC
Allen CD, Ansel KM, Low C, Lesley R, Tamamura H, Fujii N and Cyster JG, Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5. Nat. Immunol 2004. 5: 943–952. PubMed
Victora GD, Schwickert TA, Fooksman DR, Kamphorst AO, Meyer-Hermann M, Dustin ML, Nussenzweig MC et al., Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell 2010. 143: 592–605. PubMed PMC
Anderson KC, Bates MP, Slaughenhoupt BL, Pinkus GS, Schlossman SF and Nadler LM, Expression of human B cell-associated antigens on leukemias and lymphomas: a model of human B cell differentiation. Blood 1984. 63: 1424–1433. PubMed
Stashenko P, Nadler LM, Hardy R and Schlossman SF, Characterization of a human B lymphocyte-specific antigen. J. Immunol 1980. 125: 1678–1685. PubMed
LeBien TW and Tedder TF, B lymphocytes: how they develop and function. Blood 2008. 112: 1570–1580. PubMed PMC
Sims GP, Ettinger R, Shirota Y, Yarboro CH, Illei GG and Lipsky PE, Identification and characterization of circulating human transitional B cells. Blood 2005. 105: 4390–4398. PubMed PMC
Klein U, Rajewsky K and Kuppers R, Human immunoglobulin (Ig)M+IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells. J. Exp. Med 1998. 188: 1679–1689. PubMed PMC
Kuppers R, Klein U, Hansmann ML and Rajewsky K, Cellular origin of human B-cell lymphomas. N. Engl. J. Med 1999. 341: 1520–1529. PubMed
Agematsu K, Hokibara S, Nagumo H and Komiyama A, CD27: a memory B-cell marker. Immunol. Today 2000. 21: 204–206. PubMed
Agematsu K, Nagumo H, Yang FC, Nakazawa T, Fukushima K, Ito S, Sugita K et al., B cell subpopulations separated by CD27 and crucial collaboration of CD27+ B cells and helper T cells in immunoglobulin production. Eur. J. Immunol 1997. 27: 2073–2079. PubMed
Odendahl M, Jacobi A, Hansen A, Feist E, Hiepe F, Burmester GR, Lipsky PE et al., Disturbed peripheral B lymphocyte homeostasis in systemic lupus erythematosus. J. Immunol 2000. 165: 5970–5979. PubMed
Mei HE, Wirries I, Frolich D, Brisslert M, Giesecke C, Grun JR et al., A unique population of IgG-expressing plasma cells lacking CD19 is enriched in human bone marrow. Blood 2015. 125: 1739–1748. PubMed
Pascual V, Liu YJ, Magalski A, de Bouteiller O, Banchereau J and Capra JD, Analysis of somatic mutation in five B cell subsets of human tonsil. J. Exp. Med 1994. 180: 329–339. PubMed PMC
Kikutani H, Suemura M, Owaki H, Nakamura H, Sato R, Yamasaki K, Barsumian EL et al., Fc epsilon receptor, a specific differentiation marker transiently expressed on mature B cells before isotype switching. J. Exp. Med 1986. 164: 1455–1469. PubMed PMC
Clark EA and Lane PJ, Regulation of human B-cell activation and adhesion. Annu. Rev. Immunol 1991. 9: 97–127. PubMed
Wu YC, Kipling D and Dunn-Walters DK, The relationship between CD27 negative and positive B cell populations in human peripheral blood. Front. Immunol 2011. 2: 81. PubMed PMC
Wei C, Anolik J, Cappione A, Zheng B, Pugh-Bernard A, Brooks J, Lee EH et al., A new population of cells lacking expression of CD27 represents a notable component of the B cell-memory compartment in systemic lupus erythematosus. J. Immunol 2007. 178: 6624–6633. PubMed
Jacobi AM, Reiter K, Mackay M, Aranow C, Hiepe F, Radbruch A, Hansen A et al., Activated memory B cell subsets correlate with disease activity in systemic lupus erythematosus: delineation by expression of CD27, IgD, and CD95. Arthritis Rheum. 2008. 58: 1762–1773. PubMed
Wehr C, Eibel H, Masilamani M, Illges H, Schlesier M, Peter HH and Warnatz K, A new CD21low B cell population in the peripheral blood of patients with SLE. Clin. Immunol 2004. 113: 161–171. PubMed
Tedder TF, Zhou LJ and Engel P, The CD19/CD21 signal transduction complex of B lymphocytes. Immunol. Today 1994. 15: 437–442. PubMed
Jacobi AM and Dorner T, B-cell-directed therapy in patients with connective tissue diseases. Dtsch. Med. Wochenschr 2012. 137: 1755–1757. PubMed
Polikowsky HG, Wogsland CE, Diggins KE, Huse K and Irish JM, Cutting edge: redox signaling hypersensitivity distinguishes human germinal center B Cells. J. Immunol 2015. 195: 1364–1367. PubMed PMC
Carrion C, Guerin E, Gachard N, le Guyader A, Giraut S and Feuillard J, Adult bone marrow three-dimensional phenotypic landscape of B-cell differentiation. Cytometry B Clin. Cytom. 2019. 96: 30–38. PubMed
Bernasconi NL, Traggiai E and Lanzavecchia A, Maintenance of serological memory by polyclonal activation of human memory B cells. Science 2002. 298: 2199–2202. PubMed
Giesecke C, Meyer T, Durek P, Maul J, Preiss J, Jacobs JFM et al., simultaneous presence of non- and highly mutated keyhole limpet hemocyanin (KLH)-specific plasmablasts early after primary KLH immunization suggests cross-reactive memory B cell activation. J. Immunol 2018. 200(12): 3981–3992. PubMed
Liao HY, Tao L, Zhao J, Qin J, Zeng GC, Cai SW et al., Clostridium butyricum in combination with specific immunotherapy converts antigen-specific B cells to regulatory B cells in asthmatic patients. Sci. Rep 2016. 6: 20481. PubMed PMC
Ellebedy AH, Jackson KJ, Kissick HT, Nakaya HI, Davis CW, Roskin KM et al., Defining antigen-specific plasmablast and memory B cell subsets in human blood after viral infection or vaccination. Nat. Immunol 2016. 17(10): 1226–1234. PubMed PMC
Kerkman PF, Fabre E, van der Voort EI, Zaldumbide A, Rombouts Y, Rispens T et al., Identification and characterisation of citrullinated antigen-specific B cells in peripheral blood of patients with rheumatoid arthritis. Ann. Rheum. Dis 2016. 75: 1170–1176. PubMed
Murugan R, Buchauer L, Triller G, Kreschel C, Costa G, Pidelaserra Marti G et al., Clonal selection drives protective memory B cell responses in controlled human malaria infection. Sci. Immunol 2018. 3(20): eaap8029. PubMed
Germar K, Fehres CM, Scherer HU, van Uden N, Pollastro S, Yeremenko N et al., Generation and characterization of anticitrullinated protein antibody-producing B-cell clones from rheumatoid arthritis patients. Arthritis Rheumatol. 2019. 71: 340–350. PubMed
Kwakkenbos MJ, Diehl SA, Yasuda E, Bakker AQ, van Geelen CM, Lukens MV et al., Generation of stable monoclonal antibody-producing B cell receptor-positive human memory B cells by genetic programming. Nat. Med 2010. 16(1): 123–128. PubMed PMC
Giesecke C, Frolich D, Reiter K, Mei HE, Wirries I, Kuhly R et al., Tissue distribution and dependence of responsiveness of human antigen-specific memory B cells. J. Immunol 2014. 192(7): 3091–3100. PubMed
Kerkman PF, Kempers AC, van der Voort EI, van Oosterhout M, Huizinga TW, Toes RE et al., Synovial fluid mononuclear cells provide an environment for long-term survival of antibody-secreting cells and promote the spontaneous production of anti-citrullinated protein antibodies. Ann. Rheum. Dis 2016. 75(12): 2201–2207. PubMed
Kerkman PF, Rombouts Y, van der Voort EI, Trouw LA, Huizinga TW, Toes RE et al., Circulating plasmablasts/plasmacells as a source of anticitrullinated protein antibodies in patients with rheumatoid arthritis. Ann. Rheum. Dis 2013. 72(7): 1259–1263. PubMed
Hansen A, Reiter K, Dorner T and Pruss A, Cryopreserved human B cells as an alternative source for single cell mRNA analysis. Cell Tissue Bank 2005. 6(4): 299–308. PubMed
Townsend SE, Goodnow CC and Cornall RJ, Single epitope multiple staining to detect ultralow frequency B cells. J. Immunol. Methods 2001. 249(1–2): 137–146. PubMed
Brooks JF, Liu X, Davies JM, Wells JW and Steptoe RJ, Tetramer-based identification of naive antigen-specific B cells within a polyclonal repertoire. Eur. J. Immunol 2018. 48(7): 1251–1254. PubMed
Cornec D, Berti A, Hummel A, Peikert T, Pers JO and Specks U, Identification and phenotyping of circulating autoreactive proteinase 3-specific B cells in patients with PR3-ANCA associated vasculitis and healthy controls. J. Autoimmun 2017. 84: 122–131. PubMed
Frolich D, Giesecke C, Mei HE, Reiter K, Daridon C, Lipsky PE and Dorner T, Secondary immunization generates clonally related antigen-specific plasma cells and memory B cells. J. Immunol 2010. 185: 3103–3110. PubMed
Lighaam LC, Vermeulen E, Bleker T, Meijlink KJ, Aalberse RC, Barnes E et al., Phenotypic differences between IgG4+ and IgG1+ B cells point to distinct regulation of the IgG4 response. J. Allergy Clin. Immunol 2014. 133(1): 267–270 e1–6. PubMed
Koning MT, Kielbasa SM, Boersma V, Buermans HPJ, van der Zeeuw SAJ, van Bergen CAM et al., ARTISAN PCR: rapid identification of full-length immunoglobulin rearrangements without primer binding bias. Br. J. Haematol 2017. 178(6): 983–986. PubMed
Gatto M, Wiedemann A, Nomovi N, Reiter K, Schrezenmeier E, Rose T et al., Circulating Pentraxin 3-Specific B Cells Are Decreased in Lupus Nephritis. Front. Immunol 2019. 10: 29. PubMed PMC
Odendahl M, Mei H, Hoyer BF, Jacobi AM, Hansen A, Muehlinghaus G, Berek C et al., Generation of migratory antigen-specific plasma blasts and mobilization of resident plasma cells in a secondary immune response. Blood 2005. 105: 1614–1621. PubMed
Mei HE, Hahne S, Redlin A, Hoyer BF, Wu K, Baganz L et al., Plasmablasts With a Mucosal Phenotype Contribute to Plasmacytosis in Systemic Lupus Erythematosus. Arthritis Rheumatol. 2017. 69: 2018–2028. PubMed
Willemze A, Trouw LA, Toes RE and Huizinga TW, The influence of ACPA status and characteristics on the course of RA. Nat. Rev. Rheumatol 2012. 8(3): 144–152. PubMed
Katz SI, Parker D and Turk JL, B-cell suppression of delayed hypersensitivity reactions. Nature 1974. 251: 550–551. PubMed
Neta R and Salvin SB, Specific suppression of delayed hypersensitivity: the possible presence of a suppressor B cell in the regulation of delayed hypersensitivity. J. Immunol 1974. 113: 1716–1725. PubMed
Wolf SD, Dittel BN, Hardardottir F and Janeway CA Jr., Experimental autoimmune encephalomyelitis induction in genetically B cell-deficient mice. J. Exp. Med 1996. 184: 2271–2278. PubMed PMC
Mizoguchi A, Mizoguchi E, Takedatsu H, Blumberg RS and Bhan AK, Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation. Immunity 2002. 16: 219–230. PubMed
Fillatreau S, Sweenie CH, McGeachy MJ, Gray D and Anderton SM, B cells regulate autoimmunity by provision of IL-10. Nat. Immunol 2002. 3: 944–950. PubMed
van de Veen W, Stanic B, Wirz OF, Jansen K, Globinska A and Akdis M, Role of regulatory B cells in immune tolerance to allergens and beyond. J. Allergy Clin. Immunol 2016. 138: 654–665. PubMed
Wirz OF, Globinska A, Ochsner U, van de Veen W, Eller E, Christiansen ES, Halken S et al., Comparison of regulatory B cells in asthma and allergic rhinitis. Allergy 2019. 74: 815–818. PubMed
van de Veen W, Stanic B, Yaman G, Wawrzyniak M, Sollner S, Akdis DG, Ruckert B et al., IgG4 production is confined to human IL-10-producing regulatory B cells that suppress antigen-specific immune responses. J. Allergy Clin. Immunol 2013. 131: 1204–1212. PubMed
Kaminski DA, Wei C, Qian Y, Rosenberg AF and Sanz I, Advances in human B cell phenotypic profiling. Front. Immunol 2012. 3: 302. PubMed PMC
Carter NA, Rosser EC and Mauri C, Interleukin-10 produced by B cells is crucial for the suppression of Th17/Th1 responses, induction of T regulatory type 1 cells and reduction of collagen-induced arthritis. Arthritis Res. Ther 2012. 14: R32. PubMed PMC
Parekh VV, Prasad DV, Banerjee PP, Joshi BN, Kumar A and Mishra GC, B cells activated by lipopolysaccharide, but not by anti-Ig and anti-CD40 antibody, induce anergy in CD8+ T cells: role of TGF-beta 1. J. Immunol 2003. 170: 5897–5911. PubMed
Tian J, Zekzer D, Hanssen L, Lu Y, Olcott A and Kaufman DL, Lipopolysaccharide-activated B cells down-regulate Th1 immunity and prevent autoimmune diabetes in nonobese diabetic mice. J. Immunol 2001. 167: 1081–1089. PubMed
Carter NA, Vasconcellos R, Rosser EC, Tulone C, Munoz-Suano A, Kamanaka M, Ehrenstein MR et al., Mice lacking endogenous IL-10-producing regulatory B cells develop exacerbated disease and present with an increased frequency of Th1/Th17 but a decrease in regulatory T cells. J. Immunol 2011. 186: 5569–5579. PubMed
Schioppa T, Moore R, Thompson RG, Rosser EC, Kulbe H, Nedospasov S, Mauri C et al., B regulatory cells and the tumor-promoting actions of TNF-alpha during squamous carcinogenesis. Proc. Natl. Acad. Sci. USA 2011. 108: 10662–10667. PubMed PMC
Gray M, Miles K, Salter D, Gray D and Savill J, Apoptotic cells protect mice from autoimmune inflammation by the induction of regulatory B cells. Proc. Natl. Acad. Sci. USA 2007. 104: 14080–14085. PubMed PMC
Bankoti R, Gupta K, Levchenko A and Stager S, Marginal zone B cells regulate antigen-specific T cell responses during infection. J. Immunol 2012. 188: 3961–3971. PubMed
Matsushita T, Horikawa M, Iwata Y and Tedder TF, Regulatory B cells (B10 cells) and regulatory T cells have independent roles in controlling experimental autoimmune encephalomyelitis initiation and late-phase immunopathogenesis. J. Immunol 2010. 185: 2240–2252. PubMed PMC
Kalampokis I, Yoshizaki A and Tedder TF, IL-10-producing regulatory B cells (B10 cells) in autoimmune disease. Arthritis Res. Ther 2013. 15 (Suppl 1): S1. PubMed PMC
Watanabe R, Ishiura N, Nakashima H, Kuwano Y, Okochi H, Tamaki K, Sato S et al., Regulatory B cells (B10 cells) have a suppressive role in murine lupus: CD19 and B10 cell deficiency exacerbates systemic autoimmunity. J. Immunol 2010. 184: 4801–4809. PubMed PMC
Sheng JR, Quan S and Soliven B, CD1d(hi)CD5+ B cells expanded by GM-CSF in vivo suppress experimental autoimmune myasthenia gravis. J. Immunol 2014. 193: 2669–2677. PubMed PMC
Yang M, Deng J, Liu Y, Ko KH, Wang X, Jiao Z, Wang S et al., IL-10-producing regulatory B10 cells ameliorate collagen-induced arthritis via suppressing Th17 cell generation. Am. J. Pathol 2012. 180: 2375–2385. PubMed
Yanaba K, Yoshizaki A, Asano Y, Kadono T, Tedder TF and Sato S, IL-10-producing regulatory B10 cells inhibit intestinal injury in a mouse model. Am. J. Pathol 2011. 178: 735–743. PubMed PMC
Khan AR, Amu S, Saunders SP, Hams E, Blackshields G, Leonard MO, Weaver CT et al., Ligation of TLR7 on CD19(+) CD1d(hi) B cells suppresses allergic lung inflammation via regulatory T cells. Eur. J. Immunol 2015. 45: 1842–1854. PubMed
Amu S, Saunders SP, Kronenberg M, Mangan NE, Atzberger A and Fallon PG, Regulatory B cells prevent and reverse allergic airway inflammation via FoxP3-positive T regulatory cells in a murine model. J. Allergy Clin. Immunol 2010. 125: 1114–1124.e1118. PubMed
Yanaba K, Bouaziz JD, Haas KM, Poe JC, Fujimoto M and Tedder TF, A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses. Immunity 2008. 28: 639–650. PubMed
Xiao S, Brooks CR, Zhu C, Wu C, Sweere JM, Petecka S, Yeste A et al., Defect in regulatory B-cell function and development of systemic autoimmunity in T-cell Ig mucin 1 (Tim-1)mucin domain-mutant mice. Proc. Natl. Acad. Sci. USA 2012. 109: 12105–12110. PubMed PMC
Neves P, Lampropoulou V, Calderon-Gomez E, Roch T, Stervbo U, Shen P, Kuhl AA et al., Signaling via the MyD88 adaptor protein in B cells suppresses protective immunity during Salmonella typhimurium infection. Immunity 2010. 33: 777–790. PubMed
Dass S, Vital EM and Emery P, Development of psoriasis after B cell depletion with rituximab. Arthritis Rheum. 2007. 56: 2715–2718. PubMed
Goetz M, Atreya R, Ghalibafian M, Galle PR and Neurath MF, Exacerbation of ulcerative colitis after rituximab salvage therapy. Inflamm. Bowel Dis 2007. 13: 1365–1368. PubMed
Blair PA, Norena LY, Flores-Borja F, Rawlings DJ, Isenberg DA, Ehrenstein MR and Mauri C, CD19(+)CD24(hi)CD38(hi) B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic Lupus Erythematosus patients. Immunity 2010. 32: 129–140. PubMed
Das A, Ellis G, Pallant C, Lopes AR, Khanna P, Peppa D, Chen A et al., IL-10-producing regulatory B cells in the pathogenesis of chronic hepatitis B virus infection. J. Immunol 2012. 189: 3925–3935. PubMed PMC
Flores-Borja F, Bosma A, Ng D, Reddy V, Ehrenstein MR, Isenberg DA and Mauri C, CD19+CD24hiCD38hi B cells maintain regulatory T cells while limiting TH1 and TH17 differentiation. Sci. Transl. Med 2013. 5: 173ra123. PubMed
Iwata Y, Matsushita T, Horikawa M, Dilillo DJ, Yanaba K, Venturi GM, Szabolcs PM et al., Characterization of a rare IL-10-competent B-cell subset in humans that parallels mouse regulatory B10 cells. Blood 2011. 117: 530–541. PubMed PMC
Machado-Santos J, Saji E, Troscher AR, Paunovic M, Liblau R, Gabriely G, Bien CG et al., The compartmentalized inflammatory response in the multiple sclerosis brain is composed of tissue-resident CD8+ T lymphocytes and B cells. Brain 2018. 141: 2066–2082. PubMed PMC
Horikawa M, Weimer ET, DiLillo DJ, Venturi GM, Spolski R, Leonard WJ, Heise MT et al., Regulatory B cell (B10 Cell) expansion during Listeria infection governs innate and cellular immune responses in mice. J Immunol 2013. 190: 1158–1168. PubMed PMC
Menon M, Blair PA, Isenberg DA and Mauri C, A regulatory feedback between plasmacytoid dendritic cells and regulatory B cells is aberrant in systemic lupus erythematosus. Immunity 2016. 44: 683–697. PubMed PMC
Ramirez J, Lukin K and Hagman J, From hematopoietic progenitors to B cells: mechanisms of lineage restriction and commitment. Curr. Opin. Immunol 2010. 22: 177–184. PubMed PMC
Hardy RR, Kincade PW and Dorshkind K, The protean nature of cells in the B lymphocyte lineage. Immunity 2007. 26: 703–714. PubMed
Cerutti A, Puga I and Cols M, New helping friends for B cells. Eur. J. Immunol 2012. 42: 1956–1968. PubMed PMC
Xu Z, Zan H, Pone EJ, Mai T and Casali P, Immunoglobulin class-switch DNA recombination: induction, targeting and beyond. Nat. Rev. Immunol 2012. 12: 517–531. PubMed PMC
King C, Tangye SG and Mackay CR, T follicular helper (TFH) cells in normal and dysregulated immune responses. Annu. Rev. Immunol 2008. 26: 741–766. PubMed
Papavasiliou FN and Schatz DG, Somatic hypermutation of immunoglobulin genes: merging mechanisms for genetic diversity. Cell 2002. 109 Suppl: S35–4. PubMed
Radbruch A, Muehlinghaus G, Luger EO, Inamine A, Smith KG, Dorner T and Hiepe F, Competence and competition: the challenge of becoming a long-lived plasma cell. Nat. Rev. Immunol 2006. 6: 741–750. PubMed
Honjo T, Immunoglobulin genes. Annu. Rev. Immunol 1983. 1: 499–528. PubMed
Schatz DG and Ji Y, Recombination centres and the orchestration of V(D)J recombination. Nat. Rev. Immunol 2011. 11: 251–263. PubMed
Shan M, Carrillo J, Yeste A, Gutzeit C, Segura-Garzon D, Walland AC, Pybus M et al., Secreted IgD amplifies humoral T helper 2 cell responses by binding basophils via galectin-9 and CD44. Immunity 2018. 49: 709–724 e708. PubMed PMC
Boonpiyathad T, Meyer N, Moniuszko M, Sokolowska M, Eljaszewicz A, Wirz OF, Tomasiak-Lozowska MM et al., Highdose bee venom exposure induces similar tolerogenic B-cell responses in allergic patients and healthy beekeepers. Allergy 2017. 72: 407–415. PubMed
Kallies A, Hasbold J, Tarlinton DM, Dietrich W, Corcoran LM, Hodgkin PD and Nutt SL, Plasma cell ontogeny defined by quantitative changes in blimp-1 expression. J. Exp. Med 2004. 200: 967–977. PubMed PMC
Nutt SL, Hodgkin PD, Tarlinton DM and Corcoran LM, The generation of antibody-secreting plasma cells. Nat. Rev. Immunol 2015. 15: 160–171. PubMed
Bankoti R, Ogawa C, Nguyen T, Emadi L, Couse M, Salehi S, Fan X et al., Differential regulation of Effector and Regulatory T cell function by Blimp1. Sci. Rep 2017. 7: 12078. PubMed PMC
Fukushima PI, Nguyen PKT, O’Grady P and Stetler-Stevenson M, Flow cytometric analysis of kappa and lambda light chain expression in evaluation of specimens for B-cell neoplasia. Cytometry 1996. 26: 243–252. PubMed
Pelz A, Schaffert H, Diallo R, Hiepe F, Meisel A and Kohler S, S1P receptor antagonists fingolimod and siponimod do not improve the outcome of experimental autoimmune myasthenia gravis mice after disease onset. Eur. J. Immunol 2018. 48: 498–508. PubMed
Chu VT, Fröhlich A, Steinhauser G, Scheel T, Roch T, Fillatreau S, Lee JJ et al., Eosinophils are required for the maintenance of plasma cells in the bone marrow. Nat. Immunol 2011. 12: 151–159. PubMed
Wilmore JR, Jones DD and Allman D, Protocol for improved resolution of plasma cell subpopulations by flow cytometry. Eur. J. Immunol 2017. 47: 1386–1388. PubMed PMC
Cantor J, Browne CD, Ruppert R, Féral CC, Fässler R, Rickert RC and Ginsberg MH, CD98hc facilitates B cell proliferation and adaptive humoral immunity. Nat. Immunol 2009. 10: 412–419. PubMed PMC
Wrammert J, Källberg E, Agace WW and Leanderson T, Ly6C expression differentiates plasma cells from other B cell subsets in mice. Eur. J. Immunol 2002. 32: 97–103. PubMed
Smith KGC, Hewitson TD, Nossal GJV and Tarlinton DM, The phenotype and fate of the antibody-forming cells of the splenic foci. Eur. J. Immunol 1996. 26: 444–448. PubMed
Manz RA, Thiel A and Radbruch A, Lifetime of plasma cells in the bone marrow. Nature 1997. 388: 133–134. PubMed
Zehentmeier S, Roth K, Cseresnyes Z, Sercan Ö, Horn K, Niesner RA, Chang H-D et al., Static and dynamic components synergize to form a stable survival niche for bone marrow plasma cells: cellular immune response. Eur. J. Immunol 2014. 44: 2306–2317. PubMed
Sanderson RD, Lalor P and Bernfield M, B lymphocytes express and lose syndecan at specific stages of differentiation. Cell Regul. 1989. 1: 27–35. PubMed PMC
Arumugakani G, Stephenson SJ, Newton DJ, Rawstron A, Emery P, Doody GM, McGonagle D et al., Early emergence of CD19- negative human antibody-secreting cells at the plasmablast to plasma cell transition. J. Immunol 2017. 198: 4618–4628. PubMed PMC
Racine R, Chatterjee M and Winslow GM, CD11c expression identifies a population of extrafollicular antigen-specific splenic plasmablasts responsible for CD4 T-independent antibody responses during intracellular bacterial infection. J. Immunol 2008. 181: 1375–1385. PubMed PMC
Van Camp B, Durie BG, Spier C, De Waele M, Van Riet I, Vela E, Frutiger Y et al., Plasma cells in multiple myeloma express a natural killer cell-associated antigen: CD56 (NKH-1; Leu-19). Blood 1990. 76: 377–382. PubMed
Hoffmann FS, Kuhn P-H, Laurent SA, Hauck SM, Berer K, Wendlinger SA, Krumbholz M et al., The immunoregulator soluble TACI is released by ADAM10 and reflects B cell activation in autoimmunity. J. Immunol 2015. 194: 542–552. PubMed PMC
Pinto D, Montani E, Bolli M, Garavaglia G, Sallusto F, Lanzavecchia A and Jarrossay D, A functional BCR in human IgA and IgM plasma cells. Blood 2013. 121: 4110–4114. PubMed
Yoshida T, Mei H, Dörner T, Hiepe F, Radbruch A, Fillatreau S and Hoyer BF, Memory B and memory plasma cells. Immunol. Rev 2010. 237: 117–139. PubMed
Slifka MK, Antia R, Whitmire JK and Ahmed R, Humoral immunity due to long-lived plasma cells. Immunity 1998. 8: 363–372. PubMed
Jacobi AM, Mei H, Hoyer BF, Mumtaz IM, Thiele K, Radbruch A, Burmester GR et al., HLA-DRhigh/CD27high plasmablasts indicate active disease in patients with systemic lupus erythematosus. Ann. Rheum. Dis 2010. 69: 305–308. PubMed
Hoyer BF, Mumtaz IM, Loddenkemper K, Bruns A, Sengler C, Hermann KG, Maza S et al., Takayasu arteritis is characterised by disturbances of B cell homeostasis and responds to B cell depletion therapy with rituximab. Ann. Rheum. Dis 2012. 71: 75–79. PubMed
Sarkander J, Hojyo S and Tokoyoda K, Vaccination to gain humoral immune memory. Clin. Transl. Immunol 2016. 5: e120. PubMed PMC
Wrammert J, Onlamoon N, Akondy RS, Perng GC, Polsrila K, Chandele A, Kwissa M et al., Rapid and massive virus-specific plasmablast responses during acute dengue virus infection in humans. J. Virol 2012. 86: 2911–2918. PubMed PMC
Mei HE, Frolich D, Giesecke C, Loddenkemper C, Reiter K, Schmidt S, Feist E et al., Steady-state generation of mucosal IgA+ plasmablasts is not abrogated by B-cell depletion therapy with rituximab. Blood 2010. 116: 5181–5190. PubMed
Huggins J, Pellegrin T, Felgar RE, Wei C, Brown M, Zheng B, Milner EC et al., CpG DNA activation and plasma-cell differentiation of CD27- naive human B cells. Blood 2007. 109: 1611–1619. PubMed PMC
Cocco M, Stephenson S, Care MA, Newton D, Barnes NA, Davison A, Rawstron A et al., In vitro generation of long-lived human plasma cells. J. Immunol 2012. 189: 5773–5785. PubMed
Mei HE, Yoshida T, Sime W, Hiepe F, Thiele K, Manz RA, Radbruch A et al., Blood-borne human plasma cells in steady state are derived from mucosal immune responses. Blood 2009. 113: 2461–2469. PubMed
Kantele A, Hakkinen M, Moldoveanu Z, Lu A, Savilahti E, Alvarez RD, Michalek S et al., Differences in immune responses induced by oral and rectal immunizations with Salmonella typhi Ty21a: evidence for compartmentalization within the common mucosal immune system in humans. Infect. Immun 1998. 66: 5630–5635. PubMed PMC
Medina F, Segundo C, Campos-Caro A, Gonzalez-Garcia I and Brieva JA, The heterogeneity shown by human plasma cells from tonsil, blood, and bone marrow reveals graded stages of increasing maturity, but local profiles of adhesion molecule expression. Blood 2002. 99: 2154–2161. PubMed
Caraux A, Klein B, Paiva B, Bret C, Schmitz A, Fuhler GM, Bos NA et al., Circulating human B and plasma cells. Age-associated changes in counts and detailed characterization of circulating normal CD138–and CD138+ plasma cells. Haematologica 2010. 95: 1016–1020. PubMed PMC
Arce S, Luger E, Muehlinghaus G, Cassese G, Hauser A, Horst A, Lehnert K et al., CD38 low IgG-secreting cells are precursors of various CD38 high-expressing plasma cell populations. J. Leukoc. Biol 2004. 75: 1022–1028. PubMed
Jourdan M, Caraux A, Caron G, Robert N, Fiol G, Reme T, Bollore K et al., Characterization of a transitional preplasmablast population in the process of human B cell to plasma cell differentiation. J. Immunol 2011. 187: 3931–3941. PubMed
Mei HE, Schmidt S and Dorner T, Rationale of anti-CD19 immunotherapy: an option to target autoreactive plasma cells in autoimmunity. Arthritis Res. Ther 2012. 14 Suppl 5: S1. PubMed PMC
Lokhorst HM, Plesner T, Laubach JP, Nahi H, Gimsing P, Hansson M, Minnema MC et al., Targeting CD38 with daratumumab monotherapy in multiple myeloma. N Engl J Med 2015. 373: 1207–1219. PubMed
Halliley JL, Tipton CM, Liesveld J, Rosenberg AF, Darce J, Gregoretti IV, Popova L et al., Long-lived plasma cells are contained within the CD19(-)CD38(hi)CD138(+) subset in human bone marrow. Immunity 2015. 43: 132–145. PubMed PMC
Landsverk OJ, Snir O, Casado RB, Richter L, Mold JE, Reu P, Horneland R et al., Antibody-secreting plasma cells persist for decades in human intestine. J. Exp. Med 2017. 214: 309–317. PubMed PMC
Hacbarth E and Kajdacsy-Balla A, Low density neutrophils in patients with systemic lupus erythematosus, rheumatoid arthritis, and acute rheumatic fever. Arthritis Rheum. 1986. 29: 1334–1342. PubMed
Sato S, Fujimoto M, Hasegawa M and Takehara K, Altered blood B lymphocyte homeostasis in systemic sclerosis: expanded naive B cells and diminished but activated memory B cells. Arthritis Rheum. 2004. 50: 1918–1927. PubMed
Carrell J and Groves CJ, OMIP-043: Identification of human antibody secreting cell subsets. Cytometry A 2018. 93: 190–193. PubMed
