The killifish germline regulates longevity and somatic repair in a sex-specific manner
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
StG #101078188
EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
19/HU04
Abisch-Frenkel-Stiftung (Abisch-Frenkel Foundation)
2178/19
Israel Science Foundation (ISF)
GBMF9341
Gordon and Betty Moore Foundation (Gordon E. and Betty I. Moore Foundation)
2020611
United States - Israel Binational Science Foundation (BSF)
#CZ.02.1.01/0.0/0.0/16_025/0007370
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
P50HG007735
U.S. Department of Health & Human Services | National Institutes of Health (NIH)
UM1HG009442
U.S. Department of Health & Human Services | National Institutes of Health (NIH)
1UM1HG009436
U.S. Department of Health & Human Services | National Institutes of Health (NIH)
PubMed
38750187
DOI
10.1038/s43587-024-00632-0
PII: 10.1038/s43587-024-00632-0
Knihovny.cz E-zdroje
- MeSH
- Caenorhabditis elegans genetika fyziologie MeSH
- dlouhověkost * genetika MeSH
- pohlavní dimorfismus MeSH
- zárodečné buňky * metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Classical evolutionary theories propose tradeoffs among reproduction, damage repair and lifespan. However, the specific role of the germline in shaping vertebrate aging remains largely unknown. In this study, we used the turquoise killifish (Nothobranchius furzeri) to genetically arrest germline development at discrete stages and examine how different modes of infertility impact life history. We first constructed a comprehensive single-cell gonadal atlas, providing cell-type-specific markers for downstream phenotypic analysis. We show here that germline depletion-but not arresting germline differentiation-enhances damage repair in female killifish. Conversely, germline-depleted males instead showed an extension in lifespan and rejuvenated metabolic functions. Through further transcriptomic analysis, we highlight enrichment of pro-longevity pathways and genes in germline-depleted male killifish and demonstrate functional conservation of how these factors may regulate longevity in germline-depleted Caenorhabditis elegans. Our results, therefore, demonstrate that different germline manipulation paradigms can yield pronounced sexually dimorphic phenotypes, implying alternative responses to classical evolutionary tradeoffs.
Center for Personal Dynamic Regulomes Stanford University Stanford CA USA
Chan Zuckerberg Biohub San Francisco CA USA
Department of Applied Physics Stanford University Stanford CA USA
Department of Genetics Silberman Institute Hebrew University of Jerusalem Givat Ram Jerusalem Israel
Department of Genetics Stanford University Stanford CA USA
Department of Statistics and Data Science Hebrew University of Jerusalem Jerusalem Israel
Zobrazit více v PubMed
Ricklefs, R. E. Life-history connections to rates of aging in terrestrial vertebrates. Proc. Natl Acad. Sci. USA 107, 10314–10319 (2010).
de Magalhães, J. P., Costa, J. & Church, G. M. An analysis of the relationship between metabolism, developmental schedules, and longevity using phylogenetic independent contrasts. J. Gerontol. A Biol. Sci. Med. Sci. 62, 149–160 (2007). PubMed
Austad, S. N. & Hoffman, J. M. Is antagonistic pleiotropy ubiquitous in aging biology? Evol. Med. Public Health 2018, 287–294 (2018). PubMed PMC
Kirkwood, T. B. L. Evolution of ageing. Nature 270, 301–304 (1977). PubMed
Kirkwood, T. B. L. & Austad, S. N. Why do we age? Nature 408, 233–238 (2000). PubMed
Schumacher, B., Garinis, G. A. & Hoeijmakers, J. H. J. Age to survive: DNA damage and aging. Trends Genet. 24, 77–85 (2008). PubMed
Chen, H. Y., Jolly, C., Bublys, K., Marcu, D. & Immler, S. Trade-off between somatic and germline repair in a vertebrate supports the expensive germ line hypothesis. Proc. Natl Acad. Sci. USA 117, 8973–8979 (2020).
