RNA-Seq of Single Fish Cells - Seeking Out the Leukocytes Mediating Immunity in Teleost Fishes

. 2022 ; 13 () : 798712. [epub] 20220124

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35140719

The immune system is a complex and sophisticated biological system, spanning multiple levels of complexity, from the molecular level to that of tissue. Our current understanding of its function and complexity, of the heterogeneity of leukocytes, is a result of decades of concentrated efforts to delineate cellular markers using conventional methods of antibody screening and antigen identification. In mammalian models, this led to in-depth understanding of individual leukocyte subsets, their phenotypes, and their roles in health and disease. The field was further propelled forward by the development of single-cell (sc) RNA-seq technologies, offering an even broader and more integrated view of how cells work together to generate a particular response. Consequently, the adoption of scRNA-seq revealed the unexpected plasticity and heterogeneity of leukocyte populations and shifted several long-standing paradigms of immunology. This review article highlights the unprecedented opportunities offered by scRNA-seq technology to unveil the individual contributions of leukocyte subsets and their crosstalk in generating the overall immune responses in bony fishes. Single-cell transcriptomics allow identifying unseen relationships, and formulating novel hypotheses tailored for teleost species, without the need to rely on the limited number of fish-specific antibodies and pre-selected markers. Several recent studies on single-cell transcriptomes of fish have already identified previously unnoticed expression signatures and provided astonishing insights into the diversity of teleost leukocytes and the evolution of vertebrate immunity. Without a doubt, scRNA-seq in tandem with bioinformatics tools and state-of-the-art methods, will facilitate studying the teleost immune system by not only defining key markers, but also teaching us about lymphoid tissue organization, development/differentiation, cell-cell interactions, antigen receptor repertoires, states of health and disease, all across time and space in fishes. These advances will invite more researchers to develop the tools necessary to explore the immunology of fishes, which remain non-conventional animal models from which we have much to learn.

Zobrazit více v PubMed

Kaufmann SH. Immunology's Foundation: The 100-Year Anniversary of the Nobel Prize to Paul Ehrlich and Elie Metchnikoff. Nat Immunol (2008) 9:705–12. doi: 10.1038/ni0708-705 PubMed DOI

Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The Dorsoventral Regulatory Gene Cassette Spatzle/Toll/Cactus Controls the Potent Antifungal Response in Drosophila Adults. Cell (1996) 86:973–83. doi: 10.1016/s0092-8674(00)80172-5 PubMed DOI

Cooper MD, Raymond DA, Peterson RD, South MA, Good RA. The Functions of the Thymus System and the Bursa System in the Chicken. J Exp Med (1966) 123:75–102. doi: 10.1084/jem.123.1.75 PubMed DOI PMC

Nagasawa T, Nakayasu C, Rieger AM, Barreda DR, Somamoto T, Nakao M. Phagocytosis by Thrombocytes Is a Conserved Innate Immune Mechanism in Lower Vertebrates. Front Immunol (2014) 5:445. doi: 10.3389/fimmu.2014.00445 PubMed DOI PMC

Li J, Barreda DR, Zhang YA, Boshra H, Gelman AE, Lapatra S, et al. . B Lymphocytes From Early Vertebrates Have Potent Phagocytic and Microbicidal Abilities. Nat Immunol (2006) 7:1116–24. doi: 10.1038/ni1389 PubMed DOI

Zhang YA, Salinas I, Li J, Parra D, Bjork S, Xu Z, et al. . IgT, a Primitive Immunoglobulin Class Specialized in Mucosal Immunity. Nat Immunol (2010) 11:827–35. doi: 10.1038/ni.1913 PubMed DOI PMC

Sepahi A, Kraus A, Casadei E, Johnston CA, Galindo-Villegas J, Kelly C, et al. . Olfactory Sensory Neurons Mediate Ultrarapid Antiviral Immune Responses in a TrkA-Dependent Manner. Proc Natl Acad Sci USA (2019) 116:12428–36. doi: 10.1073/pnas.1900083116 PubMed DOI PMC

Rakus K, Ronsmans M, Forlenza M, Boutier M, Piazzon MC, Jazowiecka-Rakus J, et al. . Conserved Fever Pathways Across Vertebrates: A Herpesvirus Expressed Decoy TNF-Alpha Receptor Delays Behavioral Fever in Fish. Cell Host Microbe (2017) 21:244–53. doi: 10.1016/j.chom.2017.01.010 PubMed DOI PMC

Schluter SF, Bernstein RM, Bernstein H, Marchalonis JJ. 'Big Bang' Emergence of the Combinatorial Immune System. Dev Comp Immunol (1999) 23:107–11. doi: 10.1016/s0145-305x(99)00002-6 PubMed DOI

Sunyer JO. Fishing for Mammalian Paradigms in the Teleost Immune System. Nat Immunol (2013) 14:320–6. doi: 10.1038/ni.2549 PubMed DOI PMC

Zwollo P, Cole S, Bromage E, Kaattari S. B Cell Heterogeneity in the Teleost Kidney: Evidence for a Maturation Gradient From Anterior to Posterior Kidney. J Immunol (2005) 174:6608–16. doi: 10.4049/jimmunol.174.11.6608 PubMed DOI

Bjorgen H, Koppang EO. Anatomy of Teleost Fish Immune Structures and Organs. Immunogenetics (2021) 73:53–63. doi: 10.1007/s00251-020-01196-0 PubMed DOI PMC

Wang T, Hu Y, Wangkahart E, Liu F, Wang A, Zahran E, et al. . Interleukin (IL)-2 Is a Key Regulator of T Helper 1 and T Helper 2 Cytokine Expression in Fish: Functional Characterization of Two Divergent IL2 Paralogs in Salmonids. Front Immunol (2018) 9:1683. doi: 10.3389/fimmu.2018.01683 PubMed DOI PMC

Parra D, Takizawa F, Sunyer JO. Evolution of B Cell Immunity. Annu Rev Anim Biosci (2013) 1:65–97. doi: 10.1146/annurev-animal-031412-103651 PubMed DOI PMC

