A scalable and tunable platform for functional interrogation of peptide hormones in fish

. 2023 Oct 24 ; 12 () : . [epub] 20231024

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37872843

Pituitary hormones play a central role in shaping vertebrate life history events, including growth, reproduction, metabolism, and aging. The regulation of these traits often requires precise control of hormone levels across diverse timescales. However, fine tuning circulating hormones in-vivo has traditionally been experimentally challenging. Here, using the naturally short-lived turquoise killifish (N. furzeri), we describe a high-throughput platform that combines loss- and gain-of-function of peptide hormones. Mutation of three primary pituitary hormones, growth hormone (gh1), follicle stimulating hormone (fshb), and thyroid stimulating hormone (tshb), alters somatic growth and reproduction. Thus, suggesting that while the killifish undergoes extremely rapid growth and maturity, it still relies on vertebrate-conserved genetic networks. As the next stage, we developed a gain-of-function vector system in which a hormone is tagged using a self-cleavable fluorescent reporter, and ectopically expressed in-vivo through intramuscular electroporation. Following a single electroporation, phenotypes, such as reproduction, are stably rescued for several months. Notably, we demonstrate the versatility of this approach by using multiplexing, dose-dependent, and doxycycline-inducible systems to achieve tunable and reversible expression. In summary, this method is relatively high-throughput, and facilitates large-scale interrogation of life-history strategies in fish. Ultimately, this approach could be adapted for modifying aquaculture species and exploring pro-longevity interventions.

In humans and other vertebrates, a pea-size gland at the base of the brain called the pituitary gland, produces many hormones that regulate how individuals grow, reproduce, and age. Three of the most prominent hormones are known as the growth hormone, the follicle-stimulating hormone, and the thyroid-stimulating hormone. It is important that the body precisely controls the levels of these hormones throughout an individual’s life. One way researchers can investigate how hormones and other molecules work is to artificially alter the levels of the molecules in living animals. However, this has proved to be technically challenging and time-consuming for pituitary gland hormones. Moses et al. studied the growth hormone, follicle-stimulating hormone, and thyroid-stimulating hormone in the turquoise killifish, a small fish that grows and matures more rapidly than any other vertebrate research model. The experiments revealed that mutant fish lacking one of the three primary pituitary hormones were smaller, took longer to reach maturity, or were completely sterile. This suggests these three hormones play a similar role in killifish as they do in other vertebrates. The team then developed a new experimental platform to precisely control the levels of the three hormones in killifish. Genes encoding individual hormones were expressed in the muscles of the mutant fish, effectively making the muscles a ‘factory’ for producing that hormone. Treating mutant fish this way once was enough to restore growth and to fully return reproduction to normal levels for several months. Moses et al. also demonstrated that it is possible to use this platform to express more than one hormone gene at a time and to use drugs to switch hormone production on and off in a reversible manner. For example, this reversible approach made it possible to effectively adjust fertility levels. The new platform developed in this work could be adapted for modifying a variety of traits in animals to explore how they impact health and longevity. In the future, it may also have other applications, such as optimizing how farmed fish grow and reproduce and regulating hormone levels in human patients with hormone imbalances.

Před aktualizací

doi: 10.1101/2023.01.19.524675 PubMed

Zobrazit více v PubMed

Abràmoff MD, Magalhães PJ, Ram SJ. Image processing with ImageJ. Biophotonics Int. 2004;11:36–42.