Hsin, H. & Kenyon, C. Signals from the reproductive system regulate the lifespan of C. elegans. Nature 399, 362–366 (1999). PubMed
Khodakarami, A., Saez, I., Mels, J. & Vilchez, D. Mediation of organismal aging and somatic proteostasis by the germline. Front. Mol. Biosci. 2, 3 (2015). PubMed PMC
Hamilton, J. B. & Mestler, G. E. Mortality and survival: comparison of eunuchs with intact men and women in a mentally retarded population. J. Gerontol. 24, 395–411 (1969).
Min, K. J., Lee, C. K. & Park, H. N. The lifespan of Korean eunuchs. Curr. Biol. 22, R792–R793 (2012). PubMed
Benedusi, V. et al. Ovariectomy shortens the life span of female mice. Oncotarget 6, 10801 (2015). PubMed PMC
Asdell, S. A., Doornenbal, H., Joshi, S. R. & Sperling, G. A. The effects of sex steroid hormones upon longevity in rats. Reproduction 14, 113–120 (1967).
Cargill, S. L., Carey, J. R., Müller, H. G. & Anderson, G. Age of ovary determines remaining life expectancy in old ovariectomized mice. Aging Cell 2, 185–190 (2003). PubMed
Hoffman, J. M., Creevy, K. E. & Promislow, D. E. L. Reproductive capability is associated with lifespan and cause of death in companion dogs. PLoS ONE 8, e61082 (2013). PubMed PMC
Hamilton, J. B. Relationship of castration, spaying, and sex to survival and duration of life in domestic cats. J. Gerontol. 20, 96–104 (1965). PubMed
Torre, S., Della, Benedusi, V., Fontana, R. & Maggi, A. Energy metabolism and fertility—a balance preserved for female health. Nat. Rev. Endocrinol. 10, 13–23 (2014). PubMed
Gems, D., Kern, C. C., Nour, J. & Ezcurra, M. Reproductive suicide: similar mechanisms of aging in C. elegans and Pacific salmon. Front. Cell Dev. Biol. 9, 688788 (2021). PubMed PMC
Antebi, A. Regulation of longevity by the reproductive system. Exp. Gerontol. 48, 596–602 (2013). PubMed
Uno, M. & Nishida, E. Lifespan-regulating genes in C. elegans. NPJ Aging Mech. Dis. 2, 16010 (2016). PubMed PMC
Ermolaeva, M. A. et al. DNA damage in germ cells induces an innate immune response that triggers systemic stress resistance. Nature 501, 416–420 (2013). PubMed PMC
Calculli, G. et al. Systemic regulation of mitochondria by germline proteostasis prevents protein aggregation in the soma of C. elegans. Sci. Adv. 7, eabg3012 (2021). PubMed PMC
Austad, S. N. Sex differences in longevity and aging. In Handbook of the Biology of Aging 7th edn (eds Masoro, E. J. & Austad, S. N.) 479–495 (2011).
Tacutu, R. et al. Human Ageing Genomic Resources: new and updated databases. Nucleic Acids Res. 46, D1083–D1090 (2018). PubMed
Schartl, M. Beyond the zebrafish: diverse fish species for modeling human disease. Dis. Model. Mech. 7, 181–192 (2014). PubMed
Nielsen, J. et al. Eye lens radiocarbon reveals centuries of longevity in the Greenland shark (Somniosus microcephalus). Science 353, 702–704 (2016). PubMed
Kolora, S. R. R. et al. Origins and evolution of extreme life span in Pacific Ocean rockfishes. Science 374, 842–847 (2021). PubMed
Vrtílek, M., Žák, J., Pšenička, M. & Reichard, M. Extremely rapid maturation of a wild African annual fish. Curr. Biol. 28, R822–R824 (2018). PubMed
Harel, I. The turquoise killifish. Nat. Methods 19, 1150–1151 (2022).
Harel, I. et al. A platform for rapid exploration of aging and diseases in a naturally short-lived vertebrate. Cell 160, 1013–1026 (2015).
Astre, G., Moses, E. & Harel, I. The African turquoise killifish (Nothobranchius furzeri): biology and research applications. In Laboratory Fish in Biomedical Research (eds DʼAngelo, L. & de Girolamo, P.) 245–287 (Academic Press, 2021).