Mesin L, Di Niro R, Thompson KM, Lundin KE and Sollid LM, Long-lived plasma cells from human small intestine biopsies secrete immunoglobulins for many weeks in vitro. J. Immunol 2011. 187: 2867–2874. PubMed
Laurent SA, Hoffmann FS, Kuhn P-H, Cheng Q, Chu Y, Schmidt-Supprian M, Hauck SM et al., γ-Secretase directly sheds the survival receptor BCMA from plasma cells. Nat. Commun 2015. 6: 7333. PubMed PMC
Kunkel EJ and Butcher EC, Plasma-cell homing. Nat. Rev. Immunol 2003. 3: 822–829. PubMed
Delogu A, Schebesta A, Sun Q, Aschenbrenner K, Perlot T and Busslinger M, Gene repression by Pax5 in B cells is essential for blood cell homeostasis and is reversed in plasma cells. Immunity 2006. 24: 269–281. PubMed
Medina F, Segundo C, Jimenez-Gomez G, Gonzalez-Garcia I, Campos-Caro A and Brieva JA, Highermaturity and connective tissue association distinguish resident from recently generated human tonsil plasma cells. J. Leukoc. Biol 2007. 82: 1430–1436. PubMed
Frigyesi I, Adolfsson J, Ali M, Christophersen MK, Johnsson E, Turesson I, Gullberg U et al., Robust isolation of malignant plasma cells in multiple myeloma. Blood 2014. 123: 1336–1340. PubMed
Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, Koyasu S et al., Innate lymphoid cells—a proposal for uniform nomenclature. Nat. Rev. Immunol 2013. 13: 145–149. PubMed
Vivier E, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, Koyasu S et al., Innate lymphoid cells: 10 years on. Cell 2018. 174: 1054–1066. PubMed
Biron CA, Nguyen KB, Pien GC, Cousens LP and Salazar-Mather TP, Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu. Rev. Immunol 1999. 17: 189–220. PubMed
Daussy C, Faure F, Mayol K, Viel S, Gasteiger G, Charrier E, Bienvenu J et al., T-bet and Eomes instruct the development of two distinct natural killer cell lineages in the liver and in the bone marrow. J. Exp. Med 2014. 211: 563–577. PubMed PMC
Klose CS, Flach M, Mohle L, Rogell L, Hoyler T, Ebert K, Fabiunke C et al., Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 2014. 157: 340–356. PubMed
Sojka DK, Plougastel-Douglas B, Yang L, Pak-Wittel MA, Artyomov MN, Ivanova Y, Zhong C et al., Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells. Elife 2014. 3: e01659. PubMed PMC
Walker JA and McKenzie AN, Development and function of group 2 innate lymphoid cells. Curr. Opin. Immunol 2013. 25: 148–155. PubMed PMC
Montaldo E, Juelke K and Romagnani C, Group 3 innate lymphoid cells (ILC3s): origin, differentiation, and plasticity in humans and mice. Eur. J. Immunol 2015. 45: 2171–2182. PubMed
Spits H and Cupedo T, Innate lymphoid cells: emerging insights in development, lineage relationships, and function. Annu. Rev. Immunol 2012. 30: 647–675. PubMed
Paclik D, Stehle C, Lahmann A, Hutloff A and Romagnani C, ICOS regulates the pool of group 2 innate lymphoid cells under homeostatic and inflammatory conditions in mice. Eur. J. Immunol 2015. 45: 2766–2772. PubMed
Ryon JJ, Isolation of mononuclear cells from tonsillar tissue. Curr. Protoc. Immunol 2001. Chapter 7: Unit 7 8. PubMed
Gasteiger G, Fan X, Dikiy S, Lee SY and Rudensky AY, Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs. Science 2015. 350: 981–985. PubMed PMC
Hoyler T, Klose CS, Souabni A, Turqueti-Neves A, Pfeifer D, Rawlins EL, Voehringer D et al., The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity 2012. 37: 634–648. PubMed PMC
Fuchs A, Vermi W, Lee JS, Lonardi S, Gilfillan S, Newberry RD, Cella M et al., Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-gamma-producing cells. Immunity 2013. 38: 769–781. PubMed PMC
Robinette ML, Fuchs A, Cortez VS, Lee JS, Wang Y, Durum SK, Gilfillan S et al., Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets. Nat. Immunol 2015. 16: 306–317. PubMed PMC
Serafini N, Klein Wolterink RG, Satoh-Takayama N, Xu W, Vosshenrich CA, Hendriks RW and Di Santo JP, Gata3 drives development of RORgammat+ group 3 innate lymphoid cells. J. Exp. Med 2014. 211: 199–208. PubMed PMC
Moro K, Yamada T, Tanabe M, Takeuchi T, Ikawa T, Kawamoto H, Furusawa J et al., Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature 2010. 463: 540–544. PubMed
Neill DR, Wong SH, Bellosi A, Flynn RJ, Daly M, Langford TK, Bucks C et al., Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 2010. 464: 1367–1370. PubMed PMC
Sawa S, Cherrier M, Lochner M, Satoh-Takayama N, Fehling HJ, Langa F et al., Lineage relationship analysis of RORgammat+ innate lymphoid cells. Science 2010. 330: 665–669. PubMed
Rankin LC, Groom JR, Chopin M, Herold MJ, Walker JA, Mielke LA et al., The transcription factor T-bet is essential for the development of NKp46+ innate lymphocytes via the Notch pathway. Nat. Immunol 2013. 14: 389–395. PubMed PMC
Klose CS, Kiss EA, Schwierzeck V, Ebert K, Hoyler T, d’Hargues Y, Goppert N et al., A T-bet gradient controls the fate and function of CCR6-RORgammat+ innate lymphoid cells. Nature 2013. 494: 261–265. PubMed
Vonarbourg C, Mortha A, Bui VL, Hernandez PP, Kiss EA, Hoyler T, Flach M et al., Regulated expression of nuclear receptor RORgammat confers distinct functional fates to NK cell receptor-expressing RORgammat(+) innate lymphocytes. Immunity 2010. 33: 736–751. PubMed PMC
Cella M, Fuchs A, Vermi W, Facchetti F, Otero K, Lennerz JKM, Doherty JM et al., A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 2009. 457: 722–725. PubMed PMC
Mjosberg JM, Trifari S, Crellin NK, Peters CP, van Drunen CM, Piet B, Fokkens WJ et al., Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat. Immunol 2011. 12: 1055–1062. PubMed
Bernink JH, Peters CP, Munneke M, te Velde AA, Meijer SL, Weijer K, Hreggvidsdottir HS et al., Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat. Immunol 2013. 14: 221–229. PubMed
Hazenberg MD and Spits H, Human innate lymphoid cells. Blood 2014. 124: 700–709. PubMed
Cupedo T, Crellin NK, Papazian N, Rombouts EJ, Weijer K, Grogan JL, Fibbe WE et al., Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells. Nat. Immunol 2009. 10: 66–74. PubMed
Marquardt N, Beziat V, Nystrom S, Hengst J, Ivarsson MA, Kekalainen E, Johansson H et al., Cutting edge: identification and characterization of human intrahepatic CD49a+ NK cells. J. Immunol 2015. 194: 2467–2471. PubMed
Vacca P, Montaldo E, Croxatto D, Loiacono F, Canegallo F, Venturini PL, Moretta L et al., Identification of diverse innate lymphoid cells in human decidua. Mucosal Immunol. 2015. 8: 254–264. PubMed
Montaldo E, Vacca P, Chiossone L, Croxatto D, Loiacono F, Martini S, Ferrero S et al., Unique eomes(+) NK cell subsets are present in uterus and decidua during early pregnancy. Front. Immunol 2015. 6: 646. PubMed PMC
Teunissen MB, Munneke JM, Bernink JH, Spuls PI, Res PC, Te Velde A, Cheuk S et al., Composition of innate lymphoid cell subsets in the human skin: enrichment of NCR(+) ILC3 in lesional skin and blood of psoriasis patients. J. Invest. Dermatol 2014. 134: 2351–2360. PubMed
Lim AI, Li Y, Lopez-Lastra S, Stadhouders R, Paul F, Casrouge A, Serafini N et al., Systemic human ILC precursors provide a substrate for tissue ILC differentiation. Cell 2017. 168: 1086–1100 e1010. PubMed
Wojno ED, Monticelli LA, Tran SV, Alenghat T, Osborne LC, Thome JJ, Willis C et al., The prostaglandin D(2) receptor CRTH2 regulates accumulation of group 2 innate lymphoid cells in the inflamed lung. Mucosal Immunol. 2015. 8: 1313–1323. PubMed PMC
Kim S, Iizuka K, Kang HS, Dokun A, French AR, Greco S and Yokoyama WM, In vivo developmental stages in murine natural killer cell maturation. Nat. Immunol 2002. 3: 523–528. PubMed
Hayakawa Y and Smyth MJ, CD27 dissects mature NK cells into two subsets with distinct responsiveness and migratory capacity. J. Immunol 2006. 176: 1517–1524. PubMed
Chiossone L, Chaix J, Fuseri N, Roth C, Vivier E and Walzer T, Maturation of mouse NK cells is a 4-stage developmental program. Blood 2009. 113: 5488–5496. PubMed
Bjorkstrom NK, Riese P, Heuts F, Andersson S, Fauriat C, Ivarsson MA, Bjorklund AT et al., Expression patterns of NKG2A, KIR, and CD57 define a process of CD56dim NK-cell differentiation uncoupled from NK-cell education. Blood 2010. 116: 3853–3864. PubMed
Lopez-Verges S, Milush JM, Pandey S, York VA, Arakawa-Hoyt J, Pircher H, Norris PJ et al., CD57 defines a functionally distinct population of mature NK cells in the human CD56dimCD16+ NK-cell subset. Blood 2010. 116: 3865–3874. PubMed PMC
Juelke K, Killig M, Luetke-Eversloh M, Parente E, Gruen J, Morandi B, Ferlazzo G et al., CD62L expression identifies a unique subset of polyfunctional CD56dim NK cells. Blood 2010. 116: 1299–1307. PubMed
Sanos SL, Bui VL, Mortha A, Oberle K, Heners C, Johner C and Diefenbach A, ROR gamma t and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46(+) cells. Nat. Immunol 2009. 10: 83–91. PubMed PMC
Satoh-Takayama N, Vosshenrich CAJ, Lesjean-Pottier S, Sawa S, Lochner M, Rattis F, Mention JJ et al., Microbial flora drives interleukin 22 production in intestinal NKp46(+) cells that provide innate mucosal immune defense. Immunity 2008. 29: 958–970. PubMed
Luci C, Reynders A, Ivanov II, Cognet C, Chiche L, Chasson L, Hardwigsen J et al., Influence of the transcription factor ROR gamma t on the development of NKp46(+) cell populations in gut and skin. Nat. Immunol 2009. 10: 75–82. PubMed
Fort MM, Cheung J, Yen D, Li J, Zurawski SM, Lo S, Menon S et al., IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity 2001. 15: 985–995. PubMed
Price AE, Liang HE, Sullivan BM, Reinhardt RL, Eisley CJ, Erle DJ and Locksley RM, Systemically dispersed innate IL-13- expressing cells in type 2 immunity. Proc. Natl. Acad. Sci. USA 2010. 107: 11489–11494. PubMed PMC
Walzer T, Blery M, Chaix J, Fuseri N, Chasson L, Robbins SH, Jaeger S et al., Identification, activation, and selective in vivo ablation of mouse NK cells via NKp46. Proc. Natl. Acad. Sci. USA 2007. 104: 3384–3389. PubMed PMC
Carlyle JR, Mesci A, Ljutic B, Belanger S, Tai LH, Rousselle E, Troke AD et al., Molecular and genetic basis for strain-dependent NK1.1 alloreactivity of mouse NK cells. J. Immunol 2006. 176: 7511–7524. PubMed
Del Zotto G, Marcenaro E, Vacca P, Sivori S, Pende D, Della Chiesa M, Moretta F et al., Markers and function of human NK cells in normal and pathological conditions. Cytom. B Clin. Cytom 2017. 92: 100–114. PubMed
Crinier A, Milpied P, Escaliere B, Piperoglou C, Galluso J, Balsamo A, Spinelli L et al., High-dimensional single-cell analysis identifies organ-specific signatures and conserved nk cell subsets in humans and mice. Immunity 201849: 971–986 e975. PubMed PMC
Weizman OE, Adams NM, Schuster IS, Krishna C, Pritykin Y, Lau C, Degli-Esposti MA et al., ILC1 confer early host protection at initial sites of viral infection. Cell 2017171: 795–808 e712. PubMed PMC
Huntington ND, Tabarias H, Fairfax K, Brady J, Hayakawa Y, Degli-Esposti MA, Smyth MJ et al., NK cell maturation and peripheral homeostasis is associated with KLRG1 up-regulation. J. Immunol 2007. 178: 4764–4770. PubMed
Sciume G, Hirahara K, Takahashi H, Laurence A, Villarino AV, Singleton KL, Spencer SP et al., Distinct requirements for T-bet in gut innate lymphoid cells. J. Exp. Med 2012. 209: 2331–2338. PubMed PMC
Quatrini L, Wieduwild E, Escaliere B, Filtjens J, Chasson L, Laprie C, Vivier E et al., Endogenous glucocorticoids control host resistance to viral infection through the tissue-specific regulation of PD-1 expression on NK cells. Nat. Immunol 2018. 19: 954–962. PubMed PMC
Herberman RB, Nunn ME, Holden HT and Lavrin DH, Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int. J. Cancer 1975. 16: 230–239. PubMed
Herberman RB, Nunn ME and Lavrin DH, Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic acid allogeneic tumors. I. Distribution of reactivity and specificity. Int. J. Cancer 1975. 16: 216–229. PubMed
Ljunggren HG and Karre K, In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol. Today 1990. 11: 237–244. PubMed
Moretta A, Bottino C, Mingari MC, Biassoni R and Moretta L, What is a natural killer cell? Nat. Immunol 2002. 3: 6–8. PubMed
Vivier E, Tomasello E, Baratin M, Walzer T and Ugolini S, Functions of natural killer cells. Nat. Immunol 2008. 9: 503–510. PubMed
Lopez-Botet M, Perez-Villar JJ, Carretero M, Rodriguez A, Melero I, Bellon T, Llano M et al., Structure and function of the CD94 C-type lectin receptor complex involved in recognition of HLA class I molecules. Immunol. Rev 1997. 155: 165–174. PubMed
Braud VM, Allan DS, O’Callaghan CA, Soderstrom K, D’Andrea A, Ogg GS, Lazetic S et al., HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 1998. 391: 795–799. PubMed
Moretta A, Bottino C, Vitale M, Pende D, Biassoni R, Mingari MC and Moretta L, Receptors for HLA class-I molecules in human natural killer cells. Annu. Rev. Immunol 1996. 14: 619–648. PubMed
Parham P, MHC class I molecules and KIRs in human history, health and survival. Nat. Rev. Immunol 2005. 5: 201–214. PubMed
Moretta A, Bottino C, Vitale M, Pende D, Cantoni C, Mingari MC, Biassoni R et al., Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu. Rev. Immunol 2001. 19: 197–223. PubMed
Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM et al., Innate or adaptive immunity? The example of natural killer cells. Science 2011. 331: 44–49. PubMed PMC
Raulet DH, Roles of the NKG2D immunoreceptor and its ligands. Nat. Rev. Immunol 2003. 3: 781–790. PubMed
Moretta A, Sivori S, Vitale M, Pende D, Morelli L, Augugliaro R, Bottino C et al., Existence of both inhibitory (p58) and activatory (p50) receptors for HLA-C molecules in human natural killer cells. J. Exp. Med 1995. 182: 875–884. PubMed PMC
Wagtmann N, Biassoni R, Cantoni C, Verdiani S, Malnati MS, Vitale M, Bottino C et al., Molecular clones of the p58NK cell receptor reveal immunoglobulin-related molecules with diversity in both the extra- and intracellular domains. Immunity 1995. 2: 439–449. PubMed
Sivori S, Cantoni C, Parolini S, Marcenaro E, Conte R, Moretta L and Moretta A, IL-21 induces both rapid maturation of human CD34+ cell precursors towards NK cells and acquisition of surface killer Ig-like receptors. Eur. J. Immunol 2003. 33: 3439–3447. PubMed
Freud AG and Caligiuri MA, Human natural killer cell development. Immunol. Rev 2006. 214: 56–72. PubMed
Hu PF, Hultin LE, Hultin P, Hausner MA, Hirji K, Jewett A, Bonavida B et al., Natural killer cell immunodeficiency in HIV disease is manifest by profoundly decreased numbers of CD16+CD56+ cells and expansion of a population of CD16dimCD56- cells with low lytic activity. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol 1995. 10: 331–340. PubMed
Mavilio D, Lombardo G, Benjamin J, Kim D, Follman D, Marcenaro E, O’Shea MA et al., Characterization of CD56-/CD16+ natural killer (NK) cells: a highly dysfunctional NK subset expanded in HIV-infected viremic individuals. Proc. Natl. Acad. Sci. U. S. A 2005. 102: 2886–2891. PubMed PMC
Della Chiesa M, Falco M, Podesta M, Locatelli F, Moretta L, Frassoni F and Moretta A, Phenotypic and functional heterogeneity of human NK cells developing after umbilical cord blood transplantation: a role for human cytomegalovirus? Blood 2012. 119: 399–410. PubMed
Pesce S, Greppi M, Tabellini G, Rampinelli F, Parolini S, Olive D, Moretta L et al., Identification of a subset of human natural killer cells expressing high levels of programmed death 1: a phenotypic and functional characterization. J. Allergy Clin. Immunol 2017139: 335–346 e333. PubMed
Caligiuri MA, Zmuidzinas A, Manley TJ, Levine H, Smith KA and Ritz J, Functional consequences of interleukin 2 receptor expression on resting human lymphocytes. Identification of a novel natural killer cell subset with high affinity receptors. J. Exp. Med 1990. 171: 1509–1526. PubMed PMC
Carson WE, Fehniger TA and Caligiuri MA, CD56bright natural killer cell subsets: characterization of distinct functional responses to interleukin-2 and the c-kit ligand. Eur. J. Immunol 1997. 27: 354–360. PubMed
Frey M, Packianathan NB, Fehniger TA, Ross ME, Wang WC, Stewart CC, Caligiuri MA et al., Differential expression and function of L-selectin on CD56bright and CD56dim natural killer cell subsets. J. Immunol 1998. 161: 400–408. PubMed
Campbell JJ, Qin S, Unutmaz D, Soler D, Murphy KE, Hodge MR, Wu L et al., Unique subpopulations of CD56+ NK and NK-T peripheral blood lymphocytes identified by chemokine receptor expression repertoire. J. Immunol 2001. 166: 6477–6482. PubMed
Robertson MJ, Role of chemokines in the biology of natural killer cells. J. Leukoc. Biol 2002. 71: 173–183. PubMed
Lima M, Leander M, Santos M, Santos AH, Lau C, Queiros ML, Goncalves M et al., Chemokine receptor expression on normal blood CD56(+) NK-cells elucidates cell partners that comigrate during the innate and adaptive immune responses and identifies a transitional NK-cell population. J. Immunol. Res 2015. 2015: 839684. PubMed PMC
De Maria A, Bozzano F, Cantoni C and Moretta L, Revisiting human natural killer cell subset function revealed cytolytic CD56(dim)CD16+ NK cells as rapid producers of abundant IFN-gamma on activation. Proc. Natl. Acad. Sci. USA 2011. 108: 728–732. PubMed PMC
Fauriat C, Long EO, Ljunggren HG and Bryceson YT, Regulation of human NK-cell cytokine and chemokine production by target cell recognition. Blood 2010. 115: 2167–2176. PubMed PMC
Guma M, Angulo A, Vilches C, Gomez-Lozano N, Malats N and Lopez-Botet M, Imprint of human cytomegalovirus infection on the NK cell receptor repertoire. Blood 2004. 104: 3664–3671. PubMed
Malmberg KJ, Beziat V and Ljunggren HG, Spotlight on NKG2C and the human NK-cell response to CMV infection. Eur. J. Immunol 2012. 42: 3141–3145. PubMed
Muccio L, Bertaina A, Falco M, Pende D, Meazza R, Lopez-Botet M, Moretta L et al., Analysis of memory-like natural killer cells in human cytomegalovirus-infected children undergoing alphabeta+T and B cell-depleted hematopoietic stem cell transplantation for hematological malignancies. Haematologica 2016. 101: 371–381. PubMed PMC
Sivori S, Falco M, Marcenaro E, Parolini S, Biassoni R, Bottino C, Moretta L et al., Early expression of triggering receptors and regulatory role of 2B4 in human natural killer cell precursors undergoing in vitro differentiation. Proc. Natl. Acad. Sci. USA 2002. 99: 4526–4531. PubMed PMC
Vacca P, Pietra G, Falco M, Romeo E, Bottino C, Bellora F, Prefumo F et al., Analysis of natural killer cells isolated from human decidua: Evidence that 2B4 (CD244) functions as an inhibitory receptor and blocks NK-cell function. Blood 2006. 108: 4078–4085. PubMed
Vacca P, Vitale C, Montaldo E, Conte R, Cantoni C, Fulcheri E, Darretta V et al., CD34+ hematopoietic precursors are present in human decidua and differentiate into natural killer cells upon interaction with stromal cells. Proc. Natl. Acad. Sci. USA 2011. 108: 2402–2407. PubMed PMC
Hanna J, Goldman-Wohl D, Hamani Y, Avraham I, Greenfield C, Natanson-Yaron S, Prus D et al., Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat. Med 2006. 12: 1065–1074. PubMed
Fehniger TA, Cooper MA, Nuovo GJ, Cella M, Facchetti F, Colonna M and Caligiuri MA, CD56bright natural killer cells are present in human lymph nodes and are activated by T cell-derived IL-2: a potential new link between adaptive and innate immunity. Blood 2003. 101: 3052–3057. PubMed
Ferlazzo G, Thomas D, Lin SL, Goodman K, Morandi B, Muller WA, Moretta A et al., The abundant NK cells in human secondary lymphoid tissues require activation to express killer cell Ig-like receptors and become cytolytic. J. Immunol 2004. 172: 1455–1462. PubMed
Merad M, Sathe P, Helft J, Miller J and Mortha A, The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu. Rev. Immunol 2013. 31: 563–604. PubMed PMC
Ginhoux F and Guilliams M, Tissue-resident macrophage ontogeny and homeostasis. Immunity 2016. 44: 439–449. PubMed
Heidkamp GF et al., Functional specialization of Dendritic cell subsets Encyclopedia of Cell Biology, (Elsevier; ) 2016. 588–604.
Dress RJ, Wong AY and Ginhoux F, Homeostatic control of dendritic cell numbers and differentiation. Immunol. Cell Biol 2018. 96: 463–476. PubMed
Hoeffel G and Ginhoux F, Fetal monocytes and the origins of tissue-resident macrophages. Cell. Immunol 2018. 330: 5–15. PubMed
Collin M and Ginhoux F, Human dendritic cells. Semin. Cell Dev. Biol 2019. 86: 1–2. PubMed
Schlitzer A, Sivakamasundari V, Chen J, Sumatoh HR, Schreuder J, Lum J, Malleret B et al., Identification of cDC1- and cDC2- committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow. Nat. Immunol 2015. 16: 718–728. PubMed
Guilliams M, Dutertre CA, Scott CL, McGovern N, Sichien D, Chakarov S, Van Gassen S et al., Unsupervised high-dimensional analysis aligns dendritic cells across tissues and species. Immunity 2016. 45: 669–684.; PubMed PMC
Dress RJ, Dutertre CA, Giladi A, Schlitzer A, Low I, Shadan NB, Tay A et al., Plasmacytoid dendritic cells develop from Ly6D+ lymphoid progenitors distinct from the myeloid lineage. Nat. Immunol 2019. 20: 852–864. PubMed
Rodrigues PF, Alberti-Servera L, Eremin A, Grajales-Reyes GE, Ivanek R and Tussiwand R, Distinct progenitor lineages contribute to the heterogeneity of plasmacytoid dendritic cells. Nat. Immunol 2018. 19: 711–722. PubMed PMC
Herman JS, Sagar D, FateID infers cell fate bias in multipotent progenitors from single-cell RNA-seq data. Nat. Methods 2018. 15: 379–386. PubMed
Hoeffel G, Wang Y, Greter M, See P, Teo P, Malleret B, Leboeuf M et al., Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J. Exp. Med 2012. 209: 1167–1181. PubMed PMC
Ginhoux F, Tacke F, Angeli V, Bogunovic M, Loubeau M, Dai XM, Stanley ER et al., Langerhans cells arise from monocytes in vivo. Nat. Immunol 2006. 7: 265–273. PubMed PMC
Doebel T, Voisin B and Nagao K, Langerhans Cells - The Macrophage in Dendritic Cell Clothing. Trends Immunol. 2017. 38: 817–828. PubMed
Ginhoux F and Jung S, Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat. Rev. Immunol 2014. 14: 392–404. PubMed
Geissmann F, Jung S and Littman DR, Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 2003. 19: 71–82. PubMed
Tamoutounour S, Henri S, Lelouard H, de Bovis B, de Haar C, van der Woude CJ, Woltman AM et al., CD64 distinguishes macrophages from dendritic cells in the gut and reveals the Th1- inducing role of mesenteric lymph node macrophages during colitis. Eur. J. Immunol 2012. 42: 3150–3166. PubMed
Bain CC, Scott CL, Uronen-Hansson H, Gudjonsson S, Jansson O, Grip O, Guilliams M et al., Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors. Mucosal Immunol 2013. 6: 498–510. PubMed PMC
Heidkamp GF, Sander J, Lehmann CHK, Heger L, Eissing N, Heger L, Baranska A et al., Human lymphoid organ dendritic cell identity is predominantly dictated by ontogeny, not tissue microenvironment. Sci. Immunol 2016. 1: pii: eaai7677. PubMed
Alcántara-Hernández M, Leylek R, Wagar LE, Engleman EG, Keler T, Marinkovich MP, Davis MM et al., High-Dimensional Phenotypic Mapping of Human Dendritic Cells Reveals Interindividual Variation and Tissue Specialization. Immunity. 2017. 47: 1037–1050.e6. PubMed PMC
See P, Dutertre CA, Chen J, Gunther P, McGovern N, Irac SE, Gunawan M et al., Mapping the human DC lineage through the integration of high-dimensional techniques. Science 2017. 356: eaag3009. PubMed PMC
Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN, Leenen PJ et al., Nomenclature of monocytes and dendritic cells in blood. Blood 2010. 116: e74–80. PubMed
Briseno CG, Haldar M, Kretzer NM, Wu X, Theisen DJ, Kc W, Durai V et al., Distinct transcriptional programs control cross-priming in classical and monocyte-derived dendritic cells. Cell Rep 2016. 15: 2462–2474. PubMed PMC
Fujiyama S, Nakahashi-Oda C, Abe F, Wang Y, Sato K and Shibuya A, Identification and isolation of splenic tissue-resident macrophage sub-populations by flow cytometry. Int. Immunol 2019. 31: 51–56. PubMed PMC
Crozat K, Guiton R, Contreras V, Feuillet V, Dutertre CA, Ventre E, Vu Manh TP et al., The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8alpha+ dendritic cells. J. Exp. Med 2010. 207: 1283–1292. PubMed PMC
Gurka S, Hartung E, Becker M and Kroczek RA, Mouse conventional dendritic cells can be universally classified based on the mutually exclusive expression of XCR1 and SIRPalpha. Front Immunol 2015. 6: 35. PubMed PMC
Misharin AV, Morales-Nebreda L, Mutlu GM, Budinger GR and Perlman H, Flow cytometric analysis of macrophages and dendritic cell subsets in the mouse lung. Am. J. Respir. Cell Mol. Biol 2013. 49: 503–510. PubMed PMC
Chakarov S, Lim HY, Tan L, Lim SY, See P, Lum J, Zhang XM et al., Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science 2019. 363. PubMed
Schlitzer A, McGovern N, Teo P, Zelante T, Atarashi K, Low D, Ho AW et al., IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity 2013. 38: 970–983. PubMed PMC
Shaw TN, Houston SA, Wemyss K, Bridgeman HM, Barbera TA, Zangerle-Murray T, Strangward P et al., Tissue-resident macrophages in the intestine are long lived and defined by Tim-4 and CD4 expression. J. Exp. Med 2018. 215: 1507–1518. PubMed PMC
Takenaka S, Safroneeva E, Xing Z and Gauldie J, Dendritic cells derived from murine colonic mucosa have unique functional and phenotypic characteristics. J. Immunol 2007. 178: 7984–7993. PubMed
Johansson-Lindbom B, Svensson M, Pabst O, Palmqvist C, Marquez G, Forster R and Agace WW, Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing. J. Exp. Med 2005. 202: 1063–1073. PubMed PMC
Harusato A, Geem D and Denning TL, Macrophage isolation from the mouse small and large intestine. Methods Mol. Biol 2016. 1422: 171–180. PubMed PMC
Gross M, Salame TM and Jung S, Guardians of the gut—murine intestinal macrophages and dendritic cells. Front Immunol 2015. 6: 254. PubMed PMC
Helft J and Merad M, Isolation of cutaneous dendritic cells. Methods Mol. Biol 2010. 595: 231–233. PubMed
Benck CJ, Martinov T, Fife BT and Chatterjea D, Isolation of infiltrating leukocytes from mouse skin using enzymatic digest and gradient separation. J Vis Exp 2016: e53638. PubMed PMC
Forni MF, RamosMaia Lobba A, Pereira Ferreira AH and Sogayar MC, Simultaneous isolation of three different stem cell populations from murine skin. PLoS One 2015. 10: e0140143. PubMed PMC
Merad M, Ginhoux F and Collin M, Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat. Rev. Immunol 2008. 8: 935–947. PubMed
Stutte S, Jux B, Esser C and Forster I, CD24a expression levels discriminate Langerhans cells from dermal dendritic cells in murine skin and lymph nodes. J. Invest. Dermatol 2008. 128: 1470–1475. PubMed
Malissen B, Tamoutounour S and Henri S, The origins and functions of dendritic cells and macrophages in the skin. Nat. Rev. Immunol 2014. 14: 417–428. PubMed
Becht E, McInnes L, Healy J, Dutertre CA, Kwok IWH, Ng LG, Ginhoux F et al., Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol 2019. 37: 38–44. PubMed
McInnes L, Healy J, Saul N and Großberger L, UMAP: uniform manifold approximation and projection. J. Open Source Softw 2018. 3: 861.