Aittomäki K, Lucena JL, Pakarinen P, Sistonen P, Tapanainen J, Gromoll J, Kaskikari R, Sankila EM, Lehväslaiho H, Engel AR, Nieschlag E, Huhtaniemi I, de la Chapelle A. Mutation in the follicle-stimulating hormone receptor gene causes hereditary hypergonadotropic ovarian failure. Cell. 1995;82:959–968. doi: 10.1016/0092-8674(95)90275-9. PubMed DOI

Astre G, Moses E, Harel I. Laboratory Fish in Biomedical Research. Academic Press; 2021. DOI

Astre G, Atlan T, Goshtchevsky U, Shapira K, Oron-Gottesman A, Levy T, Velan A, Smirnov M, Deelen J, Levanon EY, Harel I. Sex-Specific Regulation of Metabolic Health and Vertebrate Lifespan by AMP Biosynthesis. bioRxiv. 2022a doi: 10.1101/2022.01.10.475524. PubMed DOI

Astre G, Moses E, Harel I. In: Laboratory Fish in Biomedical Research. Astre G, editor. Elsevier; 2022b. The African turquoise Killifish (Nothobranchius Furzeri): biology and research applications; pp. 245–287. DOI

Austad SN, Hoffman JM. Is antagonistic pleiotropy ubiquitous in aging biology? Evolution, Medicine, and Public Health. 2018;2018:287–294. doi: 10.1093/emph/eoy033. PubMed DOI PMC

Baht GS, Silkstone D, Vi L, Nadesan P, Amani Y, Whetstone H, Wei Q, Alman BA. Exposure to a youthful circulation rejuvenates bone repair through modulation of β-catenin. Nature Communications. 2015;6:7131. doi: 10.1038/ncomms8131. PubMed DOI PMC

Bartke A, Brown-Borg H. Life extension in the dwarf mouse. Current Topics in Developmental Biology. 2004;63:189–225. doi: 10.1016/S0070-2153(04)63006-7. PubMed DOI

Benayoun BA, Pollina EA, Singh PP, Mahmoudi S, Harel I, Casey KM, Dulken BW, Kundaje A, Brunet A. Remodeling of epigenome and transcriptome landscapes with aging in mice reveals widespread induction of inflammatory responses. Genome Research. 2019;29:697–709. doi: 10.1101/gr.240093.118. PubMed DOI PMC

Callahan SJ, Tepan S, Zhang YM, Lindsay H, Burger A, Campbell NR, Kim IS, Hollmann TJ, Studer L, Mosimann C, White RM. Cancer modeling by Transgene Electroporation in Adult Zebrafish (TEAZ) Disease Models & Mechanisms. 2018;11:dmm034561. doi: 10.1242/dmm.034561. PubMed DOI PMC

Campbell LJ, Willoughby JJ, Jensen AM. Two types of Tet-On transgenic lines for doxycycline-inducible gene expression in zebrafish rod photoreceptors and a gateway-based tet-on toolkit. PLOS ONE. 2012;7:e51270. doi: 10.1371/journal.pone.0051270. PubMed DOI PMC

Canosa LF, Chang JP, Peter RE. Neuroendocrine control of growth hormone in fish. General and Comparative Endocrinology. 2007;151:1–26. doi: 10.1016/j.ygcen.2006.12.010. PubMed DOI

Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature. 2005;433:760–764. doi: 10.1038/nature03260. PubMed DOI

Danilovich N, Wernsing D, Coschigano KT, Kopchick JJ, Bartke A. Deficits in female reproductive function in GH-R-KO mice; role of IGF-I. Endocrinology. 1999;140:2637–2640. doi: 10.1210/endo.140.6.6992. PubMed DOI

Das AT, Tenenbaum L, Berkhout B. Tet-on systems for doxycycline-inducible gene expression. Current Gene Therapy. 2016;16:156–167. doi: 10.2174/1566523216666160524144041. PubMed DOI PMC

Flurkey K, Papaconstantinou J, Miller RA, Harrison DE. Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. PNAS. 2001;98:6736–6741. doi: 10.1073/pnas.111158898. PubMed DOI PMC

Flurkey K, Papaconstantinou J, Harrison DE. The Snell dwarf mutation Pit1(dw) can increase life span in mice. Mechanisms of Ageing and Development. 2002;123:121–130. doi: 10.1016/s0047-6374(01)00339-6. PubMed DOI

Gruenbaum-Cohen Y, Harel I, Umansky KB, Tzahor E, Snapper SB, Shilo BZ, Schejter ED. The actin regulator N-WASp is required for muscle-cell fusion in mice. PNAS. 2012;109:11211–11216. doi: 10.1073/pnas.1116065109. PubMed DOI PMC