Astre, G. et al. Genetic perturbation of AMP biosynthesis extends lifespan and restores metabolic health in a naturally short-lived vertebrate. Dev. Cell 58, 1350–1364 (2023). PubMed
Harel, I., Valenzano, D. R. & Brunet, A. Efficient genome engineering approaches for the short-lived African turquoise killifish. Nat. Protoc. 11, 2010–2028 (2016).
Reichwald, K. et al. Insights into sex chromosome evolution and aging from the genome of a short-lived fish. Cell 163, 1527–1538 (2015). PubMed
Valenzano, D. R. et al. The African turquoise killifish genome provides insights into evolution and genetic architecture of lifespan. Cell 163, 1539–1554 (2015). PubMed PMC
Rozenberg, I., Moses, E. & Harel, I. CRISPR–Cas9 genome editing in Nothobranchius furzeri for gene knockout and knock-in. Cold Spring Harb. Protoc. 2023, 90–99 (2023).
Wang, W. et al. Changes in regeneration-responsive enhancers shape regenerative capacities in vertebrates. Science 369, eaaz3090 (2020). PubMed PMC
Moses, E., Franek, R. & Harel, I. A scalable and tunable platform for functional interrogation of peptide hormones in fish. eLife 12, e85960 (2023). PubMed PMC
Slanchev, K., Stebler, J., de la Cueva-Mendez, G. & Raz, E. Development without germ cells: the role of the germ line in zebrafish sex differentiation. Proc. Natl Acad. Sci. USA 102, 4074–4079 (2005).
Kurokawa, H. et al. Germ cells are essential for sexual dimorphism in the medaka gonad. Proc. Natl Acad. Sci. USA 104, 16958–16963 (2007). PubMed PMC
Kossack, M. E. & Draper, B. W. Genetic regulation of sex determination and maintenance in zebrafish (Danio rerio). In Current Topics in Developmental Biology (ed Capel, B.) 134, 119–149 (Elsevier, 2019).
Liu, Y. et al. Single-cell transcriptome reveals insights into the development and function of the zebrafish ovary. eLife 11, e76014 (2022). PubMed PMC
Qian, P., Kang, J., Liu, D. & Xie, G. Single cell transcriptome sequencing of zebrafish testis revealed novel spermatogenesis marker genes and stronger Leydig-germ cell paracrine interactions. Front. Genet. 13, 851719 (2022). PubMed PMC
Sun, X. et al. CloneSeq—single-cell clonal 3D culture and analysis protocol. STAR Protoc. 2, 100794 (2021). PubMed PMC
Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015). PubMed PMC
Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019). PubMed PMC
Xie, X. et al. Single-cell transcriptome profiling reveals neutrophil heterogeneity in homeostasis and infection. Nat. Immunol. 21, 1119–1133 (2020). PubMed PMC
Chan, J. T. H., Kadri, S., Köllner, B., Rebl, A. & Korytář, T. RNA-seq of single fish cells—seeking out the leukocytes mediating immunity in teleost fishes. Front. Immunol. 13, 798712 (2022). PubMed PMC
Stévant, I. et al. Dissecting cell lineage specification and sex fate determination in gonadal somatic cells using single-cell transcriptomics. Cell Rep. 26, 3272–3283 (2019). PubMed
Li, L. et al. Single-cell RNA-seq analysis maps development of human germline cells and gonadal niche interactions. Cell Stem Cell 20, 858–873 (2017). PubMed
Estermann, M. A., Major, A. T. & Smith, C. A. Gonadal sex differentiation: supporting versus steroidogenic cell lineage specification in mammals and birds. Front. Cell Dev. Biol. 8, 1711 (2020).