Takizawa F, Dijkstra JM, Kotterba P, Korytar T, Kock H, Kollner B, et al. . The Expression of CD8alpha Discriminates Distinct T Cell Subsets in Teleost Fish. Dev Comp Immunol (2011) 35:752–63. doi: 10.1016/j.dci.2011.02.008 PubMed DOI

Hansen JD, Zapata AG. Lymphocyte Development in Fish and Amphibians. Immunol Rev (1998) 166:199–220. doi: 10.1111/j.1600-065x.1998.tb01264.x PubMed DOI

Ryo S, Wijdeven RH, Tyagi A, Hermsen T, Kono T, Karunasagar I, et al. . Common Carp Have Two Subclasses of Bonyfish Specific Antibody IgZ Showing Differential Expression in Response to Infection. Dev Comp Immunol (2010) 34:1183–90. doi: 10.1016/j.dci.2010.06.012 PubMed DOI

Kohler G, Milstein C. Continuous Cultures of Fused Cells Secreting Antibody of Predefined Specificity. Nature (1975) 256:495–7. doi: 10.1038/256495a0 PubMed DOI

Clark G, Stockinger H, Balderas R, van Zelm MC, Zola H, Hart D, et al. . Nomenclature of CD Molecules From the Tenth Human Leucocyte Differentiation Antigen Workshop. Clin Transl Immunol (2016) 5:e57. doi: 10.1038/cti.2015.38 PubMed DOI PMC

Ozato K, Mayer NM, Sachs DH. Monoclonal Antibodies to Mouse Major Histocompatibility Complex Antigens. Transplantation (1982) 34:113–20. doi: 10.1097/00007890-198209000-00001 PubMed DOI

Warr GW, Deluca D, Griffin BR. Membrane Immunoglobulin Is Present on Thymic and Splenic Lymphocytes of the Trout Salmo Gairdneri. J Immunol (1979) 123:910–7. PubMed

Secombes CJ, van Groningen JJ, Egberts E. Separation of Lymphocyte Subpopulations in Carp Cyprinus Carpio L. By Monoclonal Antibodies: Immunohistochemical Studies. Immunology (1983) 48:165–75. PubMed PMC

Nakayasu C, Yoshitomi T, Oyamatsu T, Okamoto N, Ikeda Y. Separation of Carp (Cyprinus Carpio L.) Thrombocytes by Using a Monoclonal Antibody, and Their Aggregation by Collagen. Vet Immunol Immunopathol (1997) 57:337–46. doi: 10.1016/s0165-2427(97)00005-6 PubMed DOI

Romano N, Abelli L, Mastrolia L, Scapigliati G. Immunocytochemical Detection and Cytomorphology of Lymphocyte Subpopulations in a Teleost Fish Dicentrarchus Labrax. Cell Tissue Res (1997) 289:163–71. doi: 10.1007/s004410050862 PubMed DOI

Kollner B, Fischer U, Rombout JH, Taverne-Thiele JJ, Hansen JD. Potential Involvement of Rainbow Trout Thrombocytes in Immune Functions: A Study Using a Panel of Monoclonal Antibodies and RT-PCR. Dev Comp Immunol (2004) 28:1049–62. doi: 10.1016/j.dci.2004.03.005 PubMed DOI

Dixon B, Barreda DR, Sunyer JO. Perspective on the Development and Validation of Ab Reagents to Fish Immune Proteins for the Correct Assessment of Immune Function. Front Immunol (2018) 9:2957. doi: 10.3389/fimmu.2018.02957 PubMed DOI PMC

Perdiguero P, Morel E, Tafalla C. Diversity of Rainbow Trout Blood B Cells Revealed by Single Cell RNA Sequencing. Biol (Basel) (2021) 10. doi: 10.3390/biology10060511 PubMed DOI PMC

Abos B, Bird S, Granja AG, Morel E, More Bayona JA, Barreda DR, et al. . Identification of the First Teleost CD5 Molecule: Additional Evidence on Phenotypical and Functional Similarities Between Fish IgM(+) B Cells and Mammalian B1 Cells. J Immunol (2018) 201:465–80. doi: 10.4049/jimmunol.1701546 PubMed DOI

DeLuca D, Wilson M, Warr GW. Lymphocyte Heterogeneity in the Trout, Salmo Gairdneri, Defined With Monoclonal Antibodies to IgM. Eur J Immunol (1983) 13:546–51. doi: 10.1002/eji.1830130706 PubMed DOI

Ramirez-Gomez F, Greene W, Rego K, Hansen JD, Costa G, Kataria P, et al. . Discovery and Characterization of Secretory IgD in Rainbow Trout: Secretory IgD Is Produced Through a Novel Splicing Mechanism. J Immunol (2012) 188:1341–9. doi: 10.4049/jimmunol.1101938 PubMed DOI

Takizawa F, Magadan S, Parra D, Xu Z, Korytar T, Boudinot P, et al. . Novel Teleost CD4-Bearing Cell Populations Provide Insights Into the Evolutionary Origins and Primordial Roles of CD4+ Lymphocytes and CD4+ Macrophages. J Immunol (2016) 196:4522–35. doi: 10.4049/jimmunol.1600222 PubMed DOI PMC

Boardman T, Warner C, Ramirez-Gomez F, Matrisciano J, Bromage E. Characterization of an Anti-Rainbow Trout (Oncorhynchus Mykiss) CD3epsilon Monoclonal Antibody. Vet Immunol Immunopathol (2012) 145:511–5. doi: 10.1016/j.vetimm.2011.11.017 PubMed DOI

Miyazawa R, Matsuura Y, Shibasaki Y, Imamura S, Nakanishi T. Cross-Reactivity of Monoclonal Antibodies Against CD4-1 and CD8alpha of Ginbuna Crucian Carp With Lymphocytes of Zebrafish and Other Cyprinid Species. Dev Comp Immunol (2018) 80:15–23. doi: 10.1016/j.dci.2016.12.002 PubMed DOI

Rombout JH, van de Wal JW, Companjen A, Taverne N, Taverne-Thiele JJ. Characterization of a T Cell Lineage Marker in Carp (Cyprinus Carpio L.). Dev Comp Immunol (1997) 21:35–46. doi: 10.1016/s0145-305x(97)00001-3 PubMed DOI