Grunewald M, Kumar S, Sharife H, Volinsky E, Gileles-Hillel A, Licht T, Permyakova A, Hinden L, Azar S, Friedmann Y, Kupetz P, Tzuberi R, Anisimov A, Alitalo K, Horwitz M, Leebhoff S, Khoma OZ, Hlushchuk R, Djonov V, Abramovitch R, Tam J, Keshet E. Counteracting age-related VEGF signaling insufficiency promotes healthy aging and extends life span. Science. 2021;373:eabc8479. doi: 10.1126/science.abc8479. PubMed DOI

Harel I, Nathan E, Tirosh-Finkel L, Zigdon H, Guimarães-Camboa N, Evans SM, Tzahor E. Distinct origins and genetic programs of head muscle satellite cells. Developmental Cell. 2009;16:822–832. doi: 10.1016/j.devcel.2009.05.007. PubMed DOI PMC

Harel I, Maezawa Y, Avraham R, Rinon A, Ma HY, Cross JW, Leviatan N, Hegesh J, Roy A, Jacob-Hirsch J, Rechavi G, Carvajal J, Tole S, Kioussi C, Quaggin S, Tzahor E. Pharyngeal mesoderm regulatory network controls cardiac and head muscle morphogenesis. PNAS. 2012;109:18839–18844. doi: 10.1073/pnas.1208690109. PubMed DOI PMC

Harel I, Tzahor E. Craniofacial Muscles. Springer; 2012. Head muscle development; pp. 11–28.

Harel I, Benayoun BA, Machado B, Singh PP, Hu C-K, Pech MF, Valenzano DR, Zhang E, Sharp SC, Artandi SE, Brunet A. A platform for rapid exploration of aging and diseases in A naturally short-lived vertebrate. Cell. 2015;160:1013–1026. doi: 10.1016/j.cell.2015.01.038. PubMed DOI PMC

Harel I, Brunet A. The african turquoise killifish: A model for exploring vertebrate aging and diseases in the fast lane. Cold Spring Harbor Symposia on Quantitative Biology. 2015;80:275–279. doi: 10.1101/sqb.2015.80.027524. PubMed DOI

Harel I, Valenzano DR, Brunet A. Efficient genome engineering approaches for the short-lived African turquoise killifish. Nature Protocols. 2016;11:2010–2028. doi: 10.1038/nprot.2016.103. PubMed DOI

Harel I. The turquoise killifish. Nature Methods. 2022;19:1150–1151. doi: 10.1038/s41592-022-01631-y. PubMed DOI

Harel I, Chen YR, Ziv I, Singh PP, Negredo PN, Goshtchevsky U, Wang W, Astre G, Moses E, McKay A, Machado BE, Hebestreit K, Yin S, Alvarado AS, Jarosz DF, Brunet A. Identification of Protein Aggregates in the Aging Vertebrate Brain with Prion-like and Phase Separation Properties. bioRxiv. 2022 doi: 10.1101/2022.02.26.482115. PubMed DOI PMC

Hu Z, Ai N, Chen W, Wong QWL, Ge W. Loss of Growth Hormone Gene (gh1) in Zebrafish arrests Folliculogenesis in Females and Delays Spermatogenesis in Males. Endocrinology. 2019;160:568–586. doi: 10.1210/en.2018-00878. PubMed DOI

Huang Q, Ning Y, Liu D, Zhang Y, Li D, Zhang Y, Yin Z, Fu B, Cai G, Sun X, Chen X, de Cabo R. A young blood environment decreases aging of senile mice kidneys. The Journals of Gerontology. 2018;73:421–428. doi: 10.1093/gerona/glx183. PubMed DOI

Jao LE, Wente SR, Chen W. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. PNAS. 2013;110:13904–13909. doi: 10.1073/pnas.1308335110. PubMed DOI PMC