Ester M, Kriegel HP, Sander J and Xu X, A density-based algorithm for discovering clusters in large spatial databases with noise. In KDD’96 Proceedings of the Second International Conference on Knowledge Discovery and Data Mining Portland, OR, 1996, pp. 226–231.
Levine JH, Simonds EF, Bendall SC, Davis KL, Amir el AD, Tadmor MD, Litvin O et al., Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 2015. 162: 184–197. PubMed PMC
Villani AC, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, Griesbeck M et al., Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 2017. 356: eaaah4573. PubMed PMC
Dutertre C-A, Becht E, Irac SE, Khalilnezhad A, Narang V, Khalilnezhad S, Ng PY et al., Single-cell analysis of human mononuclear phagocytes reveals subset-defining markers and identifies circulating inflammatory dendritic cells. Immunity 2019. 51: 573–589.e8. PubMed
Casanova-Acebes M, Pitaval C, Weiss LA, Nombela-Arrieta C, Chevre R, N AG, Kunisaki Y, Zhang D et al., Rhythmic modulation of the hematopoietic niche through neutrophil clearance. Cell 2013. 153: 1025–1035. PubMed PMC
Maueroder C, Mahajan A, Paulus S, Gosswein S, Hahn J, Kienhofer D, Biermann MH et al., Menage-a-Trois: the ratio of bicarbonate to CO2 and the pH regulate the capacity of neutrophils to form NETs. Front. Immunol 2016. 7: 583. PubMed PMC
Evrard M, Kwok IWH, Chong SZ, Teng KWW, Becht E, Chen J, Sieow JL et al., Developmental analysis of bone marrow neutrophils reveals populations specialized in expansion, trafficking, and effector functions. Immunity 2018. 48: 364–379 e368. PubMed
Kim MH, Yang D, Kim M, Kim SY, Kim D and Kang SJ, A late-lineage murine neutrophil precursor population exhibits dynamic changes during demand-adapted granulopoiesis. Sci. Rep 2017. 7: 39804. PubMed PMC
Zhu YP, Padgett L, Dinh HQ, Marcovecchio P, Blatchley A, Wu R, Ehinger E et al., Identification of an early unipotent neutrophil progenitor with pro-tumoral activity in mouse and human bone marrow. Cell Rep. 2018. 24: 2329–2341 e2328. PubMed PMC
Geering B, Stoeckle C, Conus S and Simon HU, Living and dying for inflammation: neutrophils, eosinophils, basophils. Trends Immunol. 2013. 34: 398–409. PubMed
Borregaard N, Neutrophils, from marrow to microbes. Immunity 2010. 33: 657–670. PubMed
Ley K, Hoffman HM, Kubes P, Cassatella MA, Zychlinsky A, Hedrick CC and Catz SD, Neutrophils: new insights and open questions. Sci. Immunol 2018. 3. PubMed
Ng LG, Ostuni R and Hidalgo A, Heterogeneity of neutrophils. Nat. Rev. Immunol 2019. 19: 255–265. PubMed
Terstappen LW, Safford M and Loken MR, Flow cytometric analysis of human bone marrow. III. Neutrophil maturation. Leukemia 1990. 4: 657–663. PubMed
Satake S, Hirai H, Hayashi Y, Shime N, Tamura A, Yao H, Yoshioka S et al., C/EBPbeta is involved in the amplification of early granulocyte precursors during candidemia-induced “emergency” granulopoiesis. J. Immunol 2012. 189: 4546–4555. PubMed
Theilgaard-Monch K, Jacobsen LC, Borup R, Rasmussen T, Bjerregaard MD, Nielsen FC, Cowland JB et al., The transcriptional program of terminal granulocytic differentiation. Blood 2005. 105: 1785–1796. PubMed
Garley M and Jablonska E, Heterogeneity among neutrophils. Arch. Immunol. Ther. Exp 2018. 66: 21–30. PubMed PMC
Scapini P, Marini O, Tecchio C and Cassatella MA, Human neutrophils in the saga of cellular heterogeneity: insights and open questions. Immunol. Rev 2016. 273: 48–60. PubMed
Coffelt SB, Kersten K, Doornebal CW, Weiden J, Vrijland K, Hau CS, Verstegen NJM et al., IL-17-producing gammadelta T cells and neutrophils conspire to promote breast cancer metastasis. Nature 2015. 522: 345–348. PubMed PMC
Engblom C, Pfirschke C, Zilionis R, Da Silva Martins J, Bos SA, Courties G, Rickelt S et al., Osteoblasts remotely supply lung tumors with cancer-promoting SiglecF(high) neutrophils. Science 2017. 358: eaal5081. PubMed PMC
Youn JI, Collazo M, Shalova IN, Biswas SK and Gabrilovich DI, Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. J. Leukoc. Biol 2012. 91: 167–181. PubMed PMC
McAlpine CS, Kiss MG, Rattik S, He S, Vassalli A, Valet C, Anzai A et al., Sleep modulates haematopoiesis and protects against atherosclerosis. Nature 2019. 566: 383–387. PubMed PMC
Grassi L, Pourfarzad F, Ullrich S, Merkel A, Were F, Carrillo-de-Santa-Pau E, Yi G et al., Dynamics of transcription regulation in human bone marrow myeloid differentiation to mature blood neutrophils. Cell Rep. 2018. 24: 2784–2794. PubMed PMC
Friedenstein AJ, Chailakhjan RK and Lalykina KS, The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970. 3: 393–403. PubMed
Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyuk AF and Keiliss-Borok IV, Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 1974. 17: 331–340. PubMed
Frenette PS, Pinho S, Lucas D and Scheiermann C, Mesenchymal stem cell: keystone of the hematopoietic stem cell niche and a stepping-stone for regenerative medicine. Annu. Rev. Immunol 2013. 31: 285–316. PubMed
Pinho S and Frenette PS, Haematopoietic stem cell activity and interactions with the niche. Nat. Rev. Mol. Cell Biol 2019. PubMed PMC
Chan CK, Chen CC, Luppen CA, Kim JB, DeBoer AT, Wei K, Helms JA et al., Endochondral ossification is required for haematopoietic stem-cell niche formation. Nature 2009. 457: 490–494. PubMed PMC
Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT et al., Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 2010. 466: 829–834. PubMed PMC
Kunisaki Y, Bruns I, Scheiermann C, Ahmed J, Pinho S, Zhang D, Mizoguchi T et al., Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 2013. 502: 637–643. PubMed PMC
Zhou BO, Yue R, Murphy MM, Peyer JG and Morrison SJ, Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 2014. 15: 154–168. PubMed PMC
Omatsu Y, Sugiyama T, Kohara H, Kondoh G, Fujii N, Kohno K and Nagasawa T, The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity 2010. 33: 387–399. PubMed
Greenbaum A, Hsu YM, Day RB, Schuettpelz LG, Christopher MJ, Borgerding JN, Nagasawa T et al., CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 2013. 495: 227–230. PubMed PMC
Mizoguchi T, Pinho S, Ahmed J, Kunisaki Y, Hanoun M, Mendelson A, Ono N et al., Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development. Dev. Cell 2014. 29: 340–349. PubMed PMC
Chan CK, Seo EY, Chen JY, Lo D, McArdle A, Sinha R, Tevlin R et al., Identification and specification of the mouse skeletal stem cell. Cell 2015. 160: 285–298. PubMed PMC
Marecic O, Tevlin R, McArdle A, Seo EY, Wearda T, Duldulao C, Walmsley GG et al., Identification and characterization of an injury-induced skeletal progenitor. Proc Natl Acad Sci USA 2015. 112: 9920–9925. PubMed PMC
Debnath S, Yallowitz AR, McCormick J, Lalani S, Zhang T, Xu R, Li N et al., Discovery of a periosteal stem cell mediating intramembranous bone formation. Nature 2018. 562: 133–139. PubMed PMC
Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R et al., Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006. 8: 315–317. PubMed
Suire C, Brouard N, Hirschi K and Simmons PJ, Isolation of the stromal-vascular fraction of mouse bone marrow markedly enhances the yield of clonogenic stromal progenitors. Blood 2012. 119: e86–95. PubMed PMC
Pinho S, Lacombe J, Hanoun M, Mizoguchi T, Bruns I, Kunisaki Y and Frenette PS, PDGFRalpha and CD51 mark human nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. J. Exp. Med 2013. 210: 1351–1367. PubMed PMC
Morikawa S, Mabuchi Y, Kubota Y, Nagai Y, Niibe K, Hiratsu E, Suzuki S et al., Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J. Exp. Med 2009. 206: 2483–2496. PubMed PMC
Houlihan DD, Mabuchi Y, Morikawa S, Niibe K, Araki D, Suzuki S, Okano H et al., Isolation of mouse mesenchymal stem cells on the basis of expression of Sca-1 and PDGFR-alpha. Nat. Protoc 2012. 7: 2103–2111. PubMed
Worthley DL, Churchill M, Compton JT, Tailor Y, Rao M, Si Y, Levin D et al., Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential. Cell 2015. 160: 269–284. PubMed PMC
Boulais PE, Mizoguchi T, Zimmerman S, Nakahara F, Vivie J, Mar JC, van Oudenaarden A et al., The majority of CD45(-) Ter119(-) CD31(-) bone marrow cell fraction is of hematopoietic origin and contains erythroid and lymphoid progenitors. Immunity 2018. 49: 627–639, e626. PubMed PMC
Morrison SJ, Uchida N and Weissman IL, The biology of hematopoietic stem cells. Annu. Rev. Cell. Dev. Biol. 1995. 11: 35–71. PubMed
Spangrude GJ, Brooks DM and Tumas DB, Long-term repopulation of irradiated mice with limiting numbers of purified hematopoietic stem cells: in vivo expansion of stem cell phenotype but not function. Blood 1995. 85(4): 1006–1016. PubMed
Cheshier SH, Morrison SJ, Liao X and Weissman IL, In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 1999. 96(6): 3120–3125. PubMed PMC
Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP et al., Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 2003. 425(6960): 841–846. PubMed
Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, Ito K et al., Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 2004. 118(2): 149–161. PubMed
Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, Ross J et al., Identification of the haematopoietic stem cell niche and control of the niche size. Nature 2003. 425(6960): 836–841. PubMed
Hofer T, Busch K, Klapproth K and Rodewald HR, Fate mapping and quantitation of hematopoiesis in vivo. Annu. Rev. Immunol 2016. 34: 449–478. PubMed
Carrelha J, Meng Y, Kettyle LM, Luis TC, Norfo R, Alcolea V, Boukarabila H et al., Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells. Nature 2018. 554(7690): 106–111. PubMed
Haas S, Hansson J, Klimmeck D, Loeffler D, Velten L, Uckelmann H, Wurzer S et al., Inflammation-induced emergency megakary-opoiesis driven by hematopoietic stem cell-like megakaryocyte progenitors. Cell Stem Cell 2015. 17(4): 422–434. PubMed
Medvinsky A, Rybtsov S and Taoudi S, Embryonic origin of the adult hematopoietic system: advances and questions. Development 2011. 138(6): 1017–1031. PubMed
Kajikhina K, Melchers F and Tsuneto M, Chemokine polyreactivity of IL7Ralpha+CSF-1R+ lympho-myeloid progenitors in the developing fetal liver. Sci. Rep 2015. 5: 12817. PubMed PMC
Mikkola HK and Orkin SH, The journey of developing hematopoietic stem cells. Development 2006. 133(19): 3733–3744. PubMed
Majeti R, Park CY, Weissman IL, Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood. Cell Stem Cell 2007. 1(6): 635–645. PubMed PMC
Notta F, Zandi S, Takayama N, Dobson S, Gan OI, Wilson G, Kaufmann KB et al., Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science 2016. 351(6269): aab2116. PubMed PMC
Cosgun KN, Rahmig S, Mende N, Reinke S, Hauber I, Schafer C, Petzold A et al., Kit regulates HSC engraftment across the humanmouse species barrier. Cell Stem Cell 2014. 15(2): 227–238. PubMed
Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C and Morrison SJ, SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 2005. 121(7): 1109–1121. PubMed
Papathanasiou P, Attema JL, Karsunky H, Xu J, Smale ST and Weissman IL, Evaluation of the long-term reconstituting subset of hematopoietic stem cells with CD150. Stem Cells 2009. 27(10): 2498–2508. PubMed PMC
Yilmaz OH, Kiel MJ and Morrison SJ, SLAM family markers are conserved among hematopoietic stem cells from old and reconstituted mice and markedly increase their purity. Blood 2006. 107(3): 924–930. PubMed PMC
Pei W, Feyerabend TB, Rossler J, Wang X, Postrach D, Busch K, Rode I et al., Polylox barcoding reveals haematopoietic stem cell fates realized in vivo. Nature 2017. 548(7668): 456–460. PubMed PMC
Busch K, Klapproth K, Barile M, Flossdorf M, Holland-Letz T, Schlenner SM, Reth M et al., Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. Nature 2015. 518(7540): 542–546. PubMed
Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E, Crozet L, Garner H et al., Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 2015. 518(7540): 547–551. PubMed PMC
Tornack J, Reece ST, Bauer WM, Vogelzang A, Bandermann S, Zedler U, Stingl G et al., Human and Mouse Hematopoietic Stem Cells Are a Depot for Dormant Mycobacterium tuberculosis. PLoS One 2017. 12(1): e0169119. PubMed PMC
Spangrude GJ, Heimfeld S and Weissman IL, Purification and characterization of mouse hematopoietic stem cells. Science 1988. 241(4861): 58–62. PubMed
Ikuta K and Weissman IL, Evidence that hematopoietic stem cells express mouse c-kit but do not depend on steel factor for their generation. Proc. Natl. Acad. Sci. USA 1992. 89(4): 1502–1506. PubMed PMC
Morrison SJ and Weissman IL, The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1994. 1(8): 661–673. PubMed
Okada S, Nakauchi H, Nagayoshi K, Nishikawa S, Miura Y and Suda T, In vivo and in vitro stem cell function of c-kit- and Sca-1-positive murine hematopoietic cells. Blood 1992. 80: 3044–3050. PubMed
Balazs AB, Fabian AJ, Esmon CT and Mulligan RC, Endothelial protein C receptor (CD201) explicitly identifies hematopoietic stem cells in murine bone marrow. Blood 2006. 107: 2317–2321. PubMed PMC
Osawa M, Hanada K, Hamada H and Nakauchi H, Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 1996. 273: 242–245. PubMed
Tornack J, Kawano Y, Garbi N, Hammerling GJ, Melchers F and Tsuneto M, Flt3 ligand-eGFP-reporter expression characterizes functionally distinct subpopulations of CD150(+) long-term repopulating murine hematopoietic stem cells. Eur. J. Immunol 2017. 47: 1477–1487. PubMed
Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, Lagutina I et al., The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat. Med 2001. 7: 1028–1034. PubMed
Ergen AV, Jeong M, Lin KK, Challen GA, Goodell MA, Isolation and characterization of mouse side population cells. Methods Mol. Biol 2013. 946: 151–162. PubMed
Lu R, Neff NF, Quake SR and Weissman IL, Tracking single hematopoietic stem cells in vivo using high-throughput sequencing in conjunction with viral genetic barcoding. Nat. Biotechnol 2011. 29: 928–933. PubMed PMC
Bystrykh LV, de Haan G and Verovskaya E, Barcoded vector libraries and retroviral or lentiviral barcoding of hematopoietic stem cells. Methods Mol. Biol 2014. 1185: 345–360. PubMed
Kawano Y, Petkau G, Stehle C, Durek P, Heinz GA, Tanimoto K, Karasuyama H et al., Stable lines and clones of long-term proliferating normal, genetically unmodified murine common lymphoid progenitors. Blood 2018. 131(18): 2026–2035. PubMed
Knapp DJ, Hammond CA, Miller PH, Rabu GM, Beer PA, Ricicova M, Lecault V et al., Dissociation of survival, proliferation, and state control in human hematopoietic stem cells. Stem Cell Rep. 2017. 8(1): 152–162. PubMed PMC
Yamamoto R, Morita Y, Ooehara J, Hamanaka S, Onodera M, Rudolph KL, Ema H et al., Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell 2013. 154(5): 1112–1126. PubMed
Uchida N and Weissman IL, Searching for hematopoietic stem cells: evidence that Thy-1.1lo Lin- Sca-1+ cells are the only stem cells in C57BL/Ka-Thy-1.1 bone marrow. J. Exp. Med 1992. 175(1): 175–184. PubMed PMC
Murray L, Chen B, Galy A, Chen S, Tushinski R, Uchida N, Negrin R et al., Enrichment of human hematopoietic stem cell activity in the CD34+Thy-1+Lin- subpopulation from mobilized peripheral blood. Blood 1995. 85(2): 368–378. PubMed
Civin CI, Strauss LC, Brovall C, Fackler MJ, Schwartz JF and Shaper JH, Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. J. Immunol 1984. 133(1): 157–165. PubMed
Goodell MA, Rosenzweig M, Kim H, Marks DF, DeMaria M, Paradis G, Grupp SA et al., Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat. Med 1997. 3(12): 1337–1345. PubMed
Kang Y, Chao NJ, Aversa F, Unmanipulated or CD34 selected haplotype mismatched transplants. Curr. Opin. Hematol 2008. 15(6): 561–567. PubMed
Wang J, Kimura T, Asada R, Harada S, Yokota S, Kawamoto Y, Fujimura Y et al., SCID-repopulating cell activity of human cord blood-derived CD34- cells assured by intra-bone marrow injection. Blood 2003. 101(8): 2924–2931. PubMed
Bhatia M, Bonnet D, Murdoch B, Gan OI and Dick JE, A newly discovered class of human hematopoietic cells with SCID-repopulating activity. Nat. Med 1998. 4(9): 1038–1045. PubMed
Danet GH, Luongo JL, Butler G, Lu MM, Tenner AJ, Simon MC and Bonnet DA, C1qRp defines a new human stem cell population with hematopoietic and hepatic potential. Proc. Natl. Acad. Sci. USA 2002. 99(16): 10441–10445. PubMed PMC
Herbein G, Sovalat H, Wunder E, Baerenzung M, Bachorz J, Lewandowski H, Schweitzer C et al., Isolation and identification of two CD34+ cell subpopulations from normal human peripheral blood. Stem Cells 1994. 12: 187–197. PubMed
Bhatia M, Wang JC, Kapp U, Bonnet D and Dick JE, Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proc. Natl. Acad. Sci. USA 1997. 94(10): 5320–5325. PubMed PMC
Notta F, Doulatov S, Laurenti E, Poeppl A, Jurisica I and Dick JE, Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science 2011. 333(6039): 218–221. PubMed
Fares I, Chagraoui J, Lehnertz B, MacRae T, Mayotte N, Tomellini E, Aubert L et al., EPCR expression marks UM171-expanded CD34(+) cord blood stem cells. Blood 2017. 129(25): 3344–3351. PubMed
Iwasaki H, Arai F, Kubota Y, Dahl M, Suda T, Endothelial protein C receptor-expressing hematopoietic stem cells reside in the perisinusoidal niche in fetal liver. Blood 2010. 116(4): 544–553. PubMed
Galuzzi L, Vacchelli E, Bravo-San Pedro JM, Buqué A, Senovilla L, Baracco EE, Bloy N et al., Classification of current anticancer immunotherapies. Oncotarget 2015. 5(24): 12472–12508. PubMed PMC
Hanahan D and Weinberg RA, Hallmarks of cancer –the next generation. Cell 2011 144: 646–674. 10.1016/j.cell.2011.02.013 PubMed DOI
Lansdorp PM, Sutherland HJ and Eaves CJ, Selective expression of CD45 isoforms on functional subpopulations of CD34+ hemopoietic cells from human bone marrow. J. Exp. Med 1990. 172: 363–366. https://doi.org/363-3660022-1007/90/07/0363/04 PubMed PMC
van Dongen JJM, Lhermitte L, Böttcher S, Almeida J, van der Velden JVH, Flores-Montero J, Rawstron A et al., on behalf of the EuroFlow Consortium (EU-FP6, LSHB-CT-2006–018708). EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia 2012 26: 1908–1975. PubMed PMC
Streitz M, Miloud T, Kapinsky M, Reed MR, Magari R, Geissler EK, Hutchinson JA et al., Standardization of whole blood immune phenotype monitoring for clinical trials: panels and methods from the ONE study. Transplant Res. 2013. 2(1): 17. PubMed PMC
Alix-Panabières C and Pantel K, Challenges in circulating tumour cell research. Nat. Rev. Cancer 2014. 14: 623–631. 10.1038/nrc3820 PubMed DOI
Lopresti A, Malergue F, Bertucci F, Liberatoscioli ML, Garnier S, DaCosta Q, Finetti P et al., Sensitive and easy screening for circulating tumor cells by flow cytometry. JCI Insight. 2019. 5: 128180 10.1172/jci.insight.128180 PubMed DOI PMC
Schumacher T and Schreiber RD, Neoantigens in cancer immunotherapy. Science 2015. 348(6230): 69–74. PubMed
Grizzi F, Mirandola L, Qehajaj D, Cobos E, Figueroa JA and Chiriva-Internati M, Cancer-testis antigens and immunotherapy in the light of cancer complexity. Int. Rev. Immunol 2015 34: 143–153. 10.3109/08830185.2015.1018418 PubMed DOI
Garrido F, Aptsiauri N, Doorduijn EM, Garcia Lora AM and van Hall T, The urgent need to recover MHC class I in cancers for effective immunotherapy. Curr. Opin. Immunol 2016 39: 44–51. 10.1016/j.coi.2015.12.007 PubMed DOI PMC
Raulet DH, Gasser S, Gowen BG, Deng W and Jung H, Regulation of ligands for the NKG2D activating receptor. Annu. Rev. Immunol 2013. 31: 413–441. PubMed PMC
Sers C, Kuner R, Fak CS, Lund P, Sueltmann H, Braun M, Buness A et al., Down-regulation of HLA Class I and NKG2D ligands through a concerted action of MAPK and DNA methyltransferases in colorectal cancer cells. Int. J. Cancer 2009. 125(7): 1626–1639. PubMed
Luo Z, Wu RR, Lv L, Li P, Zhang LY, Hao QL and Li W, Prognostic value of CD44 expression in non-small cell lung cancer: a systematic review. Int. J. Clin. Exp. Pathol 2014. 7(7): 3632–3646. PubMed PMC
Paulis YW, Huijbers EJ, van der Schaft DW, Soetekouw PM, Pauwels P, Tjan-Heijnen VC and Griffioen AW, CD44 enhances tumor aggressiveness by promoting tumor cell plasticity. Oncotarget 2015. 6(23): 19634–19646. PubMed PMC
http://www.cancerresearchuk.org/about-cancer/what-is-cancer/howcancer-starts/types-of-cancer#carcinomas.
Weng YR, Cui Y and Fang JY, Biological functions of cytokeratin 18 in cancer. Mol. Cancer Res. 2012. 10(4); 485–493. PubMed
Appert-Collin A, Hubert P, Crémel G and Bennasroune A, Role of ErbB receptors in cancer cell migration and invasion. Front. Pharmacol 2015. 10.3389/fphar.2015.00283 PubMed DOI PMC
http://www.cancer.org/cancer/breastcancer/detailedguide/breast-cancer-breast-cancer-types.
Park JW, Lee JK, Phillips JW, Huang P, Cheng D, Huang J and Witte ON, Prostate epithelial cell of origin determines cancer differentiation state in an organoid transformation assay. Proc. Natl. Acad. Sci. USA 2016. 113: 4482–4487. PubMed PMC
http://screening.iarc.fr/colpochap.php?chap=2.
https://www.iarc.fr/en/publications/pdfs-online/pat-gen/bb2/bb2-chap1.pdf.
http://www.cancer.org/cancer/bladdercancer/detailedguide/bladdercancer-what-is-bladder-cancer.