Rombout JH, Joosten PH, Engelsma MY, Vos AP, Taverne N, Taverne-Thiele JJ. Indications for a Distinct Putative T Cell Population in Mucosal Tissue of Carp (Cyprinus Carpio L.). Dev Comp Immunol (1998) 22:63–77. doi: 10.1016/s0145-305x(97)00048-7 PubMed DOI

Lovy J, Savidant GP, Speare DJ, Wright GM. Langerin/CD207 Positive Dendritic-Like Cells in the Haemopoietic Tissues of Salmonids. Fish Shellfish Immunol (2009) 27:365–8. doi: 10.1016/j.fsi.2009.01.006 PubMed DOI

Rombout JHWM, Koumans-van Diepen JCE, Emmer PM, Taverne-Thiele J, Taverne N. Characterization of Carp Thrombocytes With Specific Monoclonal Antibodies. J Fish Biol (1996) 49:521–31. doi: 10.1111/j.1095-8649.1996.tb00047.x DOI

Kuroda A, Okamoto N, Fukuda H. Characterization of Monoclonal Antibodies Against Antigens Shared With Neutrophils and Macrophages in Rainbow Trout Oncorhynchus Mykiss. Fish Pathol (2000) 35:205–13. doi: 10.3147/jsfp.35.205 DOI

Kollner B, Blohm U, Kotterba G, Fischer U. A Monoclonal Antibody Recognising a Surface Marker on Rainbow Trout (Oncorhynchus Mykiss) Monocytes. Fish Shellfish Immunol (2001) 11:127–42. doi: 10.1006/fsim.2000.0300 PubMed DOI

Korytar T, Jaros J, Verleih M, Rebl A, Kotterba G, Kuhn C, et al. . Novel Insights Into the Peritoneal Inflammation of Rainbow Trout (Oncorhynchus Mykiss). Fish Shellfish Immunol (2013) 35:1192–9. doi: 10.1016/j.fsi.2013.07.032 PubMed DOI

Weyts FAA, Rombout JHWM, Flik G, Verburg-Van Kemenade BML. A Common Carp (Cyprinus carpioL.) Leucocyte Cell Line Shares Morphological and Functional Characteristics With Macrophages. Fish Shellfish Immunol (1997) 7:123–33. doi: 10.1006/fsim.1996.0069 DOI

Nakayasu C, Omori M, Hasegawa S, Kurata O, Okamoto N. Production of a Monoclonal Antibody for Carp (Cyprinus Carpio L.) Phagocytic Cells and Separation of the Cells. Fish Shellfish Immunol (1998) 8:91–100. doi: 10.1006/FSIM.1997.0125 DOI

Koppang EO, Fischer U, Moore L, Tranulis MA, Dijkstra JM, Kollner B, et al. . Salmonid T Cells Assemble in the Thymus, Spleen and in Novel Interbranchial Lymphoid Tissue. J Anat (2010) 217:728–39. doi: 10.1111/j.1469-7580.2010.01305.x PubMed DOI PMC

Miyazawa R, Murata N, Matsuura Y, Shibasaki Y, Yabu T, Nakanishi T. Peculiar Expression of CD3-Epsilon in Kidney of Ginbuna Crucian Carp. Front Immunol (2018) 9:1321. doi: 10.3389/fimmu.2018.01321 PubMed DOI PMC

Wang T, Secombes CJ. The Cytokine Networks of Adaptive Immunity in Fish. Fish Shellfish Immunol (2013) 35:1703–18. doi: 10.1016/j.fsi.2013.08.030 PubMed DOI

Wen Y, Fang W, Xiang LX, Pan RL, Shao JZ. Identification of Treg-Like Cells in Tetraodon: Insight Into the Origin of Regulatory T Subsets During Early Vertebrate Evolution. Cell Mol Life Sci (2011) 68:2615–26. doi: 10.1007/s00018-010-0574-5 PubMed DOI PMC

Koumans-van Diepen JC, van de Lisdonk MH, Taverne-Thiele AJ, Verburg-van Kemenade BM, Rombout JH. Characterisation of Immunoglobulin-Binding Leucocytes in Carp (Cyprinus Carpio L.). Dev Comp Immunol (1994) 18:45–56. doi: 10.1016/0145-305x(94)90251-8 PubMed DOI

Castro R, Abos B, Gonzalez L, Granja AG, Tafalla C. Expansion and Differentiation of IgM(+) B Cells in the Rainbow Trout Peritoneal Cavity in Response to Different Antigens. Dev Comp Immunol (2017) 70:119–27. doi: 10.1016/j.dci.2017.01.012 PubMed DOI

Soleto I, Morel E, Martin D, Granja AG, Tafalla C. Regulation of IgM(+) B Cell Activities by Rainbow Trout APRIL Reveals Specific Effects of This Cytokine in Lower Vertebrates. Front Immunol (2018) 9:1880. doi: 10.3389/fimmu.2018.01880 PubMed DOI PMC

Ye J, Kaattari I, Kaattari S. Plasmablasts and Plasma Cells: Reconsidering Teleost Immune System Organization. Dev Comp Immunol (2011) 35:1273–81. doi: 10.1016/j.dci.2011.03.005 PubMed DOI

Zwollo P. Dissecting Teleost B Cell Differentiation Using Transcription Factors. Dev Comp Immunol (2011) 35:898–905. doi: 10.1016/j.dci.2011.01.009 PubMed DOI PMC

Piazzon MC, Savelkoul HS, Pietretti D, Wiegertjes GF, Forlenza M. Carp Il10 Has Anti-Inflammatory Activities on Phagocytes, Promotes Proliferation of Memory T Cells, and Regulates B Cell Differentiation and Antibody Secretion. J Immunol (2015) 194:187–99. doi: 10.4049/jimmunol.1402093 PubMed DOI

Korytar T, Wiegertjes GF, Zuskova E, Tomanova A, Lisnerova M, Patra S, et al. . The Kinetics of Cellular and Humoral Immune Responses of Common Carp to Presporogonic Development of the Myxozoan Sphaerospora Molnari. Parasit Vectors (2019) 12:208. doi: 10.1186/s13071-019-3462-3 PubMed DOI PMC

