• This record comes from PubMed

Environmental filtering, not dispersal history, explains global patterns of phylogenetic turnover in seed plants at deep evolutionary timescales

. 2025 Feb ; 9 (2) : 314-324. [epub] 20241129

Language English Country Great Britain, England Media print-electronic

Document type Journal Article

Grant support
DFG FZT 118, 202548816 Deutsche Forschungsgemeinschaft (German Research Foundation)
152112243 Deutsche Forschungsgemeinschaft (German Research Foundation)
447332176 Deutsche Forschungsgemeinschaft (German Research Foundation)
264740629 Deutsche Forschungsgemeinschaft (German Research Foundation)
I 5825-B Austrian Science Fund (Fonds zur Förderung der Wissenschaftlichen Forschung)
NSERC RGPIN-2019-05937 Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada (Conseil de Recherches en Sciences Naturelles et en Génie du Canada)
RES0039935 University of Alberta (UAlberta)

Links

PubMed 39613945
DOI 10.1038/s41559-024-02599-y
PII: 10.1038/s41559-024-02599-y
Knihovny.cz E-resources

Environmental filtering and dispersal history limit plant distributions and affect biogeographical patterns, but how their relative importance varies across evolutionary timescales is unresolved. Phylogenetic beta diversity quantifies dissimilarity in evolutionary relatedness among assemblages and might help resolve the ecological and biogeographical mechanisms structuring biodiversity. Here, we examined the effects of environmental dissimilarity and geographical distance on phylogenetic and taxonomic turnover for ~270,000 seed plant species globally and across evolutionary timescales. We calculated past and present dispersal barriers using palaeogeographical reconstructions and calculated geographical linear and least-cost distances, accounting for dispersal over water, mountains or areas with unsuitable climates. Environmental dissimilarity and geographical distance jointly explained most of the deviance in taxonomic (up to 86.4%) and phylogenetic turnover (65.6%). While environmental dissimilarity consistently showed strongly positive effects, the effect of geographical distance on phylogenetic turnover was less pronounced further back in evolutionary time. Past physiogeographical barriers explained a relatively low amount of the variation across all timescales, with a slight peak at intermediate timescales (20-50 Myr BP). Our results suggest that while old lineages have generally dispersed widely, the imprint of environmental filtering on range expansion persists, providing insights into biogeographical and evolutionary processes underlying global biodiversity patterns.

See more in PubMed

Pianka, E. R. Latitudinal gradients in species diversity: a review of concepts. Am. Nat. 100, 33–46 (1966). DOI

Cai, L. et al. Global models and predictions of plant diversity based on advanced machine learning techniques. New Phytol. 237, 1432–1445 (2023). PubMed DOI

Mittelbach, G. G. et al. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol. Lett. 10, 315–331 (2007). PubMed DOI

Anderson, M. J. et al. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist: roadmap for beta diversity. Ecol. Lett. 14, 19–28 (2011). PubMed DOI

König, C., Weigelt, P. & Kreft, H. Dissecting global turnover in vascular plants: global turnover in vascular plants. Glob. Ecol. Biogeogr. 26, 228–242 (2017). DOI

Graham, C. H. & Fine, P. V. A. Phylogenetic beta diversity: linking ecological and evolutionary processes across space in time. Ecol. Lett. 11, 1265–1277 (2008). PubMed DOI

Mazel, F. et al. Global patterns of β‐diversity along the phylogenetic time‐scale: the role of climate and plate tectonics. Glob. Ecol. Biogeogr. 26, 1211–1221 (2017). DOI

Liu, Y. et al. An updated floristic map of the world. Nat. Commun. 14, 2990 (2023). PubMed DOI PMC

Tuomisto, H. A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography 33, 2–22 (2010). DOI

Whittaker, R. H. Vegetation of the Great Smoky Mountains. Ecol. Monogr. 26, 1–80 (1956). DOI

Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015). DOI

Holt, B. G. et al. An update of Wallace’s zoogeographic regions of the world. Science 339, 74–78 (2013). PubMed DOI

Rodrigues, J. F. M. & Diniz-Filho, J. A. F. Dispersal is more important than climate in structuring turtle communities across different biogeographical realms. J. Biogeogr. 44, 2109–2120 (2017). DOI