Hruban RH and Fukushima N, Pancreatic adenocarcinoma: update on the surgical pathology of carcinomas of ductal origin and PanINs. Modern Pathol. 2007. 20: 61–70. PubMed
DuBois SG, Epling CL, Teague J, Matthay KK and Sinclair E, Flow cytometric detection of ewing sarcoma cells in peripheral blood and bone marrow. Pediatr. Blood Cancer 2010. 54(1): 13–18. 10.1002/pbc.22245 PubMed DOI PMC
Avey D, Brewers B and Zhu F, Recent advances in the study of Kaposi’s sarcoma-associated herpesvirus replication and athogenesis. Virol Sin. 2015. 30(2): 130–145. 10.1007/s12250-015-3595-2 PubMed DOI PMC
Deel MD, Li JJ, Crose LE and Linardic CM, A Review: molecular aberrations within hippo signaling in bone and soft-tissue sarcomas. Front Oncol. 2015 5: 190 10.3389/fonc.2015.00190 PubMed DOI PMC
Sullivan RJ, The role of mitogen-activated protein targeting in melanoma beyond BRAFV600. Curr. Opin. Oncol 2016. 28(2): 185–191. PubMed
Sucker A, Zhao F, Real B, Heeke C, Bielefeld N, Maßen S, Horn S et al., Genetic evolution of T cell resistance in the course of melanoma progression. Clin. Canc. Res 2014. 20(24): 6593–6604. PubMed PMC
Lakshmikanth T, Burke S, Ali TH, Kimpfler S, Ursini F, Ruggeri L, Capanni M et al., NCRs and DNAM-1 mediate NK cell recognition and lysis of human and mouse melanoma cell lines in vitro and in vivo. J. Clin. Invest 2009. 119(5): 1251–1263. 10.1172/JCI36022 PubMed DOI PMC
Binder DC, Davis AA and Wainwright DA, Immunotherapy for cancer in the central nervous system: Current and future directions. Oncoimmunology 2015. 5(2): e1082027. PubMed PMC
Razavi SM, Lee KE, Jin BE, Aujla PS, Gholamin S and Li G, Immune Evasion Strategies of Glioblastoma. Frnt. Surg 2016. 3: 11. PubMed PMC
Seifert M, Garbe M, Friedrich B, Mittelbronn M and Klink B, Comparative transcriptomics reveals similarities and differences between astrocytoma grades. BMC Cancer 2015. 15: 952. PubMed PMC
Dranoff G, Experimental mouse tumour models: what can be learnt about human cancer immunology? Nat. Rev. Immunol 2012. 12: 61–66. 10.1038/nri3129 PubMed DOI
Morton JJ, Bird G, Fefaeli Y and Jimeno A, Humanized mouse xenograft models: narrowing the tumor-microenvironment gap. Canc. Res 2016. 76: 6153–6158. PubMed PMC
Huntington ND, Xu Y, Puthalakath H, Light A, Willis SN, Strasser A et al., CD45 links the B cell receptor with cell survival and is required for the persistence of germinal centers. Nat. Immunol 2006. 7(2): 190–198. PubMed
Oracki SA, Walker JA, Hibbs ML, Corcoran LM and Tarlinton DM, Plasma cell development and survival. Immunol. Rev 2010. 237(1): 140–159. PubMed
Brynjolfsson SF, Persson Berg L, Olsen Ekerhult T, Rimkute I, Wick MJ, Martensson IL et al., Long-lived plasma cells in mice and men. Front. Immunol 2018. 9: 2673. PubMed PMC
Steensma DP, Gertz MA, Greipp PR, Kyle RA, Lacy MQ, Lust JA et al., A high bone marrow plasma cell labeling index in stable plateau-phase multiple myeloma is a marker for early disease progression and death. Blood 2001. 97(8): 2522–2523. PubMed
Bakkus MH, Heirman C, Van Riet I, Van Camp B and Thielemans K, Evidence that multiple myeloma Ig heavy chain VDJ genes contain somatic mutations but show no intraclonal variation. Blood 1992. 80(9): 2326–2335. PubMed
Kosmas C, Stamatopoulos K, Stavroyianni N, Zoi K, Belessi C, Viniou N et al., Origin and diversification of the clonogenic cell in multiple myeloma: lessons from the immunoglobulin repertoire. Leukemia 2000. 14(10): 1718–1726. PubMed
Pfeifer S, Perez-Andres M, Ludwig H, Sahota SS and Zojer N, Evaluating the clonal hierarchy in light-chain multiple myeloma: implications against the myeloma stem cell hypothesis. Leukemia 2011. 25(7): 1213–1216. PubMed
Hansmann L, Han A, Penter L, Liedtke M and Davis MM, Clonal expansion and interrelatedness of distinct B-lineage compartments in multiple myeloma bone marrow. Cancer Immunol. Res 2017. 5: 744–754. PubMed PMC
Hideshima T, Nakamura N, Chauhan D and Anderson KC, Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma. Oncogene 2001. 20(42): 5991–6000. PubMed
de Haart SJ, van de Donk NW, Minnema MC, Huang JH, Aarts-Riemens T, Bovenschen N et al., Accessory cells of the microenvironment protect multiple myeloma from T-cell cytotoxicity through cell adhesion-mediated immune resistance. Clin. Cancer Res 2013. 19(20): 5591–5601. PubMed
Hideshima T, Bergsagel PL, Kuehl WM and Anderson KC, Advances in biology of multiple myeloma: clinical applications. Blood 2004. 104: 607–618. PubMed
Mitsiades CS, Mitsiades N, Munshi NC and Anderson KC, Focus on multiple myeloma. Cancer Cell 2004. 6(5): 439–444. PubMed
Mitsiades CS, Mitsiades NS, Richardson PG, Munshi NC and Anderson KC, Multiple myeloma: a prototypic disease model for the characterization and therapeutic targeting of interactions between tumor cells and their local microenvironment. J. Cell. Biochem 2007. 101(4): 950–968. PubMed
Bianchi G and Munshi NC, Pathogenesis beyond the cancer clone(s) in multiple myeloma. Blood 2015. 125(20): 3049–3058. PubMed PMC
Keats JJ, Chesi M, Egan JB, Garbitt VM, Palmer SE, Braggio E et al., Clonal competition with alternating dominance in multiple myeloma. Blood 2012. 120(5): 1067–1076. PubMed PMC
Lohr JG, Kim S, Gould J, Knoechel B, Drier Y, Cotton MJ et al., Genetic interrogation of circulating multiple myeloma cells at single cell resolution. Sci. Transl. Med 2016. 8(363): 363ra147. PubMed PMC
Lohr JG, Stojanov P, Carter SL, Cruz-Gordillo P, Lawrence MS, Auclair D et al., Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell 2014. 25(1): 91–101. PubMed PMC
Paino T, Paiva B, Sayagues JM, Mota I, Carvalheiro T, Corchete LA et al., Phenotypic identification of subclones in multiple myeloma with different chemoresistant, cytogenetic and clonogenic potential. Leukemia 2015. 29(5): 1186–1194. PubMed
Arroz M, Came N, Lin P, Chen W, Yuan C, Lagoo A et al., Consensus guidelines on plasma cell myeloma minimal residual disease analysis and reporting. Cytom. B Clin. Cytom 2016. 90(1): 31–39. PubMed
Flores-Montero J, de Tute R, Paiva B, Perez JJ, Bottcher S, Wind H et al., Immunophenotype of normal vs. myeloma plasma cells: Toward antibody panel specifications for MRD detection in multiple myeloma. Cytom. B Clin. Cytom 2016. 90(1): 61–72. PubMed
Jelinek T and Hajek R, Monoclonal antibodies—a new era in the treatment of multiple myeloma. Blood Rev. 2016. 30(2): 101–110. PubMed
Paiva B, Puig N, Cedena MT, de Jong BG, Ruiz Y, Rapado I et al., Differentiation stage of myeloma plasma cells: biological and clinical significance. Leukemia 2017. 31(2): 382–392. PubMed PMC
Lisenko K, Schonland S, Hegenbart U, Wallenwein K, Braun U, Mai EK et al., Potential therapeutic targets in plasma cell disorders: a flow cytometry study. Cytom. B Clin. Cytom 2017. 92(2): 145–152. PubMed
Berliner N, Ault KA, Martin P and Weinberg DS, Detection of clonal excess in lymphoproliferative disease by kappa/lambda analysis: correlation with immunoglobulin gene DNA rearrangement. Blood 1986. 67(1): 80–85. PubMed
Smock KJ, Perkins SL and Bahler DW, Quantitation of plasma cells in bone marrow aspirates by flow cytometric analysis compared with morphologic assessment. Arch. Pathol. Lab. Med 2007. 131(6): 951–955. PubMed
Lokhorst HM, Laubach J and Nahi H, Dose-dependent efficacy of daratumumab (DARA) as monotherapy in patients with relapsed or refractory multiple myeloma (RR MM). J Clin. Oncol 2014. 32: abstract 8513.
Lammerts van Bueren J, Jakobs D and Kaldenhoven N, Direct in vitro comparison of daratumumab with surrogate analogs of CD38 antibodies MOR03087, SAR650984 and Ab79. In: 56th ASH Annual Meeting & Exposition: Oral and Poster Abstracts, 2014.
Oberle A, Brandt A, Alawi M, Langebrake C, Janjetovic S, Wolschke C et al., Long-term CD38 saturation by daratumumab interferes with diagnostic myeloma cell detection. Haematologica 2017. 102(9): e368–e370. PubMed PMC
Perincheri S, Torres R, Tormey CA, Smith BR, Rinder HM and Siddon AJ, Daratumumab interferes with flow cytometric evaluation of multiple myeloma. 2016. 128(22): 5630–5630.
Malaer JD and Mathew PA, CS1 (SLAMF7, CD319) is an effective immunotherapeutic target for multiple myeloma. Am. J. Cancer Res 2017. 7(8): 1637–1641. PubMed PMC
Tellier J, Shi W, Minnich M, Liao Y, Crawford S, Smyth GK et al., Blimp-1 controls plasma cell function through the regulation of immunoglobulin secretion and the unfolded protein response. Nat. Immunol 2016. 17(3): 323–330. PubMed PMC
Rawstron AC, Orfao A, Beksac M, Bezdickova L, Brooimans RA, Bumbea H et al., Report of the European Myeloma Network on multiparametric flow cytometry in multiple myeloma and related disorders. Haematologica 2008. 93(3): 431–438. PubMed
Paiva B, Garcia-Sanz R and San Miguel JF, Multiple myeloma minimal residual disease. Cancer Treat. Res. 2016. 169: 103–122. PubMed
Paiva B, van Dongen JJ and Orfao A, New criteria for response assessment: role of minimal residual disease in multiple myeloma. Blood 2015. 125(20): 3059–3068. PubMed PMC
Flores-Montero J, Sanoja-Flores L, Paiva B, Puig N, Garcia-Sanchez O, Bottcher S et al., Next Generation Flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma. Leukemia 2017. 31(10): 2094–2103. PubMed PMC
Roschewski M, Stetler-Stevenson M, Yuan C, Mailankody S, Korde N and Landgren O, Minimal residual disease: what are the minimum requirements? J. Clin. Oncol 2014. 32(5): 475–476. PubMed
Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y et al., A Transcriptome Database for Astrocytes, Neurons, and Oligodendrocytes: A New Resource for Understanding Brain Development and Function. J. Neurosci 2008. 28: 264–278. PubMed PMC
Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA, Van De Lagemaat LN et al., An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 2012. 489: 391. PubMed PMC
Mink JW, Blumenschine RJ and Adams DB, Ratio of central nervous system to body metabolism in vertebrates: its constancy and functional basis. Am. J. Physiol. Regul. Integr. Comp. Physiol 1981. 241: R203–R212. PubMed
Lake BB, Ai R, Kaeser GE, Salathia NS, Yung YC, Liu R, Wildberg A et al., Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain. Science 2016. 352: 1586–1590. PubMed PMC
Bradl M and Lassmann H, Oligodendrocytes: biology and pathology. Acta Neuropathol. 2010. 119: 37–53. PubMed PMC
Sofroniew MV and Vinters HV, Astrocytes: biology and pathology. Acta Neuropathol. 2010. 119: 7–35. PubMed PMC
Bergström T and Forsberg-Nilsson K, Neural stem cells: brain building blocks and beyond. Ups. J. Med. Sci 2012. 117: 132–142. PubMed PMC
Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF et al., Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010. 330: 841–845. PubMed PMC
Goldmann T, Wieghofer P, Jordão MJC, Prutek F, Hagemeyer N, Frenzel K, Amann L et al., Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat. Immunol 2016. 17: 797–805. PubMed PMC
Kantzer CG, Boutin C, Herzig ID, Wittwer C, Reiß S, Tiveron MC, Drewes J et al., Anti-ACSA-2 defines a novel monoclonal antibody for prospective isolation of living neonatal and adult astrocytes. Glia 2017. 65: 990–1004. PubMed
Batiuk MY, De Vin F, Duque SI, Li C, Saito T, Saido T, Fiers M et al., An immunoaffinity-based method for isolating ultrapure adult astrocytes based on ATP1B2 targeting by the ACSA-2 antibody. J. Biol. Chem 2017. 292: 8874–8891. PubMed PMC
Lin C-CJ, Yu K, Hatcher A, Huang T-W, Lee HK, Carlson J, Weston MC et al., Identification of diverse astrocyte populations and their malignant analogs. Nat. Neurosci 2017. 20: 396. PubMed PMC
Tsai H-H, Li H, Fuentealba LC, Molofsky AV, Taveira-Marques R, Zhuang H, Tenney A et al., Regional astrocyte allocation regulates CNS synaptogenesis and repair. Science 2012. 337: 358–362. PubMed PMC
Guttenplan KA and Liddelow SA, Astrocytes and microglia: models and tools. J. Exp. Med 2018. 216: 71–83. PubMed PMC
Zhuo L, Sun B, Zhang CL, Fine A, Chiu SY and Messing A, Live astrocytes visualized by green fluorescent protein in transgenic mice. Dev. Biol 1997. 187: 36–42. PubMed
Nolte C, Matyash M, Pivneva T, Schipke CG, Ohlemeyer C, Hanisch U-K, Kirchhoff F et al., GFAP promoter-controlled EGFP-expressing transgenic mice: a tool to visualize astrocytes and astrogliosis in living brain tissue. Glia 2001. 33: 72–86. PubMed
Kuzmanovic M, Dudley VJ and Sarthy VP, GFAP promoter drives Muller cell-specific expression in transgenic mice. Invest. Ophthalmol. Vis. Sci 2003. 44: 3606–3613. PubMed
Cho W, Hagemann TL, Johnson DA, Johnson JA and Messing A, Dual transgenic reporter mice as a tool for monitoring expression of glial fibrillary acidic protein. J. Neurochem 2009. 110: 343–351. PubMed PMC
Regan MR, Huang YH, Kim YS, Dykes-Hoberg MI, Jin L, Watkins AM, Bergles DE et al., Variations in promoter activity reveal a differential expression and physiology of glutamate transporters by glia in the developing and mature CNS. J. Neurosci 2007. 27: 6607–6619. PubMed PMC
Bardehle S, Kruger M, Buggenthin F, Schwausch J, Ninkovic J, Clevers H, Snippert HJ et al., Live imaging of astrocyte responses to acute injury reveals selective juxtavascular proliferation. Nat. Neurosci 2013. 16: 580–586. PubMed
Yang Y, Vidensky S, Jin L, Jie C, Lorenzini I, Frankl M and Rothstein JD, Molecular comparison of GLT1+ and ALDH1L1+ astrocytes in vivo in astroglial reporter mice. Glia 2011. 59: 200–207. PubMed PMC
Gong S, Zheng C, Doughty ML, Losos K, Didkovsky N, Schambra UB, Nowak NJ et al., A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 2003. 425: 917–925. PubMed
Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW, Sher A and Littman DR, Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell Biol 2000. 20: 4106–4114. PubMed PMC
Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M, Strauss-Ayali D et al., Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 2013. 38: 79–91. PubMed PMC
Buttgereit A, Lelios I, Yu X, Vrohlings M, Krakoski NR, Gautier EL, Nishinakamura R et al., Sall1 is a transcriptional regulator defining microglia identity and function. Nat. Immunol 2016. 17: 1397–1406. PubMed
Hirasawa T, Ohsawa K, Imai Y, Ondo Y, Akazawa C, Uchino S and Kohsaka S, Visualization of microglia in living tissues using Iba1-EGFP transgenic mice. J. Neurosci. Res 2005. 81: 357–362. PubMed
Sasmono RT, Oceandy D, Pollard JW, Tong W, Pavli P, Wainwright BJ, Ostrowski MC et al., A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood 2003. 101: 1155–1163. PubMed
Dziennis S, Van Etten RA, Pahl HL, Morris DL, Rothstein TL, Blosch CM, Perlmutter RM et al., The CD11b promoter directs high-level expression of reporter genes in macrophages in transgenic mice. Blood 1995. 85: 319–329. PubMed
Yang J, Hills D, Taylor E, Pfeffer K, Ure J and Medvinsky A, Transgenic tools for analysis of the haematopoietic system: knock-in CD45 reporter and deletor mice. J. Immunol. Methods 2008. 337: 81–87. PubMed
Pillai MM, Hayes B and Torok-Storb B, Inducible transgenes under the control of the hCD68 promoter identifies mouse macrophages with a distribution that differs from the F4/80 - and CSF-1R-expressing populations. Exp. Hematol 2009. 37: 1387–1392. PubMed PMC
Iqbal AJ, Mcneill E, Kapellos TS, Regan-Komito D, Norman S, Burd S, Smart N et al., Human CD68 promoter GFP transgenic mice allow analysis of monocyte to macrophage differentiation in vivo. Blood 2014. 124: e33–e44. PubMed PMC
Hägglund M, Borgius L, Dougherty KJ and Kiehn O, Activation of groups of excitatory neurons in the mammalian spinal cord or hindbrain evokes locomotion. Nat. Neurosci 2010. 13: 246–252. PubMed
Blanco-Centurion C, Bendell E, Zou B, Sun Y, Shiromani PJ and Liu M, VGAT and VGLUT2 expression in MCH and orexin neurons in double transgenic reporter mice. IBRO Rep. 2018. 4: 44–49. PubMed PMC
Daigle TL, Madisen L, Hage TA, Valley MT, Knoblich U, Larsen RS, Takeno MM et al., A suite of transgenic driver and reporter mouse lines with enhanced brain-cell-type targeting and functionality. Cell 2018. 174: 465–480.e422. PubMed PMC
Martin D, Xu J, Porretta C and Nichols CD, Neurocytometry: flow cytometric sorting of specific neuronal populations from human and rodent brain. ACS Chem. Neurosci 2017. 8: 356–367. PubMed PMC
Evrony GD, Cai X, Lee E, Hills LB, Elhosary PC, Lehmann HS, Parker JJ et al., Single-neuron sequencing analysis of L1 retro-transposition and somatic mutation in the human brain. Cell 2012. 151: 483–496. PubMed PMC
Cai X, Evrony GD, Lehmann HS, Elhosary PC, Mehta BK, Poduri A and Walsh CA, Single-cell, genome-wide sequencing identifies clonal somatic copy-number variation in the human brain. Cell Rep. 2014. 8: 1280–1289. PubMed PMC
Girdhar K, Hoffman GE, Jiang Y, Brown L, Kundakovic M, Hauberg ME, Francoeur NJ et al., Cell-specific histone modification maps in the human frontal lobe link schizophrenia risk to the neuronal epigenome. Nat. Neurosci 2018. 21: 1126–1136. PubMed PMC
Matevossian A and Akbarian S, Neuronal nuclei isolation from human postmortem brain tissue. J. Vis. Exp 2008. 1: 914. PubMed PMC
McCarthy KD and De Vellis J, Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J. Cell. Biol 1980. 85: 890–902. PubMed PMC
Barres BA, Hart IK, Coles HSR, Burne JF, Voyvodic JT, Richardson WD and Raff MC, Cell death and control of cell survival in the oligodendrocyte lineage. Cell 1992. 70: 31–46. PubMed
Seiwa C, Kojima-Aikawa K, Matsumoto I and Asou H, CNS myelinogenesis in vitro: myelin basic protein deficient shiverer oligodendrocytes. J. Neurosci. Res 2002. 69: 305–317. PubMed
Yang Z, Watanabe M and Nishiyama A, Optimization of oligodendrocyte progenitor cell culture method for enhanced survival. J. Neurosci. Meth 2005. 149: 50–56. PubMed
Robinson AP, Rodgers JM, Goings GE and Miller SD, Characterization of oligodendroglial populations in mouse demyelinating disease using flow cytometry: clues for MS pathogenesis. PLoS ONE 2014. 9: e107649. PubMed PMC
Zhang Y, Sloan SA, Clarke LE, Caneda C, Plaza CA, Blumenthal PD, Vogel H et al., Purification and Characterization of Progenitor and Mature Human Astrocytes Reveals Transcriptional and Functional Differences with Mouse. Neuron 2016. 89: 37–53. PubMed PMC
Deng Y, Kim B, He X, Kim S, Lu C, Wang H, Cho SG et al., Direct visualization of membrane architecture of myelinating cells in transgenic mice expressing membrane-anchored EGFP. Genesis 2014. 52: 341–349. PubMed PMC
Hughes EG, Kang SH, Fukaya M and Bergles DE, Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain. Nat. Neurosci 2013. 16: 668–676. PubMed PMC
Sedgwick JD, Schwender S, Imrich H, Dörries R, Butcher GW and Ter Meulen V, Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system. Proc. Natl. Acad. Sci. USA 1991. 88: 7438–7442. PubMed PMC
Bennett ML, Bennett FC, Liddelow SA, Ajami B, Zamanian JL, Fernhoff NB, Mulinyawe SB et al., New tools for studying microglia in the mouse and human CNS. Proc. Natl. Acad. Sci. USA 2016. 113: E1738–E1746. PubMed PMC
Korin B, Ben-Shaanan TL, Schiller M, Dubovik T, Azulay-Debby H, Boshnak NT, Koren T et al., High-dimensional, single-cell characterization of the brain’s immune compartment. Nat. Neurosci 2017. 20: 1300–1309. PubMed
Mrdjen D, Hartmann FJ and Becher B, High dimensional cytometry of central nervous system leukocytes during neuroinflammation. Methods Mol. Biol 2017. 1559: 321–332. PubMed
Ajami B, Samusik N, Wieghofer P, Ho PP, Crotti A, Bjornson Z, Prinz M et al., Single-cellmass cytometry reveals distinct populations of brain myeloid cells in mouse neuroinflammation and neurodegeneration models. Nat. Neurosci 2018. 21: 541–551. PubMed PMC
Mrdjen D, Pavlovic A, Hartmann FJ, Schreiner B, Utz SG, Leung BP, Lelios I et al., High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 2018. 48: 599. PubMed
Böttcher C, Schlickeiser S, Sneeboer M. a. M., Kunkel D, Knop A, Paza E, Fidzinski P et al., Human microglia regional heterogeneity and phenotypes determined by multiplexed single-cell mass cytometry. Nat. Neurosci 2019. 22: 78–90. PubMed
Ecker JR, Geschwind DH, Kriegstein AR, Ngai J, Osten P, Polioudakis D, Regev A et al., The BRAIN Initiative Cell Census Consortium: lessons learned toward generating a comprehensive brain cell atlas. Neuron 2017. 96: 542–557. PubMed PMC
Tham CS, Lin FF, Rao TS, Yu N and Webb M, Microglial activation state and lysophospholipid acid receptor expression. Int. J. Dev. Neurosci 2003. 21: 431–443. PubMed
Pfenninger CV, Roschupkina T, Hertwig F, Kottwitz D, Englund E, Bengzon J, Jacobsen SE et al., CD133 is not present on neurogenic astrocytes in the adult subventricular zone, but on embryonic neural stem cells, ependymal cells, and glioblastoma cells. Cancer Res. 2007. 67: 5727–5736. PubMed
Moussaud S and Draheim HJ, A new method to isolate microglia from adult mice and culture them for an extended period of time. J. Neurosci. Methods 2010. 187: 243–253. PubMed
Foo LC, Allen NJ, Bushong EA, Ventura PB, Chung W-S, Zhou L, Cahoy JD et al., Development of a Method for the Purification and Culture of Rodent Astrocytes. Neuron 2011. 71: 799–811. PubMed PMC
Horst AK, Neumann K, Diehl L and Tiegs G, Modulation of liver tolerance by conventional and nonconventional antigen-presenting cells and regulatory immune cells. Cell. Mol. Immunol 2016. 13: 277–292. PubMed PMC
Jenne CN and Kubes P, Immune surveillance by the liver. Nat. Immunol 2013. 14: 996–1006. PubMed
Thomson AW and Knolle PA, Antigen-presenting cell function in the tolerogenic liver environment. Nat. Rev. Immunol 2010. 10: 753–766. PubMed
Crispe IN, Immune tolerance in liver disease. Hepatology 2014. 60: 2109–2117. PubMed PMC
Racanelli V and Rehermann B, The liver as an immunological organ. Hepatology. 2006. 43: S54–62. PubMed
Blom KG, Qazi MR, Matos JB, Nelson BD, DePierre JW and Abedi-Valugerdi M, Isolation of murine intrahepatic immune cells employing a modified procedure for mechanical disruption and functional characterization of the B, T and natural killer T cells obtained. Clin. Exp. Immunol 2009. 155: 320–329. PubMed PMC
Gao B, Radaeva S and Park O, Liver natural killer and natural killer T cells: immunobiology and emerging roles in liver diseases. J. Leukoc. Biol 2009. 86: 513–528. PubMed PMC
Niemeyer M, Darmoise A, Mollenkopf HJ, Hahnke K, Hurwitz R, Besra GS, Schaible UE et al., Natural killer T-cell characterization through gene expression profiling: an account of versatility bridging T helper type 1 (Th1), Th2 and Th17 immune responses. Immunology 2008. 123: 45–56. PubMed PMC
Pang DJ, Neves JF, Sumaria N and Pennington DJ, Understanding the complexity of γδ T-cell subsets in mouse and human. Immunology 2012. 136: 283–290. PubMed PMC
Golubovskaya V and Wu L, Different subsets of T cells, memory, effector functions, and CAR-T immunotherapy. Cancers 2016. 8(3): E36. PubMed PMC
Davies LC, Jenkins SJ, Allen JE and Taylor PR, Tissue-resident macrophages. Nat. Immunol 2013. 14: 986–995. PubMed PMC
Gordon S and Plüddemann A, Tissue macrophages: Heterogeneity and functions. BMC. Biol 2017. 15: 53. PubMed PMC
Gordon S and Taylor PR, Monocyte and macrophage heterogeneity. Nat. Rev. Immunol 2005. 5: 953–964. PubMed
Shortman K and Liu YJ, Mouse and human dendritic cell subtypes. Nat. Rev. Immunol 2002. 2: 151–161. PubMed
Meurens F, Summerfield A, Nauwynck H, Saif L and Gerdts V, The pig: a model for human infectious diseases. Trends Microbiol. 2012. 20: 50–57. PubMed PMC
Piriou-Guzylack L and Salmon H, Membrane markers of the immune cells in swine: an update. Vet. Res 2008. 39: 54. PubMed
Dawson HD and Lunney JK, Porcine cluster of differentiation (CD) markers 2018. update. Res. Vet. Sci 2018 118: 199–246. PubMed
Saalmüller A, Reddehase MJ, Bühring H-J, Jonjić S and Koszinowski UH, Simultaneous expression of CD4 and CD8 antigens by a substantial proportion of resting porcine T lymphocytes. Eur. J. Immunol 1987. 17(9): 1297–1301. PubMed
Saalmüller A, Weiland F and Reddehase MJ, Resting porcine T lymphocytes expressing class II major histocompatibility antigen. Immunobiology 1991. 183: 102–114. PubMed
Reutner K, Leitner J, Mullebner A, Ladinig A, Essler SE, Duvigneau JC, Ritzmann M et al., CD27 expression discriminates porcine T helper cells with functionally distinct properties. Vet. Res 2013. 44(1): 18. PubMed PMC
Mair KH, Essler SE, Patzl M, Storset AK, Saalmüller A and Gerner W, NKp46 expression discriminates porcine NK cells with different functional properties. Eur. J. Immunol 2012. 42(5): 1261–1271. PubMed
Álvarez B, Escalona Z, Uenishi H, Toki D, Revilla C, Yuste M, Gómez del Moral M et al., Molecular and functional characterization of porcine Siglec-3/CD33 and analysis of its expression in blood and tissues. Dev. Comp. Immunol 2015. 51(2): 238–250. PubMed
Summerfield A, Guzylack-Piriou L, Schaub A, Carrasco CP, Tâche V, Charley B and McCullough KC, Porcine peripheral blood dendritic cells and natural interferon-producing cells. Immunology 2003. 110(4): 440–449. PubMed PMC
Escalona Z, Álvarez B, Uenishi H, Toki D, Yuste M, Revilla C, Gómez del Moral M et al., Molecular characterization of porcine Siglec-10 and analysis of its expression in blood and tissues. Dev. Comp. Immunol 2015. 48(1): 116–123. 10.1016/j.dci.2014.09.011 PubMed DOI
Sedlak C, Patzl M, Saalmüller A and Gerner W, IL-12 and IL-18 induce interferon-γ production and de novo CD2 expression in porcine Γδ T cells. Dev. Comp. Immunol 2014b. 47(1): 115–122. 10.1016/j.dci.2014.07.007 PubMed DOI
Yang H and Parkhouse RM, Phenotypic classification of porcine lymphocyte subpopulations in blood and lymphoid tissues. Immunology 1996. 89(1): 76–83. PubMed PMC
Saalmüller A, Hirt W and Reddehase MJ, Porcine γ/δ T lymphocyte subsets differing in their propensity to home to lymphoid tissue. Eur. J. Immunol 1990. 20(10): 2343–2346. PubMed
Sinkora M, Šinkorová J and Holtmeier W, Development of γδ thymocyte subsets during prenatal and postnatal ontogeny. Immunology 2005. 115(4): 544–555. PubMed PMC