Katsimpardi L, Litterman NK, Schein PA, Miller CM, Loffredo FS, Wojtkiewicz GR, Chen JW, Lee RT, Wagers AJ, Rubin LL. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science. 2014;344:630–634. doi: 10.1126/science.1251141. PubMed DOI PMC

Kirkwood TBL, Holliday R. The evolution of ageing and longevity. Proceedings of the Royal Society of London. Series B. Biological Sciences. 1979;205:531–546. doi: 10.1098/rspb.1979.0083. PubMed DOI

Kirkwood TBL, Austad SN. Why do we age? Nature. 2000;408:233–238. doi: 10.1038/35041682. PubMed DOI

Kurokawa H, Saito D, Nakamura S, Katoh-Fukui Y, Ohta K, Baba T, Morohashi K, Tanaka M. Germ cells are essential for sexual dimorphism in the medaka gonad. PNAS. 2007;104:16958–16963. doi: 10.1073/pnas.0609932104. PubMed DOI PMC

Labun K, Montague TG, Krause M, Torres Cleuren YN, Tjeldnes H, Valen E. CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Research. 2019;47:W171–W174. doi: 10.1093/nar/gkz365. PubMed DOI PMC

Laron Z, Kauli R, Lapkina L, Werner H. IGF-I deficiency, longevity and cancer protection of patients with Laron syndrome. Mutation Research. Reviews in Mutation Research. 2017;772:123–133. doi: 10.1016/j.mrrev.2016.08.002. PubMed DOI

Le Gac F, Blaise O, Fostier A, Le Bail PY, Loir M, Mourot B, Weil C. Growth hormone (GH) and reproduction: a review. Fish Physiology and Biochemistry. 1993;11:219–232. doi: 10.1007/BF00004569. PubMed DOI

Lehallier B, Gate D, Schaum N, Nanasi T, Lee SE, Yousef H, Moran Losada P, Berdnik D, Keller A, Verghese J, Sathyan S, Franceschi C, Milman S, Barzilai N, Wyss-Coray T. Undulating changes in human plasma proteome profiles across the lifespan. Nature Medicine. 2019;25:1843–1850. doi: 10.1038/s41591-019-0673-2. PubMed DOI PMC

List EO, Sackmann-Sala L, Berryman DE, Funk K, Kelder B, Gosney ES, Okada S, Ding J, Cruz-Topete D, Kopchick JJ. Endocrine parameters and phenotypes of the growth hormone receptor gene disrupted (GHR-/-) mouse. Endocrine Reviews. 2011;32:356–386. doi: 10.1210/er.2010-0009. PubMed DOI PMC

Liu Z, Chen O, Wall JBJ, Zheng M, Zhou Y, Wang L, Ruth Vaseghi H, Qian L, Liu J. Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic vector. Scientific Reports. 2017;7:1–9. doi: 10.1038/s41598-017-02460-2. PubMed DOI PMC

Liu Y, Lin H. Genetic analysis of the reproductive axis in fish using genome-editing nucleases. Science Bulletin. 2017;62:302–308. doi: 10.1016/j.scib.2017.01.002. PubMed DOI

Loffredo FS, Steinhauser ML, Jay SM, Gannon J, Pancoast JR, Yalamanchi P, Sinha M, Dall’Osso C, Khong D, Shadrach JL, Miller CM, Singer BS, Stewart A, Psychogios N, Gerszten RE, Hartigan AJ, Kim M-J, Serwold T, Wagers AJ, Lee RT. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell. 2013;153:828–839. doi: 10.1016/j.cell.2013.04.015. PubMed DOI PMC

Longenecker K, Langston R. The Jungle Histology Atlas of Gonad Stages in Coral-Reef Fishes. Honolulu: HI Bish. Museum; 2016.