Daru, B. H., Elliott, T. L., Park, D. S. & Davies, T. J. Understanding the processes underpinning patterns of phylogenetic regionalization. Trends Ecol. Evol. 32, 845–860 (2017). PubMed DOI

Linder, H. P., Antonelli, A., Humphreys, A. M., Pirie, M. D. & Wüest, R. O. What determines biogeographical ranges? Historical wanderings and ecological constraints in the danthonioid grasses. J. Biogeogr. 40, 821–834 (2013). DOI

Eiserhardt, W. L., Svenning, J.-C., Baker, W. J., Couvreur, T. L. P. & Balslev, H. Dispersal and niche evolution jointly shape the geographic turnover of phylogenetic clades across continents. Sci. Rep. 3, 1164 (2013). PubMed DOI PMC

Duarte, L. D. S. et al. Climate effects on amphibian distributions depend on phylogenetic resolution and the biogeographical history of taxa: historical and climatic correlates of amphibian distributions. Glob. Ecol. Biogeogr. 23, 213–222 (2014). DOI

Paul, J. R., Morton, C., Taylor, C. M. & Tonsor, S. J. Evolutionary time for dispersal limits the extent but not the occupancy of species’ potential ranges in the tropical plant genus Psychotria (Rubiaceae). Am. Nat. 173, 188–199 (2009). PubMed DOI

Ficetola, G. F., Mazel, F. & Thuiller, W. Global determinants of zoogeographical boundaries. Nat. Ecol. Evol. 1, 0089 (2017). DOI

Condamine, F. L., Sperling, F. A. H., Wahlberg, N., Rasplus, J.-Y. & Kergoat, G. J. What causes latitudinal gradients in species diversity? Evolutionary processes and ecological constraints on swallowtail biodiversity: phylogeny and latitudinal diversity gradient. Ecol. Lett. 15, 267–277 (2012). PubMed DOI

Vermeij, G. J. When biotas meet: understanding biotic interchange. Science 253, 1099–1104 (1991). PubMed DOI

Nekola, J. C. & White, P. S. The distance decay of similarity in biogeography and ecology. J. Biogeogr. 26, 867–878 (1999). DOI

Jürgens, N. Floristic biodiversity and history of African arid regions. Biodivers. Conserv. 6, 495–514 (1997). DOI

Garcillán, P. P. & Ezcurra, E. Biogeographic regions and β‐diversity of woody dryland legumes in the Baja California peninsula. J. Veg. Sci. 14, 859–868 (2003). DOI

Matthews, K. J. et al. Global plate boundary evolution and kinematics since the late Paleozoic. Glob. Planet. Change 146, 226–250 (2016). DOI

Leprieur, F. et al. Quantifying phylogenetic beta diversity: distinguishing between ‘true’ turnover of lineages and phylogenetic diversity gradients. PLoS ONE 7, e42760 (2012). PubMed DOI PMC

Weigelt, P., König, C. & Kreft, H. GIFT—A global inventory of floras and traits for macroecology and biogeography. J. Biogeogr. 47, 16–43 (2020). DOI

Govaerts, R., Nic Lughadha, E., Black, N., Turner, R. & Paton, A. The world checklist of vascular plants, a continuously updated resource for exploring global plant diversity. Sci. Data 8, 215 (2021). PubMed DOI PMC

Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018). PubMed DOI

Legendre, P. & De Cáceres, M. Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecol. Lett. 16, 951–963 (2013). PubMed DOI

Cai, L. et al. Climatic stability and geological history shape global centers of neo- and paleoendemism in seed plants. Proc. Natl Acad. Sci. USA 120, e2300981120 (2023). PubMed DOI PMC

Ferrier, S., Manion, G., Elith, J. & Richardson, K. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Divers. Distrib. 13, 252–264 (2007). DOI

Fitzpatrick, M. C. et al. Environmental and historical imprints on beta diversity: insights from variation in rates of species turnover along gradients. Proc. R. Soc. B 280, 20131201 (2013). PubMed DOI PMC

Currie, D. J. et al. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol. Lett. 7, 1121–1134 (2004). DOI