Wen K, Bui T, Li G, Liu F, Li Y, Kocher J and Yuan L, Characterization of immune modulating functions of γδ T cell subsets in a gnotobiotic pig model of human rotavirus infection. Comp. Immunol. Microbiol. Infect. Dis 2012. 35(4): 289–301. PubMed PMC
Lee J, Choi K, Olin MR, Cho S-N and Molitor TW, Γδ T cells in immunity induced by Mycobacterium bovis Bacillus Calmette-Guérin vaccination. Infect. Immun 2004. 72(3): 1504–1511. PubMed PMC
Sedlak C, Patzl M, Saalmüller A and Gerner W, CD2 and CD8α define porcine γδ T cells with distinct cytokine production profiles. Dev. Comp. Immunol 2014. 45: 97–106. PubMed
Yang H and Parkhouse RM, Differential expression of CD8 epitopes amongst porcine CD8-positive functional lymphocyte subsets. Immunology 1997. 92(1): 45–52. PubMed PMC
Olin MR, Choi KH, Lee J and Molitor TW, Γδ T-lymphocyte cytotoxic activity against Mycobacterium bovis analyzed by flow cytometry. J. Immunol. Methods 2005. 297: 1–11. PubMed
Rodríguez-Gómez IM, Talker SC, Käser T, Stadler M, Reiter L, Ladinig A, Milburn JV et al., Expression of T-Bet, eomesodermin, and GATA-3 correlates with distinct phenotypes and functional properties in porcine γδ T cells. Front. Immunol 2019. 10 10.3389/fimmu.2019.00396 PubMed DOI PMC
Summerfield A, Rziha H-J and Saalmüller A, Functional characterization of porcine CD4+CD8+extrathymic T lymphocytes. Cell. Immunol 1996. 168(2): 291–296. 10.1006/cimm.1996.0078 PubMed DOI
Rodríguez-Gómez IM, Talker SC, Käser T, Stadler M, Hammer SE, Saalmüller A and Gerner W, Expression of T-bet, eomesodermin and GATA-3 in porcine αβ T cells. Dev. Comp. Immunol 2016. 60: 115–126. PubMed
Talker SC, Käser T, Reutner K, Sedlak C, Mair KH, Koinig H, Graage R et al., Phenotypic maturation of porcine NK- and T-cell subsets. Dev. Comp. Immunol 2013. 40(1): 51–68. PubMed
Käser T, Gerner W, Hammer SE, Patzl M and Saalmüller A, Detection of Foxp3 protein expression in porcine T lymphocytes. Vet. Immunol. Immunopathol 2008. 125(1–2): 92–101. 10.1016/j.vetimm.2008.05.007 PubMed DOI
Ebner F, Rausch S, Scharek-Tedin L, Pieper R, Burwinkel M, Zentek J and Hartmann S, A novel lineage transcription factor based analysis reveals differences in T helper cell subpopulation development in infected and intrauterine growth restricted (IUGR) piglets. Dev. Comp. Immunol. 2014. 46: 333–340. PubMed
Gerner W, Denyer MS, Takamatsu H-H, Wileman TE, Wiesmüller K-H, Pfaff E and Saalmüller A, Identification of novel foot-and-mouth disease virus specific T-cell epitopes in c/c and d/d haplotype miniature swine. Virus Res. 2006. 121(2): 223–228. PubMed
Ebner F, Schwiertz P, Steinfelder S, Pieper R, Zentek J, Schütze N, Baums CG et al., Pathogen-reactive T helper cell analysis in the pig. Front. Immunol 2017 8: 565 10.3389/fimmu.2017.00565 PubMed DOI PMC
Stepanova K and Sinkora M, Porcine γδ T lymphocytes can be categorized into two functionally and developmentally distinct subsets according to expression of CD2 and level of TCR. J. Immunol 2013. 190(5): 2111–2120. 10.4049/jimmunol.1202890 PubMed DOI
Gerner W, Talker SC, Koinig HC, Sedlak C, Mair KH and Saalmüller A, Phenotypic and functional differentiation of porcine Aβ T cells: current knowledge and available tools. Mol. Immunol 2015. 66(1): 3–13. 10.1016/j.molimm.2014.10.025 PubMed DOI
Holzer B, Morgan SB, Matsuoka Y, Edmans M, Salguero FJ, Everett H, Brookes SM et al., Comparison of heterosubtypic protection in ferrets and pigs induced by a single-cycle influenza vaccine. J. Immunol 2018. 200: 4068–4077. PubMed PMC
Hayashi Y, Okutani M, Ogawa S, Tsukahara T and Inoue R, Generation of anti-porcine CD69 monoclonal antibodies and their usefulness to evaluate early activation of cellular immunity by flow cytometric analysis. Anim. Sci. J 2018. 89: 825–832. PubMed
Yang WC, Schultz RD and Spano JS, Isolation and characterization of porcine natural killer (NK) cells. Vet. Immunol. Immunopathol 1987. 14(4): 345–356. PubMed
Denyer MS, Wileman TE, Stirling CM, Zuber B and Takamatsu HH, Perforin expression can define CD8 positive lymphocyte subsets in pigs allowing phenotypic and functional analysis of natural killer, cytotoxic T, natural killer T and MHC un-restricted cytotoxic T-cells. Vet. Immunol. Immunopathol 2006. 110: 279–292. PubMed
Walzer T, Jaeger S, Chaix J and Vivier E, Natural Killer Cells: From CD3(-)NKp46(+) to post-genomics meta-analyses. Curr. Opin. Immunol 2007. 19(3): 365–372. PubMed
Mair KH, Müllebner A, Essler SE, Duvigneau JC, Storset AK, Saalmüller A and Gerner W, Porcine CD8αdim/-NKp46high NK cells are in a highly activated state. Vet. Res 2013. 44 (March): 13 10.1186/1297-9716-44-13 PubMed DOI PMC
Forberg H, Hauge AG, Valheim M, Garcon F, Nunez A, Gerner W, Mair KH et al., Early responses of natural killer cells in pigs experimentally infected with 2009 pandemic H1N1 influenza A virus. PLoS One 2014. 9(6): e100619 10.1371/journal.pone.0100619 PubMed DOI PMC
Jones M, Cordell JL, Beyers AD, Tse AG and Mason DY, Detection of T and B cells in many animal species using cross-reactive anti-peptide antibodies. J. Immunol 1993. 150: 5429–5435. PubMed
Reutner K, Leitner J, Essler SE, Witter K, Patzl M, Steinberger P, Saalmüller A et al., Porcine CD27: identification, expression and functional aspects in lymphocyte subsets in swine. Dev. Comp. Immunol 2012. 38(2): 321–331. PubMed
Sinkora M, Stepanova K and Sinkorova J, Different Anti-CD21 antibodies can be used to discriminate developmentally and functionally different subsets of B lymphocytes in circulation of pigs. Dev. Comp. Immunol 2013. 39(4): 409–418. PubMed
Kandasamy S, Chattha KS, Vlasova AN, Rajashekara G and Saif LJ, Lactobacilli and Bifidobacteria enhance mucosal B cell responses and differentially modulate systemic antibody responses to an oral human rotavirus vaccine in a neonatal gnotobiotic pig disease model. Gut Microbes 2014. 5(5): 639–651. 10.4161/19490976.2014.969972 PubMed DOI PMC
Braun RO, Python S and Summerfield A, Porcine B cell subset responses to toll-like receptor ligands. Front. Immunol 2017 8: 1044 10.3389/fimmu.2017.01044 PubMed DOI PMC
Summerfield A, Auray G and Ricklin M, Comparative dendritic cell biology of veterinary mammals. Annu. Rev. Anim. Biosci 2015. 3: 533–557. PubMed
Vu Manh T-P, Elhmouzi-Younes J, Urien C, Ruscanu S, Jouneau L, Bourge M, Moroldo M et al., Defining mononuclear phagocyte subset homology across several distant warm-blooded vertebrates through comparative transcriptomics. Front. Immunol 2015. 6: 299. PubMed PMC
Soldevila F, Edwards JC, Graham SP, Stevens LM, Crudgington B, Crooke HR, Werling D et al., Characterization of the myeloid cell populations’ resident in the porcine palatine tonsil. Front. Immunol 2018. 9: 1800. PubMed PMC
Auray G, Keller I, Python S, Gerber M, Bruggmann R, Ruggli N and Summerfield A, Characterization and transcriptomic analysis of porcine blood conventional and plasmacytoid dendritic cells reveals striking species-specific differences. J. Immunol 2016. 197(12): 4791–4806. PubMed
Maisonnasse P, Bouguyon E, Piton G, Ezquerra A, Urien C, Deloizy C, Bourge M et al., The respiratory DC/macrophage network at steady-state and upon influenza infection in the swine biomedical model. Mucosal Immunol 2016a. 9(4): 835–849. 10.1038/mi.2015.105 PubMed DOI
Chun T, Wang K, Zuckermann FA and Rex Gaskins H, Molecular cloning and characterization of a novel CD1 gene from the pig. J. Immunol 1999. 162(11): 6562–6571. PubMed
Nestle FO, Zheng XG, Thompson CB, Turka LA and Nickoloff BJ, Characterization of dermal dendritic cells obtained from normal human skin reveals phenotypic and functionally distinctive subsets. J. Immunol 1993. 151(11): 6535–6545. PubMed
Dutertre C-A, Wang L-F and Ginhoux F, Aligning bona fide dendritic cell populations across species. Cell. Immunol 2014. 291(1): 3–10. 10.1016/j.cellimm.2014.08.006 PubMed DOI
Chamorro S, Revilla C, Alvarez B, Alonso F, Ezquerra A and Domínguez J, Phenotypic and functional heterogeneity of porcine blood monocytes and its relation with maturation. Immunology 2005. 114(1): 63–71. PubMed PMC
Ondrackova P, Nechvatalova K, Kucerova Z, Leva L, Dominguez J and Faldyna M, Porcine mononuclear phagocyte subpopulations in the lung, blood and bone marrow: dynamics during inflammation induced by actinobacillus pleuropneumoniae. Vet. Res 2010. 41: 64. PubMed PMC
Fairbairn L, Kapetanovic R, Beraldi D, Sester DP, Tuggle CK, Archibald AL and Hume DA, Comparative analysis of monocyte subsets in the pig. J. Immunol 2013. 190(12): 6389–6396. 10.4049/jimmunol.1300365 PubMed DOI
Ondrackova P, Leva L, Kucerova Z, Vicenova M, Mensikova M and Faldyna M, Distribution of porcine monocytes in different lymphoid tissues and the lungs during experimental actinobacillus pleuropneumoniae infection and the role of chemokines. Vet. Res 2013. 44: 98. PubMed PMC
Moreno S, Alvarez B, Poderoso T, Revilla C Ezquerra, A., Alonso, F. and Dominguez, J., Porcine monocyte subsets differ in the expression of CCR2 and in their responsiveness to CCL2. Vet Res. 2010. 41: 76. PubMed PMC
Ezquerra A, Revilla C, Alvarez B, Pérez C, Alonso F and Domínguez J, Porcine myelomonocytic markers and cell populations. Dev. Comp. Immunol 2009. 33(3): 284–298. 10.1016/j.dci.2008.06.002 PubMed DOI
Fernández-Caballero T, Álvarez B, Revilla C, Zaldívar-López S, Alonso F, Garrido JJ, Ezquerra Á et al., Phenotypic and functional characterization of porcine bone marrow monocyte subsets. Dev. Comp. Immunol 2018 81: 95–104. 10.1016/j.dci.2017.11.012 PubMed DOI
Talker SC, Baumann A, Tuba Barut G, Keller I, Bruggmann R and Summerfield A, Precise delineation and transcriptional characterization of bovine blood dendritic-cell and monocyte subsets. Front. Immunol 2018. 9: 2505. PubMed PMC
Sinkora M and Sinkorova J, B cell lymphogenesis in swine is located in the bone marrow. J. Immunol 2014. 193(10): 5023–5032. PubMed
Maisonnasse P, Bordet E, Bouguyon E and Bertho N, Broncho alveolar dendritic cells and macrophages are highly similar to their interstitial counterparts. PLoS One 2016b. 11(12): e0167315 10.1371/journal.pone.0167315 PubMed DOI PMC
Bordet E, Maisonnasse P, Renson P, Bouguyon E, Crisci E, Tiret M, Descamps D et al., Porcine alveolar macrophage-like cells are proinflammatory pulmonary intravascular macrophages that produce large titers of porcine reproductive and respiratory syndrome virus. Sci. Rep 2018. 8(1): 10172 10.1038/s41598-018-28234-y PubMed DOI PMC
Guilliams M, Ginhoux F, Jakubzick C, Naik SH, Onai N, Schraml BU, Segura E et al., Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat. Rev. Immunol 2014. 14: 571–578. PubMed PMC
Bharat A, Bhorade SM, Morales-Nebreda L, McQuattie-Pimentel AC, Soberanes S, Ridge K, DeCamp MM et al., Flow cytometry reveals similarities between lung macrophages in humans and mice. Am. J. Respir Cell Mol Biol 2016. 54(1): 147–149. 10.1165/rcmb.2015-0147LE PubMed DOI PMC
Cai Y, Sugimoto C, Arainga M, Alvarez X, Didier ES and Kuroda MJ, In vivo characterization of alveolar and interstitial lung macrophages in rhesus macaques: implications for understanding lung disease in humans. J. Immunol. (Baltimore, Md.: 1950) 2014. 192(6): 2821–2829. 10.4049/jimmunol.1302269 PubMed DOI PMC
Yu Y-RA, Hotten DF, Malakhau Y, Volker E, Ghio AJ, Noble PW, Kraft M et al., Flow cytometric analysis of myeloid cells in human blood, bronchoalveolar lavage, and lung tissues. Am. J. Respir. Cell Mol. Biol 2016. 54(1): 13–24. PubMed PMC
Marquet F, Vu Manh T-P, Maisonnasse P, Elhmouzi-Younes J, Urien C, Bouguyon E, Jouneau L et al., Pig skin includes dendritic cell subsets transcriptomically related to human CD1a and CD14 dendritic cells presenting different migrating behaviors and T cell activation capacities. J. Immunol 2014. 193(12): 5883–5893. PubMed
Parra-Sánchez H, Puebla-Clark L, Reséndiz M, Valenzuela O and Hernández J, Characterization and expression of DEC205 in the CDC1 and CDC2 subsets of porcine dendritic cells from spleen, tonsil, and submaxillary and mesenteric lymph nodes. Mol. Immunol 2018. 96: 1–7. PubMed PMC
Saalmüller A, Pauly T, Lunney JK, Boyd P, Aasted B, Sachs DH, Arn S et al., Overview of the second international workshop to define swine cluster of differentiation (CD) antigens. Vet. Immunol. Immunopathol 1998. 60(3–4): 207–228. PubMed
Leitner J, Reutner K, Essler SE, Popow I, Gerner W, Steinberger P and Saalmüller A, Porcine SWC1 Is CD52—final determination by the use of a retroviral CDNA expression library. Vet. Immunol. Immunopathol 2012. 146(1): 27–34. PubMed PMC
Pérez C, Revilla C, Alvarez B, Chamorro S, Correa C, Domenech N, Alonso F et al., Phenotypic and functional characterization of porcine granulocyte developmental stages using two new markers. Dev. Comp. Immunol 2007. 31(3): 296–306. PubMed
Saalmüller A and Aasted B, Summary of the animal homologue section of HLDA8. Vet. Immunol. Immunopathol 2007. 119: 2–13. PubMed
Saalmüller A, Lunney JK, Daubenberger C, Davis W, Fischer U, Göbel TW and Griebel P et al., Summary of the animal homologue section of HLDA8. Cell. Immunol 2005. 236: 51–58. PubMed
Cobaleda C, Schebesta A, Delogu A and Busslinger M, Pax5: the guardian of B cell identity and function. Nat. Immunol 2007. 8: 463–470. PubMed
Brodie T, Brenna E and Sallusto F, OMIP-018: chemokine receptor expression on human T helper cells. Cytometry A 2013. 83: 530–532. PubMed
Shaffer AL, Lin K-I, Kuo TC, Yu X, Hurt EM, Rosenwald A and Giltnane JM et al., Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program. Immunity 2002. 17: 51–62. PubMed
Bekeredjian-Ding I and Jego G, Toll-like receptors—sentries in the B-cell response. Immunology 2009. 128: 311–323. PubMed PMC
Calame K, Activation-dependent induction of Blimp-1. Curr. Opin. Immunol 2008. 20: 259–264. PubMed
Gerner W, Käser T and Saalmüller A, Porcine T lymphocytes and NK cells - an update. Dev. Comp. Immunol 2009. 33: 310–320. PubMed
Saalmüller A, Werner T and Fachinger V, T-helper cells from naive to committed. Vet. Immunol. Immunopathol 2002. 87: 137–145. PubMed
Bolzer K, Käser T, Saalmüller A and Hammer SE, Molecular characterisation of porcine Forkhead-box p3 (Foxp3). Vet. Immunol. Immunopathol 2009. 132: 275–281. PubMed
Rocchi MS, Wattegedera SR, Frew D, Entrican G, Huntley JF and McNeilly TN, Identification of CD4+CD25high Foxp3+ T cells in ovine peripheral blood. Vet. Immunol. Immunopathol 2011. 144: 172–177. PubMed
Käser T, Mair KH, Hammer SE, Gerner W and Saalmüller A, Natural and inducible Tregs in swine: helios expression and functional properties. Dev. Comp. Immunol 2015. 49: 323–331. PubMed
Kwong LS, Thom M, Sopp P, Rocchi M, Wattegedera S, Entrican G and Hope JC, Production and characterization of two monoclonal antibodies to bovine tumour necrosis factor alpha (TNF-alpha) and their cross-reactivity with ovine TNF-alpha. Vet. Immunol. Immunopathol 2010. 135: 320–324. PubMed
Wattegedera SR, Corripio-Miyar Y, Pang Y, Frew D, McNeilly TN, Palarea-Albaladejo J and McInnes CJ et al., Enhancing the toolbox to study IL-17A in cattle and sheep. Vet. Res 2017. 48: 20. PubMed PMC
Pedersen LG, Castelruiz Y, Jacobsen S and Aasted B, Identification of monoclonal antibodies that cross-react with cytokines from different animal species. Vet. Immunol. Immunopathol 2002. 88: 111–122. PubMed
Franzoni G, Kurkure NV, Edgar DS, Everett HE, Gerner W, Bodman-Smith KB, Crooke HR et al., Assessment of the phenotype and functionality of porcine CD8 T cell responses following vaccination with live attenuated classical swine fever virus (CSFV) and virulent CSFV challenge. Clin. Vaccine Immunol 2013. 20: 1604–1616. PubMed PMC
Takamatsu HH, Denyer MS, Stirling C, Cox S, Aggarwal N, Dash P, Wileman TE et al., Porcine γδ T cells: possible roles on the innate and adaptive immune responses following virus infection. Vet. Immunol. Immunopathol 2006. 112: 49–61. PubMed
Saeys Y, Gassen SV and Lambrecht BN, Computational flow cytometry: helping to make sense of high-dimensional immunology data. Nat. Rev. Immunol 2016. 16: 449–462. PubMed
Aghaeepour N, Finak G, The FlowCAP Consortium, The DREAM Consortium, Hoos H, Mosmann TR, Brinkman R et al., Critical assessment of automated flow cytometry data analysis techniques. Nat. Methods 2013. 10: 228–238. PubMed PMC
Bashashati A and Brinkman RR, A survey of flow cytometry data analysis methods. Adv. Bioinformatics 2009. 2009: 584603. PubMed PMC
O’Neill K, Aghaeepour N, Spidlen J and Brinkman RR, Flow cytometry bioinformatics. PLoS Comput. Biol 2013. 9: e1003365. PubMed PMC
Aghaeepour N, Chattopadhyay PK, Ganesan A, O’Neill K, Zare H, Jalali A, Hoos H et al., Early immunologic correlates of HIV protection can be identified from computational analysis of complex multivariate T-cell flow cytometry assays. Bioinformatics 2012. 28: 1009–1016. PubMed PMC
Aghaeepour N, Nikolic R, Hoos HH, and Brinkman RR Rapid cell population identification in flow cytometry data. Cytometry Part A 2011. 79A: 6–13. PubMed PMC
Finak G, Bashashati A, Brinkman R and Gottardo R, Merging mixture components for cell population identification in flow cytometry. Adv. Bioinformatics 2009, 247646. PubMed PMC
Mosmann TR, Naim I, Rebhahn J, Rebhahn J, Datta S, Cavenaugh JS, Weaver JM and Sharma G, SWIFT-scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, Part 2: Biological evaluation. Cytometry A 2014. 85: 422–433. PubMed PMC
Finak G, Langweiler M, Jaimes M, Malek M, Taghiyar J, Korin Y, Raddassi K et al., Standardizing flow cytometry immunophenotyping analysis from the human immunophenotyping consortium. Sci. Rep 2016. 6: 20686. PubMed PMC
Qian Y, Wei C, Eun-Hyung Lee F, Campbell J, Halliley J, Lee JA, Cai J et al., Elucidation of seventeen human peripheral blood B-cell subsets and quantification of the tetanus response using a density-based method for the automated identification of cell populations in multidimensional flow cytometry data. Cytometry B Clin. Cytom 2010. 78(Suppl 1): S69–S82. PubMed PMC
Qiu P, Simonds EF, Bendall SC, Gibbs KD, Bruggner RV, Linderman MD, Sachs K et al., Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat. Biotechnol 2011. 29: 886–891. PubMed PMC
Naim I, Datta S, Cavenaugh JS, Mosmann TR and Sharma G, SWIFT-scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, Part 1: Algorithm design, Cytometry A 2014. 85: 408–421. PubMed PMC
Leipold MD and Maecker HT, Mass cytometry: protocol for daily tuning and running cell samples on a CyTOF mass cytometer. J. Vis. Exp 2012. e4398. PubMed PMC
Fletez-Brant K, Spidlen J, Brinkman RR, Roederer M and Chattopadhyay PK, flowClean: Automated identification and removal of fluorescence anomalies in flow cytometry data. Cytometry A 2016. 89: 461–471. PubMed PMC
Finak G, Perez JM, Weng A and Gottardo R, Optimizing transformations for automated, high throughput analysis of flow cytometry data. BMC Bioinformatics. 2010. 11: 546. PubMed PMC
Finak G, Perez JM and Gottardo R, flowTrans: Parameter Optimization for Flow Cytometry Data Transformation. R package version 1.24.0. 2010.
Hahne F, Khodabakhshi AH, Bashashati A, Wong CJ, Gascoyne RD, Weng AP, Seyfert-Margolis V et al., Per-channel basis normalization methods for flow cytometry data. Cytometry A 2010. 77: 121–131. PubMed PMC
Finak G, Jiang W, Krouse K, Wei C, Sanz I, Phippard D, Asare A et al., High–throughput flow cytometry data normalization for clinical trials. Cytometry A 2014. 85: 277–286 PubMed PMC
Mair F, Gate to the future: computational analysis of immunophenotyping data. Cytometry A 2019. 95: 147–149. PubMed
Aghaeepour N, Chattopadhyay P, Chikina M, Dhaene T, Van Gassen S, Kursa M, Lambrecht BN et al., A benchmark for evaluation of algorithms for identification of cellular correlates of clinical outcomes. Cytometry 2016. 89: 16–21. PubMed PMC
Weber LM and Robinson MD, Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data. Cytometry A 2016. 89: 1084–1096. PubMed
Li H, Shaham U, Stanton KP, Yao Y, Montgomery RR and Kluger Y, Gating mass cytometry data by deep learning. Bioinformatics 2017. 33: 3423–3430. PubMed PMC
Ko BS, Wang YF, Li JL, Li CC, Weng PF, Hsu SC, Hou HA et al., Clinically validated machine learning algorithm for detecting residual diseases with multicolor flow cytometry analysis in acute myeloid leukemia and myelodysplastic syndrome. EBioMedicine 2018. 37: 91–100. PubMed PMC
Azad A, Rajwa B and Pothen A, Immunophenotype discovery, hierarchical organization, and template-based classification of flow cytometry samples. Front. Oncol 2016. 6: 188. PubMed PMC
Finak G, Frelinger J, Jiang W, Newell EW, Ramey J, Davis MM, Kalams SA et al., OpenCyto: An open source infrastructure for scalable, robust, reproducible, and automated, end-to-end flow cytometry data analysis. PLoS Comput. Biol 2014. 10: e1003806. PubMed PMC
Malek M, Taghiyar MJ, Chong L, Finak G, Gottardo R and Brinkman RR, flowDensity: Reproducing manual gating of flow cytometry data by automated density-based cell population identification. Bioinformatics 2015. 31: 606–607. PubMed PMC
Lux M, Brinkman RR, Chauve C, Laing A, Lorenc A, Abeler-Dörner L, Hammer B et al., flowLearn: fast and precise identification and quality checking of cell populations in flow cytometry. Bioinformatics 2018. 1: 9. PubMed PMC
Kalina T, Flores-Montero J, Lecrevisse Q, Pedreira CE, van der Velden VH, Novakova M, Mejstrikova E, Hrusak O et al., Quality assessment program for Euro Flow protocols: Summary results of fouryear (2010–2013) quality assurance rounds. Cytometry A 2015. 87(2): 145–156. PubMed
Aghaeepour N, FlowMeans: non-parametric flow cytometry data gating. R package version. 2010. 1(0).
Aghaeepour N and Simonds EF, GateFinder: projection-based gating strategy optimization for polychromatic and mass flow cytometry data. Bioinformatics 2018. 34: 4131–4133. PubMed PMC
Amir E-AD, Davis KL, Tadmor MD, Simonds EF, Levine JH, Bendall SC, Shenfeld DK et al., viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat. Biotechnol 2013. 31: 545–552. PubMed PMC
Samani FS, Moore JK, Khosravani P and Ebrahimi M, Features of free software packages in flow cytometry: a comparison between four non-commercial software sources. Cytotechnology. 2014. 66(4): 555–559. PubMed PMC
Chen TJ and Kotecha N, Cytobank: providing an analytics platform for community cytometry data analysis and collaboration. Curr. Top. Microbiol. Immunol 2014. 377: 127–157. PubMed
Roederer M, Nozzi JL and Nason MC, SPICE: Exploration and analysis of post-cytometric complex multivariate datasets. Cytometry A. 2011. 79: 167–174. PubMed PMC
Spidlen J, Barsky A, Breuer K, Carr P, Nazaire MD, Hill BA, Qian Y et al., GenePattern flow cytometry suite. Source Code Biol. Med 2013. 8: 14. PubMed PMC
Brinkman RR, Aghaeepour N, Finak G, Gottardo R, Mosmann T and Scheuermann RH, Automated analysis of flow cytometry data comes of age. Cytometry A 2016. 89: 16–21. PubMed
Benjamini Y and Hochberg Y, Controlling the False Discovery Rate - a Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B-Methodological 1995. 57: 289–300.
Almudevar A, Multiple hypothesis testing: a methodological overview. Methods Mol. Biol 2013. 972: 37–55. PubMed
Rebhahn JA, Roumanes DR, Qi Y, Khan A, Thakar J, Rosenberg A, Lee FE et al., Competitive SWIFT cluster templates enhance detection of aging changes. Cytometry A 2016. 89: 59–70. PubMed PMC
Maaten LVD and Hinton G, Visualizing data using t-SNE. J. Mach. Learn. Res 2008. 9: 2579–2605.
Aghaeepour N, Jalali A, O’Neill K, Chattopadhyay PK, Roederer M, Hoos HH and Brinkman RR, RchyOptimyx: Cellular hierarchy optimization for flow cytometry. Cytometry A 2012. 81: 1022–1030. PubMed PMC
O’Neill K, Jalali A, Aghaeepour N, Hoos H and Brinkman RR, Enhanced flowType/RchyOptimyx: a bioconductor pipeline for discovery in high-dimensional cytometry data. Bioinformatics 2014. 30: 1329–1330. PubMed PMC
Tong DL, Ball GR and Pockley AG, gEM/GANN: a multivariate computational strategy for auto-characterizing relationships between cellular and clinical phenotypes and predicting disease progression time using high-dimensional flow cytometry data. Cytometry 2015. 87: 616–623. PubMed
Gassen SV, Vens C, Dhaene T, Lambrecht BN and Saeys Y, Flo-ReMi: flow density survival regression using minimal feature redundancy. Cytometry A 2015. 89: 22–29. PubMed
Mair F, Hartmann FJ, Mrdjen D, Tosevski V, Krieg C and Becher B, The end of gating? An introduction to automated analysis of high dimensional cytometry data. Eur. J. Immunol 2016. 46: 34–43. PubMed
LeCun Y, Bengio Y and Hinton G, Deep learning. Nature 2015. 521: 436–444. PubMed
Rosenblatt F, The Perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev 1958. 65: 386–408. PubMed
Szegedy C, Liu W, Jia Y, Sermanet P, Reed SE, Anguelov D, Erhan D et al., Going deeper with convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, 2015, pp. 1–9.
Gupta PJ, Harrison, Wieslander H, Pielawski N, Kartasalo K, Partel G, Solorzano L, Suveer A et al., Deep learning in image cytometry: a review. Cytometry A 2019. 95: 366–380. PubMed PMC
Eulenberg P, Koehler N, Blasi T, Filby A, Carpenter AE, Rees P, Theis FJ et al., Reconstructing cell cycle and disease progression using deep learning. Nat. Commun 2017. 8: 463. PubMed PMC
Behrmann J, Etmann C, Boskamp T, Casadonte R, Kriegsmann J and Maass P, Deep learning for tumor classification in imaging mass spectrometry. Bioinformatics 2017. 1: 1–10. PubMed
Arvaniti E and Claassen M, Sensitive detection of rare disease-associated cell subsets via representation learning. Nat. Commun 2017. 8: 14825. PubMed PMC
Li H, Shaham U, Stanton KP, Yao Y, Montgomery RR, Kluger Y et al., Gating mass cytometry data by deep learning. Bioinformatics 2017. 33: 3423–3430. PubMed PMC
Ornatsky OI, Kinach R, Bandura DR, Lou X, Tanner SD, Baranov VI, Nitz M and Winnik MA, Development of analytical methods for multiplex bio-assay with inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom 2008. 23: 463–469. PubMed PMC
Jolliffe IT, Principal component analysis, Springer Science & Business Media, Berlin, Germany: 2002.
