RNA-Seq of Single Fish Cells - Seeking Out the Leukocytes Mediating Immunity in Teleost Fishes
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
35140719
PubMed Central
PMC8818700
DOI
10.3389/fimmu.2022.798712
Knihovny.cz E-zdroje
- Klíčová slova
- RNA-seq, antibody, flow cytometry, leukocytes, lymphocytes, phenotype, single-cell transcriptome, teleost bony fish,
- MeSH
- analýza jednotlivých buněk * metody MeSH
- imunita MeSH
- leukocyty imunologie metabolismus MeSH
- ryby genetika imunologie MeSH
- sekvenování transkriptomu * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
The immune system is a complex and sophisticated biological system, spanning multiple levels of complexity, from the molecular level to that of tissue. Our current understanding of its function and complexity, of the heterogeneity of leukocytes, is a result of decades of concentrated efforts to delineate cellular markers using conventional methods of antibody screening and antigen identification. In mammalian models, this led to in-depth understanding of individual leukocyte subsets, their phenotypes, and their roles in health and disease. The field was further propelled forward by the development of single-cell (sc) RNA-seq technologies, offering an even broader and more integrated view of how cells work together to generate a particular response. Consequently, the adoption of scRNA-seq revealed the unexpected plasticity and heterogeneity of leukocyte populations and shifted several long-standing paradigms of immunology. This review article highlights the unprecedented opportunities offered by scRNA-seq technology to unveil the individual contributions of leukocyte subsets and their crosstalk in generating the overall immune responses in bony fishes. Single-cell transcriptomics allow identifying unseen relationships, and formulating novel hypotheses tailored for teleost species, without the need to rely on the limited number of fish-specific antibodies and pre-selected markers. Several recent studies on single-cell transcriptomes of fish have already identified previously unnoticed expression signatures and provided astonishing insights into the diversity of teleost leukocytes and the evolution of vertebrate immunity. Without a doubt, scRNA-seq in tandem with bioinformatics tools and state-of-the-art methods, will facilitate studying the teleost immune system by not only defining key markers, but also teaching us about lymphoid tissue organization, development/differentiation, cell-cell interactions, antigen receptor repertoires, states of health and disease, all across time and space in fishes. These advances will invite more researchers to develop the tools necessary to explore the immunology of fishes, which remain non-conventional animal models from which we have much to learn.
Faculty of Fisheries and Protection of Waters University of South Bohemia České Budějovice Czechia
Institute of Genome Biology Research Institute for Farm Animal Biology Dummerstorf Germany
Institute of Parasitology Biology Centre of the Czech Academy of Sciences České Budějovice Czechia
Zobrazit více v PubMed
Kaufmann SH. Immunology's Foundation: The 100-Year Anniversary of the Nobel Prize to Paul Ehrlich and Elie Metchnikoff. Nat Immunol (2008) 9:705–12. doi: 10.1038/ni0708-705 PubMed DOI
Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The Dorsoventral Regulatory Gene Cassette Spatzle/Toll/Cactus Controls the Potent Antifungal Response in Drosophila Adults. Cell (1996) 86:973–83. doi: 10.1016/s0092-8674(00)80172-5 PubMed DOI
Cooper MD, Raymond DA, Peterson RD, South MA, Good RA. The Functions of the Thymus System and the Bursa System in the Chicken. J Exp Med (1966) 123:75–102. doi: 10.1084/jem.123.1.75 PubMed DOI PMC
Nagasawa T, Nakayasu C, Rieger AM, Barreda DR, Somamoto T, Nakao M. Phagocytosis by Thrombocytes Is a Conserved Innate Immune Mechanism in Lower Vertebrates. Front Immunol (2014) 5:445. doi: 10.3389/fimmu.2014.00445 PubMed DOI PMC
Li J, Barreda DR, Zhang YA, Boshra H, Gelman AE, Lapatra S, et al. . B Lymphocytes From Early Vertebrates Have Potent Phagocytic and Microbicidal Abilities. Nat Immunol (2006) 7:1116–24. doi: 10.1038/ni1389 PubMed DOI
Zhang YA, Salinas I, Li J, Parra D, Bjork S, Xu Z, et al. . IgT, a Primitive Immunoglobulin Class Specialized in Mucosal Immunity. Nat Immunol (2010) 11:827–35. doi: 10.1038/ni.1913 PubMed DOI PMC
Sepahi A, Kraus A, Casadei E, Johnston CA, Galindo-Villegas J, Kelly C, et al. . Olfactory Sensory Neurons Mediate Ultrarapid Antiviral Immune Responses in a TrkA-Dependent Manner. Proc Natl Acad Sci USA (2019) 116:12428–36. doi: 10.1073/pnas.1900083116 PubMed DOI PMC