Karlsson, M. et al. A single–cell type transcriptomics map of human tissues. Sci. Adv. 7, eabh2169 (2021). PubMed PMC
Niu, S.-F. et al. Characterization of a novel piscidin-like antimicrobial peptide from Pseudosciaena crocea and its immune response to Cryptocaryon irritans. Fish Shellfish Immunol. 35, 513–524 (2013). PubMed
Yan, T. et al. Estradiol upregulates the expression of the TGF-β receptors ALK5 and BMPR2 during the gonadal development of Schizothorax prenanti. Animals 11, 1365 (2021). PubMed PMC
Fan, X. et al. Single-cell reconstruction of follicular remodeling in the human adult ovary. Nat. Commun. 10, 3164 (2019). PubMed PMC
Rotgers, E., Jørgensen, A. & Yao, H. H.-C. At the crossroads of fate—somatic cell lineage specification in the fetal gonad. Endocr. Rev. 39, 739–759 (2018). PubMed PMC
Yoon, C., Kawakami, K. & Hopkins, N. Zebrafish vasa homologue RNA is localized to the cleavage planes of 2-and 4-cell-stage embryos and is expressed in the primordial germ cells. Development 124, 3157–3165 (1997). PubMed
Nishimura, T. & Tanaka, M. Gonadal development in fish. Sex. Dev. 8, 252–261 (2014). PubMed
Schulz, R. W. et al. Spermatogenesis in fish. Gen. Comp. Endocrinol. 165, 390–411 (2010). PubMed
Lubzens, E., Young, G., Bobe, J. & Cerdà, J. Oogenesis in teleosts: how fish eggs are formed. Gen. Comp. Endocrinol. 165, 367–389 (2010). PubMed
Li, J. & Cheng, C. H. K. Evolution of gonadotropin signaling on gonad development: insights from gene knockout studies in zebrafish. Biol. Reprod. 99, 686–694 (2018).
Liu, Y. & Lin, H. Genetic analysis of the reproductive axis in fish using genome-editing nucleases. Sci. Bull. (Beijing) 62, 302–308 (2017).
McBride, R. S. et al. Energy acquisition and allocation to egg production in relation to fish reproductive strategies. Fish Fisheries 16, 23–57 (2015).
Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009). PubMed PMC
Weidinger, G. et al. dead end, a novel vertebrate germ plasm component, is required for zebrafish primordial germ cell migration and survival. Curr. Biol. 13, 1429–1434 (2003).
Žák, J., Dyková, I. & Reichard, M. Good performance of turquoise killifish (Nothobranchius furzeri) on pelleted diet as a step towards husbandry standardization. Sci. Rep. 10, 8986 (2020). PubMed PMC
Dyková, I. et al. Histology of major organ systems of Nothobranchius fishes: short-lived model species. J. Vertebr. Biol. 71, 21071–21074 (2022).
Minchin, J. E. N. & Rawls, J. F. A classification system for zebrafish adipose tissues. Dis. Model. Mech. 10, 797–809 (2017). PubMed PMC
Liu, C., Peng, J., Matzuk, M. M. & Yao, H. H.-C. Lineage specification of ovarian theca cells requires multicellular interactions via oocyte and granulosa cells. Nat. Commun. 6, 6934 (2015). PubMed
Koley, S., Rozenbaum, M., Fainzilber, M. & Terenzio, M. Translating regeneration: local protein synthesis in the neuronal injury response. Neurosci. Res. 139, 26–36 (2019). PubMed
Blanco, S. et al. Stem cell function and stress response are controlled by protein synthesis. Nature 534, 335–340 (2016). PubMed PMC
Riehle, K. J., Dan, Y. Y., Campbell, J. S. & Fausto, N. New concepts in liver regeneration. J. Gastroenterol. Hepatol. 26, 203–212 (2011). PubMed PMC
Wang, S., Meyer, D. H. & Schumacher, B. H3K4me2 regulates the recovery of protein biosynthesis and homeostasis following DNA damage. Nat. Struct. Mol. Biol. 27, 1165–1177 (2020). PubMed
Lopez-Otin, C. et al. The hallmarks of aging. Cell 153, 1194–1217 (2013). PubMed PMC
Tyshkovskiy, A. et al. Identification and application of gene expression signatures associated with lifespan extension. Cell Metab 30, 573–593 (2019). PubMed PMC
Shi, C. & Murphy, C. T. Sex and death. In Current Topics in Developmental Biology (eds Jarriault, S. & Podbilewicz, B.) 144, 353–375 (Elsevier, 2021).