Bendall SC, Simonds EF, Qiu P, Amir el AD, Krutzik PO, Finck R, Bruggner RV et al., Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 2011. 332: 687–696. PubMed PMC
Newell EW, Sigal N, Bendall SC, Nolan GP and Davis MM, Cytometry by time-of-flight shows combinatorial cytokine expression and virus-specific cell niches within a continuum of CD8+ T cell phenotypes. Immunity 2012. 36: 142–152. PubMed PMC
Kotecha N, Krutzik PO and Irish JM, Web-based analysis and publication of flow cytometry experiments. Curr. Protoc. Cytom 2010. Chapter 10, Unit10.17. PubMed PMC
Höllt T et al., Cytosplore: interactive immune cell phenotyping for large single-cell datasets. Comput. Graphics Forum 2016. 35: 171–180.
Chen H et al., Cytofkit: a bioconductor package for an integrated mass cytometry data analysis pipeline. PLoS Comput. Biol 2016. 12: e1005112. PubMed PMC
Kobak D and Berens P, The art of using t-SNE for single-cell transcriptomics. bioRxiv. 2018. Available at: 10.1101/453449 PubMed DOI PMC
Wattenberg M, Viégas F and Johnson I, How to use t-SNE effectively. Distill 2016. 1(10). 10.23915/distill.00002 DOI
Belkina AC et al., Automated optimal parameters for T-distributed stochastic neighbor embedding improve visualization and allow analysis of large datasets. bioRxiv. 2018. PubMed PMC
Linderman GC, Rachh M, Hoskins JG, Steinerberger S and Kluger Y, Efficient Algorithms for t-distributed stochastic neighborhood embedding. arXiv. 2017. Available at: https://arxiv.org/abs/1712.09005
van der Maaten LJP, Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res 2014. (15): 3221–3245.
Pezzotti N, Lelieveldt BPF, Van Der Maaten L, Hollt T, Eisemann E, Vilanova A et al., Approximated and user steerable tSNE for progressive visual analytics. IEEE Trans. Vis. Comput. Graph 2017. 23: 1739–1752. PubMed
Linderman GC, Rachh M, Hoskins JG, Steinerberger S and Kluger Y, Fast interpolation-based t-SNE for improved visualization of single-cell RNA-seq data. Nat. Methods 2019. 16(3): 243–245. PubMed PMC
Pezzotti N, Höll T, Lelieveldt T, Eisemann E and Vilanova A, Hierarchical stochastic neighbor embedding. Comput. Graphics Forum 2016. 35: 21–30.
van Unen V, Höllt T, Pezzotti N, Li N, Reinders MJT, Eisemann E, Koning F et al., Visual analysis of mass cytometry data by hierarchical stochastic neighbour embedding reveals rare cell types. Nat. Commun 2017. 8: 1740. PubMed PMC
Linderman GC and Steinerberger S, Clustering with t-SNE, provably. arXiv. 2017. Available at: https://arxiv.org/abs/1706.02582 PubMed PMC
Shekhar K et al., Automatic classification of cellular expression by nonlinear stochastic embedding (ACCENSE). Proc. Natl. Acad. Sci. USA 2014. 111: 202–207. PubMed PMC
Murphy RF, Automated identification of subpopulations in flow cytometric list mode data using cluster analysis. Cytometry. 1985. 6: 302–309. PubMed
Diggins KE, Gandelman JS, Roe CE and Irish JM, Generating quantitative cell identity labels with marker enrichment modeling (MEM). Curr. Protoc. Cytom 2018. 83: 10.21.1–10.21.28. PubMed PMC
Schadt EE, Lamb J, Yang X, Zhu J, Edwards S, Guhathakurta D, Sieberts SK et al., An integrative genomics approach to infer causal associations between gene expression and disease. Nat. Genet 2005. 37: 710–717. PubMed PMC
Emilsson V, Thorleifsson G, Zhang B, Leonardson AS, Zink F, Zhu J, Carlson S et al., Genetics of gene expression and its effect on disease. Nature 2008. 452: 423–428. PubMed
Stegle O, Teichmann SA and Marioni JC, Computational and analytical challenges in single-cell transcriptomics. Nat. Rev. Genet 2015; 16: 133–145. PubMed
Bantscheff M, Schirle M, Sweetman G, Rick J and Kuster B, Quantitative mass spectrometry in proteomics: a critical review. Anal. Bioanal. Chem 2007. 389: 1017–1031. PubMed
Weston AD and Hood L, Systems biology, proteomics, and the future of health care: toward predictive, preventative, and personalized medicine. J. Proteome Res 2004. 3: 179–196. PubMed
Aghaeepour N, Lehallier B, Baca Q, Ganio EA, Wong RJ, Ghaemi MS, Culos A et al., A proteomic clock of human pregnancy. Am. J. Obstet. Gynecol 2018. 218: 347.e1–347.e14. PubMed
Patterson AD, Maurhofer O, Beyoglu D, Lanz C, Krausz KW, Pabst T, Gonzalez FJ et al., Aberrant lipid metabolism in hepatocellular carcinoma revealed by plasma metabolomics and lipid profiling. Cancer Res. 2011. 71: 6590–6600. PubMed PMC
Zhao Y, Fu L, Li R, Wang LN, Yang Y, Liu NN, Zhang CM et al., Metabolic profiles characterizing different phenotypes of polycystic ovary syndrome: plasma metabolomics analysis. BMCMed. 2012. 10: 153. PubMed PMC
Chen X, Liu L, Palacios G, Gao J, Zhang N, Li G, Lu J et al., Plasma metabolomics reveals biomarkers of the atherosclerosis. J. Sep. Sci 2010. 33: 2776–2783. PubMed
Psychogios N, Hau DD, Peng J, Guo AC, Mandal R, Bouatra S, Sinelnikov I et al., The human serum metabolome. PLoS One 2011. 6: e16957. PubMed PMC
Bathe OF et al., Feasibility of identifying pancreatic cancer based on serum metabolomics. Cancer Epidemiol. Biomarkers Prev. 2011. 20: 140–147. PubMed
Zhang A, Sun H and Wang X, Serum metabolomics as a novel diagnostic approach for disease: a systematic review. Anal. Bioanal. Chem 2012. 404: 1239–1245. PubMed
Bouatra S, Aziat F, Mandal R, Guo AC, Wilson MR, Knox C, Bjorndahl TC et al., The human urine metabolome. PLoS One 2013. 8: e73076. PubMed PMC
Kim Y, Koo I, Jung BH, Chung BC and Lee D, Multivariate classification of urine metabolome profiles for breast cancer diagnosis. BMC Bioinformatics 2010. 11: S4. PubMed PMC
Dethlefsen L, McFall-Ngai M and Relman DA, An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 2007. 449: 811–818. PubMed PMC
Woodward LJ, Anderson PJ, Austin NC, Howard K and Inder TE, Neonatal MRI to predict neurodevelopmental outcomes in preterm infants. N. Engl. J. Med 2006. 355: 685–694. PubMed
Giesen C, Wang HA, Schapiro D, Zivanovic N, Jacobs A, Hattendorf B, Schuffler PJ et al., Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 2014. 11: 417–422. PubMed
Halilaj E, Hastie TJ, Gold GE and Delp SL, Physical activity is associated with changes in knee cartilage microstructure. Osteoarthr. Cartil 2018. 26: 770–774. PubMed PMC
Jensen PB, Jensen LJ and Brunak S, Mining electronic health records: towards better research applications and clinical care. Nat. Rev. Genet 2012. 13: 395–405. PubMed
Marbach D, Costello JC, Küffner R, Vega NM, Prill RJ, Camacho DM, Allison KR et al., Wisdom of crowds for robust gene network inference. Nat. Methods 2012. 9: 796–804. PubMed PMC
Elhalawani H et al., Machine Learning Applications in Head and Neck Radiation Oncology: Lessons From Open-Source Radiomics Challenges. Front. Oncol 2018. 8: 294. PubMed PMC
Ritchie MD, Holzinger ER, Li R, Pendergrass SA and Kim D, Methods of integrating data to uncover genotype-phenotype interactions. Nat. Rev. Genet 2015. 16: 85–97. PubMed
Feinberg AP, Epigenomics reveals a functional genome anatomy and a new approach to common disease. Nat. Biotechnol 2010. 28: 1049–1052. PubMed PMC
Huang S, Chaudhary K and Garmire LX, More Is Better: Recent Progress in Multi-Omics Data Integration Methods. Front. Genet 2017. 8: 84. PubMed PMC
Bersanelli M et al., Methods for the integration of multi-omics data: mathematical aspects. BMC Bioinformatics 2016. 17(Suppl 2): 15. PubMed PMC
Li Y, Wu F -X. and Ngom, A., A review on machine learning principles for multi-view biological data integration. Brief. Bioinformatics 2018. 19: 325–340. PubMed
Tini G, Marchetti L, Priami C and Scott-Boyer M -P., Multi-omics integration-a comparison of unsupervised clustering methodologies. Brief. Bioinformatics 2017. bbx167 PubMed
Shen R, Olshen AB and Ladanyi M, Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics 2009. 25: 2906–2912. PubMed PMC
Lock EF, Hoadley KA, Marron JS and Nobel AB, Joint and individual variation explained (jive) for integrated analysis of multiple data types. Ann. Appl. Stat 2013. 7: 523–542. PubMed PMC
Wang B et al., Similarity network fusion for aggregating data types on a genomic scale. Nat. Methods 2014. 11: 333–337. PubMed
Nassar H and Gleich DF, in Proceedings of the 2017 SIAM international conference on data mining, In Chawla N, Wang W, (Eds) Society for Industrial and Applied Mathematics, Philadelphia, PA, 2017. pp. 615–623.
Lock EF, Dunson DB, Bayesian consensus clustering. Bioinformatics 2013. 29: 2610–2616. PubMed PMC
Lin D, Zhang J, Li J, Calhoun VD, Deng HW and Wang YP, Group sparse canonical correlation analysis for genomic data integration. BMC Bioinformatics 2013. 14: 245. PubMed PMC
Holzinger ER, Dudek SM, Frase AT, Pendergrass SA and Ritchie MD, ATHENA: the analysis tool for heritable and environmental network associations. Bioinformatics 2014. 30: 698–705. PubMed PMC
Ghaemi MS et al., Multiomics modeling of the immunome, transcriptome, microbiome, proteome and metabolome adaptations during human pregnancy. Bioinformatics 2019. 35: 95–103. PubMed PMC
Singh A et al., DIABLO: an integrative approach for identifying key molecular drivers from multi-omic assays. Bioinformatics 2019. 10.1093/bioinformatics/bty1054 PubMed DOI PMC
He L, Yang Z, Zhao Z, Lin H and Li Y, Extracting drug-drug interaction from the biomedical literature using a stacked generalization-based approach. PLoS One 2013. 8: e65814. PubMed PMC
Bendall SC, Davis KL, Amir E-AD, Tadmor MD, Simonds EF, Chen TJ, Shenfeld DK et al., Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 2014. 157: 714–725. PubMed PMC
Saelens W, Cannoodt R, Todorov H and Saeys Y, A comparison of single-cell trajectory inference methods. Nat. Biotechnol 2019. 37: 547–554. PubMed
Treutlein B, Lee QY, Camp JG, Mall M, Koh W, Shariati SAM, Sim S et al., Dissecting direct reprogramming from fibroblast to neuron using single-cell RNA-seq. Nature 2016. 534: 391–395. PubMed PMC
Cannoodt R, Saelens W and Saeys Y, Computational methods for trajectory inference from single cell transcriptomics. Eur. J. Immunol 2016. 46: 2496–2506. PubMed
Rebhahn JA, Deng N, Sharma G, Livingstone AM, Huang S and Mosmann TR, An animated landscape representation of CD4+ T-cell differentiation, variability, and plasticity: insights into the behavior of populations versus cells. Eur. J. Immunol 2014. 44: 2216–2229. PubMed PMC
Dean PN and Jett JJ, Mathematical analysis of DNA distributions derived from flow microfluorometry. J. Cell. Biol 1974. 60: 523–527. PubMed PMC
Gray JW, Cell cycle analysis from computer synthesis of deoxyribonucleic acid histograms. J. Histochem. Cytochem 1974. 22: 642–650. PubMed
Watson JV, The application of age distribution theory in the analysis of cytofluorimetric DNA-histogram data. Cell Tissue Kinet. 1977. 10: 157–169. PubMed
Watson JV, Chambers SH and Smith PJ, A pragmatic approach to the analysis of DNA histograms with a definable G1 peak. Cytometry 1987. 8: 1–8. PubMed
Rosenblatt JI, Hokanson JA, McLaughlin SR and Leary JF, Theoretical basis for sampling statistics useful for detecting and isolating rare cells using flow cytometry and cell sorting. Cytometry 1997. 27: 233–238. PubMed
Poisson SD, Recherches sur la probabilité des jugements en matière criminelle et en matière civile: précédées des règles générales du calcul des probabilit és. Bachelier, Paris, France, 1837.
Gosset WS, The probable error of a mean. Biometrica 1908. 6: 1–25.
Fisher RA, Statistical methods for research workers. Oliver & Boyd, Edinburgh, U.K., 1925.
Watson JV, Flow cytometry data analysis: basic concepts and statistics, Cambridge University Press, Cambridge, UK, 2005.
Fisher RA and Yates F, Statistical tables for biological, medical and agricultural research. Oliver and Boyd, Edinburgh, UK, 1963. p. 86.
Snedecor GW, Statistical methods 4th ed., Iowa State College Press, Ames, Iowa, 1946.
Wilcoxon F, Individual comparisons by ranking methods. Biometrics Bull. 1945. 1: 80–83. PubMed
Mann HB and Whitney DR, On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat 1947. 18: 50–60.
Siegel S and Castellón NJ, Non-parametric statistics for the behavioral sciences, 2nd ed., McGraw-Hill, New York, NY, 1988, Chapter 6.
Young IT, Proof without prejudice: use of the Kolmogorov–Smirnov test for the analysis of histograms from flow systems and other sources. J. Histochem. Cytochem 1977. 25: 935–941. PubMed
Kendall MG, Rank and product-moment correlation. Biometrika 1949. 36: 177–193. PubMed
Watson JV, Proof without prejudice revisited: Immunofluorescence histogram analysis using cumulative frequency subtraction plus ratio analysis of means. Cytometry 2001. 43: 55–68. PubMed
Bocsi J, Melzer S, Dähnert I and Tárnok A, OMIP-023: 10-color, 13 antibody panel for in-depth phenotyping of human peripheral blood leukocytes. Cytometry A 2014. 85: 781–784. PubMed
Melzer S, Zachariae S, Bocsi J, Engel C, Löffler M and Tárnok A, Reference intervals for leukocyte subsets in adults: Results from a population-based study using 10-color flow cytometry. Cytometry B Clin. Cytom 2015. 88: 270–281. PubMed
Nettey L, Giles AJ and Chattopadhyay PK, OMIP-050: a 28- color/30-parameter fluorescence flow cytometry panel to enumerate and characterize cells expressing a wide array of immune checkpoint molecules. Cytometry A 2018. 93:1094–1096. PubMed
Mazza EMC, Brummelman J, Alvisi G, Roberto A, De Paoli F, Zanon V, Colombo F, Roederer M et al., Background fluorescence and spreading error are major contributors of variability in high-dimensional flow cytometry data visualization by t-distributed stochastic neighboring embedding. Cytometry A 2018. 93:785–792. PubMed PMC
Diggins KE, Ferrell PB and Irish JM, Methods for discovery and characterization of cell subsets in high dimensional mass cytometry data. Methods 2015. 82: 55–63. PubMed PMC
Pierzchalski A, Robitzki A, Mittag A, Emmrich F, Sack U, O’Connor JE, Bocsi J et al., Cytomics and nanobioengineering. Cytometry B Clin. Cytom 2008. 74:416–426. PubMed
Van Gassen S, Callebaut B, Van Helden MJ, Lambrecht BN, Demeester P, Dhaene T and Saeys Y, FlowSOM: using self-organizing maps for visualization and interpretation of cytometry data. Cytometry A 2015. 87: 636–645. PubMed
Elhmouzi-Younes J, Palgen JL, Tchitchek N, Delandre S, Namet I, Bodinham CL, Pizzoferro K et al., In depth comparative phenotyping of blood innate myeloid leukocytes from healthy humans and macaques using mass cytometry. Cytometry A 2017. 91:969–982. PubMed
Loeffler M, Engel C, Ahnert P, Alfermann D, Arelin K, Baber R, Beutner F et al., The LIFE-Adult-Study: objectives and design of a population-based cohort study with 10 000 deeply phenotyped adults in Germany. BMC Public Health 2015. 15: 691. PubMed PMC
Moher D, Glasziou P, Chalmers I, Nasser M, Bossuyt PM, Korevaar DA, Graham ID et al., Increasing value and reducing waste in biomedical research: who’s listening? Lancet 2015. 387: 1573–1586. PubMed
Taylor CF, Field D, Sansone SA, Aerts J, Apweiler R, Ashburner M, Ball CA et al., Promoting coherentminimum reporting guidelines for biological and biomedical investigations: the MIBBI project. Nat. Biotechnol 2008. 26: 889–896. PubMed PMC
Nies KPH, Kraaijvanger R, Lindelauf KHK, Drent RJMR, Rutten RMJ, Ramaekers FCS and Leers MPG, Determination of the proliferative fractions in differentiating hematopoietic cell lineages of normal bone marrow. Cytometry A. 2018. 93:1097–1105. PubMed
Parks DR, Moore WA, Brinkman RR, Chen Y, Condello D, El Khettabi F, Nolan JP et al., Methodology for evaluating and comparing flow cytometers: a multisite study of 23 instruments. Cytometry A 2018. 93:1087–1091. PubMed PMC
Jaracz-Ros A, Hémon P, Krzysiek R, Bachelerie F, Schlecht-Louf G and Gary-Gouy H, OMIP-048 MC: quantification of calcium sensors and channels expression in lymphocyte subsets by mass cytometry. Cytometry A 2018. 93:681–684. PubMed
Leavesley S and Tárnok A, Tycho Brahe’sway to precision. Cytometry A. 2018. 93:977–979. PubMed
Spidlen J, Breuer K and Brinkman R, Preparing a Minimum Information about a Flow Cytometry Experiment (MIFlowCyt) compliant manuscript using the International Society for Advancement of Cytometry (ISAC) FCS file repository (FlowRepository.org). Curr. Protoc. Cytom 2012. Chapter 10: Unit 10.18. PubMed
Holzwarth K, Köhler R, Philipsen L, Tokoyoda K, Ladyhina V, Wählby C, Niesner RA et al., Multiplexed fluorescence microscopy reveals heterogeneity among stromal cells in mouse bonemarrow sections. Cytometry A 2018. 93:876–888. PubMed
Roederer M and Tárnok A, OMIPs–Orchestrating multiplexity in polychromatic science. Cytometry A 2010. 77: 811–812. PubMed
Finak G, Jiang W and Gottardo R, CytoML for cross-platform cytometry data sharing. Cytometry A 2018. 93: 1189–1196 PubMed PMC
O’Neill K and Brinkman RR, Publishing code is essential for reproducible flow cytometry bioinformatics. Cytometry A 2016. 89: 10–11. PubMed
Reuters Thomson. Collaborative Science - Solving the Issues of Discovery, Attribution and Measurement in Data Sharing. 2012. http://wokinfo.com/products_tools/multidisciplinary/dci/collaborative_science_essay.pdf
Piwowar HA and Chapman WW, A review of journal policies for sharing research data. Proceedings ELPUB 2008 Conference on Electronic Publishing, 2008, http://elpub.scix.net/data/works/att/001_elpub2008.content.pdf
Fecher B, Friesike S and Hebing M, What drives academic data sharing? PLoS One 2015. 10: e0118053. PubMed PMC
Nicol A, Caruso J and Archambault É, Open Data Access Policies and Strategies in the European Research Area and Beyond Science-Metrix, Inc. Produced for the European Commission DG Research & Innovation, 2013, http://www.science-metrix.com/pdf/SM_EC_OA_Data.pdf
National Institute of Health. NIH Data Sharing Policy. http://grants.nih.gov/grants/policy/data_sharing/
PLOS. PLOS’ New Data Policy: Public Access to Data. http://blogs.plos.org/everyone/2014/02/24/plos-new-data-policypublic-access-data-2/
Spidlen J, Breuer K, Rosenberg C, Kotecha N and Brinkman RR, FlowRepository: a resource of annotated flow cytometry datasets associated with peer-reviewed publications. Cytometry A 2012. 81: 727–731. PubMed
Kong YM, Dahlke C, Xiang Q, Qian Y, Karp D and Scheuermann RH, Toward an ontology-based framework for clinical research databases. J. Biomed. Inform 2011. 44: 48–58. PubMed PMC
Bhattacharya S, Andorf S, Gomes L, Dunn P, Schaefer H, Pontius J, Berger P et al., ImmPort: disseminating data to the public for the future of immunology. Immunol. Res 2014. 58: 234–239. PubMed
Brusic V, Gottardo R, Kleinstein SH, Davis MM; HIPC steering committee, Computational resources for high-dimensional immune analysis from the Human Immunology Project Consortium. Nat. Biotechnol 2014. 32(2): 146–148. PubMed PMC
U.S. Department of Health & Human Services. Summary of the HIPAA Privacy Rule http://www.hhs.gov/sites/default/files/privacysummary.pdf
Vasilevsky NA, Minnier J, Haendel MA and Champieux RE, Reproducible and reusable research: are journal data sharing policies meeting the mark? Peer J. 2017. 5: e3208. PubMed PMC
Kay DB, Cambier JL and Wheeless LL Jr., Imaging in flow. J. Histochem. Cytochem 1979. 27: 329–334. PubMed
George TC, Basiji DA, Hall BE, Lynch DH, Ortyn WE, Perry DJ, Seo MJ et al., Distinguishing modes of cell death using the ImageStream multispectral imaging flow cytometer. Cytometry A 2004. 59: 237–245. PubMed
Pozarowski P, Holden E and Darzynkiewicz Z, Laser scanning cytometry: principles and applications-an update. Methods Mol. Biol 2013. 931: 187–212. PubMed PMC
Stavrakis S, Holzner G, Choo J and deMello A, High-throughput microfluidic imaging flow cytometry. Curr. Opin. Biotechnol 2019. 55: 36–43. PubMed
Nitta N, Sugimura T, Isozaki A, Mikami H, Hiraki K, Sakuma S, Iino T et al., Intelligent image-activated cell sorting. Cell 2018. 175: 266–276. PubMed
Hritzo MK, Courneya JP and Golding A, Imaging flow cytometry: a method for examining dynamic native FOXO1 localization in human lymphocytes. J. Immunol. Methods 2018. 454: 59–70. PubMed
Maguire O, Collins C, O’Loughlin K, Miecznikowski J and Minderman H, Quantifying nuclear p65 as a parameter for NF-kappaB activation: Correlation between ImageStream cytometry, microscopy, and Western blot. Cytometry A 2011. 79: 461–469. PubMed PMC
Maguire O, Tornatore KM, O’Loughlin KL, Venuto RC and Minderman H, Nuclear translocation of nuclear factor of activated T cells (NFAT) as a quantitative pharmacodynamic parameter for tacrolimus. Cytometry A 2013. 83: 1096–1104. PubMed PMC
Stone RC, Feng D, Deng J, Singh S, Yang L, Fitzgerald-Bocarsly P, Eloranta ML et al., Interferon regulatory factor 5 activation in monocytes of systemic lupus erythematosus patients is triggered by circulating autoantigens independent of type I interferons. Arthritis Rheum. 2012. 64: 788–798. PubMed PMC
Trifonova RT and Barteneva NS, Quantitation of IRF3 nuclear translocation in heterogeneous cellular populations from cervical tissue using imaging flow cytometry. Methods Mol. Biol 2018. 1745: 125–153. PubMed
Volk A, Li J, Xin J, You D, Zhang J, Liu X, Xiao Y et al., Co-inhibition of NF-kappaB and JNK is synergistic in TNF-expressing human AML. J. Exp. Med 2014. 211: 1093–1108. PubMed PMC
Wan CK, Andraski AB, Spolski R, Li P, Kazemian M, Oh J, Samsel L et al., Opposing roles of STAT1 and STAT3 in IL-21 function in CD4+ T cells. Proc. Natl. Acad. Sci. USA 2015. 112: 9394–9399. PubMed PMC
Haridas V, Ranjbar S, Vorobjev IA, Goldfeld AE and Barteneva NS, Imaging flow cytometry analysis of intracellular pathogens. Methods 2017. 112: 91–104. PubMed PMC
Pugsley HR, Quantifying autophagy: Measuring LC3 puncta and autolysosome formation in cells using multispectral imaging flow cytometry. Methods 2017. 112: 147–156. PubMed
Lannigan J and Erdbruegger U, Imaging flow cytometry for the characterization of extracellular vesicles. Methods 2017. 112: 55–67. PubMed
Shenoy GN, Loyall J, Maguire O, Iyer V, Kelleher RJ Jr., Minderman H, Wallace PK et al., Exosomes associated with human ovarian tumors harbor a reversible checkpoint of T-cell responses. Cancer Immunol. Res 2018. 6: 236–247. PubMed PMC
Ploppa A, George TC, Unertl KE, Nohe B and Durieux ME, ImageStream cytometry extends the analysis of phagocytosis and oxidative burst. Scand J. Clin. Lab. Invest 2011. 71: 362–369. PubMed
Henery S, George T, Hall B, Basiji D, Ortyn W and Morrissey P, Quantitative image based apoptotic index measurement using multi-spectral imaging flow cytometry: a comparison with standard photometric methods. Apoptosis 2008. 13: 1054–1063. PubMed
Poh SEP, Png E and Tong L, Quantitative image analysis of cellular morphology using Amnis® ImageStreamX Mark II imaging flow cytometer: a comparison against conventional methods. Single Cell Biol. 2015. 4: s1.