Rakus K, Ronsmans M, Forlenza M, Boutier M, Piazzon MC, Jazowiecka-Rakus J, et al. . Conserved Fever Pathways Across Vertebrates: A Herpesvirus Expressed Decoy TNF-Alpha Receptor Delays Behavioral Fever in Fish. Cell Host Microbe (2017) 21:244–53. doi: 10.1016/j.chom.2017.01.010 PubMed DOI PMC
Schluter SF, Bernstein RM, Bernstein H, Marchalonis JJ. 'Big Bang' Emergence of the Combinatorial Immune System. Dev Comp Immunol (1999) 23:107–11. doi: 10.1016/s0145-305x(99)00002-6 PubMed DOI
Sunyer JO. Fishing for Mammalian Paradigms in the Teleost Immune System. Nat Immunol (2013) 14:320–6. doi: 10.1038/ni.2549 PubMed DOI PMC
Zwollo P, Cole S, Bromage E, Kaattari S. B Cell Heterogeneity in the Teleost Kidney: Evidence for a Maturation Gradient From Anterior to Posterior Kidney. J Immunol (2005) 174:6608–16. doi: 10.4049/jimmunol.174.11.6608 PubMed DOI
Bjorgen H, Koppang EO. Anatomy of Teleost Fish Immune Structures and Organs. Immunogenetics (2021) 73:53–63. doi: 10.1007/s00251-020-01196-0 PubMed DOI PMC
Wang T, Hu Y, Wangkahart E, Liu F, Wang A, Zahran E, et al. . Interleukin (IL)-2 Is a Key Regulator of T Helper 1 and T Helper 2 Cytokine Expression in Fish: Functional Characterization of Two Divergent IL2 Paralogs in Salmonids. Front Immunol (2018) 9:1683. doi: 10.3389/fimmu.2018.01683 PubMed DOI PMC
Parra D, Takizawa F, Sunyer JO. Evolution of B Cell Immunity. Annu Rev Anim Biosci (2013) 1:65–97. doi: 10.1146/annurev-animal-031412-103651 PubMed DOI PMC
Takizawa F, Dijkstra JM, Kotterba P, Korytar T, Kock H, Kollner B, et al. . The Expression of CD8alpha Discriminates Distinct T Cell Subsets in Teleost Fish. Dev Comp Immunol (2011) 35:752–63. doi: 10.1016/j.dci.2011.02.008 PubMed DOI
Hansen JD, Zapata AG. Lymphocyte Development in Fish and Amphibians. Immunol Rev (1998) 166:199–220. doi: 10.1111/j.1600-065x.1998.tb01264.x PubMed DOI
Ryo S, Wijdeven RH, Tyagi A, Hermsen T, Kono T, Karunasagar I, et al. . Common Carp Have Two Subclasses of Bonyfish Specific Antibody IgZ Showing Differential Expression in Response to Infection. Dev Comp Immunol (2010) 34:1183–90. doi: 10.1016/j.dci.2010.06.012 PubMed DOI
Kohler G, Milstein C. Continuous Cultures of Fused Cells Secreting Antibody of Predefined Specificity. Nature (1975) 256:495–7. doi: 10.1038/256495a0 PubMed DOI
Clark G, Stockinger H, Balderas R, van Zelm MC, Zola H, Hart D, et al. . Nomenclature of CD Molecules From the Tenth Human Leucocyte Differentiation Antigen Workshop. Clin Transl Immunol (2016) 5:e57. doi: 10.1038/cti.2015.38 PubMed DOI PMC
Ozato K, Mayer NM, Sachs DH. Monoclonal Antibodies to Mouse Major Histocompatibility Complex Antigens. Transplantation (1982) 34:113–20. doi: 10.1097/00007890-198209000-00001 PubMed DOI
Warr GW, Deluca D, Griffin BR. Membrane Immunoglobulin Is Present on Thymic and Splenic Lymphocytes of the Trout Salmo Gairdneri. J Immunol (1979) 123:910–7. PubMed
Secombes CJ, van Groningen JJ, Egberts E. Separation of Lymphocyte Subpopulations in Carp Cyprinus Carpio L. By Monoclonal Antibodies: Immunohistochemical Studies. Immunology (1983) 48:165–75. PubMed PMC
Nakayasu C, Yoshitomi T, Oyamatsu T, Okamoto N, Ikeda Y. Separation of Carp (Cyprinus Carpio L.) Thrombocytes by Using a Monoclonal Antibody, and Their Aggregation by Collagen. Vet Immunol Immunopathol (1997) 57:337–46. doi: 10.1016/s0165-2427(97)00005-6 PubMed DOI
Romano N, Abelli L, Mastrolia L, Scapigliati G. Immunocytochemical Detection and Cytomorphology of Lymphocyte Subpopulations in a Teleost Fish Dicentrarchus Labrax. Cell Tissue Res (1997) 289:163–71. doi: 10.1007/s004410050862 PubMed DOI
Kollner B, Fischer U, Rombout JH, Taverne-Thiele JJ, Hansen JD. Potential Involvement of Rainbow Trout Thrombocytes in Immune Functions: A Study Using a Panel of Monoclonal Antibodies and RT-PCR. Dev Comp Immunol (2004) 28:1049–62. doi: 10.1016/j.dci.2004.03.005 PubMed DOI
Dixon B, Barreda DR, Sunyer JO. Perspective on the Development and Validation of Ab Reagents to Fish Immune Proteins for the Correct Assessment of Immune Function. Front Immunol (2018) 9:2957. doi: 10.3389/fimmu.2018.02957 PubMed DOI PMC
Perdiguero P, Morel E, Tafalla C. Diversity of Rainbow Trout Blood B Cells Revealed by Single Cell RNA Sequencing. Biol (Basel) (2021) 10. doi: 10.3390/biology10060511 PubMed DOI PMC
Abos B, Bird S, Granja AG, Morel E, More Bayona JA, Barreda DR, et al. . Identification of the First Teleost CD5 Molecule: Additional Evidence on Phenotypical and Functional Similarities Between Fish IgM(+) B Cells and Mammalian B1 Cells. J Immunol (2018) 201:465–80. doi: 10.4049/jimmunol.1701546 PubMed DOI
