Environmental filtering, not dispersal history, explains global patterns of phylogenetic turnover in seed plants at deep evolutionary timescales
Language English Country Great Britain, England Media print-electronic
Document type Journal Article
Grant support
DFG FZT 118, 202548816
Deutsche Forschungsgemeinschaft (German Research Foundation)
152112243
Deutsche Forschungsgemeinschaft (German Research Foundation)
447332176
Deutsche Forschungsgemeinschaft (German Research Foundation)
264740629
Deutsche Forschungsgemeinschaft (German Research Foundation)
I 5825-B
Austrian Science Fund (Fonds zur Förderung der Wissenschaftlichen Forschung)
NSERC RGPIN-2019-05937
Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada (Conseil de Recherches en Sciences Naturelles et en Génie du Canada)
RES0039935
University of Alberta (UAlberta)
PubMed
39613945
DOI
10.1038/s41559-024-02599-y
PII: 10.1038/s41559-024-02599-y
Knihovny.cz E-resources
- MeSH
- Biodiversity * MeSH
- Biological Evolution * MeSH
- Plant Dispersal * MeSH
- Phylogeny * MeSH
- Phylogeography MeSH
- Embryophyta * genetics physiology MeSH
- Environment * MeSH
- Publication type
- Journal Article MeSH
Environmental filtering and dispersal history limit plant distributions and affect biogeographical patterns, but how their relative importance varies across evolutionary timescales is unresolved. Phylogenetic beta diversity quantifies dissimilarity in evolutionary relatedness among assemblages and might help resolve the ecological and biogeographical mechanisms structuring biodiversity. Here, we examined the effects of environmental dissimilarity and geographical distance on phylogenetic and taxonomic turnover for ~270,000 seed plant species globally and across evolutionary timescales. We calculated past and present dispersal barriers using palaeogeographical reconstructions and calculated geographical linear and least-cost distances, accounting for dispersal over water, mountains or areas with unsuitable climates. Environmental dissimilarity and geographical distance jointly explained most of the deviance in taxonomic (up to 86.4%) and phylogenetic turnover (65.6%). While environmental dissimilarity consistently showed strongly positive effects, the effect of geographical distance on phylogenetic turnover was less pronounced further back in evolutionary time. Past physiogeographical barriers explained a relatively low amount of the variation across all timescales, with a slight peak at intermediate timescales (20-50 Myr BP). Our results suggest that while old lineages have generally dispersed widely, the imprint of environmental filtering on range expansion persists, providing insights into biogeographical and evolutionary processes underlying global biodiversity patterns.
Biodiversity Macroecology and Biogeography University of Göttingen Göttingen Germany
Campus Institute Data Science Göttingen Germany
Centre of Biodiversity and Sustainable Land Use University of Göttingen Göttingen Germany
Data Observatory Foundation Santiago Chile
Department of Biological Sciences University of Alberta Edmonton Alberta Canada
Department of Ecology Faculty of Science Charles University Prague Czech Republic
Division of Bioinvasions Global Change and Macroecology University Vienna Vienna Austria
Ecology Department of Biology University of Konstanz Konstanz Germany
GEMA Center for Genomics Ecology and Environment Universidad Mayor Santiago Chile
German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany
Naturalis Biodiversity Center Leiden the Netherlands
School of Biological Sciences University of Canterbury Christchurch New Zealand
See more in PubMed
Pianka, E. R. Latitudinal gradients in species diversity: a review of concepts. Am. Nat. 100, 33–46 (1966). DOI
Cai, L. et al. Global models and predictions of plant diversity based on advanced machine learning techniques. New Phytol. 237, 1432–1445 (2023). PubMed DOI
Mittelbach, G. G. et al. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol. Lett. 10, 315–331 (2007). PubMed DOI