Abos B, Estensoro I, Perdiguero P, Faber M, Hu Y, Diaz Rosales P, et al. . Dysregulation of B Cell Activity During Proliferative Kidney Disease in Rainbow Trout. Front Immunol (2018) 9:1203. doi: 10.3389/fimmu.2018.01203 PubMed DOI PMC

Wu L, Qin Z, Liu H, Lin L, Ye J, Li J. Recent Advances on Phagocytic B Cells in Teleost Fish. Front Immunol (2020) 11:824. doi: 10.3389/fimmu.2020.00824 PubMed DOI PMC

Yamaguchi T, Quillet E, Boudinot P, Fischer U. What Could be the Mechanisms of Immunological Memory in Fish? Fish Shellfish Immunol (2019) 85:3–8. doi: 10.1016/j.fsi.2018.01.035 PubMed DOI

Korytar T, Dang Thi H, Takizawa F, Kollner B. A Multicolour Flow Cytometry Identifying Defined Leukocyte Subsets of Rainbow Trout (Oncorhynchus Mykiss). Fish Shellfish Immunol (2013) 35:2017–9. doi: 10.1016/j.fsi.2013.09.025 PubMed DOI

Romano N, Picchietti S, Taverne-Thiele JJ, Taverne N, Abelli L, Mastrolia L, et al. . Distribution of Macrophages During Fish Development: An Immunohistochemical Study in Carp (Cyprinus Carpio, L.). Anat Embryol (Berl) (1998) 198:31–41. doi: 10.1007/s004290050162 PubMed DOI

Slierendrecht WJ, Lorenzen N, Glamann J, Koch C, Rombout JH. Immunocytochemical Analysis of a Monoclonal Antibody Specific for Rainbow Trout (Oncorhynchus Mykiss) Granulocytes and Thrombocytes. Vet Immunol Immunopathol (1995) 46:349–60. doi: 10.1016/0165-2427(94)05362-v PubMed DOI

Kfoury JR, Jr, Nakayasu C, Rodrigues Souza JC, Okamoto N. Jr Characterization of a Monoclonal Antibody Specific to Rainbow Trout Thrombocytes. J Exp Zool (1999) 284:309–16. doi: 10.1002/(SICI)1097-010X(19990801)284:33.0.CO;2-9 PubMed DOI

Lugo-Villarino G, Balla KM, Stachura DL, Banuelos K, Werneck MB, Traver D. Identification of Dendritic Antigen-Presenting Cells in the Zebrafish. Proc Natl Acad Sci USA (2010) 107:15850–5. doi: 10.1073/pnas.1000494107 PubMed DOI PMC

Gong YF, Xiang LX, Shao JZ. CD154-CD40 Interactions Are Essential for Thymus-Dependent Antibody Production in Zebrafish: Insights Into the Origin of Costimulatory Pathway in Helper T Cell-Regulated Adaptive Immunity in Early Vertebrates. J Immunol (2009) 182:7749–62. doi: 10.4049/jimmunol.0804370 PubMed DOI

Zhang YA, Hikima J, Li J, LaPatra SE, Luo YP, Sunyer JO. Conservation of Structural and Functional Features in a Primordial CD80/86 Molecule From Rainbow Trout (Oncorhynchus Mykiss), a Primitive Teleost Fish. J Immunol (2009) 183:83–96. doi: 10.4049/jimmunol.0900605 PubMed DOI

Castro R, Bromage E, Abos B, Pignatelli J, Gonzalez Granja A, Luque A, et al. . CCR7 Is Mainly Expressed in Teleost Gills, Where it Defines an IgD+IgM- B Lymphocyte Subset. J Immunol (2014) 192:1257–66. doi: 10.4049/jimmunol.1302471 PubMed DOI

Klein U, Rajewsky K, Kuppers R. Human Immunoglobulin (Ig)M+IgD+ Peripheral Blood B Cells Expressing the CD27 Cell Surface Antigen Carry Somatically Mutated Variable Region Genes: CD27 as a General Marker for Somatically Mutated (Memory) B Cells. J Exp Med (1998) 188:1679–89. doi: 10.1084/jem.188.9.1679 PubMed DOI PMC

Denoeud J, Moser M. Role of CD27/CD70 Pathway of Activation in Immunity and Tolerance. J Leukoc Biol (2011) 89:195–203. doi: 10.1189/jlb.0610351 PubMed DOI

Eto D, Lao C, DiToro D, Barnett B, Escobar TC, Kageyama R, et al. . IL-21 and IL-6 are Critical for Different Aspects of B Cell Immunity and Redundantly Induce Optimal Follicular Helper CD4 T Cell (Tfh) Differentiation. PloS One (2011) 6:e17739. doi: 10.1371/journal.pone.0017739 PubMed DOI PMC

Linterman MA, Beaton L, Yu D, Ramiscal RR, Srivastava M, Hogan JJ, et al. . IL-21 Acts Directly on B Cells to Regulate Bcl-6 Expression and Germinal Center Responses. J Exp Med (2010) 207:353–63. doi: 10.1084/jem.20091738 PubMed DOI PMC

Luo W, Weisel F, Shlomchik MJ. B Cell Receptor and CD40 Signaling Are Rewired for Synergistic Induction of the C-Myc Transcription Factor in Germinal Center B Cells. Immunity (2018) 48:313–326.e5. doi: 10.1016/j.immuni.2018.01.008 PubMed DOI PMC

Halliley JL, Tipton CM, Liesveld J, Rosenberg AF, Darce J, Gregoretti IV, et al. . Long-Lived Plasma Cells Are Contained Within the CD19(-)CD38(hi)CD138(+) Subset in Human Bone Marrow. Immunity (2015) 43:132–45. doi: 10.1016/j.immuni.2015.06.016 PubMed DOI PMC