Wiens, J. J. & Graham, C. H. Niche conservatism: integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539 (2005). DOI

Nathan, R. Long-distance dispersal of plants. Science 313, 786–788 (2006). PubMed DOI

Szövényi, P., Terracciano, S., Ricca, M., Giordano, S. & Shaw, A. J. Recent divergence, intercontinental dispersal and shared polymorphism are shaping the genetic structure of amphi-Atlantic peatmoss populations. Mol. Ecol. 17, 5364–5377 (2008). PubMed DOI

Arakaki, M. et al. Contemporaneous and recent radiations of the world’s major succulent plant lineages. Proc. Natl Acad. Sci. USA 108, 8379–8384 (2011). PubMed DOI

Hardy, O. J., Couteron, P., Munoz, F., Ramesh, B. R. & Pélissier, R. Phylogenetic turnover in tropical tree communities: impact of environmental filtering, biogeography and mesoclimatic niche conservatism: phylogenetic turnover in tropical trees. Glob. Ecol. Biogeogr. 21, 1007–1016 (2012). DOI

Burns, J. H. & Strauss, S. Y. More closely related species are more ecologically similar in an experimental test. Proc. Natl Acad. Sci. USA 108, 5302–5307 (2011). PubMed DOI PMC

Donoghue, M. J. A phylogenetic perspective on the distribution of plant diversity. Proc. Natl Acad. Sci. USA 105, 11549–11555 (2008). PubMed DOI PMC

Tomlinson, P. B. The uniqueness of palms. Bot. J. Linn. Soc. 151, 5–14 (2006). DOI

Janzen, D. H. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249 (1967). DOI

Raven, P. H. & Axelrod, D. I. Angiosperm biogeography and past continental movements. Ann. Mo. Bot. Gard. 61, 539 (1974). DOI

Pellissier, L., Heine, C., Rosauer, D. F. & Albouy, C. Are global hotspots of endemic richness shaped by plate tectonics? Biol. J. Linn. Soc. 123, 247–261 (2018). DOI

Taberlet, P., Fumagalli, L., Wust‐Saucy, A. & Cosson, J. Comparative phylogeography and postglacial colonization routes in Europe. Mol. Ecol. 7, 453–464 (1998). PubMed DOI

Qian, H. & Ricklefs, R. E. Large-scale processes and the Asian bias in species diversity of temperate plants. Nature 407, 180–182 (2000). PubMed DOI

Svenning, J.-C. Deterministic Plio-Pleistocene extinctions in the European cool-temperate tree flora: deterministic Plio-Pleistocene extinctions. Ecol. Lett. 6, 646–653 (2003). DOI

Matzke, N. J. Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Syst. Biol. 63, 951–970 (2014). PubMed DOI

Hagen, O., Skeels, A., Onstein, R. E., Jetz, W. & Pellissier, L. Earth history events shaped the evolution of uneven biodiversity across tropical moist forests. Proc. Natl Acad. Sci. USA 118, e2026347118 (2021). PubMed DOI PMC

Skeels, A. et al. Paleoenvironments shaped the exchange of terrestrial vertebrates across Wallace’s Line. Science 381, 86–92 (2023). PubMed DOI

Denelle, P., Weigelt, P. & Kreft, H. GIFT —An R package to access the global inventory of floras and traits. Methods Ecol. Evol. 14, 2738–2748 (2023). DOI

Majeský, L., Krahulec, F. & Vašut, R. J. How apomictic taxa are treated in current taxonomy: a review. Taxon 66, 1017–1040 (2017). DOI

Richards, A. J. Apomixis in flowering plants: an overview. Philos. Trans. R. Soc. Lond. B. 358, 1085–1093 (2003). DOI

Hojsgaard, D., Klatt, S., Baier, R., Carman, J. G. & Hörandl, E. Taxonomy and biogeography of apomixis in angiosperms and associated biodiversity characteristics. Crit. Rev. Plant Sci. 33, 414–427 (2014). PubMed DOI

Pearse, W. D. et al. pez: phylogenetics for the environmental sciences. Bioinformatics 31, 2888–2890 (2015). PubMed DOI

Swenson, N. G. Phylogenetic resolution and quantifying the phylogenetic diversity and dispersion of communities. PLoS ONE 4, e4390 (2009). PubMed DOI PMC

Qian, H. & Jin, Y. Are phylogenies resolved at the genus level appropriate for studies on phylogenetic structure of species assemblages? Plant Divers. 43, 255–263 (2021). PubMed DOI

Baselga, A. Partitioning the turnover and nestedness components of beta diversity: partitioning beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010). DOI

Legendre, P. Interpreting the replacement and richness difference components of beta diversity: replacement and richness difference components. Glob. Ecol. Biogeogr. 23, 1324–1334 (2014). DOI

Gower, J. C. & Legendre, P. Metric and Euclidean properties of dissimilarity coefficients. J. Classif. 3, 5–48 (1986). DOI

Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data 4, 170122 (2017). PubMed DOI PMC

Zomer, R. J., Xu, J. & Trabucco, A. Version 3 of the global aridity index and potential evapotranspiration database. Sci. Data 9, 409 (2022). PubMed DOI PMC

Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017). PubMed DOI PMC

Danielson, J. J. & Gesch, D. B. Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010) (USGS, 2011); https://doi.org/10.3133/ofr20111073

Stein, A., Gerstner, K. & Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 17, 866–880 (2014). PubMed DOI

Karger, D. N., Nobis, M. P., Normand, S., Graham, C. H. & Zimmermann, N. E. CHELSA-TraCE21k – high-resolution (1 km) downscaled transient temperature and precipitation data since the Last Glacial Maximum. Clim. Past 19, 439–456 (2023).

Brown, J. L., Hill, D. J., Dolan, A. M., Carnaval, A. C. & Haywood, A. M. PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Sci. Data 5, 180254 (2018).

Barnes, R. & Sahr, K. dggridR: Discrete global grids for R. Zenodo https://doi.org/10.5281/zenodo.1322866 (2017).

Seton, M. et al. Global continental and ocean basin reconstructions since 200 Ma. Earth Sci. Rev. 113, 212–270 (2012). DOI

Müller, R. D. et al. Ocean basin evolution and global-scale plate reorganization events since Pangea breakup. Annu. Rev. Earth Planet. Sci. 44, 107–138 (2016). DOI

Boyden, J. A. et al. in Geoinformatics: Cyberinfrastructure for the Solid Earth Sciences (eds Keller, G. R. & Baru, C.) 95–114 (Cambridge Univ. Press, 2011) .

Williams, S. E., Müller, R. D., Landgrebe, T. C. W. & Whittaker, J. M. An open-source software environment for visualizing and refining plate tectonic reconstructions using high-resolution geological and geophysical data sets. GSA Today https://doi.org/10.1130/GSATG139A.1 (2012).

McNulty, K. Handbook of Graphs and Networks in People Analytics: With Examples in R and Python (Chapman and Hall/CRC, 2022).

Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJ. Complex Syst. 1695, 1–9 (2006).

Scotese, C. R. & Wright, N. PALEOMAP Paleodigital Elevation Models (PaleoDEMS) for the Phanerozoic (EarthByte, 2018); www.earthbyte.org/webdav/ftp/Data_Collections/Scotese_Wright_2018_PaleoDEM/Scotese_Wright2018_PALEOMAP_PaleoDEMs.pdf

Mokany, K., Ware, C., Woolley, S. N. C., Ferrier, S. & Fitzpatrick, M. C. A working guide to harnessing generalized dissimilarity modelling for biodiversity analysis and conservation assessment. Glob. Ecol. Biogeogr. 31, 802–821 (2022). DOI

Fitzpatrick, M., Mokany, K., Manion, G., Nieto-Lugilde, D. & Ferrier, S. gdm: Generalized dissimilarity modeling. R package version 1.5.0-3 (2022).

Borcard, D., Legendre, P. & Drapeau, P. Partialling out the spatial component of ecological variation. Ecology 73, 1045–1055 (1992). DOI

Cai, L. et al. Environmental filtering, not dispersal history, explains global patterns of phylogenetic turnover in seed plants at deep evolutionary timescales. Figshare https://doi.org/10.6084/m9.figshare.25416598 (2024).

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...