Wang, C., Li, Q., Redden, D. T., Weindruch, R. & Allison, D. B. Statistical methods for testing effects on ‘maximum lifespan’. Mech. Ageing Dev. 125, 629–632 (2004). PubMed
Han, S. K. et al. OASIS 2: online application for survival analysis 2 with features for the analysis of maximal lifespan and healthspan in aging research. Oncotarget 7, 56147 (2016). PubMed PMC
Garratt, M. et al. Male lifespan extension with 17‐α estradiol is linked to a sex‐specific metabolomic response modulated by gonadal hormones in mice. Aging Cell 17, e12786 (2018). PubMed PMC
Stout, M. B. et al. 17α-Estradiol alleviates age-related metabolic and inflammatory dysfunction in male mice without inducing feminization. J. Gerontol. Ser. A Biomed. Sci. Med. Sci. 72, 3–15 (2017).
Blencowe, M. et al. Relative contributions of sex hormones, sex chromosomes, and gonads to sex differences in tissue gene regulation. Genome Res. 32, 807–824 (2022). PubMed PMC
Nikkanen, J. et al. An evolutionary trade-off between host immunity and metabolism drives fatty liver in male mice. Science 378, 290–295 (2022). PubMed PMC
Mann, S. N. et al. Health benefits attributed to 17α-estradiol, a lifespan-extending compound, are mediated through estrogen receptor α. eLife 9, e59616 (2020). PubMed PMC
Garratt, M., Bower, B., Garcia, G. G. & Miller, R. A. Sex differences in lifespan extension with acarbose and 17‐α estradiol: gonadal hormones underlie male‐specific improvements in glucose tolerance and mTORC 2 signaling. Aging Cell 16, 1256–1266 (2017). PubMed PMC
Arantes-Oliveira, N., Apfeld, J., Dillin, A. & Kenyon, C. Regulation of life-span by germ-line stem cells in Caenorhabditis elegans. Science 295, 502–505 (2002). PubMed
Ripa, R. et al. Refeeding-associated AMPK PubMed PMC
Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes—a 2019 update. Nucleic Acids Res. 48, D445–D453 (2020). PubMed
Pang, Z. et al. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 49, W388–W396 (2021). PubMed PMC
Lee, M. H., Malloy, C. R., Corbin, I. R., Li, J. & Jin, E. S. Assessing the pentose phosphate pathway using [2, 3‐ PubMed PMC
Bennett, C. F. et al. Transaldolase inhibition impairs mitochondrial respiration and induces a starvation-like longevity response in Caenorhabditis elegans. PLoS Genet. 13, e1006695 (2017). PubMed PMC
Harshman, L. G. & Zera, A. J. The cost of reproduction: the devil in the details. Trends Ecol. Evol. 22, 80–86 (2007). PubMed
Maklakov, A. A. & Chapman, T. Evolution of ageing as a tangle of trade-offs: energy versus function. Proc. R. Soc. B 286, 20191604 (2019). PubMed PMC
Leroi, A. M. Molecular signals versus the Loi de Balancement. Trends Ecol. Evol. 16, 24–29 (2001). PubMed
Valenzano, D. R., Terzibasi, E., Cattaneo, A., Domenici, L. & Cellerino, A. Temperature affects longevity and age-related locomotor and cognitive decay in the short-lived fish: Nothobranchius furzeri. Aging Cell 5, 275–278 (2006).
Reichard, M. & POLAČIK, M. Reproductive isolating barriers between colour-differentiated populations of an African annual killifish, Nothobranchius korthausae (Cyprinodontiformes). Biol. J. Linn. Soc. 100, 62–72 (2010).
List, E. O. et al. Endocrine parameters and phenotypes of the growth hormone receptor gene disrupted (GHR−/−) mouse. Endocr. Rev. 32, 356–386 (2011).
Aleksic, S. et al. Integrity of hypothalamic–pituitary–testicular axis in exceptional longevity. Aging Cell 21, e13656 (2022). PubMed PMC
Harrison, D. E. et al. Acarbose, 17‐α‐estradiol, and nordihydroguaiaretic acid extend mouse lifespan preferentially in males. Aging Cell 13, 273–282 (2014). PubMed
Williams, T. D. Mechanisms underlying the costs of egg production. Bioscience 55, 39–48 (2005).