Anderson, M. J. et al. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist: roadmap for beta diversity. Ecol. Lett. 14, 19–28 (2011). PubMed DOI
König, C., Weigelt, P. & Kreft, H. Dissecting global turnover in vascular plants: global turnover in vascular plants. Glob. Ecol. Biogeogr. 26, 228–242 (2017). DOI
Graham, C. H. & Fine, P. V. A. Phylogenetic beta diversity: linking ecological and evolutionary processes across space in time. Ecol. Lett. 11, 1265–1277 (2008). PubMed DOI
Mazel, F. et al. Global patterns of β‐diversity along the phylogenetic time‐scale: the role of climate and plate tectonics. Glob. Ecol. Biogeogr. 26, 1211–1221 (2017). DOI
Liu, Y. et al. An updated floristic map of the world. Nat. Commun. 14, 2990 (2023). PubMed DOI PMC
Tuomisto, H. A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography 33, 2–22 (2010). DOI
Whittaker, R. H. Vegetation of the Great Smoky Mountains. Ecol. Monogr. 26, 1–80 (1956). DOI
Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015). DOI
Holt, B. G. et al. An update of Wallace’s zoogeographic regions of the world. Science 339, 74–78 (2013). PubMed DOI
Rodrigues, J. F. M. & Diniz-Filho, J. A. F. Dispersal is more important than climate in structuring turtle communities across different biogeographical realms. J. Biogeogr. 44, 2109–2120 (2017). DOI
Daru, B. H., Elliott, T. L., Park, D. S. & Davies, T. J. Understanding the processes underpinning patterns of phylogenetic regionalization. Trends Ecol. Evol. 32, 845–860 (2017). PubMed DOI
Linder, H. P., Antonelli, A., Humphreys, A. M., Pirie, M. D. & Wüest, R. O. What determines biogeographical ranges? Historical wanderings and ecological constraints in the danthonioid grasses. J. Biogeogr. 40, 821–834 (2013). DOI
Eiserhardt, W. L., Svenning, J.-C., Baker, W. J., Couvreur, T. L. P. & Balslev, H. Dispersal and niche evolution jointly shape the geographic turnover of phylogenetic clades across continents. Sci. Rep. 3, 1164 (2013). PubMed DOI PMC
Duarte, L. D. S. et al. Climate effects on amphibian distributions depend on phylogenetic resolution and the biogeographical history of taxa: historical and climatic correlates of amphibian distributions. Glob. Ecol. Biogeogr. 23, 213–222 (2014). DOI
Paul, J. R., Morton, C., Taylor, C. M. & Tonsor, S. J. Evolutionary time for dispersal limits the extent but not the occupancy of species’ potential ranges in the tropical plant genus Psychotria (Rubiaceae). Am. Nat. 173, 188–199 (2009). PubMed DOI
Ficetola, G. F., Mazel, F. & Thuiller, W. Global determinants of zoogeographical boundaries. Nat. Ecol. Evol. 1, 0089 (2017). DOI
Condamine, F. L., Sperling, F. A. H., Wahlberg, N., Rasplus, J.-Y. & Kergoat, G. J. What causes latitudinal gradients in species diversity? Evolutionary processes and ecological constraints on swallowtail biodiversity: phylogeny and latitudinal diversity gradient. Ecol. Lett. 15, 267–277 (2012). PubMed DOI
Vermeij, G. J. When biotas meet: understanding biotic interchange. Science 253, 1099–1104 (1991). PubMed DOI
Nekola, J. C. & White, P. S. The distance decay of similarity in biogeography and ecology. J. Biogeogr. 26, 867–878 (1999). DOI
Jürgens, N. Floristic biodiversity and history of African arid regions. Biodivers. Conserv. 6, 495–514 (1997). DOI
Garcillán, P. P. & Ezcurra, E. Biogeographic regions and β‐diversity of woody dryland legumes in the Baja California peninsula. J. Veg. Sci. 14, 859–868 (2003). DOI
Matthews, K. J. et al. Global plate boundary evolution and kinematics since the late Paleozoic. Glob. Planet. Change 146, 226–250 (2016). DOI
Leprieur, F. et al. Quantifying phylogenetic beta diversity: distinguishing between ‘true’ turnover of lineages and phylogenetic diversity gradients. PLoS ONE 7, e42760 (2012). PubMed DOI PMC
Weigelt, P., König, C. & Kreft, H. GIFT—A global inventory of floras and traits for macroecology and biogeography. J. Biogeogr. 47, 16–43 (2020). DOI
Govaerts, R., Nic Lughadha, E., Black, N., Turner, R. & Paton, A. The world checklist of vascular plants, a continuously updated resource for exploring global plant diversity. Sci. Data 8, 215 (2021). PubMed DOI PMC
Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018). PubMed DOI
Legendre, P. & De Cáceres, M. Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecol. Lett. 16, 951–963 (2013). PubMed DOI
Cai, L. et al. Climatic stability and geological history shape global centers of neo- and paleoendemism in seed plants. Proc. Natl Acad. Sci. USA 120, e2300981120 (2023). PubMed DOI PMC
Ferrier, S., Manion, G., Elith, J. & Richardson, K. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Divers. Distrib. 13, 252–264 (2007). DOI
Fitzpatrick, M. C. et al. Environmental and historical imprints on beta diversity: insights from variation in rates of species turnover along gradients. Proc. R. Soc. B 280, 20131201 (2013). PubMed DOI PMC
Currie, D. J. et al. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol. Lett. 7, 1121–1134 (2004). DOI
Wiens, J. J. & Graham, C. H. Niche conservatism: integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539 (2005). DOI
Nathan, R. Long-distance dispersal of plants. Science 313, 786–788 (2006). PubMed DOI
Szövényi, P., Terracciano, S., Ricca, M., Giordano, S. & Shaw, A. J. Recent divergence, intercontinental dispersal and shared polymorphism are shaping the genetic structure of amphi-Atlantic peatmoss populations. Mol. Ecol. 17, 5364–5377 (2008). PubMed DOI
Arakaki, M. et al. Contemporaneous and recent radiations of the world’s major succulent plant lineages. Proc. Natl Acad. Sci. USA 108, 8379–8384 (2011). PubMed DOI
Hardy, O. J., Couteron, P., Munoz, F., Ramesh, B. R. & Pélissier, R. Phylogenetic turnover in tropical tree communities: impact of environmental filtering, biogeography and mesoclimatic niche conservatism: phylogenetic turnover in tropical trees. Glob. Ecol. Biogeogr. 21, 1007–1016 (2012). DOI
Burns, J. H. & Strauss, S. Y. More closely related species are more ecologically similar in an experimental test. Proc. Natl Acad. Sci. USA 108, 5302–5307 (2011). PubMed DOI PMC
Donoghue, M. J. A phylogenetic perspective on the distribution of plant diversity. Proc. Natl Acad. Sci. USA 105, 11549–11555 (2008). PubMed DOI PMC
Tomlinson, P. B. The uniqueness of palms. Bot. J. Linn. Soc. 151, 5–14 (2006). DOI
Janzen, D. H. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249 (1967). DOI
Raven, P. H. & Axelrod, D. I. Angiosperm biogeography and past continental movements. Ann. Mo. Bot. Gard. 61, 539 (1974). DOI
Pellissier, L., Heine, C., Rosauer, D. F. & Albouy, C. Are global hotspots of endemic richness shaped by plate tectonics? Biol. J. Linn. Soc. 123, 247–261 (2018). DOI
Taberlet, P., Fumagalli, L., Wust‐Saucy, A. & Cosson, J. Comparative phylogeography and postglacial colonization routes in Europe. Mol. Ecol. 7, 453–464 (1998). PubMed DOI
Qian, H. & Ricklefs, R. E. Large-scale processes and the Asian bias in species diversity of temperate plants. Nature 407, 180–182 (2000). PubMed DOI
Svenning, J.-C. Deterministic Plio-Pleistocene extinctions in the European cool-temperate tree flora: deterministic Plio-Pleistocene extinctions. Ecol. Lett. 6, 646–653 (2003). DOI
Matzke, N. J. Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Syst. Biol. 63, 951–970 (2014). PubMed DOI
Hagen, O., Skeels, A., Onstein, R. E., Jetz, W. & Pellissier, L. Earth history events shaped the evolution of uneven biodiversity across tropical moist forests. Proc. Natl Acad. Sci. USA 118, e2026347118 (2021). PubMed DOI PMC
Skeels, A. et al. Paleoenvironments shaped the exchange of terrestrial vertebrates across Wallace’s Line. Science 381, 86–92 (2023). PubMed DOI
Denelle, P., Weigelt, P. & Kreft, H. GIFT —An R package to access the global inventory of floras and traits. Methods Ecol. Evol. 14, 2738–2748 (2023). DOI
Majeský, L., Krahulec, F. & Vašut, R. J. How apomictic taxa are treated in current taxonomy: a review. Taxon 66, 1017–1040 (2017). DOI
Richards, A. J. Apomixis in flowering plants: an overview. Philos. Trans. R. Soc. Lond. B. 358, 1085–1093 (2003). DOI