DeLuca D, Wilson M, Warr GW. Lymphocyte Heterogeneity in the Trout, Salmo Gairdneri, Defined With Monoclonal Antibodies to IgM. Eur J Immunol (1983) 13:546–51. doi: 10.1002/eji.1830130706 PubMed DOI
Ramirez-Gomez F, Greene W, Rego K, Hansen JD, Costa G, Kataria P, et al. . Discovery and Characterization of Secretory IgD in Rainbow Trout: Secretory IgD Is Produced Through a Novel Splicing Mechanism. J Immunol (2012) 188:1341–9. doi: 10.4049/jimmunol.1101938 PubMed DOI
Takizawa F, Magadan S, Parra D, Xu Z, Korytar T, Boudinot P, et al. . Novel Teleost CD4-Bearing Cell Populations Provide Insights Into the Evolutionary Origins and Primordial Roles of CD4+ Lymphocytes and CD4+ Macrophages. J Immunol (2016) 196:4522–35. doi: 10.4049/jimmunol.1600222 PubMed DOI PMC
Boardman T, Warner C, Ramirez-Gomez F, Matrisciano J, Bromage E. Characterization of an Anti-Rainbow Trout (Oncorhynchus Mykiss) CD3epsilon Monoclonal Antibody. Vet Immunol Immunopathol (2012) 145:511–5. doi: 10.1016/j.vetimm.2011.11.017 PubMed DOI
Miyazawa R, Matsuura Y, Shibasaki Y, Imamura S, Nakanishi T. Cross-Reactivity of Monoclonal Antibodies Against CD4-1 and CD8alpha of Ginbuna Crucian Carp With Lymphocytes of Zebrafish and Other Cyprinid Species. Dev Comp Immunol (2018) 80:15–23. doi: 10.1016/j.dci.2016.12.002 PubMed DOI
Rombout JH, van de Wal JW, Companjen A, Taverne N, Taverne-Thiele JJ. Characterization of a T Cell Lineage Marker in Carp (Cyprinus Carpio L.). Dev Comp Immunol (1997) 21:35–46. doi: 10.1016/s0145-305x(97)00001-3 PubMed DOI
Rombout JH, Joosten PH, Engelsma MY, Vos AP, Taverne N, Taverne-Thiele JJ. Indications for a Distinct Putative T Cell Population in Mucosal Tissue of Carp (Cyprinus Carpio L.). Dev Comp Immunol (1998) 22:63–77. doi: 10.1016/s0145-305x(97)00048-7 PubMed DOI
Lovy J, Savidant GP, Speare DJ, Wright GM. Langerin/CD207 Positive Dendritic-Like Cells in the Haemopoietic Tissues of Salmonids. Fish Shellfish Immunol (2009) 27:365–8. doi: 10.1016/j.fsi.2009.01.006 PubMed DOI
Rombout JHWM, Koumans-van Diepen JCE, Emmer PM, Taverne-Thiele J, Taverne N. Characterization of Carp Thrombocytes With Specific Monoclonal Antibodies. J Fish Biol (1996) 49:521–31. doi: 10.1111/j.1095-8649.1996.tb00047.x DOI
Kuroda A, Okamoto N, Fukuda H. Characterization of Monoclonal Antibodies Against Antigens Shared With Neutrophils and Macrophages in Rainbow Trout Oncorhynchus Mykiss. Fish Pathol (2000) 35:205–13. doi: 10.3147/jsfp.35.205 DOI
Kollner B, Blohm U, Kotterba G, Fischer U. A Monoclonal Antibody Recognising a Surface Marker on Rainbow Trout (Oncorhynchus Mykiss) Monocytes. Fish Shellfish Immunol (2001) 11:127–42. doi: 10.1006/fsim.2000.0300 PubMed DOI
Korytar T, Jaros J, Verleih M, Rebl A, Kotterba G, Kuhn C, et al. . Novel Insights Into the Peritoneal Inflammation of Rainbow Trout (Oncorhynchus Mykiss). Fish Shellfish Immunol (2013) 35:1192–9. doi: 10.1016/j.fsi.2013.07.032 PubMed DOI
Weyts FAA, Rombout JHWM, Flik G, Verburg-Van Kemenade BML. A Common Carp (Cyprinus carpioL.) Leucocyte Cell Line Shares Morphological and Functional Characteristics With Macrophages. Fish Shellfish Immunol (1997) 7:123–33. doi: 10.1006/fsim.1996.0069 DOI
Nakayasu C, Omori M, Hasegawa S, Kurata O, Okamoto N. Production of a Monoclonal Antibody for Carp (Cyprinus Carpio L.) Phagocytic Cells and Separation of the Cells. Fish Shellfish Immunol (1998) 8:91–100. doi: 10.1006/FSIM.1997.0125 DOI
Koppang EO, Fischer U, Moore L, Tranulis MA, Dijkstra JM, Kollner B, et al. . Salmonid T Cells Assemble in the Thymus, Spleen and in Novel Interbranchial Lymphoid Tissue. J Anat (2010) 217:728–39. doi: 10.1111/j.1469-7580.2010.01305.x PubMed DOI PMC
Miyazawa R, Murata N, Matsuura Y, Shibasaki Y, Yabu T, Nakanishi T. Peculiar Expression of CD3-Epsilon in Kidney of Ginbuna Crucian Carp. Front Immunol (2018) 9:1321. doi: 10.3389/fimmu.2018.01321 PubMed DOI PMC
Wang T, Secombes CJ. The Cytokine Networks of Adaptive Immunity in Fish. Fish Shellfish Immunol (2013) 35:1703–18. doi: 10.1016/j.fsi.2013.08.030 PubMed DOI
Wen Y, Fang W, Xiang LX, Pan RL, Shao JZ. Identification of Treg-Like Cells in Tetraodon: Insight Into the Origin of Regulatory T Subsets During Early Vertebrate Evolution. Cell Mol Life Sci (2011) 68:2615–26. doi: 10.1007/s00018-010-0574-5 PubMed DOI PMC
Koumans-van Diepen JC, van de Lisdonk MH, Taverne-Thiele AJ, Verburg-van Kemenade BM, Rombout JH. Characterisation of Immunoglobulin-Binding Leucocytes in Carp (Cyprinus Carpio L.). Dev Comp Immunol (1994) 18:45–56. doi: 10.1016/0145-305x(94)90251-8 PubMed DOI
Castro R, Abos B, Gonzalez L, Granja AG, Tafalla C. Expansion and Differentiation of IgM(+) B Cells in the Rainbow Trout Peritoneal Cavity in Response to Different Antigens. Dev Comp Immunol (2017) 70:119–27. doi: 10.1016/j.dci.2017.01.012 PubMed DOI
Soleto I, Morel E, Martin D, Granja AG, Tafalla C. Regulation of IgM(+) B Cell Activities by Rainbow Trout APRIL Reveals Specific Effects of This Cytokine in Lower Vertebrates. Front Immunol (2018) 9:1880. doi: 10.3389/fimmu.2018.01880 PubMed DOI PMC
Ye J, Kaattari I, Kaattari S. Plasmablasts and Plasma Cells: Reconsidering Teleost Immune System Organization. Dev Comp Immunol (2011) 35:1273–81. doi: 10.1016/j.dci.2011.03.005 PubMed DOI
Zwollo P. Dissecting Teleost B Cell Differentiation Using Transcription Factors. Dev Comp Immunol (2011) 35:898–905. doi: 10.1016/j.dci.2011.01.009 PubMed DOI PMC
Piazzon MC, Savelkoul HS, Pietretti D, Wiegertjes GF, Forlenza M. Carp Il10 Has Anti-Inflammatory Activities on Phagocytes, Promotes Proliferation of Memory T Cells, and Regulates B Cell Differentiation and Antibody Secretion. J Immunol (2015) 194:187–99. doi: 10.4049/jimmunol.1402093 PubMed DOI
Korytar T, Wiegertjes GF, Zuskova E, Tomanova A, Lisnerova M, Patra S, et al. . The Kinetics of Cellular and Humoral Immune Responses of Common Carp to Presporogonic Development of the Myxozoan Sphaerospora Molnari. Parasit Vectors (2019) 12:208. doi: 10.1186/s13071-019-3462-3 PubMed DOI PMC
Abos B, Estensoro I, Perdiguero P, Faber M, Hu Y, Diaz Rosales P, et al. . Dysregulation of B Cell Activity During Proliferative Kidney Disease in Rainbow Trout. Front Immunol (2018) 9:1203. doi: 10.3389/fimmu.2018.01203 PubMed DOI PMC
Wu L, Qin Z, Liu H, Lin L, Ye J, Li J. Recent Advances on Phagocytic B Cells in Teleost Fish. Front Immunol (2020) 11:824. doi: 10.3389/fimmu.2020.00824 PubMed DOI PMC
Yamaguchi T, Quillet E, Boudinot P, Fischer U. What Could be the Mechanisms of Immunological Memory in Fish? Fish Shellfish Immunol (2019) 85:3–8. doi: 10.1016/j.fsi.2018.01.035 PubMed DOI
Korytar T, Dang Thi H, Takizawa F, Kollner B. A Multicolour Flow Cytometry Identifying Defined Leukocyte Subsets of Rainbow Trout (Oncorhynchus Mykiss). Fish Shellfish Immunol (2013) 35:2017–9. doi: 10.1016/j.fsi.2013.09.025 PubMed DOI
Romano N, Picchietti S, Taverne-Thiele JJ, Taverne N, Abelli L, Mastrolia L, et al. . Distribution of Macrophages During Fish Development: An Immunohistochemical Study in Carp (Cyprinus Carpio, L.). Anat Embryol (Berl) (1998) 198:31–41. doi: 10.1007/s004290050162 PubMed DOI
Slierendrecht WJ, Lorenzen N, Glamann J, Koch C, Rombout JH. Immunocytochemical Analysis of a Monoclonal Antibody Specific for Rainbow Trout (Oncorhynchus Mykiss) Granulocytes and Thrombocytes. Vet Immunol Immunopathol (1995) 46:349–60. doi: 10.1016/0165-2427(94)05362-v PubMed DOI
Kfoury JR, Jr, Nakayasu C, Rodrigues Souza JC, Okamoto N. Jr Characterization of a Monoclonal Antibody Specific to Rainbow Trout Thrombocytes. J Exp Zool (1999) 284:309–16. doi: 10.1002/(SICI)1097-010X(19990801)284:33.0.CO;2-9 PubMed DOI
Lugo-Villarino G, Balla KM, Stachura DL, Banuelos K, Werneck MB, Traver D. Identification of Dendritic Antigen-Presenting Cells in the Zebrafish. Proc Natl Acad Sci USA (2010) 107:15850–5. doi: 10.1073/pnas.1000494107 PubMed DOI PMC
Gong YF, Xiang LX, Shao JZ. CD154-CD40 Interactions Are Essential for Thymus-Dependent Antibody Production in Zebrafish: Insights Into the Origin of Costimulatory Pathway in Helper T Cell-Regulated Adaptive Immunity in Early Vertebrates. J Immunol (2009) 182:7749–62. doi: 10.4049/jimmunol.0804370 PubMed DOI
Zhang YA, Hikima J, Li J, LaPatra SE, Luo YP, Sunyer JO. Conservation of Structural and Functional Features in a Primordial CD80/86 Molecule From Rainbow Trout (Oncorhynchus Mykiss), a Primitive Teleost Fish. J Immunol (2009) 183:83–96. doi: 10.4049/jimmunol.0900605 PubMed DOI
Castro R, Bromage E, Abos B, Pignatelli J, Gonzalez Granja A, Luque A, et al. . CCR7 Is Mainly Expressed in Teleost Gills, Where it Defines an IgD+IgM- B Lymphocyte Subset. J Immunol (2014) 192:1257–66. doi: 10.4049/jimmunol.1302471 PubMed DOI
Klein U, Rajewsky K, Kuppers R. Human Immunoglobulin (Ig)M+IgD+ Peripheral Blood B Cells Expressing the CD27 Cell Surface Antigen Carry Somatically Mutated Variable Region Genes: CD27 as a General Marker for Somatically Mutated (Memory) B Cells. J Exp Med (1998) 188:1679–89. doi: 10.1084/jem.188.9.1679 PubMed DOI PMC
Denoeud J, Moser M. Role of CD27/CD70 Pathway of Activation in Immunity and Tolerance. J Leukoc Biol (2011) 89:195–203. doi: 10.1189/jlb.0610351 PubMed DOI
Eto D, Lao C, DiToro D, Barnett B, Escobar TC, Kageyama R, et al. . IL-21 and IL-6 are Critical for Different Aspects of B Cell Immunity and Redundantly Induce Optimal Follicular Helper CD4 T Cell (Tfh) Differentiation. PloS One (2011) 6:e17739. doi: 10.1371/journal.pone.0017739 PubMed DOI PMC
Linterman MA, Beaton L, Yu D, Ramiscal RR, Srivastava M, Hogan JJ, et al. . IL-21 Acts Directly on B Cells to Regulate Bcl-6 Expression and Germinal Center Responses. J Exp Med (2010) 207:353–63. doi: 10.1084/jem.20091738 PubMed DOI PMC
Luo W, Weisel F, Shlomchik MJ. B Cell Receptor and CD40 Signaling Are Rewired for Synergistic Induction of the C-Myc Transcription Factor in Germinal Center B Cells. Immunity (2018) 48:313–326.e5. doi: 10.1016/j.immuni.2018.01.008 PubMed DOI PMC
Halliley JL, Tipton CM, Liesveld J, Rosenberg AF, Darce J, Gregoretti IV, et al. . Long-Lived Plasma Cells Are Contained Within the CD19(-)CD38(hi)CD138(+) Subset in Human Bone Marrow. Immunity (2015) 43:132–45. doi: 10.1016/j.immuni.2015.06.016 PubMed DOI PMC
Cossarizza A, Chang HD, Radbruch A, Acs A, Adam D, Adam-Klages S, et al. . Guidelines for the Use of Flow Cytometry and Cell Sorting in Immunological Studies (Second Edition). Eur J Immunol (2019) 49:1457–973. doi: 10.1002/eji.201970107 PubMed DOI PMC
Abos B, Castro R, Gonzalez Granja A, Havixbeck JJ, Barreda DR, Tafalla C. Early Activation of Teleost B Cells in Response to Rhabdovirus Infection. J Virol (2015) 89:1768–80. doi: 10.1128/JVI.03080-14 PubMed DOI PMC
Abos B, Castro R, Pignatelli J, Luque A, Gonzalez L, Tafalla C. Transcriptional Heterogeneity of IgM+ Cells in Rainbow Trout (Oncorhynchus Mykiss) Tissues. PloS One (2013) 8:e82737. doi: 10.1371/journal.pone.0082737 PubMed DOI PMC
Martin-Martin A, Simon R, Abos B, Diaz-Rosales P, Tafalla C. Rainbow Trout Mount a Robust Specific Immune Response Upon Anal Administration of Thymus-Independent Antigens. Dev Comp Immunol (2020) 109:103715. doi: 10.1016/j.dci.2020.103715 PubMed DOI PMC
Penaranda MMD, Jensen I, Tollersrud LG, Bruun JA, Jorgensen JB. Profiling the Atlantic Salmon IgM(+) B Cell Surface Proteome: Novel Information on Teleost Fish B Cell Protein Repertoire and Identification of Potential B Cell Markers. Front Immunol (2019) 10:37. doi: 10.3389/fimmu.2019.00037 PubMed DOI PMC
Slettjord TH, Sekkenes HJ, Chi H, Bogwald J, Swain T, Dalmo RA, et al. . Overexpression of T-Bet, GATA-3 and TGF-Ss Induces IFN-Gamma, IL-4/13A, and IL-17a Expression in Atlantic Salmon. Biol (Basel) (2020) 9. doi: 10.3390/biology9040082 PubMed DOI PMC
Takizawa F, Koppang EO, Ohtani M, Nakanishi T, Hashimoto K, Fischer U, et al. . Constitutive High Expression of Interleukin-4/13A and GATA-3 in Gill and Skin of Salmonid Fishes Suggests That These Tissues Form Th2-Skewed Immune Environments. Mol Immunol (2011) 48:1360–8. doi: 10.1016/j.molimm.2011.02.014 PubMed DOI
Astin JW, Keerthisinghe P, Du L, Sanderson LE, Crosier KE, Crosier PS, et al. . Innate Immune Cells and Bacterial Infection in Zebrafish. Methods Cell Biol (2017) 138:31–60. doi: 10.1016/bs.mcb.2016.08.002 PubMed DOI
Henry KM, Loynes CA, Whyte MK, Renshaw SA. Zebrafish as a Model for the Study of Neutrophil Biology. J Leukoc Biol (2013) 94:633–42. doi: 10.1189/jlb.1112594 PubMed DOI
Cronkite EP, Fliedner TM. Granulocytopoiesis. N Engl J Med (1964) 270:1347–52. doi: 10.1056/NEJM196406182702506 PubMed DOI
Page DM, Wittamer V, Bertrand JY, Lewis KL, Pratt DN, Delgado N, et al. . An Evolutionarily Conserved Program of B-Cell Development and Activation in Zebrafish. Blood (2013) 122:e1–11. doi: 10.1182/blood-2012-12-471029 PubMed DOI PMC
Mathias JR, Dodd ME, Walters KB, Yoo SK, Ranheim EA, Huttenlocher A. Characterization of Zebrafish Larval Inflammatory Macrophages. Dev Comp Immunol (2009) 33:1212–7. doi: 10.1016/j.dci.2009.07.003 PubMed DOI PMC
Lin HF, Traver D, Zhu H, Dooley K, Paw BH, Zon LI, et al. . Analysis of Thrombocyte Development in CD41-GFP Transgenic Zebrafish. Blood (2005) 106:3803–10. doi: 10.1182/blood-2005-01-0179 PubMed DOI PMC
Renshaw SA, Loynes CA, Trushell DM, Elworthy S, Ingham PW, Whyte MK. A Transgenic Zebrafish Model of Neutrophilic Inflammation. Blood (2006) 108:3976–8. doi: 10.1182/blood-2006-05-024075 PubMed DOI
Balla KM, Lugo-Villarino G, Spitsbergen JM, Stachura DL, Hu Y, Banuelos K, et al. . Eosinophils in the Zebrafish: Prospective Isolation, Characterization, and Eosinophilia Induction by Helminth Determinants. Blood (2010) 116:3944–54. doi: 10.1182/blood-2010-03-267419 PubMed DOI PMC
Moore FE, Garcia EG, Lobbardi R, Jain E, Tang Q, Moore JC, et al. . Single-Cell Transcriptional Analysis of Normal, Aberrant, and Malignant Hematopoiesis in Zebrafish. J Exp Med (2016) 213:979–92. doi: 10.1084/jem.20152013 PubMed DOI PMC
Moore JC, Mulligan TS, Yordan NT, Castranova D, Pham VN, Tang Q, et al. . T Cell Immune Deficiency in Zap70 Mutant Zebrafish. Mol Cell Biol (2016) 36:2868–76. doi: 10.1128/MCB.00281-16 PubMed DOI PMC
Martorell Ribera J, Nipkow M, Viergutz T, Brunner RM, Bochert R, Koll R, et al. . Early Response of Salmonid Head-Kidney Cells to Stress Hormones and Toll-Like Receptor Ligands. Fish Shellfish Immunol (2020) 98:950–61. doi: 10.1016/j.fsi.2019.11.058 PubMed DOI
Kim CC, Lanier LL. Beyond the Transcriptome: Completion of Act One of the Immunological Genome Project. Curr Opin Immunol (2013) 25:593–7. doi: 10.1016/j.coi.2013.09.013 PubMed DOI PMC
Ferrer-Font L, Pellefigues C, Mayer JU, Small SJ, Jaimes MC, Price KM. Panel Design and Optimization for High-Dimensional Immunophenotyping Assays Using Spectral Flow Cytometry. Curr Protoc Cytom (2020) 92:e70. doi: 10.1002/cpcy.70 PubMed DOI
Maecker HT, McCoy JP, Nussenblatt R. Standardizing Immunophenotyping for the Human Immunology Project. Nat Rev Immunol (2012) 12:191–200. doi: 10.1038/nri3158 PubMed DOI PMC
Cowell LG. The Diagnostic, Prognostic, and Therapeutic Potential of Adaptive Immune Receptor Repertoire Profiling in Cancer. Cancer Res (2020) 80:643–54. doi: 10.1158/0008-5472.CAN-19-1457 PubMed DOI
Benichou J, Ben-Hamo R, Louzoun Y, Efroni S. Rep-Seq: Uncovering the Immunological Repertoire Through Next-Generation Sequencing. Immunology (2012) 135:183–91. doi: 10.1111/j.1365-2567.2011.03527.x PubMed DOI PMC
Fang P, Li X, Dai J, Cole L, Camacho JA, Zhang Y, et al. . Immune Cell Subset Differentiation and Tissue Inflammation. J Hematol Oncol (2018) 11:97. doi: 10.1186/s13045-018-0637-x PubMed DOI PMC
Huang Z, Chen B, Liu X, Li H, Xie L, Gao Y, et al. . Effects of Sex and Aging on the Immune Cell Landscape as Assessed by Single-Cell Transcriptomic Analysis. Proc Natl Acad Sci USA (2021) 118:e2023216118. doi: 10.1073/pnas.2023216118. PubMed DOI PMC
Wilk AJ, Rustagi A, Zhao NQ, Roque J, Martinez-Colon GJ, McKechnie JL, et al. . A Single-Cell Atlas of the Peripheral Immune Response in Patients With Severe COVID-19. Nat Med (2020) 26:1070–6. doi: 10.1038/s41591-020-0944-y PubMed DOI PMC
Zhu L, Yang P, Zhao Y, Zhuang Z, Wang Z, Song R, et al. . Single-Cell Sequencing of Peripheral Mononuclear Cells Reveals Distinct Immune Response Landscapes of COVID-19 and Influenza Patients. Immunity (2020) 53:685–96.e3. doi: 10.1016/j.immuni.2020.07.009 PubMed DOI PMC
Garg M, Li X, Moreno P, Papatheodorou I, Shu Y, Brazma A, et al. . Meta-Analysis of COVID-19 Single-Cell Studies Confirms Eight Key Immune Responses. Sci Rep (2021) 11:20833. doi: 10.1038/s41598-021-00121-z PubMed DOI PMC
Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I, et al. . Massively Parallel Single-Cell RNA-Seq for Marker-Free Decomposition of Tissues Into Cell Types. Science (2014) 343:776–9. doi: 10.1126/science.1247651 PubMed DOI PMC
Heather JM, Chain B. The Sequence of Sequencers: The History of Sequencing DNA. Genomics (2016) 107:1–8. doi: 10.1016/j.ygeno.2015.11.003 PubMed DOI PMC
Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, et al. . mRNA-Seq Whole-Transcriptome Analysis of a Single Cell. Nat Methods (2009) 6:377–82. doi: 10.1038/nmeth.1315 PubMed DOI
Saliba AE, Westermann AJ, Gorski SA, Vogel J. Single-Cell RNA-Seq: Advances and Future Challenges. Nucleic Acids Res (2014) 42:8845–60. doi: 10.1093/nar/gku555 PubMed DOI PMC
Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M, et al. . Comparative Analysis of Single-Cell RNA Sequencing Methods. Mol Cell (2017) 65:631–43.e4. doi: 10.1016/j.molcel.2017.01.023 PubMed DOI
Liu F, Zhang Y, Zhang L, Li Z, Fang Q, Gao R, et al. . Systematic Comparative Analysis of Single-Nucleotide Variant Detection Methods From Single-Cell RNA Sequencing Data. Genome Biol (2019) 20:242. doi: 10.1186/s13059-019-1863-4 PubMed DOI PMC
Wang X, He Y, Zhang Q, Ren X, Zhang Z. Direct Comparative Analyses of 10X Genomics Chromium and Smart-Seq2. Genomics Proteomics Bioinf (2021) 19:253–66. doi: 10.1016/j.gpb.2020.02.005 PubMed DOI PMC
Welch JD, Williams LA, DiSalvo M, Brandt AT, Marayati R, Sims CE, et al. . Selective Single Cell Isolation for Genomics Using Microraft Arrays. Nucleic Acids Res (2016) 44:8292–301. doi: 10.1093/nar/gkw700 PubMed DOI PMC
Baran-Gale J, Chandra T, Kirschner K. Experimental Design for Single-Cell RNA Sequencing. Brief Funct Genomics (2018) 17:233–9. doi: 10.1093/bfgp/elx035 PubMed DOI PMC
Marx V. Method of the Year: Spatially Resolved Transcriptomics. Nat Methods (2021) 18:9–14. doi: 10.1038/s41592-020-01033-y PubMed DOI
Chen H, Ye F, Guo G. Revolutionizing Immunology With Single-Cell RNA Sequencing. Cell Mol Immunol (2019) 16:242–9. doi: 10.1038/s41423-019-0214-4 PubMed DOI PMC
See P, Lum J, Chen J, Ginhoux F. A Single-Cell Sequencing Guide for Immunologists. Front Immunol (2018) 9:2425. doi: 10.3389/fimmu.2018.02425 PubMed DOI PMC