Cossarizza A, Chang HD, Radbruch A, Acs A, Adam D, Adam-Klages S, et al. . Guidelines for the Use of Flow Cytometry and Cell Sorting in Immunological Studies (Second Edition). Eur J Immunol (2019) 49:1457–973. doi: 10.1002/eji.201970107 PubMed DOI PMC

Abos B, Castro R, Gonzalez Granja A, Havixbeck JJ, Barreda DR, Tafalla C. Early Activation of Teleost B Cells in Response to Rhabdovirus Infection. J Virol (2015) 89:1768–80. doi: 10.1128/JVI.03080-14 PubMed DOI PMC

Abos B, Castro R, Pignatelli J, Luque A, Gonzalez L, Tafalla C. Transcriptional Heterogeneity of IgM+ Cells in Rainbow Trout (Oncorhynchus Mykiss) Tissues. PloS One (2013) 8:e82737. doi: 10.1371/journal.pone.0082737 PubMed DOI PMC

Martin-Martin A, Simon R, Abos B, Diaz-Rosales P, Tafalla C. Rainbow Trout Mount a Robust Specific Immune Response Upon Anal Administration of Thymus-Independent Antigens. Dev Comp Immunol (2020) 109:103715. doi: 10.1016/j.dci.2020.103715 PubMed DOI PMC

Penaranda MMD, Jensen I, Tollersrud LG, Bruun JA, Jorgensen JB. Profiling the Atlantic Salmon IgM(+) B Cell Surface Proteome: Novel Information on Teleost Fish B Cell Protein Repertoire and Identification of Potential B Cell Markers. Front Immunol (2019) 10:37. doi: 10.3389/fimmu.2019.00037 PubMed DOI PMC

Slettjord TH, Sekkenes HJ, Chi H, Bogwald J, Swain T, Dalmo RA, et al. . Overexpression of T-Bet, GATA-3 and TGF-Ss Induces IFN-Gamma, IL-4/13A, and IL-17a Expression in Atlantic Salmon. Biol (Basel) (2020) 9. doi: 10.3390/biology9040082 PubMed DOI PMC

Takizawa F, Koppang EO, Ohtani M, Nakanishi T, Hashimoto K, Fischer U, et al. . Constitutive High Expression of Interleukin-4/13A and GATA-3 in Gill and Skin of Salmonid Fishes Suggests That These Tissues Form Th2-Skewed Immune Environments. Mol Immunol (2011) 48:1360–8. doi: 10.1016/j.molimm.2011.02.014 PubMed DOI

Astin JW, Keerthisinghe P, Du L, Sanderson LE, Crosier KE, Crosier PS, et al. . Innate Immune Cells and Bacterial Infection in Zebrafish. Methods Cell Biol (2017) 138:31–60. doi: 10.1016/bs.mcb.2016.08.002 PubMed DOI

Henry KM, Loynes CA, Whyte MK, Renshaw SA. Zebrafish as a Model for the Study of Neutrophil Biology. J Leukoc Biol (2013) 94:633–42. doi: 10.1189/jlb.1112594 PubMed DOI

Cronkite EP, Fliedner TM. Granulocytopoiesis. N Engl J Med (1964) 270:1347–52. doi: 10.1056/NEJM196406182702506 PubMed DOI

Page DM, Wittamer V, Bertrand JY, Lewis KL, Pratt DN, Delgado N, et al. . An Evolutionarily Conserved Program of B-Cell Development and Activation in Zebrafish. Blood (2013) 122:e1–11. doi: 10.1182/blood-2012-12-471029 PubMed DOI PMC

Mathias JR, Dodd ME, Walters KB, Yoo SK, Ranheim EA, Huttenlocher A. Characterization of Zebrafish Larval Inflammatory Macrophages. Dev Comp Immunol (2009) 33:1212–7. doi: 10.1016/j.dci.2009.07.003 PubMed DOI PMC

Lin HF, Traver D, Zhu H, Dooley K, Paw BH, Zon LI, et al. . Analysis of Thrombocyte Development in CD41-GFP Transgenic Zebrafish. Blood (2005) 106:3803–10. doi: 10.1182/blood-2005-01-0179 PubMed DOI PMC

Renshaw SA, Loynes CA, Trushell DM, Elworthy S, Ingham PW, Whyte MK. A Transgenic Zebrafish Model of Neutrophilic Inflammation. Blood (2006) 108:3976–8. doi: 10.1182/blood-2006-05-024075 PubMed DOI

Balla KM, Lugo-Villarino G, Spitsbergen JM, Stachura DL, Hu Y, Banuelos K, et al. . Eosinophils in the Zebrafish: Prospective Isolation, Characterization, and Eosinophilia Induction by Helminth Determinants. Blood (2010) 116:3944–54. doi: 10.1182/blood-2010-03-267419 PubMed DOI PMC

Moore FE, Garcia EG, Lobbardi R, Jain E, Tang Q, Moore JC, et al. . Single-Cell Transcriptional Analysis of Normal, Aberrant, and Malignant Hematopoiesis in Zebrafish. J Exp Med (2016) 213:979–92. doi: 10.1084/jem.20152013 PubMed DOI PMC

Moore JC, Mulligan TS, Yordan NT, Castranova D, Pham VN, Tang Q, et al. . T Cell Immune Deficiency in Zap70 Mutant Zebrafish. Mol Cell Biol (2016) 36:2868–76. doi: 10.1128/MCB.00281-16 PubMed DOI PMC

Martorell Ribera J, Nipkow M, Viergutz T, Brunner RM, Bochert R, Koll R, et al. . Early Response of Salmonid Head-Kidney Cells to Stress Hormones and Toll-Like Receptor Ligands. Fish Shellfish Immunol (2020) 98:950–61. doi: 10.1016/j.fsi.2019.11.058 PubMed DOI

Kim CC, Lanier LL. Beyond the Transcriptome: Completion of Act One of the Immunological Genome Project. Curr Opin Immunol (2013) 25:593–7. doi: 10.1016/j.coi.2013.09.013 PubMed DOI PMC

Ferrer-Font L, Pellefigues C, Mayer JU, Small SJ, Jaimes MC, Price KM. Panel Design and Optimization for High-Dimensional Immunophenotyping Assays Using Spectral Flow Cytometry. Curr Protoc Cytom (2020) 92:e70. doi: 10.1002/cpcy.70 PubMed DOI