Balta E, Stopp J, Castelletti L, Kirchgessner H, Samstag Y and Wabnitz GH, Qualitative and quantitative analysis of PMN/T-cell interactions by InFlow and super-resolution microscopy. Methods 2017. 112: 25–38. PubMed
Mace TA, Zhong L, Kilpatrick C, Zynda E, Lee CT, Capitano M, Minderman H et al., Differentiation of CD8+ T cells into effector cells is enhanced by physiological range hyperthermia. J. Leukoc. Biol 2011. 90: 951–962. PubMed PMC
Maguire O, Wallace PK and Minderman H, Fluorescent in situ hybridization in suspension by imaging flow cytometry. Methods Mol. Biol 2016. 1389: 111–126. PubMed PMC
Blasi T, Hennig H, Summers HD, Theis FJ, Cerveira J, Patterson JO, Davies D et al., Label-free cell cycle analysis for high-throughput imaging flow cytometry. Nat. Commun 2016. 7: 10256. PubMed PMC
Ortyn WE, Perry DJ, Venkatachalam V, Liang L, Hall BE, Frost K and Basiji DA, Extended depth of field imaging for high speed cell analysis. Cytometry A 2007. 71: 215–231. PubMed
Ortyn WE, Hall BE, George TC, Frost K, Basiji DA, Perry DJ, Zimmerman CA et al., Sensitivity measurement and compensation in spectral imaging. Cytometry A 2006. 69: 852–862. PubMed
Chester C and Maecker HT, Algorithmic tools for mining high-dimensional cytometry data. J. Immunol 2015. 195: 773–779. PubMed PMC
Krutzik PO and Nolan GP, Fluorescent cell barcoding in flow cytometry allows high-throughput drug screening and signaling profiling. Nat. Methods 2006. 3: 361–368. PubMed
Bodenmiller B, Zunder ER, Finck R, Chen TJ, Savig ES, Bruggner RV, Simonds EF et al., Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat. Biotechnol 2012. 30: 858–867. PubMed PMC
Behbehani GK, Thom C, Zunder ER, Finck R, Gaudilliere B, Fragiadakis GK, Fantl WJ et al., Transient partial permeabilization with saponin enables cellular barcoding prior to surface marker staining. Cytometry A 2014. 85: 1011–1019. PubMed PMC
Mei HE, Leipold MD and Maecker HT, Platinum-conjugated antibodies for application in mass cytometry. Cytometry A 2016. 89: 292–300. PubMed
Mei HE, Leipold MD, Schulz AR, Chester C and Maecker HT, Barcoding of live human peripheral blood mononuclear cells for multiplexed mass cytometry. J. Immunol 2015. 194: 2022–2031. PubMed PMC
Lai L, Ong R, Li J and Albani S, A CD45-based barcoding approach to multiplex mass-cytometry (CyTOF). Cytometry A 2015. 87: 369–374. PubMed PMC
Akkaya B, Miozzo P, Holstein AH, Shevach EM, Pierce SK and Akkaya M, A simple, versatile antibody-based barcoding method for flow cytometry. J. Immunol 2016. PubMed PMC
Nassar AF, Wisnewski AV and Raddassi K, Automation of sample preparation for mass cytometry barcoding in support of clinical research: protocol optimization. Anal. Bioanal. Chem 2017. 409: 2363–2372. PubMed PMC
Zunder ER, Finck R, Behbehani GK, Amir el AD, Krishnaswamy S, Gonzalez VD, Lorang CG et al., Palladium-based mass tag cell barcoding with a doublet-filtering scheme and single-cell deconvolution algorithm. Nat. Protoc 2015. 10: 316–333. PubMed PMC
Catena R, Ozcan A, Zivanovic N and Bodenmiller B, Enhanced multiplexing in mass cytometry using osmium and ruthenium tetroxide species. Cytometry A 2016. 89: 491–497. PubMed
Chevrier S, Crowell HL, Zanotelli VRT, Engler S, Robinson MD and Bodenmiller B, Compensation of signal spillover in suspension and imaging mass cytometry. Cell Syst. 2018. 6: 612–620.e615. PubMed PMC
Fread KI, Strickland WD, Nolan GP and Zunder ER, An updated debarcoding tool for mass cytometry with cell type-specific and cell sample-specific stringency adjustment. Pac. Symp. Biocomput 2017. 22: 588–598. PubMed
Zivanovic N, Jacobs A and Bodenmiller B, A practical guide tomultiplexed mass cytometry. Curr. Top. Microbiol. Immunol 2013. PubMed
Hartmann FJ, Simonds EF and Bendall SC, A universal live cell barcoding-platform for multiplexed human single cell analysis. Sci. Rep 2018. 8: 10770. PubMed PMC
Yamanaka YJ, Szeto GL, Gierahn TM, Forcier TL, Benedict KF, Brefo MS, Lauffenburger DA et al., Cellular barcodes for efficiently profiling single-cell secretory responses by microengraving. Anal. Chem 2012. 84: 10531–10536. PubMed PMC
Schulz AR and Mei HE, Surface barcoding of live PBMC for multiplexed mass cytometry. Methods Mol. Biol 2019. 1989: 93–108. PubMed
Simard C, Cloutier M and Neron S, Rapid determination of IL-6 specific activity by flow cytometry. J. Immunol. Methods 2014. 415: 63–65. PubMed
Simard C, Cloutier M and Neron S, Feasibility study: phosphospecific flow cytometry enabling rapid functional analysis of bone marrow samples from patients with multiple myeloma. Cytometry B Clin. Cytom 2014. 86: 139–144. PubMed
Krutzik PO, Clutter MR, Trejo A and Nolan GP, Fluorescent cell barcoding for multiplex flow cytometry. Curr. Protoc. Cytom 2011. Chapter 6: Unit 6 31. PubMed PMC
Krutzik PO, Crane JM, Clutter MR and Nolan GP, High-content single-cell drug screening with phosphospecific flow cytometry. Nat. Chem. Biol 2008. 4: 132–142. PubMed
Frischbutter S, Schultheis K, Patzel M, Radbruch A and Baumgrass R, Evaluation of calcineurin/NFAT inhibitor selectivity in primary human Th cells using bar-coding and phospho-flow cytometry. Cytometry A 2012. 81: 1005–1011. PubMed
Bernardo SM, Allen CP, Waller A, Young SM, Oprea T, Sklar LA and Lee SA, An automated high-throughput cell-based multiplexed flow cytometry assay to identify novel compounds to target Candida albicans virulence-related proteins. PLoS One 2014. 9: e110354. PubMed PMC
Spurgeon BE, Aburima A, Oberprieler NG, Tasken K and Naseem KM, Multiplexed phosphospecific flow cytometry enables large-scale signaling profiling and drug screening in blood platelets. J. Thromb. Haemost 2014. 12: 1733–1743. PubMed
Clark MA, Goheen MM, Spidale NA, Kasthuri RS, Fulford A and Cerami C, RBC barcoding allows for the study of erythrocyte population dynamics and P. falciparum merozoite invasion. PLoS One 2014. 9: e101041. PubMed PMC
Becher B, Schlitzer A, Chen J, Mair F, Sumatoh HR, Teng KW et al., High-dimensional analysis of the murine myeloid cell system. Nat. Immunol 2014. 15: 1181–1189. PubMed
McCarthy RL, Mak DH, Burks JK and Barton MC, Rapid monoisotopic cisplatin based barcoding for multiplexed mass cytometry. Sci. Rep 2017. 7: 3779. PubMed PMC
Schulz AR and Mei HE, Cell-surface barcoding of live PBMC for multiplexed mass cytometry In McGuire H and Ashhurst T (Eds.) Methods in molecular biology. Springer Nature, Basingstoke, UK: 2019. PubMed
Willis LM, Park H, Watson MWL, Majonis D, Watson JL and Nitz M, Tellurium-based mass cytometry barcode for live and fixed cells. Cytometry A 2018. 93: 685–694. PubMed
Wu X, DeGottardi Q, Wu IC, Wu L, Yu J, Kwok WW and Chiu DT, Ratiometric Barcoding for Mass Cytometry. Anal. Chem 2018. 90: 10688–10694. PubMed PMC
Meng H, Warden A, Zhang L, Zhang T, Li Y, Tan Z, Wang B et al., A mass-ratiometry-based CD45 barcoding method for mass cytometry detection. SLAS Technol. 2019. 2472630319834057. PubMed
Irish JM, Myklebust JH, Alizadeh AA, Houot R, Sharman JP, Czerwinski DK, Nolan GP et al., B-cell signaling networks reveal a negative prognostic human lymphoma cell subset that emerges during tumor progression. Proc. Natl. Acad. Sci. USA 2010. 107: 12747–12754. PubMed PMC
Gaudillière B, Fragiadakis GK, Bruggner RV, Nicolau M, Finck R, Tingle M, Silva J et al., Clinical recovery from surgery correlates with single-cell immune signatures. Sci. Transl. Med. 2014. 6: 255ra131. PubMed PMC
Bandura DR, Baranov VI, Ornatsky OI, Antonov A, Kinach R, Lou X, Pavlov S et al., Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal. Chem 2009. 81: 6813–6822. PubMed
Bendall SC, Nolan GP, Roederer M and Chattopadhyay PK, A deep profiler’s guide to cytometry. Trends Immunol. 2012. 33: 323–332. PubMed PMC
Tanner SD, Baranov VI, Ornatsky OI, Bandura DR and George TC, An introduction to mass cytometry: fundamentals and applications. Cancer Immunol. Immunother 2013. 62: 955–965. PubMed PMC
Wong MT, Ong DE, Lim FS, Teng KW, McGovern N, Narayanan S, Ho WQ et al., A high-dimensional atlas of human T cell diversity reveals tissue-specific trafficking and cytokine signatures. Immunity 2016. 45: 442–456. PubMed
Zunder ER, Lujan E, Goltsev Y, Wernig M and Nolan GP, A continuous molecular roadmap to iPSC reprogramming through progression analysis of single-cell mass cytometry. Cell Stem Cell 2015. 16: 323–337. PubMed PMC
Nair N, Mei HE, Chen SY, Hale M, Nolan GP, Maecker HT, Genovese M et al., Mass cytometry as a platform for the discovery of cellular biomarkers to guide effective rheumatic disease therapy. Arthritis Res. Ther 2015. 17: 127. PubMed PMC
Mingueneau M, Boudaoud S, Haskett S, Reynolds TL, Nocturne G, Norton E, Zhang X et al., Cytometry by time-of-flight immunophenotyping identifies a blood Sjogren’s signature correlating with disease activity and glandular inflammation. J. Allergy Clin. Immunol 2016. 137: 1809–1821 e1812. PubMed
Olin A, Henckel E, Chen Y, Lakshmikanth T, Pou C, Mikes J, Gustafsson A et al., Stereotypic immune system development in newborn children. Cell 2018. 174: 1277–1292. PubMed PMC
Brodin P, Jojic V, Gao T, Bhattacharya S, Angel CJ, Furman D, Shen-Orr S et al., Variation in the human immune system is largely driven by non-heritable influences. Cell 2015. 160: 37–47. PubMed PMC
Pejoski D, Tchitchek N, Rodriguez Pozo A, Elhmouzi-Younes J, Yousfi-Bogniaho R, Rogez-Kreuz C, Clayette P et al., Identification of vaccine-altered circulating b cell phenotypes using mass cytometry and a two-step clustering analysis. J. Immunol 2016. 196: 4814–4831. PubMed
Leipold MD, Ornatsky O, Baranov V, Whitfield C and Nitz M, Development of mass cytometry methods for bacterial discrimination. Anal. Biochem 2011. 419: 1–8. PubMed
Guo Y, Baumgart S, Stark HJ, Harms H and Muller S, Mass cytometry for detection of silver at the bacterial single cell level. Front Microbiol. 2017. 8: 1326. PubMed PMC
Yang YS, Atukorale PU, Moynihan KD, Bekdemir A, Rakhra K, Tang L, Stellacci F et al., High-throughput quantitation of inorganic nanoparticle biodistribution at the single-cell level using mass cytometry. Nat. Commun 2017. 8: 14069. PubMed PMC
Abdelrahman AI, Ornatsky O, Bandura D, Baranov V, Kinach R, Dai S, Thickett SC et al., Metal-containing polystyrene beads as standards for mass cytometry. J. Anal. At Spectrom 2010. 25: 260–268. PubMed PMC
Galli E, Friebel E, Ingelfinger F, Unger S, Nunez NG and Becher B, The end of omics? High dimensional single cell analysis in precision medicine. Eur. J. Immunol 2019. 49: 212–220. PubMed
Kimball AK, Oko LM, Bullock BL, Nemenoff RA, van Dyk LF and Clambey ET, A beginner’s guide to analyzing and visualizing mass cytometry data. J. Immunol 2018. 200: 3–22. PubMed PMC
Cosma A, A time to amaze, a time to settle down, and a time to discover. Cytometry A 2015. 87: 795–796. PubMed
Chang Q, Ornatsky OI, Siddiqui I, Loboda A, Baranov VI and Hedley DW, Imaging mass cytometry. Cytometry A 2017. 91: 160–169. PubMed
Zhao Y, Uduman M, Siu JHY, Tull TJ, Sanderson JD, Wu YB, Zhou JQ et al., Spatiotemporal segregation of human marginal zone and memory B cell populations in lymphoid tissue. Nat. Commun 2018. 9: 3857. PubMed PMC
Keren L, Bosse M, Marquez D, Angoshtari R, Jain S, Varma S, Yang SR et al., A structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging. Cell 2018. 174: 1373–1387 e1319. PubMed PMC
Tricot S, Meyrand M, Sammicheli C, Elhmouzi-Younes J, Corneau A, Bertholet S, Malissen M, Le Grand R et al., Evaluating the efficiency of isotope transmission for improved panel design and a comparison of the detection sensitivities of mass cytometer instruments. Cytometry A 2015. 87: 357–368. PubMed
Rahman AH, Tordesillas L and Berin MC, Heparin reduces nonspecific eosinophil staining artifacts in mass cytometry experiments. Cytometry A 2016. 89: 601–607. PubMed PMC
Schulz AR, Stanislawiak S, Baumgart S, Grutzkau A and Mei HE, Silver nanoparticles for the detection of cell surface antigens in mass cytometry. Cytometry A 2017. 91: 25–33. PubMed
Lin W, Hou Y, Lu Y, Abdelrahman AI, Cao P, Zhao G, Tong L et al., A high-sensitivity lanthanide nanoparticle reporter for mass cytometry: tests on microgels as a proxy for cells. Langmuir 2014. 30: 3142–3153. PubMed PMC
Tong L, Lu E, Pichaandi J, Zhao G and Winnik MA, Synthesis of uniform NaLnF4 (Ln: Sm to Ho) nanoparticles for mass cytometry. J. Phys. Chem. C 2016. 120: 6269–6280.
Baumgart S, Schulz AR, Peddinghaus A, Stanislawiak S, Gillert S, Hirseland H, Krauthauser S et al., Dual-labelled antibodies for flow and mass cytometry: a new tool for cross-platform comparison and enrichment of target cells for mass cytometry. Eur. J. Immunol 2017. PubMed
Finck R, Simonds EF, Jager A, Krishnaswamy S, Sachs K, Fantl W, Pe’er D et al., Normalization of mass cytometry data with bead standards. Cytometry A 2013. 83: 483–494. PubMed PMC
Schulz AR, Baumgart S, Schulze J, Urbicht M, Grutzkau A and Mei HE, Stabilizing antibody cocktails formass cytometry. Cytometry A 2019. PubMed
Kadic E, Moniz RJ, Huo Y, Chi A and Kariv I, Effect of cryopreservation on delineation of immune cell subpopulations in tumor specimens as determinated by multiparametric single cell mass cytometry analysis. BMC Immunol. 2017. 18: 6. PubMed PMC
Kleinsteuber K, Corleis B, Rashidi N, Nchinda N, Lisanti A, Cho JL, Medoff BD et al., Standardization and quality control for high-dimensional mass cytometry studies of human samples. Cytometry A 2016. 89: 903–913. PubMed PMC
Leipold MD, Obermoser G, Fenwick C, Kleinstuber K, Rashidi N, McNevin JP, Nau AN et al., Comparison of CyTOF assays across sites: Results of a six-center pilot study. J. Immunol. Methods 2018. 453: 37–43. PubMed PMC
Sumatoh HR, Teng KW, Cheng Y and Newell EW, Optimization of mass cytometry sample cryopreservation after staining. Cytometry A 2017. 91: 48–61. PubMed
Nicholas KJ, Greenplate AR, Flaherty DK, Matlock BK, Juan JS, Smith RM, Irish JM et al., Multiparameter analysis of stimulated human peripheral blood mononuclear cells: a comparison of mass and fluorescence cytometry. Cytometry A 2016. 89: 271–280. PubMed PMC
Baumgart S, Peddinghaus A, Schulte-Wrede U, Mei HE and Grutzkau A, OMIP-034: comprehensive immune phenotyping of human peripheral leukocytes by mass cytometry for monitoring immunomodulatory therapies. Cytometry A 2017. 91: 34–38. PubMed
Behbehani GK, Bendall SC, Clutter MR, Fantl WJ et al., Single cell mass cytometry adapted to measurements of the cell cycle. Cytometry A 2012. 81: 552–566. PubMed PMC
Frei AP, Bava FA, Zunder ER, Hsieh EW, Chen SY, Nolan GP and Gherardini PF, Highly multiplexed simultaneous detection of RNAs and proteins in single cells. Nat. Methods 2016. 13: 269–275. PubMed PMC
Mavropoulos A, Allo B, He M, Park E, Majonis D and Ornatsky O, Simultaneous detection of protein and mRNA in Jurkat and KG-1a cells by mass cytometry. Cytometry A 2017. 91: 1200–1208. PubMed
Cheung P, Vallania F, Warsinske HC, Donato M, Schaffert S, Chang SE, Dvorak M et al., Single-cell chromatin modification profiling reveals increased epigenetic variations with aging. Cell 2018. 173: 1385–1397 e1314. PubMed PMC
Lumba MA, Willis LM, Santra S, Rana R, Schito L, Rey S, Wouters BG et al., A beta-galactosidase probe for the detection of cellular senescence by mass cytometry. Org. Biomol. Chem 2017. 15: 6388–6392. PubMed
Edgar LJ, Vellanki RN, Halupa A, Hedley D, Wouters BG and Nitz M, Identification of hypoxic cells using an organotellurium tag compatible with mass cytometry. Angew Chem. Int. Ed. Engl 2014. 53: 11473–11477. PubMed
Stern AD, Rahman AH and Birtwistle MR, Cell size assays for mass cytometry. Cytometry A 2017. 91: 14–24. PubMed PMC
Rapsomaniki MA, Lun XK, Woerner S, Laumanns M, Bodenmiller B and Martinez MR, CellCycleTRACER accounts for cell cycle and volume in mass cytometry data. Nat. Commun 2018. 9: 632. PubMed PMC
Budzinski L, Schulz AR, Baumgart S, Burns T, Rose T, Hirseland H and Mei HE, Osmium-labeled microspheres for bead-based assays in mass cytometry. J. Immunol 2019. 202: 3103–3112. PubMed
Bringeland GH, Bader L, Blaser N, Budzinski L, Schulz AR, Mei HE, Myhr KM et al., Optimization of receptor occupancy assays in mass cytometry: standardization across channels with QSC beads. Cytometry A 2019. 95: 314–322. PubMed PMC
Ornatsky OI, Lou X, Nitz M, Schafer S, Sheldrick WS, Baranov VI, Bandura DR et al., Study of cell antigens and intracellular DNA by identification of element-containing labels and metallointercalators using inductively coupled plasma mass spectrometry. Anal. Chem 2008. 80: 2539–2547. PubMed
Blair TA, Michelson AD and Frelinger AL 3rd, Mass cytometry reveals distinct platelet subtypes in healthy subjects and novel alterations in surface glycoproteins in Glanzmann thrombasthenia. Sci. Rep 2018. 8: 10300. PubMed PMC
Lee BH and Rahman AH, Acquisition, Processing, and Quality Control of Mass Cytometry Data. Methods Mol. Biol 2019. 1989: 13–31. PubMed
Fienberg HG, Simonds EF, Fantl WJ, Nolan GP and Bodenmiller B, A platinum-based covalent viability reagent for single-cell mass cytometry. Cytometry A 2012. 81: 467–475. PubMed PMC
Leipold MD and Maecker HT, Phenotyping of live human PBMC using CyTOFTM mass cytometry. bio-protocol 2015. 5: e1382. PubMed PMC
Han G, Spitzer MH, Bendall SC, Fantl WJ and Nolan GP, Metal-isotope-tagged monoclonal antibodies for high-dimensional mass cytometry. Nat. Protoc 2018. 13: 2121–2148. PubMed PMC
Han G, Chen SY, Gonzalez VD, Zunder ER, Fantl WJ and Nolan GP, Atomic mass tag of bismuth-209 for increasing the immunoassay multiplexing capacity of mass cytometry. Cytometry A 2017. 91: 1150–1163. PubMed PMC
Horowitz A, Strauss-Albee DM, Leipold M, Kubo J, Nemat-Gorgani N, Dogan OC, Dekker CL et al., Genetic and environmental determinants of human NK cell diversity revealed by mass cytometry. Sci. Transl. Med 2013. 5: 208ra145. PubMed PMC
Leipold MD, Newell EW and Maecker HT, Multiparameter phenotyping of human PBMCs using mass cytometry. Methods Mol. Biol 2015. 1343: 81–95. PubMed PMC
Olsen LR, Leipold MD, Pedersen CB and Maecker HT, The anatomy of single cell mass cytometry data. Cytometry A 2018. PubMed
Robinson JP, Patsekin V, Holdman C, Ragheb K, Sturgis J, Fatig R, Avramova LV et al., High-throughput secondary screening at the single-cell level. J. Lab. Automat 2012. 18: 85–98. PubMed PMC
Robinson JP, Durack G and Kelley S, An innovation in flow cytometry data collection & analysis producing a correlated multiple sample analysis in a single file. Cytometry 1991. 12: 82–90. PubMed
Newell E, Bendall S, Hong D, Lewis D, Nolan G and Davis M, Surveying the influenza-specific cytotoxic T cell response in humans and mice using mass-cytometry (CyTOF) and combinatorial tetramer staining. Clin. Immunol 2010. 135: S104–S104.
Rajwa B, Venkatapathi M, Ragheb K, Banada PP, Hirleman ED, Lary T and Robinson JP Automated classification of bacterial particles in flow by multiangle scatter measurement and a support vector machine classifier. Cytometry Part A 2008. 73A: 369–379. PubMed
Costa ES, Pedreira CE, Barrena S, Lecrevisse Q, Flores J, Quijano S, Almeida J et al., Automated pattern-guided principal component analysis vs expert-based immunophenotypic classification of B-cell chronic lymphoproliferative disorders: A step forward in the standardization of clinical immunophenotyping. Leukemia 2010. 24: 1927–1933. PubMed PMC
Dundar M, Akova F, Yerebakan HZ and Rajwa B, A nonparametric Bayesian model for joint cell clustering and cluster matching: identification of anomalous sample phenotypes with random effects. BMC Bioinformatics 2014. 15: 314. PubMed PMC
Bagwell CB, Hunsberger BC, Herbert DJ, Munson ME, Hill BL, Bray CM and Preffer FI, Probability state modeling theory. Cytometry A 2015. 87: 646–660. PubMed
Robinson JP, Rajwa B, Patsekin V and Davisson VJ, Computational analysis of high throughput flow cytometry data. Expert Opin. Drug Deliv 2012. 7: 679–693. PubMed PMC
Fulton RJ, McDade RL, Smith PL, Kienker LJ and Kettman JR Advanced multiplexed analysis with the FlowMetrix system. Clin. Chem 1997. 43: 1749–1756. PubMed
Robinson JP, Patsekin V, Gregori G, Rajwa B and Jones J, Multispectral flow cytometry: next generation tools for automated classification. Microsc. Microanal 2005. 11: 2–3.
Mair F and Prlic M, OMIP-044: 28-color immunophenotyping of the human dendritic cell compartment. Cytometry A. 2018. 106: 255. PubMed PMC
Nolan JP and Condello D, Spectral flow cytometry. Curr. Protoc. Cytom. 2013. Chapter 1:Unit1.27–1.27.13. PubMed PMC
Bagwell CB and Adams EG, Fluorescence spectral overlap compensation for any number of flow cytometry parameters. Ann. N. Y. Acad. Sci 1993. 677: 167–184. PubMed
Roederer M, Compensation is not dependent on signal intensity or on number of parameters. Cytometry. 2001. 46: 357–359. PubMed
Perfetto SP, Chattopadhyay PK and Roederer M, Seventeen-colour flow cytometry: unravelling the immune system. Nat. Rev. Immunol 2004. 4: 648–655. PubMed
Mahnke YD, Brodie TM, Sallusto F, Roederer M, Lugli E, The who’s who of T-cell differentiation: human memory T-cell subsets. Eur. J. Immunol 2013. 43: 2797–2809. PubMed
Herzenberg LA, Tung J, Moore WA, Herzenberg LA and Parks DR, Interpreting flow cytometry data: a guide for the perplexed. Nat. Immunol 2006. 7: 681–685. PubMed
Gerner MY, Kastenmüller W, Ifrim I, Kabat J and Germain RN, Histo-cytometry: a method for highly multiplex quantitative tissue imaging analysis applied to dendritic cell subset microanatomy in lymph nodes. Immunity. 2012. 37: 364–376. PubMed PMC
Ashhurst TM, Smith AL and King NJC, High-dimensional fluorescence cytometry. John Wiley & Sons, Inc., Hoboken, NJ: 2017. 5.8.1–5.8.38. PubMed
Picelli S, Faridani OR, Björklund AK, Winberg G, Sagasser S and Sandberg R, Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc 2014. 9: 171–181. PubMed
Lafzi A, Moutinho C, Picelli S and Heyn H, Tutorial: guidelines for the experimental design of single-cell RNA sequencing studies. Nat. Protoc 2018. 13: 2742–2757. PubMed
Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I et al., Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015. 161: 1202–1214. PubMed PMC
Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L et al., Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015. 161: 1187–1201. PubMed PMC
Valihrach L, Androvic P and Kubista M, Platforms for single-cell collection and analysis. Int. J. Mol. Sci 2018. 19: 807. PubMed PMC
Cao J, Packer JS, Ramani V, Cusanovich DA, Huynh C, Daza R, Qiu X et al., Comprehensive single-cell transcriptional profiling of a multicellular organism. Science. 2017. 357: 661–667. PubMed PMC
Bucevičius J, Lukinavičius G and Gerasimaitė R, The use of Hoechst dyes for DNA staining and beyond. Chemosensors. 2018. 6: 18.
Smith PJ, Blunt N, Wiltshire M, Hoy T, Teesdale-Spittle P, Craven MR, Watson JV et al., Characteristics of a novel deep red/infrared fluorescent cell-permeant DNA probe, DRAQ5, in intact human cells analyzed by flow cytometry, confocal and multiphoton microscopy. Cytometry. 2000. 40: 280–291. PubMed
Wlodkowic D, Skommer J and Darzynkiewicz Z, Flow cytometry-based apoptosis detection. Methods Mol. Biol 2009. 559: 19–32. PubMed PMC
Belloc F, Belaud-Rotureau MA, Lavignolle V, Bascans E, Braz-Pereira E, Durrieu F and Lacombe F, Flow cytometry detection of caspase 3 activation in preapoptotic leukemic cells. Cytometry. 2000. 40: 151–160. PubMed
Shapiro HM, Practical flow cytometry. Wiley-Liss, Hoboken, NJ: 2003.
Riddell A, Gardner R, Perez-Gonzalez A, Lopes T and Martinez L, Rmax: a systematic approach to evaluate instrument sort performance using center stream catch. Methods. 2015. 82: 64–73. PubMed PMC
Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M, Leonhardt H et al., Comparative analysis of single-cell RNA sequencing methods. Mol. Cell 2017. 65: 631–643. PubMed
Semrau S, Goldmann JE, Soumillon M, Mikkelsen TS, Jaenisch R and van Oudenaarden A, Dynamics of lineage commitment revealed by single-cell transcriptomics of differentiating embryonic stem cells. Nat. Commun 2017. 8: 243. PubMed PMC
Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, Cahill DP et al., Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014. 344: 1396–1401. PubMed PMC
Lopez R, Regier J, Cole MB, Jordan MI and Yosef N, Deep generative modeling for single-cell transcriptomics. Nat. Methods 2018. 15: 1053–1058. PubMed PMC
Bacher R and Kendziorski C, Design and computational analysis of single-cell RNA-sequencing experiments. Genome Biol. 2016. 17: 63. PubMed PMC
Vallejos CA, Marioni JC and Richardson S, BASiCS: Bayesian analysis of single-cell sequencing data PLoS Comput. Biol. 2015. 11: e1004333. PubMed PMC
Anders S and Huber W, Differential expression analysis for sequence count data. Genome Biol. 2010. 11: R106. PubMed PMC
Robinson MD and Oshlack A, A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010. 11: R25. PubMed PMC
Bullard JH, Purdom E, Hansen KD and Dudoit S, Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics. 2010. 11: 94. PubMed PMC
Bacher R, Chu L-F, Leng N, Gasch AP, Thomson JA, Stewart RM, Newton M et al., SCnorm: robust normalization of single-cell RNA-seq data. Nat. Methods 2017. 14: 584–586. PubMed PMC
Lun ATL, Bach K and Marioni JC, Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol. 2016. 17: 75. PubMed PMC
Butler A, Hoffman P, Smibert P, Papalexi E and Satija R, Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 2018. 36: 411–420. PubMed PMC
Abdi H and Williams LJ, Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat 2010. 2: 433–459.