Kleppe, L. et al. Sex steroid production associated with puberty is absent in germ cell-free salmon. Sci. Rep. 7, 12584 (2017). PubMed PMC
Siegfried, K. R. & Nüsslein-Volhard, C. Germ line control of female sex determination in zebrafish. Dev. Biol. 324, 277–287 (2008). PubMed
Habermehl, T. L. et al. Extension of longevity and reduction of inflammation is ovarian-dependent, but germ cell-independent in post-reproductive female mice. Geroscience 41, 25–38 (2019). PubMed
Mason, J. B., Cargill, S. L., Anderson, G. B. & Carey, J. R. Transplantation of young ovaries to old mice increased life span in transplant recipients. J. Gerontol. A Biol. Sci. Med. Sci. 64, 1207–1211 (2009). PubMed
Toran-Allerand, C. D., Tinnikov, A. A., Singh, R. J. & Nethrapalli, I. S. 17α-Estradiol: a brain-active estrogen? Endocrinology 146, 3843–3850 (2005). PubMed
Lind, M. I. et al. Sex-specific growth and lifespan effects of germline removal in the dioecious nematode Caenorhabditis remanei. Preprint at bioRxiv https://doi.org/10.1101/2023.12.07.570570 (2023).
Barnes, A. I., Boone, J. M., Jacobson, J., Partridge, L. & Chapman, T. No extension of lifespan by ablation of germ line in Drosophila. Proc. R. Soc. B Biol. Sci. 273, 939–947 (2006).
Flatt, T. et al. Drosophila germ-line modulation of insulin signaling and lifespan. Proc. Natl Acad. Sci. USA 105, 6368–6373 (2008). PubMed PMC
Zhao, Y. et al. Two forms of death in ageing Caenorhabditis elegans. Nat. Commun. 8, 15458 (2017). PubMed PMC
Labun, K. et al. CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Res. 47, W171–W174 (2019). PubMed PMC
Jao, L. E., Wente, S. R. & Chen, W. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc. Natl Acad. Sci. USA 110, 13904–13909 (2013). PubMed PMC
Astre, G., Moses, E. & Harel, I. Laboratory fish in biomedical research. In Laboratory Fish in Biomedical Research (eds D’Angelo, L. & de Girolamo, P.) (Academic Press, 2021).
Mazutis, L. et al. Single-cell analysis and sorting using droplet-based microfluidics. Nat. Protoc. 8, 870–891 (2013). PubMed PMC
Bavli, D. et al. CloneSeq: a highly sensitive analysis platform for the characterization of 3D-cultured single-cell-derived clones. Dev. Cell 56, 1804–1817.e7 (2021). PubMed
Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323 (2011). PubMed PMC
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012). PubMed PMC
Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).
Haghverdi, L., Büttner, M., Wolf, F. A., Buettner, F. & Theis, F. J. Diffusion pseudotime robustly reconstructs lineage branching. Nat. Methods 13, 845–848 (2016). PubMed
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021). PubMed PMC
Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012). PubMed PMC
Carlson, M., Falcon, S., Pages, H. & Li, N. org.Hs.eg.db: genome wide annotation for human. R package version 3.8.2. https://doi.org/10.18129/B9.bioc.org.Hs.eg.db (2019).
Pagès, H., Carlson, M., Falcon, S. & Li, N. AnnotationDbi: manipulation of SQLite-based annotations in Bioconductor. R package version1. 54.1. https://bioconductor.org/packages/devel/bioc/manuals/AnnotationDbi/man/AnnotationDbi.pdf (2021).
Andrews, S. FastQC: a quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016). PubMed PMC
Krueger, F. Trim Galore. https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). PubMed
McCarthy, D. J., Chen, Y. & Smyth, G. K. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 40, 4288–4297 (2012). PubMed PMC
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010). PubMed
Leek, J. T. Surrogate variable analysis (PhD thesis, Univ. of Washington, 2007).
Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016). PubMed
Carlson, M., Falcon, S., Pages, H. & Li, N. org.Mm.eg.db: genome wide annotation for mouse. R package version 3.8.2. https://doi.org/10.18129/B9.bioc.org.Mm.eg.db (2019).
Dodzian, J., Kean, S., Seidel, J. & Valenzano, D. R. A protocol for laboratory housing of turquoise killifish (Nothobranchius furzeri). J. Vis. Exp. 57073 (2018).
Boocholez, H. et al. Neuropeptide signaling and SKN-1 orchestrate differential responses of the proteostasis network to dissimilar proteotoxic insults. Cell Rep. 38, 110350 (2022). PubMed
Rual, J.-F. et al. Toward improving Caenorhabditis elegans phenome mapping with an ORFeome-based RNAi library. Genome Res. 14, 2162–2168 (2004). PubMed PMC
Malitsky, S. et al. Viral infection of the marine alga Emiliania huxleyi triggers lipidome remodeling and induces the production of highly saturated triacylglycerol. New Phytol. 210, 88–96 (2016). PubMed
Salem, M., Bernach, M., Bajdzienko, K. & Giavalisco, P. A simple fractionated extraction method for the comprehensive analysis of metabolites, lipids, and proteins from a single sample. J. Vis. Exp. 55802 (2017).
Zheng, L. et al. Fumarate induces redox-dependent senescence by modifying glutathione metabolism. Nat. Commun. 6, 6001 (2015). PubMed
Harel, I. & Brunet, A. The African turquoise killifish: a model for exploring vertebrate aging and diseases in the fast lane. Cold Spring Harb. Symp. Quant. Biol. 80, 275–279 (2015).
Van Keymeulen, A. et al. Epidermal progenitors give rise to Merkel cells during embryonic development and adult homeostasis. J. Cell Biol. 187, 91–100 (2009). PubMed PMC
Harel, I. et al. Identification of protein aggregates in the aging vertebrate brain with prion-like and phase separation properties. Preprint at bioRxiv https://doi.org/10.1101/2022.02.26.482115 (2022).
Gruenbaum-Cohen, Y. et al. The actin regulator N-WASp is required for muscle-cell fusion in mice. Proc. Natl Acad. Sci. USA 109, 11211–11216 (2012). PubMed PMC
Theis, S. et al. The occipital lateral plate mesoderm is a novel source for vertebrate neck musculature. Development 137, 2961–2971 (2010). PubMed
Benayoun, B. A. et al. Remodeling of epigenome and transcriptome landscapes with aging in mice reveals widespread induction of inflammatory responses. Genome Res. 29, 697–709 (2019). PubMed PMC
Harel, I. et al. Pharyngeal mesoderm regulatory network controls cardiac and head muscle morphogenesis. Proc. Natl Acad. Sci. USA 109, 18839–18844 (2012). PubMed PMC
Longenecker, K. & Langston, R. The Jungle Histology Atlas of Gonad Stages in Coral-Reef Fishes (Bishop Museum, 2016).
Imrie, D. & Sadler, K. C. White adipose tissue development in zebrafish is regulated by both developmental time and fish size. Dev. Dyn. 239, 3013–3023 (2010). PubMed PMC
Abràmoff, M. D., Magalhães, P. J. & Ram, S. J. Image processing with ImageJ. Biophotonics Intern. 11, 36–42 (2004).
Hollander-Cohen, L., Golan, M., Aizen, J., Shpilman, M. & Levavi-Sivan, B. Characterization of carp gonadotropins: structure, annual profile, and carp and zebrafish pituitary topographic organization. Gen. Comp. Endocrinol. 264, 28–38 (2018). PubMed
Liu, Z. et al. Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic vector. Sci. Rep. 7, 2193 (2017). PubMed PMC
Wendler, S., Hartmann, N., Hoppe, B. & Englert, C. Age-dependent decline in fin regenerative capacity in the short-lived fish Nothobranchius furzeri. Aging Cell 14, 857–866 (2015). PubMed PMC
Rao, S. S. P. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014). PubMed PMC
Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016). PubMed PMC