Maecker HT, McCoy JP, Nussenblatt R. Standardizing Immunophenotyping for the Human Immunology Project. Nat Rev Immunol (2012) 12:191–200. doi: 10.1038/nri3158 PubMed DOI PMC

Cowell LG. The Diagnostic, Prognostic, and Therapeutic Potential of Adaptive Immune Receptor Repertoire Profiling in Cancer. Cancer Res (2020) 80:643–54. doi: 10.1158/0008-5472.CAN-19-1457 PubMed DOI

Benichou J, Ben-Hamo R, Louzoun Y, Efroni S. Rep-Seq: Uncovering the Immunological Repertoire Through Next-Generation Sequencing. Immunology (2012) 135:183–91. doi: 10.1111/j.1365-2567.2011.03527.x PubMed DOI PMC

Fang P, Li X, Dai J, Cole L, Camacho JA, Zhang Y, et al. . Immune Cell Subset Differentiation and Tissue Inflammation. J Hematol Oncol (2018) 11:97. doi: 10.1186/s13045-018-0637-x PubMed DOI PMC

Huang Z, Chen B, Liu X, Li H, Xie L, Gao Y, et al. . Effects of Sex and Aging on the Immune Cell Landscape as Assessed by Single-Cell Transcriptomic Analysis. Proc Natl Acad Sci USA (2021) 118:e2023216118. doi: 10.1073/pnas.2023216118. PubMed DOI PMC

Wilk AJ, Rustagi A, Zhao NQ, Roque J, Martinez-Colon GJ, McKechnie JL, et al. . A Single-Cell Atlas of the Peripheral Immune Response in Patients With Severe COVID-19. Nat Med (2020) 26:1070–6. doi: 10.1038/s41591-020-0944-y PubMed DOI PMC

Zhu L, Yang P, Zhao Y, Zhuang Z, Wang Z, Song R, et al. . Single-Cell Sequencing of Peripheral Mononuclear Cells Reveals Distinct Immune Response Landscapes of COVID-19 and Influenza Patients. Immunity (2020) 53:685–96.e3. doi: 10.1016/j.immuni.2020.07.009 PubMed DOI PMC

Garg M, Li X, Moreno P, Papatheodorou I, Shu Y, Brazma A, et al. . Meta-Analysis of COVID-19 Single-Cell Studies Confirms Eight Key Immune Responses. Sci Rep (2021) 11:20833. doi: 10.1038/s41598-021-00121-z PubMed DOI PMC

Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I, et al. . Massively Parallel Single-Cell RNA-Seq for Marker-Free Decomposition of Tissues Into Cell Types. Science (2014) 343:776–9. doi: 10.1126/science.1247651 PubMed DOI PMC

Heather JM, Chain B. The Sequence of Sequencers: The History of Sequencing DNA. Genomics (2016) 107:1–8. doi: 10.1016/j.ygeno.2015.11.003 PubMed DOI PMC

Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, et al. . mRNA-Seq Whole-Transcriptome Analysis of a Single Cell. Nat Methods (2009) 6:377–82. doi: 10.1038/nmeth.1315 PubMed DOI

Saliba AE, Westermann AJ, Gorski SA, Vogel J. Single-Cell RNA-Seq: Advances and Future Challenges. Nucleic Acids Res (2014) 42:8845–60. doi: 10.1093/nar/gku555 PubMed DOI PMC

Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M, et al. . Comparative Analysis of Single-Cell RNA Sequencing Methods. Mol Cell (2017) 65:631–43.e4. doi: 10.1016/j.molcel.2017.01.023 PubMed DOI

Liu F, Zhang Y, Zhang L, Li Z, Fang Q, Gao R, et al. . Systematic Comparative Analysis of Single-Nucleotide Variant Detection Methods From Single-Cell RNA Sequencing Data. Genome Biol (2019) 20:242. doi: 10.1186/s13059-019-1863-4 PubMed DOI PMC

Wang X, He Y, Zhang Q, Ren X, Zhang Z. Direct Comparative Analyses of 10X Genomics Chromium and Smart-Seq2. Genomics Proteomics Bioinf (2021) 19:253–66. doi: 10.1016/j.gpb.2020.02.005 PubMed DOI PMC

Welch JD, Williams LA, DiSalvo M, Brandt AT, Marayati R, Sims CE, et al. . Selective Single Cell Isolation for Genomics Using Microraft Arrays. Nucleic Acids Res (2016) 44:8292–301. doi: 10.1093/nar/gkw700 PubMed DOI PMC

Baran-Gale J, Chandra T, Kirschner K. Experimental Design for Single-Cell RNA Sequencing. Brief Funct Genomics (2018) 17:233–9. doi: 10.1093/bfgp/elx035 PubMed DOI PMC

Marx V. Method of the Year: Spatially Resolved Transcriptomics. Nat Methods (2021) 18:9–14. doi: 10.1038/s41592-020-01033-y PubMed DOI

Chen H, Ye F, Guo G. Revolutionizing Immunology With Single-Cell RNA Sequencing. Cell Mol Immunol (2019) 16:242–9. doi: 10.1038/s41423-019-0214-4 PubMed DOI PMC

See P, Lum J, Chen J, Ginhoux F. A Single-Cell Sequencing Guide for Immunologists. Front Immunol (2018) 9:2425. doi: 10.3389/fimmu.2018.02425 PubMed DOI PMC

Hao Y, Hao S, Andersen-Nissen E, Mauck W, Zheng S, Butler A, et al. . Integrated Analysis of Multimodal Single-Cell Data. Cell (2021) 184:3573–87.e29. doi: 10.1016/j.cell.2021.04.048 PubMed DOI PMC

Wolf FA, Angerer P, Theis FJ. SCANPY: Large-Scale Single-Cell Gene Expression Data Analysis. Genome Biol (2018) 19:15. doi: 10.1186/s13059-017-1382-0 PubMed DOI PMC

Peuss R, Box AC, Chen S, Wang Y, Tsuchiya D, Persons JL, et al. . Adaptation to Low Parasite Abundance Affects Immune Investment and Immunopathological Responses of Cavefish. Nat Ecol Evol (2020) 4:1416–30. doi: 10.1038/s41559-020-1234-2 PubMed DOI PMC

Carmona SJ, Teichmann SA, Ferreira L, Macaulay IC, Stubbington MJ, Cvejic A, et al. . Single-Cell Transcriptome Analysis of Fish Immune Cells Provides Insight Into the Evolution of Vertebrate Immune Cell Types. Genome Res (2017) 27:451–61. doi: 10.1101/gr.207704.116 PubMed DOI PMC

Tang Q, Iyer S, Lobbardi R, Moore JC, Chen H, Lareau C, et al. . Dissecting Hematopoietic and Renal Cell Heterogeneity in Adult Zebrafish at Single-Cell Resolution Using RNA Sequencing. J Exp Med (2017) 214:2875–87. doi: 10.1084/jem.20170976 PubMed DOI PMC

Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, et al. . Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells. Cell (2015) 161:1187–201. doi: 10.1016/j.cell.2015.04.044 PubMed DOI PMC

Ferrero G, Gomez E, Lyer S, Rovira M, Miserocchi M, Langenau DM, et al. . The Macrophage-Expressed Gene (Mpeg) 1 Identifies a Subpopulation of B Cells in the Adult Zebrafish. J Leukoc Biol (2020) 107:431–43. doi: 10.1002/JLB.1A1119-223R PubMed DOI PMC

Loes AN, Hinman MN, Farnsworth DR, Miller AC, Guillemin K, Harms MJ. Identification and Characterization of Zebrafish Tlr4 Coreceptor Md-2. J Immunol (2021) 206:1046–57. doi: 10.4049/jimmunol.1901288 PubMed DOI PMC

Athanasiadis EI, Botthof JG, Andres H, Ferreira L, Lio P, Cvejic A. Single-Cell RNA-Sequencing Uncovers Transcriptional States and Fate Decisions in Haematopoiesis. Nat Commun (2017) 8:2045. doi: 10.1038/s41467-017-02305-6 PubMed DOI PMC

Hernandez PP, Strzelecka PM, Athanasiadis EI, Hall D, Robalo AF, Collins CM, et al. . Single-Cell Transcriptional Analysis Reveals ILC-Like Cells in Zebrafish. Sci Immunol (2018) 3:eaau5265. doi: 10.1126/sciimmunol.aau5265 PubMed DOI PMC

Bageritz J, Raddi G. Single-Cell RNA Sequencing With Drop-Seq. Methods Mol Biol (2019) 1979:73–85. doi: 10.1007/978-1-4939-9240-9_6 PubMed DOI

Guslund NC, Solbakken MH, Brieuc MSO, Jentoft S, Jakobsen KS, Qiao SW. Single-Cell Transcriptome Profiling of Immune Cell Repertoire of the Atlantic Cod Which Naturally Lacks the Major Histocompatibility Class II System. Front Immunol (2020) 11:559555. doi: 10.3389/fimmu.2020.559555 PubMed DOI PMC

Niu J, Huang Y, Liu X, Zhang Z, Tang J, Wang B, et al. . Single-Cell RNA-Seq Reveals Different Subsets of Non-Specific Cytotoxic Cells in Teleost. Genomics (2020) 112:5170–9. doi: 10.1016/j.ygeno.2020.09.031 PubMed DOI

Campos-Sanchez JC, Esteban MA. Review of Inflammation in Fish and Value of the Zebrafish Model. J Fish Dis (2021) 44:123–39. doi: 10.1111/jfd.13310 PubMed DOI

Gomes MC, Mostowy S. The Case for Modeling Human Infection in Zebrafish. Trends Microbiol (2020) 28:10–8. doi: 10.1016/j.tim.2019.08.005 PubMed DOI

Jiang M, Xiao Y, Weigao E, Ma L, Wang J, Chen H, et al. . Characterization of the Zebrafish Cell Landscape at Single-Cell Resolution. Front Cell Dev Biol (2021) 9:743421. doi: 10.3389/fcell.2021.743421 PubMed DOI PMC

Alemany A, Florescu M, Baron CS, Peterson-Maduro J, van Oudenaarden A. Whole-Organism Clone Tracing Using Single-Cell Sequencing. Nature (2018) 556:108–12. doi: 10.1038/nature25969 PubMed DOI

Cavone L, McCann T, Drake LK, Aguzzi EA, Oprisoreanu AM, Pedersen E, et al. . A Unique Macrophage Subpopulation Signals Directly to Progenitor Cells to Promote Regenerative Neurogenesis in the Zebrafish Spinal Cord. Dev Cell (2021) 56:1617–30.e6. doi: 10.1016/j.devcel.2021.04.031 PubMed DOI

Silva NJ, Dorman LC, Vainchtein ID, Horneck NC, Molofsky AV. In Situ and Transcriptomic Identification of Microglia in Synapse-Rich Regions of the Developing Zebrafish Brain. Nat Commun (2021) 12:5916. doi: 10.1038/s41467-021-26206-x PubMed DOI PMC

Wang Q, Peng C, Yang M, Huang F, Duan X, Wang S, et al. . Single-Cell RNA-Seq Landscape Midbrain Cell Responses to Red Spotted Grouper Nervous Necrosis Virus Infection. PloS Pathog (2021) 17:e1009665. doi: 10.1371/journal.ppat.1009665 PubMed DOI PMC

Moody CE, Serreze DV, Reno PW. Non-Specific Cytotoxic Activity of Teleost Leukocytes. Dev Comp Immunol (1985) 9:51–64. doi: 10.1016/0145-305x(85)90059-x PubMed DOI

Jaso-Friedmann L, Leary J, Evans DL. The Non-Specific Cytotoxic Cell Receptor (NCCRP-1): Molecular Organization and Signaling Properties. Dev Comp Immunol (2001) 25:701–11. doi: 10.1016/s0145-305x(01)00031-3 PubMed DOI