Hao Y, Hao S, Andersen-Nissen E, Mauck W, Zheng S, Butler A, et al. . Integrated Analysis of Multimodal Single-Cell Data. Cell (2021) 184:3573–87.e29. doi: 10.1016/j.cell.2021.04.048 PubMed DOI PMC
Wolf FA, Angerer P, Theis FJ. SCANPY: Large-Scale Single-Cell Gene Expression Data Analysis. Genome Biol (2018) 19:15. doi: 10.1186/s13059-017-1382-0 PubMed DOI PMC
Peuss R, Box AC, Chen S, Wang Y, Tsuchiya D, Persons JL, et al. . Adaptation to Low Parasite Abundance Affects Immune Investment and Immunopathological Responses of Cavefish. Nat Ecol Evol (2020) 4:1416–30. doi: 10.1038/s41559-020-1234-2 PubMed DOI PMC
Carmona SJ, Teichmann SA, Ferreira L, Macaulay IC, Stubbington MJ, Cvejic A, et al. . Single-Cell Transcriptome Analysis of Fish Immune Cells Provides Insight Into the Evolution of Vertebrate Immune Cell Types. Genome Res (2017) 27:451–61. doi: 10.1101/gr.207704.116 PubMed DOI PMC
Tang Q, Iyer S, Lobbardi R, Moore JC, Chen H, Lareau C, et al. . Dissecting Hematopoietic and Renal Cell Heterogeneity in Adult Zebrafish at Single-Cell Resolution Using RNA Sequencing. J Exp Med (2017) 214:2875–87. doi: 10.1084/jem.20170976 PubMed DOI PMC
Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, et al. . Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells. Cell (2015) 161:1187–201. doi: 10.1016/j.cell.2015.04.044 PubMed DOI PMC
Ferrero G, Gomez E, Lyer S, Rovira M, Miserocchi M, Langenau DM, et al. . The Macrophage-Expressed Gene (Mpeg) 1 Identifies a Subpopulation of B Cells in the Adult Zebrafish. J Leukoc Biol (2020) 107:431–43. doi: 10.1002/JLB.1A1119-223R PubMed DOI PMC
Loes AN, Hinman MN, Farnsworth DR, Miller AC, Guillemin K, Harms MJ. Identification and Characterization of Zebrafish Tlr4 Coreceptor Md-2. J Immunol (2021) 206:1046–57. doi: 10.4049/jimmunol.1901288 PubMed DOI PMC
Athanasiadis EI, Botthof JG, Andres H, Ferreira L, Lio P, Cvejic A. Single-Cell RNA-Sequencing Uncovers Transcriptional States and Fate Decisions in Haematopoiesis. Nat Commun (2017) 8:2045. doi: 10.1038/s41467-017-02305-6 PubMed DOI PMC
Hernandez PP, Strzelecka PM, Athanasiadis EI, Hall D, Robalo AF, Collins CM, et al. . Single-Cell Transcriptional Analysis Reveals ILC-Like Cells in Zebrafish. Sci Immunol (2018) 3:eaau5265. doi: 10.1126/sciimmunol.aau5265 PubMed DOI PMC
Bageritz J, Raddi G. Single-Cell RNA Sequencing With Drop-Seq. Methods Mol Biol (2019) 1979:73–85. doi: 10.1007/978-1-4939-9240-9_6 PubMed DOI
Guslund NC, Solbakken MH, Brieuc MSO, Jentoft S, Jakobsen KS, Qiao SW. Single-Cell Transcriptome Profiling of Immune Cell Repertoire of the Atlantic Cod Which Naturally Lacks the Major Histocompatibility Class II System. Front Immunol (2020) 11:559555. doi: 10.3389/fimmu.2020.559555 PubMed DOI PMC
Niu J, Huang Y, Liu X, Zhang Z, Tang J, Wang B, et al. . Single-Cell RNA-Seq Reveals Different Subsets of Non-Specific Cytotoxic Cells in Teleost. Genomics (2020) 112:5170–9. doi: 10.1016/j.ygeno.2020.09.031 PubMed DOI
Campos-Sanchez JC, Esteban MA. Review of Inflammation in Fish and Value of the Zebrafish Model. J Fish Dis (2021) 44:123–39. doi: 10.1111/jfd.13310 PubMed DOI
Gomes MC, Mostowy S. The Case for Modeling Human Infection in Zebrafish. Trends Microbiol (2020) 28:10–8. doi: 10.1016/j.tim.2019.08.005 PubMed DOI
Jiang M, Xiao Y, Weigao E, Ma L, Wang J, Chen H, et al. . Characterization of the Zebrafish Cell Landscape at Single-Cell Resolution. Front Cell Dev Biol (2021) 9:743421. doi: 10.3389/fcell.2021.743421 PubMed DOI PMC
Alemany A, Florescu M, Baron CS, Peterson-Maduro J, van Oudenaarden A. Whole-Organism Clone Tracing Using Single-Cell Sequencing. Nature (2018) 556:108–12. doi: 10.1038/nature25969 PubMed DOI
Cavone L, McCann T, Drake LK, Aguzzi EA, Oprisoreanu AM, Pedersen E, et al. . A Unique Macrophage Subpopulation Signals Directly to Progenitor Cells to Promote Regenerative Neurogenesis in the Zebrafish Spinal Cord. Dev Cell (2021) 56:1617–30.e6. doi: 10.1016/j.devcel.2021.04.031 PubMed DOI
Silva NJ, Dorman LC, Vainchtein ID, Horneck NC, Molofsky AV. In Situ and Transcriptomic Identification of Microglia in Synapse-Rich Regions of the Developing Zebrafish Brain. Nat Commun (2021) 12:5916. doi: 10.1038/s41467-021-26206-x PubMed DOI PMC
Wang Q, Peng C, Yang M, Huang F, Duan X, Wang S, et al. . Single-Cell RNA-Seq Landscape Midbrain Cell Responses to Red Spotted Grouper Nervous Necrosis Virus Infection. PloS Pathog (2021) 17:e1009665. doi: 10.1371/journal.ppat.1009665 PubMed DOI PMC
Moody CE, Serreze DV, Reno PW. Non-Specific Cytotoxic Activity of Teleost Leukocytes. Dev Comp Immunol (1985) 9:51–64. doi: 10.1016/0145-305x(85)90059-x PubMed DOI
Jaso-Friedmann L, Leary J, Evans DL. The Non-Specific Cytotoxic Cell Receptor (NCCRP-1): Molecular Organization and Signaling Properties. Dev Comp Immunol (2001) 25:701–11. doi: 10.1016/s0145-305x(01)00031-3 PubMed DOI
Holling TM, Schooten E, van Den Elsen PJ. Function and Regulation of MHC Class II Molecules in T-Lymphocytes: Of Mice and Men. Hum Immunol (2004) 65:282–90. doi: 10.1016/j.humimm.2004.01.005 PubMed DOI
Saraiva DP, Azeredo-Lopes S, Antunes A, Salvador R, Borralho P, Assis B, et al. . Expression of HLA-DR in Cytotoxic T Lymphocytes: A Validated Predictive Biomarker and a Potential Therapeutic Strategy in Breast Cancer. Cancers (Basel) (2021) 13:3841. doi: 10.3390/cancers13153841 PubMed DOI PMC
Star B, Nederbragt AJ, Jentoft S, Grimholt U, Malmstrom M, Gregers TF, et al. . The Genome Sequence of Atlantic Cod Reveals a Unique Immune System. Nature (2011) 477:207–10. doi: 10.1038/nature10342 PubMed DOI PMC
Castro R, Navelsaker S, Collet B, Jouneau L, Bochet P, Quillet E, et al. . Cutting Edge: Neutralizing Public Antibody Responses Are an Ancient Form of Defense Conserved in Fish and Mammals. J Immunol (2021) 207:371–5. doi: 10.4049/jimmunol.2100149 PubMed DOI PMC
Liu Y, Budylowski P, Dong S, Li Z, Goroshko S, Leung LYT, et al. . SARS-CoV-2-Reactive Mucosal B Cells in the Upper Respiratory Tract of Uninfected Individuals. J Immunol (2021) 207:2581–8. doi: 10.4049/jimmunol.2100606 PubMed DOI
Liu Y, McDaniel JR, Khan S, Campisi P, Propst EJ, Holler T, et al. . Antibodies Encoded by FCRL4-Bearing Memory B Cells Preferentially Recognize Commensal Microbial Antigens. J Immunol (2018) 200:3962–9. doi: 10.4049/jimmunol.1701549 PubMed DOI PMC
Meijer AH, Gabby Krens SF, Medina Rodriguez IA, He S, Bitter W, Ewa Snaar-Jagalska B, et al. . Expression Analysis of the Toll-Like Receptor and TIR Domain Adaptor Families of Zebrafish. Mol Immunol (2004) 40:773–83. doi: 10.1016/j.molimm.2003.10.003 PubMed DOI
Jault C, Pichon L, Chluba J. Toll-Like Receptor Gene Family and TIR-Domain Adapters in Danio Rerio. Mol Immunol (2004) 40:759–71. doi: 10.1016/j.molimm.2003.10.001 PubMed DOI
Sahoo BR. Structure of Fish Toll-Like Receptors (TLR) and NOD-Like Receptors (NLR). Int J Biol Macromol (2020) 161:1602–17. doi: 10.1016/j.ijbiomac.2020.07.293 PubMed DOI PMC
Rebl A, Goldammer T, Seyfert HM. Toll-Like Receptor Signaling in Bony Fish. Vet Immunol Immunopathol (2010) 134:139–50. doi: 10.1016/j.vetimm.2009.09.021 PubMed DOI
Pak B, Schmitt CE, Oh S, Kim JD, Choi W, Han O, et al. . Pax9 Is Essential for Granulopoiesis But Dispensable for Erythropoiesis in Zebrafish. Biochem Biophys Res Commun (2021) 534:359–66. doi: 10.1016/j.bbrc.2020.11.077 PubMed DOI
Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, et al. . Inference and Analysis of Cell-Cell Communication Using CellChat. Nat Commun (2021) 12:1088. doi: 10.1038/s41467-021-21246-9 PubMed DOI PMC
Browaeys R, Saelens W, Saeys Y. NicheNet: Modeling Intercellular Communication by Linking Ligands to Target Genes. Nat Methods (2020) 17:159–62. doi: 10.1038/s41592-019-0667-5 PubMed DOI
Berthelot C, Brunet F, Chalopin D, Juanchich A, Bernard M, Noel B, et al. . The Rainbow Trout Genome Provides Novel Insights Into Evolution After Whole-Genome Duplication in Vertebrates. Nat Commun (2014) 5:3657. doi: 10.1038/ncomms4657 PubMed DOI PMC
Hurley IA, Mueller RL, Dunn KA, Schmidt EJ, Friedman M, Ho RK, et al. . A New Time-Scale for Ray-Finned Fish Evolution. Proc Biol Sci (2007) 274:489–98. doi: 10.1098/rspb.2006.3749 PubMed DOI PMC
David L, Blum S, Feldman MW, Lavi U, Hillel J. Recent Duplication of the Common Carp (Cyprinus Carpio L.) Genome as Revealed by Analyses of Microsatellite Loci. Mol Biol Evol (2003) 20:1425–34. doi: 10.1093/molbev/msg173 PubMed DOI
Bernardi G, Wiley EO, Mansour H, Miller MR, Orti G, Haussler D, et al. . The Fishes of Genome 10k. Mar Genomics (2012) 7:3–6. doi: 10.1016/j.margen.2012.02.002 PubMed DOI
Sun Y, Huang Y, Li X, Baldwin CC, Zhou Z, Yan Z, et al. . Fish-T1K (Transcriptomes of 1,000 Fishes) Project: Large-Scale Transcriptome Data for Fish Evolution Studies. Gigascience (2016) 5:18. doi: 10.1186/s13742-016-0124-7 PubMed DOI PMC
Fan G, Song Y, Yang L, Huang X, Zhang S, Zhang M, et al. . Initial Data Release and Announcement of the 10,000 Fish Genomes Project (Fish10K). Gigascience (2020) 9:giaa080. doi: 10.1093/gigascience/giaa080 PubMed DOI PMC
Sturm G, Szabo T, Fotakis G, Haider M, Rieder D, Trajanoski Z, et al. . Scirpy: A Scanpy Extension for Analyzing Single-Cell T-Cell Receptor-Sequencing Data. Bioinformatics (2020) 36:4817–8. doi: 10.1093/bioinformatics/btaa611 PubMed DOI PMC