Ståhlberg A and Bengtsson M, Single-cell gene expression profiling using reverse transcription quantitative real-time PCR. Methods. 2010. 50: 282–288. PubMed
Ståhlberg A, Bengtsson M, Hemberg M and Semb H, Quantitative transcription factor analysis of undifferentiated single human embryonic stem cells. Clin. Chem 2009. 55: 2162–2170. PubMed
Kiselev VY, Kirschner K, Schaub MT, Andrews T, Yiu A, Chandra T, Natarajan KN et al., SC3: consensus clustering of single-cell RNA-seq data. Nat. Methods 2017. 14: 483–486. PubMed PMC
Soneson C and Robinson MD, Bias, robustness and scalability in single-cell differential expression analysis. Nat. Methods 2018. 15: 255–261. PubMed
Koch C and Muller S, Personalized microbiome dynamics— cytometric fingerprints for routine diagnostics. Mol. Aspects Med 2018. 59: 123–134. PubMed
Muller S, Modes of cytometric bacterial DNA pattern: a tool for pursuing growth. Cell Prolif. 2007. 40: 621–639. PubMed PMC
Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-Gonzalez A, Eldridge DJ, Bardgett RD, Maestre FT et al., A global atlas of the dominant bacteria found in soil. Science 2018. 359: 320–325. PubMed
Koch C, Harnisch F, Schroder U and Muller S, Cytometric fingerprints: evaluation of new tools for analyzing microbial community dynamics. Front Microbiol. 2014. 5: 273. PubMed PMC
Zimmermann J, Hubschmann T, Schattenberg F, Schumann J, Durek P, Riedel R, Friedrich M et al., High-resolution microbiota flow cytometry reveals dynamic colitis-associated changes in fecal bacterial composition. Eur. J. Immunol 2016. 46: 1300–1303. PubMed PMC
Vandeputte D, Kathagen G, D’Hoe K, Vieira-Silva S, Valles-Colomer M, Sabino J, Wang J et al., Quantitativemicrobiome profiling links gut community variation to microbial load. Nature 2017. 551: 507–511. PubMed
Muller S and Nebe-von-Caron G, Functional single-cell analyses: flow cytometry and cell sorting of microbial populations and communities. FEMS Microbiol. Rev 2010. 34: 554–587. PubMed
Lambrecht J, Schattenberg F, Harms H and Mueller S, Characterizing microbiome dynamics—flow cytometry based workflows from pure cultures to natural communities. J. Vis. Exp 2018. PubMed PMC
Gunther S, Hubschmann T, Rudolf M, Eschenhagen M, Roske I, Harms H and Muller S, Fixation procedures for flow cytometric analysis of environmental bacteria. J. Microbiol. Methods 2008. 75: 127–134. PubMed
Shi L, Gunther S, Hubschmann T, Wick LY, Harms H and Muller S, Limits of propidium iodide as a cell viability indicator for environmental bacteria. Cytometry A 2007. 71: 592–598. PubMed
Props R, Rubbens P, Besmer M, Buysschaert B, Sigrist J, Weilenmann H, Waegeman W et al., Detection of microbial disturbances in a drinking water microbial community through continuous acquisition and advanced analysis of flow cytometry data. Water Res. 2018. 145: 73–82. PubMed
Stepanauskas R, Fergusson EA, Brown J, Poulton NJ, Tupper B, Labonte JM, Becraft ED et al., Improved genome recovery and integrated cell-size analyses of individual uncultured microbial cells and viral particles. Nat. Commun 2017. 8: 84. PubMed PMC
Jahn M, Seifert J, von Bergen M, Schmid A, Buhler B and Muller S, Subpopulation-proteomics in prokaryotic populations. Curr. Opin. Biotechnol 2013. 24: 79–87. PubMed
Liu Z, Cichocki N, Hubschmann T, Suring C, Ofiteru ID, Sloan WT, Grimm V et al., Neutral mechanisms and niche differentiation in steady-state insular microbial communities revealed by single cell analysis. Environ. Microbiol 2019. 21: 164–181. PubMed PMC
Koch C, Gunther S, Desta AF, Hubschmann T and Muller S, Cytometric fingerprinting for analyzing microbial intracommunity structure variation and identifying subcommunity function. Nat. Protoc 2013. 8: 190–202. PubMed
Rogers WT and Holyst HA, FlowFP: A Bioconductor Package for Fingerprinting Flow Cytometric Data. Adv. Bioinformatics 2009. 193947. PubMed PMC
De Roy K, Clement L, Thas O, Wang Y and Boon N, Flow cytometry for fast microbial community fingerprinting. Water Res. 2012. 46: 907–919. PubMed
Koch C, Fetzer I, Harms H and Muller S, CHIC-an automated approach for the detection of dynamic variations in complex microbial communities. Cytometry A 2013. 83: 561–567. PubMed
Schroder K and Tschopp J, The inflammosomes. Cell 2010. 140: 821–832. PubMed
Aachoui Y, Sagulenko V, Miao EA and Stacey KJ, Inflammasome mediated pyroptotic and apoptotic cell death, and defense against infection. Curr. Opin. Microbiol 2013. 16: 319–326. PubMed PMC
Miao EA, Rajan JV and Aderem A, Caspase-1-induced pyroptotic cell death. Immunol. Rev 2011. 243: 206–214. PubMed PMC
Jin C and Flavell RA, Molecularmechanism ofNLRP3 inflammasome activation. J. Clin. Immunol 2010. 30: 628–631. PubMed
Lamkanfi M, Emerging inflammasome effector mechanisms. Nat. Rev. Immunol 2011. 11: 213–220. PubMed
Vajjhala PR, Lu A, Brown DL, Pang SW, Sagulenko V, Sester DP, Cridland SO et al., The inflammasome adaptor ASC induces procaspase-8 death effector domain filaments. J. Biol. Chem 2015. 4;290: 29217–29230. PubMed PMC
Man SM, Tourlomousis P, Hopkins L, Monie TP, Fitzgerald KA and Bryant CE, Salmonella infection induces recruitment of Caspase-8 to the inflammasome to modulate IL-1beta production. J. Immunol 2013. 191: 5239–5246. PubMed PMC
Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN and Tschopp J, NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 2004. 20: 319–325. PubMed
Martinon F, Agostini L, Meylan E and Tschopp J, Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome. Curr. Biol 2004. 14: 1929–1934. PubMed
Sagulenko V, Thygesen SJ, Sester DP, Idris A, Cridland JA, Vajjhala PR, Roberts TL, Schroder K, Vince JE, Hill JM Silke, J. and Stacey K. J., AIM2 and NLRP3 inflammasomes activate both apoptotic and pyroptotic death pathways via ASC. Cell Death Differ. 2013. 20: 1149–1160. PubMed PMC
Masumoto J, Taniguchi S, Ayukawa K, Sarvotham H, Kishino T, Niikawa N, Hidaka E et al., ASC, a novel 22-kDa protein, aggregates during apoptosis of human promyelocytic leukemia HL-60 cells. J. Biol. Chem 1999. 274: 33835–33838. PubMed
Franklin BS, Bossaller L, De Nardo D, Ratter JM, Stutz A, Engels G, Brenker C et al., The adaptor ASC has extracellular and ‘prionoid’ activities that propagate inflammation. Nat. Immunol 2014. 15: 727–737. PubMed PMC
Baroja-Mazo A, Martín-Sánchez F, Gomez AI, Martínez CM, Amores-Iniesta J, Compan V, Barberà-Cremades M et al., The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nat. Immunol 2014. 15: 738–748. PubMed
Venegas C, Kumar S, Franklin BS, Dierkes T, Brinkschulte R, Tejera D, Vieira-Saecker A et al., Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer’s disease. Nature 2017. 552: 355–361. PubMed
Pollard KM and Kono DH, Requirements for innate immune pathways in environmentally induced autoimmunity. BMC Med. 2013. 11: 100. PubMed PMC
Master SL, Specific inflammasomes in complex diseases. Clin. Immunol 2013. 143: 223–228. PubMed
Rubartelli A, Redox control of NLRP3 inflammasome activation in health and disease. J. Leukoc. Biol 2012. 92: 951–958. PubMed
Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, Griep A et al., NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 2013. 493: 674–678. PubMed PMC
Saresella M, La Rosa F, Piancone F, Zoppis M, Marventano I, Calabrese E, Rainone V, Nemni R et al., The NLRP3 and NLRP1 inflammasomes are activated in Alzheimer’s disease. Mol. Neurodegener 2016. 11(1): 23. PubMed PMC
Saresella M, Piancone F, Marventano I, Zoppis M, Hernis A, Zanette M, Trabattoni D et al., Multiple Inflammasome Complexes are Activated in Autistic Spectrum Disorders. Brain Behav. Immun 2016. 57: 125–133. PubMed
Piancone F, Saresella M, Marventano I, La Rosa F, Santangelo MA, Caputo D, Mendozzi L, Rovaris M et al., Monosodium urate crystals activate the inflammasome in primary progressive multiple sclerosis. Front. Immunol 2018. 9: 983. PubMed PMC
Bandera A, Masetti M, Fabbiani M, Biasin M, Muscatello A, Squillace N, Clerici M et al., The NLRP3 Inflammasome is Upregulated in HIV-Infected ART-treated Individuals with Defective Immune Recovery. Front. Immunol 2018. 9: 214. PubMed PMC
Nagar A, DeMarco RA and Harton JA, Inflammasome and caspase-1 activity characterization and evaluation: An imaging flow cytometer-based detection and assessment of inflammasome specks and caspase-1 activation. J. Immunol 2019. 202: 1003–1015. PubMed PMC
Hooijberg JH Broxterman H. J., Kool M., Assaraf Y. G., Peters G. J., Noordhuis P. and Scheper R. J., Antifolate resistance mediated by the multidrug resistance proteins MRP1 and MRP2. Cancer Res. 1999. 59: 2532–2535. PubMed
Zeng H et al., Transport of methotrexate (MTX) and folates by multidrug resistance protein (MRP) 3 and MRP1: effect of polyglutamylation on MTX transport. Cancer Res. 2001. 61: 7225–7232. PubMed
Volk EL, Farley KM, Wu Y, Li F, Robey RW and Schneider E, Overexpression of wild-type breast cancer resistance protein mediates methotrexate resistance. Cancer Res. 2002. 62: 5035–5040. PubMed
Sarkadi B et al., Human multidrug resistance ABCB and ABCG transporters: participation in a chemoimmunity defense system. Physiol Rev. 2006. 86: 1179–1236. PubMed
Lee NH, Pharmacogenetics of drug metabolizing enzymes and transporters: effects on pharmacokinetics and pharmacodynamics of anticancer agents. Anticancer Agents Med. Chem 2010. 10: 583–592. PubMed PMC
Porcelli L, Lemos C, Peters GJ, Paradiso A and Azzariti A, Intracellular trafficking of MDR transporters and relevance of SNPs. Curr. Top. Med. Chem 2009. 9: 197–208. PubMed
Damiani D et al., The prognostic value of P-glycoprotein (ABCB) and breast cancer resistance protein (ABCG2) in adults with de novo acute myeloid leukemia with normal karyotype. Haematologica 2006. 91: 825–828. PubMed
Georges E, Tsuruo T and Ling V, Topology of P-glycoprotein as determined by epitope mapping of MRK-16 monoclonal antibody. J. Biol. Chem 1993. 268: 1792–1798. PubMed
Vasudevan S, Tsuruo T and Rose DR, Mode of binding of anti- P-glycoprotein antibody MRK-16 to its antigen. A crystallographic and molecular modeling study. J. Biol. Chem 1998. 273: 25413–25419. PubMed
Telbisz A, Hegedüs C, Özvegy-Laczka C, Goda K, Várady G, Takáts Z, Szabó E et al., Antibody binding shift assay for rapid screening of drug interactions with the humanABCG2 multidrug transporter. Eur. J. Pharm. Sci 2012. 45: 101–109. PubMed
Toldi G et al., Peripheral lymphocyte multidrug resistance activity as a predictive tool of biological therapeutic response in rheumatoid arthritis. J. Rheumatol 2019. 46: 572–578. PubMed
Micsik T et al., MDR-1 and MRP-1 activity in peripheral blood leukocytes of rheumatoid arthritis patients. Diagn. Pathol 2015. 10: 216. PubMed PMC
Homolya L, Holló Z, Germann UA, Pastan I, Gottesman MM, Sarkadi B Fluorescent cellular indicators are extruded by the multidrug resistance protein. J. Biol. Chem 1993. 268: 21493–21496. PubMed
Cortada CM et al., Lymphocyte P-glycoprotein variability in healthy individuals. Medicina 2009. 69: 619–624. PubMed
Szerémy P, Tauberné Jakab K, Baráth S, Apjok A, Filkor K, Holló Z, Márki-Zay J, Kappelmayer J, Sipka S, Krajcsi P, Toldi G Determination of reference values of MDR-ABC transporter activities in CD3+ lymphocytes of healthy volunteers using a flow cytometry based method. Cytometry B Clin. Cytom 2018. 10.1002/cyto.b.21729. [Epub ahead of print]. PubMed DOI
Yu L, Sa S, Wang L, Dulmage K, Bhagwat N, Yee SS, Sen M et al., An integrated enrichment system to facilitate isolation and molecular characterization of single cancer cells from whole blood. Cytometry A 2018. 93: 1226–1233. PubMed PMC
Hayashi T, Shibata N, Okumura R, Kudome T, Nishimura O, Tarui H and Agata K, Single-cell gene profiling of planarian stem cells using fluorescent activated cell sorting and its “index sorting" function for stem cell research. Dev. Growth Differ 2010. 52: 131–144. PubMed
Schulte R, Wilson NK, Prick JC, Cossetti C, Maj MK, Gottgens B and Kent DG, Index sorting resolves heterogeneous murine hematopoietic stem cell populations. Exp. Hematol 2015. 43: 803–811. PubMed PMC
Wilson NK, Kent DG, Buettner F, Shehata M, Macaulay IC, Calero-Nieto FJ, Sanchez Castillo M et al., Combined single-cell functional and gene expression analysis resolves heterogeneity within stem cell populations. Cell Stem Cell 2015. 16: 712–724. PubMed PMC
Busse CE, Czogiel I, Braun P, Arndt PF and Wardemann H, Single-cell based high-throughput sequencing of full-length immunoglobulin heavy and light chain genes. Eur. J. Immunol 2014. 44: 597–603. PubMed
Gee MH, Han A, Lofgren SM, Beausang JF, Mendoza JL, Birnbaum ME, Bethune MT et al., Antigen identification for orphan T cell receptors expressed on tumor-infiltrating lymphocytes. Cell 2018. 172: 549–563. PubMed PMC
Penter L, Dietze K, Bullinger L, Westermann J, Rahn HP and Hansmann L, FACS single cell index sorting is highly reliable and determines immune phenotypes of clonally expanded T cells. Eur. J. Immunol 2018. 48: 1248–1250. PubMed
Penter L, Dietze K, Ritter J, Lammoglia-Cobo MF, Garmshausen J, Aigner F, Bullinger L et al., Localization-associated immune phenotypes of clonally expanded tumor-infiltrating T cells and distribution of their target antigens in rectal cancer. Oncoimmunology 2019. 8: e1586409. PubMed PMC
Higdon LE, Cain CJ, Colden MA and Maltzman JS Optimization of single-cell plate sorting for high throughput sequencing applications. J. Immunol. Methods 2019. 466: 17–23. PubMed PMC
Kleeberger CA, Lyles RH, Margolick JB, Rinaldo CR, Phair JP and Giorgi JV, Viability and recovery of peripheral blood mononuclear cells cryopreserved for up to 12 years in a multicenter study. Clin. Diagn. Lab. Immunol 1999. 6: 14–19. PubMed PMC
Ruitenberg JJ, Mulder CB, Maino VC, Landay AL and Ghanekar SA, VACUTAINER CPT and Ficoll density gradient separation perform equivalently in maintaining the quality and function of PBMC from HIV seropositive blood samples. BMC Immunol. 2006. 7: 11. PubMed PMC
Grievink HW, Luisman T, Kluft C, Moerland M and Malone KE, Comparison of three isolation techniques for human peripheral blood mononuclear cells: cell recovery and viability, population composition, and cell functionality. Biopreserv. Biobank 2016. 14: 410–415. PubMed
Disis ML, dela Rosa C, Goodell V, Kuan L-Y, Chang JCC, Kuus-Reichel K, Clay TM et al., Maximizing the retention of antigen specific lymphocyte function after cryopreservation. J. Immunol. Methods 2006. 308: 13–18. PubMed
Weinberg A, Song L-Y, Wilkening C, Sevin A, Blais B, Louzao R, Stein D et al., Optimization and limitations of use of cryopreserved peripheral blood mononuclear cells for functional and phenotypic T-cell characterization. Clin. Vaccine Immunol 2009. 16: 1176–1186. PubMed PMC
Bull M, Lee D, Stucky J, Chiu Y-L, Rubin A, Horton H and McElrath MJ, Defining blood processing parameters for optimal detection of cryopreserved antigen-specific responses for HIV vaccine trials. J. Immunol. Methods. 2007. 322: 57–69. PubMed PMC
Scheiermann C, Kunisaki Y and Frenette PS, Circadian control of the immune system. Nat. Rev. Immunol 2013. 13: 190–198. PubMed PMC
Tompa A, Nilsson-Bowers A and Faresjö M, Subsets of CD4+, CD8+, and CD25hi lymphocytes are in general not influenced by isolation and long-term cryopreservation. J. Immunol 2018. 201: 1799–1809. PubMed
Seale AC, de Jong BC, Zaidi I, Duvall M, Whittle H, Rowland-Jones S and Jaye A, Effects of cryopreservation on CD4+ CD25+ T cells of HIV-1 infected individuals. J. Clin. Lab. Anal 2008. 22: 153–158. PubMed PMC
Assumpció Romeu M, Mestre M, González L, Valls A, Verdaguer J, Corominas M, Bas J et al., Lymphocyte immunophenotyping by flow cytometry in normal adults. J. Immunol. Methods 1992. 154: 7–10. PubMed
Lemieux J, Jobin C, Simard C and Néron S, A global look into human T cell subsets before and after cryopreservation using multiparametric flow cytometry and two-dimensional visualization analysis. J. Immunol. Methods 2016. 434: 73–82. PubMed
Wang L, Hückelhoven A, Hong J, Jin N, Mani J, Chen B, Schmitt M et al., Standardization of cryopreserved peripheral blood mononuclear cells through a resting process for clinical immunomonitoring—development of an algorithm. Cytometry A. 2016. 89: 246–258. PubMed
Holland M, Cunningham R, Seymour L, Kleinsteuber K, Cunningham A, Patel T, Manos M et al., Separation, banking, and quality control of peripheral blood mononuclear cells from whole blood of melanoma patients. Cell Tissue Bank. 2018. 19: 783–790. PubMed
De Boer F, Dräger AM, Van der Wall E, Pinedo HM and Schuurhuis GJ, Changes in L-selectin expression on CD34-positive cells upon cryopreservation of peripheral blood stem cell transplants. Bone Marrow Transplant. 1998. 22: 1103–1110. PubMed
Campbell DE, Tustin NB, Riedel E, Tustin R, Taylor J, Murray J and Douglas SD, Cryopreservation decreases receptor PD-1 and ligand PD-L1 coinhibitory expression on peripheral blood mononuclear cell-derived T cells and monocytes. Clin. Vaccine Immunol 2009. 16: 1648–1653. PubMed PMC
Zhang W, Nilles TL, Johnson JR and Margolick JB, The effect of cellular isolation and cryopreservation on the expression of markers identifying subsets of regulatory T cells. J. Immunol. Methods. 2016. 431: 31–37. PubMed PMC
Posevitz-Fejfár A, Posevitz V, Gross CC, Bhatia U, Kurth F, Schütte V, Bar-Or A et al., Effects of blood transportation on human peripheral mononuclear cell yield, phenotype and function: implications for immune cell biobanking. PLoS One. 2014. 9: e115920. PubMed PMC
Nemes E, Kagina BMN, Smit E, Africa H, Steyn M, Hanekom WA and Scriba TJ, Differential leukocyte counting and immunophenotyping in cryopreserved ex vivo whole blood. Cytometry A. 2015. 87: 157–165. PubMed
Maecker HT, McCoy JP, FOCIS Human Immunophenotyping Consortium, Amos, M., Elliott, J., Gaigalas, A., Wang, L. et al., A model for harmonizing flow cytometry in clinical trials. Nat. Immunol 2010. 11: 975–978. PubMed PMC
Burel JG, Qian Y, Lindestam Arlehamn C, Weiskopf D, Zapardiel-Gonzalo J, Taplitz R, Gilman RH et al., An integrated workflow to assess technical and biological variability of cell population frequencies in human peripheral blood by flow cytometry. J. Immunol. 2017. 198: 1748–1758. PubMed PMC
Bernemann I, Kersting M, Prokein J, Hummel M, Klopp N and Illig T, [Centralized biobanks: a basis for medical research]. Bundesgesundheitsblatt. Gesundheitsforschung. Gesundheitsschutz. 2016. 59: 336–343. PubMed
Labarga A, Beloqui I and Martin AG, Information Management. Methods Mol. Biol 2017. 1590: 29–39. PubMed
Bendou H, Sizani L, Reid T, Swanepoel C, Ademuyiwa T, Merino-Martinez R, Meuller H et al., Baobab laboratory information management system: development of an open-source laboratory information management system for biobanking. Biopreserv. Biobank. 2017. 15: 116–120. PubMed PMC
Mate S, Kadioglu D, Majeed RW, Stöhr MR, Folz M, Vormstein P, Storf H et al., Proof-of-concept integration of heterogeneous biobank IT infrastructures into a hybrid biobanking network. Stud. Health Technol. Inform 2017. 243: 100–104. PubMed
Consuegra I, Rodríguez-Aierbe C, Santiuste I, Bosch A, Martínez-Marín R, Fortuto MA, Díaz T et al., Isolation methods of peripheral blood mononuclear cells in spanish biobanks: an overview. Biopreserv. Biobank 2017. 15: 305–309. PubMed
Aziz N, Margolick JB, Detels R, Rinaldo CR, Phair J, Jamieson BD and Butch AW, Value of a quality assessment program in optimizing cryopreservation of peripheral blood mononuclear cells in a multicenter study. Clin. Vaccine Immunol 2013. 20: 590–595. PubMed PMC
Ramos TV, Mathew AJ, Thompson ML and Ehrhardt RO, Standardized cryopreservation of human primary cells. Curr. Protoc. Cell Biol 2014. 64: A.3I.1–8. PubMed
Xiao D, Ling KHJ, Custodio J, Majeed SR and Tarnowski T, Quantitation of intracellular triphosphate metabolites of antiretroviral agents in peripheral blood mononuclear cells (PBMCs) and corresponding cell count determinations: review of current methods and challenges. Expert Opin. Drug Metab. Toxicol 2018. 14: 781–802. PubMed
Becher F, Pruvost AG, Schlemmer DD, Créminon CA, Goujard CM, Delfraissy JF, Benech HC et al., Significant levels of intracellular stavudine triphosphate are found in HIV-infected zidovudine-treated patients. AIDS. 2003. 17: 555–561. PubMed
Corkum CP, Ings DP, Burgess C, Karwowska S, Kroll W and Michalak TI, Immune cell subsets and their gene expression profiles from human PBMC isolated by Vacutainer Cell Preparation Tube (CPTTM) and standard density gradient. BMC Immunol. 2015. 16: 48. PubMed PMC
Angel S, von Briesen H, Oh Y-J, Baller MK, Zimmermann H and Germann A, Toward optimal cryopreservation and storage for achievement of high cell recovery and maintenance of cell viability and T cell functionality. Biopreserv. Biobank 2016. 14: 539–547. PubMed PMC
Angelo M, Bendall SC, Finck R, Hale MB, Hitzman C, Borowsky AD, Levenson RM et al., Multiplexed ion beam imaging of human breast tumors. Nat. Med 2014. 20: 436–442. PubMed PMC
Smets T, Stevenaert F, Adams H and Vanhoof G, Deep profiling of the immune system of multiple myeloma patients using cytometry by time-of-flight (CyTOF). Methods Mol. Biol 2018. 1792: 47–54. PubMed
Edwards BS and Sklar LA, Flow cytometry: impact on early drug discovery. J. Biomol. Screen 2015. 20: 689–707. PubMed PMC
Moffat JG, Vincent F, Lee JA, Eder J and Prunotto M, Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nat. Rev. Drug Discov 2017. 16: 531–543. PubMed
Vignali DA, Multiplexed particle-based flow cytometric assays. J. Immunol. Methods 2000. 243: 243–255. PubMed
Joslin J, Gilligan J, Anderson P, Garcia C, Sharif O, Hampton J, Cohen S et al., A Fully automated high-throughput flow cytometry screening system enabling phenotypic drug discovery. SLAS Discov. 2018. 23: 697–707. PubMed PMC
Bredemeyer AL, Edwards BS, Haynes MK, Morales AJ, Wang Y, Ursu O, Waller A et al., High-throughput screening approach for identifying compounds that inhibit nonhomologous end joining. SLAS Discov. 2018. 23: 624–633. PubMed PMC
Buranda T, Gineste C, Wu Y, Bondu V, Perez D, Lake KR, Edwards BS et al., A high-throughput flow cytometry screen identifies molecules that inhibit hantavirus cell entry. SLAS Discov. 2018. 23: 634–645. PubMed PMC
Wang Y, Yoshihara T, King S, Le T, Leroy P, Zhao X, Chan CK et al., Automated high-throughput flow cytometry for high-content screening in antibody development. SLAS Discov. 2018. 23: 656–666. PubMed
Martinez EM, Klebanoff SD, Secrest S, Romain G, Haile ST, Emtage PCR and Gilbert AE, High-throughput flow cytometric method for the simultaneous measurement of CAR-T cell characterization and cytotoxicity against solid tumor cell lines. SLAS Discov. 2018. 23: 603–612. PubMed
Kaur M and Esau L, Two-step protocol for preparing adherent cells for high-throughput flow cytometry. Biotechniques 2015. 59: 119–126. PubMed
Chan BM, Badh A, Berry KA, Grauer SA and King CT, Flow cytometry-based epitope binning using competitive binding profiles for the characterization of monoclonal antibodies against cellular and soluble protein targets. SLAS Discov. 2018. 23: 613–623. PubMed
Virginia Litwin PM, Flow cytometry in drug discovery and development. Wiley, Hoboken, NJ 2011.
Goni-de-Cerio F, Mariani V, Cohen D, Madi L, Thevenot J, Oliveira H, Uboldi C et al., Biocompatibility study of two diblock copolymeric nanoparticles for biomedical applications by in vitro toxicity testing. J. Nanopart. Res 2013. 15: 1–17.
Buenz EJ, Limburg PJ and Howe CL, A high-throughput 3-parameter flow cytometry-based cell death assay. Cytometry A 2007. 71: 170–173. PubMed PMC
Boitano AE, Wang J, Romeo R, Bouchez LC, Parker AE, Sutton SE, Walker JR et al., Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science 2010. 329: 1345–1348. PubMed PMC
Zhao Z, Henowitz L and Zweifach A, A multiplexed assay that monitors effects of multiple compound treatment times reveals candidate immune-enhancing compounds. SLAS Discov. 2018. 23: 646–655. PubMed PMC
Ding M, Kaspersson K, Murray D and Bardelle C, High-throughput flow cytometry for drug discovery: principles, applications, and case studies. Drug Discov. Today 2017. 22: 1844–1850. PubMed
Javarappa KK, Tsallos D and Heckman CA, A multiplexed screening assay to evaluate chemotherapy-induced myelosuppression using healthy peripheral blood and bone marrow. SLAS Discov. 2018. 23: 687–696. PubMed
Nolan JP and Mandy F, Multiplexed and microparticle-based analyses: quantitative tools for the large-scale analysis of biological systems. Cytometry A 2006. 69: 318–325. PubMed PMC
Moeller T, Brown C, Muchow M and Yee B, Transcript regulation of 18 ADME genes by prototypical inducers in human hepatocytes. Drug Metab. Rev 2012. 44: 79–80. PubMed
Liu Z and O’Rourke J, Expediting antibody discovery with a cell and bead multiplexed competition assay. SLAS Discov. 2018. 23: 667–675. PubMed
Young SM, Bologa C, Prossnitz ER, Oprea TI, Sklar LA and Edwards BS, High-throughput screening with HyperCyt flow cytometry to detect small molecule formylpeptide receptor ligands. J. Biomol. Screen 2005. 10: 374–382. PubMed
Lahl K, Loddenkemper C, Drouin C, Freyer J, Arnason J, Eberl G, Hamann A et al., Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. J. Exp. Med 2007. 204: 57–63. PubMed PMC
Zhang JH, Chung TD and Oldenburg KR, A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen 1999. 4: 67–73. PubMed
Moore J and Roederer M, The flow cytometry shared resource laboratory: best practices to assure a high-quality, cost-effective partnership with biomedical research laboratories. Cytometry A 2009. 75: 643–649. PubMed
Meder D et al., Institutional core facilities: prerequisite for breakthroughs in the life sciences: core facilities play an increasingly important role in biomedical research by providing scientists access to sophisticated technology and expertise. EMBO Rep. 2016. 17: 1088–1093. PubMed PMC
Barsky LW et al., International Society for Advancement of Cytometry (ISAC) flow cytometry shared resource laboratory (SRL) best practices. Cytometry A 2016. 89: 1017–1030. PubMed
Ferrando-May E et al., Advanced light microscopy core facilities: Balancing service, science and career. Microsc. Res. Tech 2016. 79: 463–479. PubMed PMC
Brown CM, Careers in core facility management. Cold Spring Harb. Perspect. Biol. 2018. 10(8). PubMed PMC
Davies D, Filby A and Lannigan J, Shared Resource Laboratory (SRL) Communications—a new journal type. Cytometry A 2018. PubMed
Box AC, Park J, Semerad CL, Konnesky J and Haug JS, Cost accounting method for cytometry facilities. Cytometry A 2012. 81: 439–444. PubMed
Petrunkina AM, Algorithm and metrics for a standardized evaluation of cell sorting service delivery. Cytometry A 2013. 83: 602–607. PubMed
Lennartz K, Lu M, Flasshove M, Moritz T and Kirstein U, Improving the biosafety of cell sorting by adaptation of a cell sorting system to a biosafety cabinet. Cytometry A 2005. 66: 119–127. PubMed
Mische S and Wilkerson A, Disaster and Contingency Planning for Scientific Shared Resource Cores. J. Biomol. Tech 2016. 27: 4–17. PubMed PMC
Antal-Szalmás P, Nagy B Jr, Debreceni IB and Kappelmayer J, Measurement of soluble biomarkers by flow cytometry. EJIFCC 2013. 23: 135–142. PubMed PMC
Commenges D, Alkhassim C, Gottardo R, Hejblum B and Thiebaut R, cytometree: a binary tree algorithm for automatic gating in cytometry analysis. bioRxiv. 2018. 1:335554. PubMed
de Jager W, te Velthuis H, Prakken BJ, Kuis W and Rijkers GT, Simultaneous detection of 15 human cytokines in a single sample of stimulated peripheral blood mononuclear cells. Clin. Diagn. Lab. Immunol 2003. 10: 133–139. PubMed PMC
DiGiuseppe JA, Cardinali JL, Rezuke WN and Pe’er D, Pheno-Graph and viSNE facilitate the identification of abnormal T-cell populations in routine clinical flow cytometric data. Cytometry B Clin. Cytom 2018. 94: 744–757. PubMed PMC
Gomaa A and Boye J, Simultaneous detection of multi-allergens in an incurred food matrix using ELISA, multiplex flow cytometry and liquid chromatography mass spectrometry (LC–MS). Food Chem. 2015. 175: 585–592. PubMed
http://www.cancer.net/cancer-types/sarcoma-soft-tissue/overview.
Maggi L, Cimaz R, Capone M, Santarlasci V, Rossi MC, Mazzoni A, Montaini G et al., Immunosuppressive activity of abatacept on circulating T helper lymphocytes from juvenile idiopathic arthritis patients. Int. Arch. Allergy Immunol 2016. 171: 45–53. PubMed
Maueröder C, Chaurio RA, Dumych T, Podolska M, Lootsik MD, Culemann S, Friedrich RP et al., A blast without power—cell death induced by the tuberculosis-necrotizing toxin fails to elicit adequate immune responses. Cell Death Differ. 2016. 23: 1016–1025. PubMed PMC
Munoz LE, Maueroder C, Chaurio R, Berens C, Herrmann M and Janko C, Colourful death: six-parameter classification of cell death by flow cytometry–dead cells tell tales. Autoimmunity 2013. 46: 336–341. PubMed
Salvioli S, Ardizzoni A, Franceschi C and Cossarizza A, JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess AW changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Lett. 1997. 411: 77–82. PubMed
RNA-Seq of Single Fish Cells - Seeking Out the Leukocytes Mediating Immunity in Teleost Fishes