Maklakov AA, Chapman T. Evolution of ageing as a tangle of trade-offs: energy versus function. Proceedings. Biological Sciences. 2019;286:20191604. doi: 10.1098/rspb.2019.1604. PubMed DOI PMC

Moses E, Harel I. A Scalable Platform for Functional Interrogation of Peptide Hormones in Fish. bioRxiv. 2023 doi: 10.1101/2023.01.19.524675. PubMed DOI PMC

Mylonas CC, Fostier A, Zanuy S. Broodstock management and hormonal manipulations of fish reproduction. General and Comparative Endocrinology. 2010;165:516–534. doi: 10.1016/j.ygcen.2009.03.007. PubMed DOI

Nathan E, Monovich A, Tirosh-Finkel L, Harrelson Z, Rousso T, Rinon A, Harel I, Evans SM, Tzahor E. The contribution of Islet1-expressing splanchnic mesoderm cells to distinct branchiomeric muscles reveals significant heterogeneity in head muscle development. Development. 2008;135:647–657. doi: 10.1242/dev.007989. PubMed DOI PMC

Okamura A, Horie N, Mikawa N, Yamada Y, Tsukamoto K. Recent advances in artificial production of glass eels for conservation of anguillid eel populations. Ecology of Freshwater Fish. 2014;23:95–110. doi: 10.1111/eff.12086. DOI

Rao NM, Rambabu KM, Rao SH. Electroporation Protocols. Springer; 2008. Electroporation of adult Zebrafish; pp. 289–298. PubMed

Rowland JE, Kerr LM, White M, Noakes PG, Waters MJ. Heterozygote effects in mice with partial truncations in the growth hormone receptor cytoplasmic domain: assessment of growth parameters and phenotype. Endocrinology. 2005;146:5278–5286. doi: 10.1210/en.2005-0939. PubMed DOI

Rozenberg I, Atlan T, Franek R, Moses E, Oron-Gottesman A, Chrzanowski H, Harel I. Exploring Life-Long Tissue Homeostasis through Lineage Tracing and Cell Transplantation. bioRxiv. 2023a doi: 10.1101/2023.05.01.538839. DOI

Rozenberg I, Moses E, Harel I. CRISPR–Cas9 Genome editing in Nothobranchius furzeri for Gene Knockout and Knock-In. Cold Spring Harbor Protocols. 2023b;2023:prot107742. doi: 10.1101/pdb.prot107742. PubMed DOI

Salpeter SJ, Khalaileh A, Weinberg-Corem N, Ziv O, Glaser B, Dor Y. Systemic regulation of the age-related decline of pancreatic β-cell replication. Diabetes. 2013;62:2843–2848. doi: 10.2337/db13-0160. PubMed DOI PMC

Sinha M, Jang YC, Oh J, Khong D, Wu EY, Manohar R, Miller C, Regalado SG, Loffredo FS, Pancoast JR, Hirshman MF, Lebowitz J, Shadrach JL, Cerletti M, Kim MJ, Serwold T, Goodyear LJ, Rosner B, Lee RT, Wagers AJ. Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science. 2014;344:649–652. doi: 10.1126/science.1251152. PubMed DOI PMC

Slanchev K, Stebler J, de la Cueva-Méndez G, Raz E. Development without germ cells: the role of the germ line in zebrafish sex differentiation. PNAS. 2005;102:4074–4079. doi: 10.1073/pnas.0407475102. PubMed DOI PMC

Song J, Lu Y, Cheng X, Shi C, Lou Q, Jin X, He J, Zhai G, Yin Z. Functions of the thyroid-stimulating hormone on key developmental features revealed in a series of zebrafish dyshormonogenesis models. Cells. 2021;10:1984. doi: 10.3390/cells10081984. PubMed DOI PMC

Taranger GL, Carrillo M, Schulz RW, Fontaine P, Zanuy S, Felip A, Weltzien F-A, Dufour S, Karlsen O, Norberg B, Andersson E, Hansen T. Control of puberty in farmed fish. General and Comparative Endocrinology. 2010;165:483–515. doi: 10.1016/j.ygcen.2009.05.004. PubMed DOI

Taylor HS, Pal L, Sell E. Speroff’s Clinical Gynecologic Endocrinology and Infertility. Lippincott Williams & Wilkins; 2019.