Hojsgaard, D., Klatt, S., Baier, R., Carman, J. G. & Hörandl, E. Taxonomy and biogeography of apomixis in angiosperms and associated biodiversity characteristics. Crit. Rev. Plant Sci. 33, 414–427 (2014). PubMed DOI
Pearse, W. D. et al. pez: phylogenetics for the environmental sciences. Bioinformatics 31, 2888–2890 (2015). PubMed DOI
Swenson, N. G. Phylogenetic resolution and quantifying the phylogenetic diversity and dispersion of communities. PLoS ONE 4, e4390 (2009). PubMed DOI PMC
Qian, H. & Jin, Y. Are phylogenies resolved at the genus level appropriate for studies on phylogenetic structure of species assemblages? Plant Divers. 43, 255–263 (2021). PubMed DOI
Baselga, A. Partitioning the turnover and nestedness components of beta diversity: partitioning beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010). DOI
Legendre, P. Interpreting the replacement and richness difference components of beta diversity: replacement and richness difference components. Glob. Ecol. Biogeogr. 23, 1324–1334 (2014). DOI
Gower, J. C. & Legendre, P. Metric and Euclidean properties of dissimilarity coefficients. J. Classif. 3, 5–48 (1986). DOI
Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data 4, 170122 (2017). PubMed DOI PMC
Zomer, R. J., Xu, J. & Trabucco, A. Version 3 of the global aridity index and potential evapotranspiration database. Sci. Data 9, 409 (2022). PubMed DOI PMC
Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017). PubMed DOI PMC
Danielson, J. J. & Gesch, D. B. Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010) (USGS, 2011); https://doi.org/10.3133/ofr20111073
Stein, A., Gerstner, K. & Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 17, 866–880 (2014). PubMed DOI
Karger, D. N., Nobis, M. P., Normand, S., Graham, C. H. & Zimmermann, N. E. CHELSA-TraCE21k – high-resolution (1 km) downscaled transient temperature and precipitation data since the Last Glacial Maximum. Clim. Past 19, 439–456 (2023).
Brown, J. L., Hill, D. J., Dolan, A. M., Carnaval, A. C. & Haywood, A. M. PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Sci. Data 5, 180254 (2018).
Barnes, R. & Sahr, K. dggridR: Discrete global grids for R. Zenodo https://doi.org/10.5281/zenodo.1322866 (2017).
Seton, M. et al. Global continental and ocean basin reconstructions since 200 Ma. Earth Sci. Rev. 113, 212–270 (2012). DOI
Müller, R. D. et al. Ocean basin evolution and global-scale plate reorganization events since Pangea breakup. Annu. Rev. Earth Planet. Sci. 44, 107–138 (2016). DOI
Boyden, J. A. et al. in Geoinformatics: Cyberinfrastructure for the Solid Earth Sciences (eds Keller, G. R. & Baru, C.) 95–114 (Cambridge Univ. Press, 2011) .
Williams, S. E., Müller, R. D., Landgrebe, T. C. W. & Whittaker, J. M. An open-source software environment for visualizing and refining plate tectonic reconstructions using high-resolution geological and geophysical data sets. GSA Today https://doi.org/10.1130/GSATG139A.1 (2012).
McNulty, K. Handbook of Graphs and Networks in People Analytics: With Examples in R and Python (Chapman and Hall/CRC, 2022).
Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJ. Complex Syst. 1695, 1–9 (2006).
Scotese, C. R. & Wright, N. PALEOMAP Paleodigital Elevation Models (PaleoDEMS) for the Phanerozoic (EarthByte, 2018); www.earthbyte.org/webdav/ftp/Data_Collections/Scotese_Wright_2018_PaleoDEM/Scotese_Wright2018_PALEOMAP_PaleoDEMs.pdf
Mokany, K., Ware, C., Woolley, S. N. C., Ferrier, S. & Fitzpatrick, M. C. A working guide to harnessing generalized dissimilarity modelling for biodiversity analysis and conservation assessment. Glob. Ecol. Biogeogr. 31, 802–821 (2022). DOI
Fitzpatrick, M., Mokany, K., Manion, G., Nieto-Lugilde, D. & Ferrier, S. gdm: Generalized dissimilarity modeling. R package version 1.5.0-3 (2022).
Borcard, D., Legendre, P. & Drapeau, P. Partialling out the spatial component of ecological variation. Ecology 73, 1045–1055 (1992). DOI
Cai, L. et al. Environmental filtering, not dispersal history, explains global patterns of phylogenetic turnover in seed plants at deep evolutionary timescales. Figshare https://doi.org/10.6084/m9.figshare.25416598 (2024).