Holling TM, Schooten E, van Den Elsen PJ. Function and Regulation of MHC Class II Molecules in T-Lymphocytes: Of Mice and Men. Hum Immunol (2004) 65:282–90. doi: 10.1016/j.humimm.2004.01.005 PubMed DOI

Saraiva DP, Azeredo-Lopes S, Antunes A, Salvador R, Borralho P, Assis B, et al. . Expression of HLA-DR in Cytotoxic T Lymphocytes: A Validated Predictive Biomarker and a Potential Therapeutic Strategy in Breast Cancer. Cancers (Basel) (2021) 13:3841. doi: 10.3390/cancers13153841 PubMed DOI PMC

Star B, Nederbragt AJ, Jentoft S, Grimholt U, Malmstrom M, Gregers TF, et al. . The Genome Sequence of Atlantic Cod Reveals a Unique Immune System. Nature (2011) 477:207–10. doi: 10.1038/nature10342 PubMed DOI PMC

Castro R, Navelsaker S, Collet B, Jouneau L, Bochet P, Quillet E, et al. . Cutting Edge: Neutralizing Public Antibody Responses Are an Ancient Form of Defense Conserved in Fish and Mammals. J Immunol (2021) 207:371–5. doi: 10.4049/jimmunol.2100149 PubMed DOI PMC

Liu Y, Budylowski P, Dong S, Li Z, Goroshko S, Leung LYT, et al. . SARS-CoV-2-Reactive Mucosal B Cells in the Upper Respiratory Tract of Uninfected Individuals. J Immunol (2021) 207:2581–8. doi: 10.4049/jimmunol.2100606 PubMed DOI

Liu Y, McDaniel JR, Khan S, Campisi P, Propst EJ, Holler T, et al. . Antibodies Encoded by FCRL4-Bearing Memory B Cells Preferentially Recognize Commensal Microbial Antigens. J Immunol (2018) 200:3962–9. doi: 10.4049/jimmunol.1701549 PubMed DOI PMC

Meijer AH, Gabby Krens SF, Medina Rodriguez IA, He S, Bitter W, Ewa Snaar-Jagalska B, et al. . Expression Analysis of the Toll-Like Receptor and TIR Domain Adaptor Families of Zebrafish. Mol Immunol (2004) 40:773–83. doi: 10.1016/j.molimm.2003.10.003 PubMed DOI

Jault C, Pichon L, Chluba J. Toll-Like Receptor Gene Family and TIR-Domain Adapters in Danio Rerio. Mol Immunol (2004) 40:759–71. doi: 10.1016/j.molimm.2003.10.001 PubMed DOI

Sahoo BR. Structure of Fish Toll-Like Receptors (TLR) and NOD-Like Receptors (NLR). Int J Biol Macromol (2020) 161:1602–17. doi: 10.1016/j.ijbiomac.2020.07.293 PubMed DOI PMC

Rebl A, Goldammer T, Seyfert HM. Toll-Like Receptor Signaling in Bony Fish. Vet Immunol Immunopathol (2010) 134:139–50. doi: 10.1016/j.vetimm.2009.09.021 PubMed DOI

Pak B, Schmitt CE, Oh S, Kim JD, Choi W, Han O, et al. . Pax9 Is Essential for Granulopoiesis But Dispensable for Erythropoiesis in Zebrafish. Biochem Biophys Res Commun (2021) 534:359–66. doi: 10.1016/j.bbrc.2020.11.077 PubMed DOI

Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, et al. . Inference and Analysis of Cell-Cell Communication Using CellChat. Nat Commun (2021) 12:1088. doi: 10.1038/s41467-021-21246-9 PubMed DOI PMC

Browaeys R, Saelens W, Saeys Y. NicheNet: Modeling Intercellular Communication by Linking Ligands to Target Genes. Nat Methods (2020) 17:159–62. doi: 10.1038/s41592-019-0667-5 PubMed DOI

Berthelot C, Brunet F, Chalopin D, Juanchich A, Bernard M, Noel B, et al. . The Rainbow Trout Genome Provides Novel Insights Into Evolution After Whole-Genome Duplication in Vertebrates. Nat Commun (2014) 5:3657. doi: 10.1038/ncomms4657 PubMed DOI PMC

Hurley IA, Mueller RL, Dunn KA, Schmidt EJ, Friedman M, Ho RK, et al. . A New Time-Scale for Ray-Finned Fish Evolution. Proc Biol Sci (2007) 274:489–98. doi: 10.1098/rspb.2006.3749 PubMed DOI PMC

David L, Blum S, Feldman MW, Lavi U, Hillel J. Recent Duplication of the Common Carp (Cyprinus Carpio L.) Genome as Revealed by Analyses of Microsatellite Loci. Mol Biol Evol (2003) 20:1425–34. doi: 10.1093/molbev/msg173 PubMed DOI

Bernardi G, Wiley EO, Mansour H, Miller MR, Orti G, Haussler D, et al. . The Fishes of Genome 10k. Mar Genomics (2012) 7:3–6. doi: 10.1016/j.margen.2012.02.002 PubMed DOI

Sun Y, Huang Y, Li X, Baldwin CC, Zhou Z, Yan Z, et al. . Fish-T1K (Transcriptomes of 1,000 Fishes) Project: Large-Scale Transcriptome Data for Fish Evolution Studies. Gigascience (2016) 5:18. doi: 10.1186/s13742-016-0124-7 PubMed DOI PMC

Fan G, Song Y, Yang L, Huang X, Zhang S, Zhang M, et al. . Initial Data Release and Announcement of the 10,000 Fish Genomes Project (Fish10K). Gigascience (2020) 9:giaa080. doi: 10.1093/gigascience/giaa080 PubMed DOI PMC

Sturm G, Szabo T, Fotakis G, Haider M, Rieder D, Trajanoski Z, et al. . Scirpy: A Scanpy Extension for Analyzing Single-Cell T-Cell Receptor-Sequencing Data. Bioinformatics (2020) 36:4817–8. doi: 10.1093/bioinformatics/btaa611 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The killifish germline regulates longevity and somatic repair in a sex-specific manner

. 2024 Jun ; 4 (6) : 791-813. [epub] 20240515

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...