Terova G, Rimoldi S, Bernardini G, Saroglia M. Inhibition of myostatin gene expression in skeletal muscle of fish by in vivo electrically mediated dsRNA and shRNAi delivery. Molecular Biotechnology. 2013;54:673–684. doi: 10.1007/s12033-012-9609-5. PubMed DOI

Theis S, Patel K, Valasek P, Otto A, Pu Q, Harel I, Tzahor E, Tajbakhsh S, Christ B, Huang R. The occipital lateral plate mesoderm is a novel source for vertebrate neck musculature. Development. 2010;137:2961–2971. doi: 10.1242/dev.049726. PubMed DOI

Thummel R, Bailey TJ, Hyde DR. In vivo electroporation of morpholinos into the adult zebrafish retina. Journal of Visualized Experiments. 2011;01:e3603. doi: 10.3791/3603. PubMed DOI PMC

Tsujino K, Narumi R, Masumoto K, Susaki EA, Shinohara Y, Abe T, Iigo M, Wada A, Nagano M, Shigeyoshi Y, Ueda HR. Establishment of TSH β real-time monitoring system in mammalian photoperiodism. Genes to Cells. 2013;18:575–588. doi: 10.1111/gtc.12063. PubMed DOI PMC

Valenzano DR, Benayoun BA, Singh PP, Zhang E, Etter PD, Hu C-K, Clément-Ziza M, Willemsen D, Cui R, Harel I, Machado BE, Yee M-C, Sharp SC, Bustamante CD, Beyer A, Johnson EA, Brunet A. The african turquoise killifish genome provides insights into evolution and genetic architecture of lifespan. Cell. 2015;163:1539–1554. doi: 10.1016/j.cell.2015.11.008. PubMed DOI PMC

Van Keymeulen A, Mascre G, Youseff KK, Harel I, Michaux C, De Geest N, Szpalski C, Achouri Y, Bloch W, Hassan BA, Blanpain C. Epidermal progenitors give rise to Merkel cells during embryonic development and adult homeostasis. The Journal of Cell Biology. 2009;187:91–100. doi: 10.1083/jcb.200907080. PubMed DOI PMC

Villeda SA, Luo J, Mosher KI, Zou B, Britschgi M, Bieri G, Stan TM, Fainberg N, Ding Z, Eggel A, Lucin KM, Czirr E, Park J-S, Couillard-Després S, Aigner L, Li G, Peskind ER, Kaye JA, Quinn JF, Galasko DR, Xie XS, Rando TA, Wyss-Coray T. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature. 2011;477:90–94. doi: 10.1038/nature10357. PubMed DOI PMC

Villeda SA, Plambeck KE, Middeldorp J, Castellano JM, Mosher KI, Luo J, Smith LK, Bieri G, Lin K, Berdnik D, Wabl R, Udeochu J, Wheatley EG, Zou B, Simmons DA, Xie XS, Longo FM, Wyss-Coray T. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nature Medicine. 2014;20:659–663. doi: 10.1038/nm.3569. PubMed DOI PMC

Vrtílek M, Žák J, Pšenička M, Reichard M. Extremely rapid maturation of a wild African annual fish. Current Biology. 2018;28:R822–R824. doi: 10.1016/j.cub.2018.06.031. PubMed DOI

West MC, Campbell LJ, Willoughby JJ, Jensen AM. Two types of transgenic lines for doxycycline-inducible, cell-specific gene expression in zebrafish ultraviolet cone photoreceptors. Gene Expression Patterns. 2014;14:96–104. doi: 10.1016/j.gep.2014.01.002. PubMed DOI PMC

Zaczek D, Hammond J, Suen L, Wandji S, Service D, Bartke A, Chandrashekar V, Coschigano K, Kopchick J. Impact of growth hormone resistance on female reproductive function: new insights from growth hormone receptor knockout mice. Biology of Reproduction. 2002;67:1115–1124. doi: 10.1095/biolreprod67.4.1115. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace