Global models and predictions of plant diversity based on advanced machine learning techniques
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36375492
DOI
10.1111/nph.18533
Knihovny.cz E-zdroje
- Klíčová slova
- biodiversity, diversity-environment models, phylogenetic diversity, species richness, vascular plants,
- MeSH
- biodiverzita * MeSH
- ekosystém * MeSH
- fylogeneze MeSH
- lidé MeSH
- lineární modely MeSH
- podnebí MeSH
- rostliny MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Despite the paramount role of plant diversity for ecosystem functioning, biogeochemical cycles, and human welfare, knowledge of its global distribution is still incomplete, hampering basic research and biodiversity conservation. Here, we used machine learning (random forests, extreme gradient boosting, and neural networks) and conventional statistical methods (generalized linear models and generalized additive models) to test environment-related hypotheses of broad-scale vascular plant diversity gradients and to model and predict species richness and phylogenetic richness worldwide. To this end, we used 830 regional plant inventories including c. 300 000 species and predictors of past and present environmental conditions. Machine learning showed a superior performance, explaining up to 80.9% of species richness and 83.3% of phylogenetic richness, illustrating the great potential of such techniques for disentangling complex and interacting associations between the environment and plant diversity. Current climate and environmental heterogeneity emerged as the primary drivers, while past environmental conditions left only small but detectable imprints on plant diversity. Finally, we combined predictions from multiple modeling techniques (ensemble predictions) to reveal global patterns and centers of plant diversity at multiple resolutions down to 7774 km2 . Our predictive maps provide accurate estimates of global plant diversity available at grain sizes relevant for conservation and macroecology.
Biodiversity Macroecology and Biogeography University of Göttingen 37077 Göttingen Germany
Bioinvasions Global Change Macroecology Group University of Vienna 1030 Vienna Austria
Biota of North America Program Chapel Hill NC 27516 USA
Campus Institut Data Science 37077 Göttingen Germany
Centre of Biodiversity and Sustainable Land Use University of Göttingen 37077 Göttingen Germany
Department of Ecology Faculty of Science Charles University 12844 Prague Czech Republic
Ecology Department of Biology University of Konstanz 78464 Konstanz Germany
German Centre for Integrative Biodiversity Research Halle Jena Leipzig 04103 Leipzig Germany
Naturalis Biodiversity Center 2333 CR Leiden the Netherlands
PAS Botanical Garden 02 973 Warszawa Poland
School of Biological Sciences University of Canterbury 8140 Christchurch New Zealand
School of Natural Sciences Macquarie University 2109 Sydney NSW Australia
Swiss Federal Institute for Forest Snow and Landscape Research WSL 8903 Birmensdorf Switzerland
Zobrazit více v PubMed
Antonelli A, Kissling WD, Flantua SGA, Bermúdez MA, Mulch A, Muellner-Riehl AN, Kreft H, Linder HP, Badgley C, Fjeldså J et al. 2018. Geological and climatic influences on mountain biodiversity. Nature Geoscience 11: 718-725.
Araújo MB, New M. 2007. Ensemble forecasting of species distributions. Trends in Ecology & Evolution 22: 42-47.
Barnes R, Sahr K. 2017. dggridR: discrete global grids for R. doi: 10.5281/zenodo.1322866.
Barthlott W, Mutke J, Rafiqpoor D, Kier G, Kreft H. 2005. Global centers of vascular plant diversity. Nova Acta Leopoldina NF 92: 61-83.
Bennett KD, Tzedakis PC, Willis KJ. 1991. Quaternary refugia of north European trees. Journal of Biogeography 18: 103-115.
Bergstra J, Bengio Y. 2012. Random search for hyper-parameter optimization. Journal of Machine Learning Research 13: 281-305.
Bjorholm S, Svenning J-C, Skov F, Balslev H. 2005. Environmental and spatial controls of palm (Arecaceae) species richness across the Americas. Global Ecology and Biogeography 14: 423-429.
Boyle B, Hopkins N, Lu Z, Raygoza Garay JA, Mozzherin D, Rees T, Matasci N, Narro ML, Piel WH, Mckay SJ et al. 2013. The taxonomic name resolution service: an online tool for automated standardization of plant names. BMC Bioinformatics 14: 16.
Brown JH. 2014. Why are there so many species in the tropics? Journal of Biogeography 41: 8-22.
Brown JH, Kodric-Brown A. 1977. Turnover rates in insular biogeography: effect of immigration on extinction. Ecology 58: 445-449.
Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA et al. 2012. Biodiversity loss and its impact on humanity. Nature 486: 59-67.
Chen T, Guestrin C. 2016. xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, CA, USA: ACM, 785-794.
Connor EF, McCoy ED. 1979. The statistics and biology of the species-area relationship. The American Naturalist 113: 791-833.
Couvreur TLP, Dauby G, Blach-Overgaard A, Deblauwe V, Dessein S, Droissart V, Hardy OJ, Harris DJ, Janssens SB, Ley AC et al. 2021. Tectonics, climate and the diversification of the tropical African terrestrial flora and fauna. Biological Reviews 96: 16-51.
Crisci C, Ghattas B, Perera G. 2012. A review of supervised machine learning algorithms and their applications to ecological data. Ecological Modelling 240: 113-122.
Currie DJ, Mittelbach GG, Cornell HV, Field R, Guegan J-F, Hawkins BA, Kaufman DM, Kerr JT, Oberdorff T, O'Brien E et al. 2004. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecology Letters 7: 1121-1134.
Danielson JJ, Gesch DB. 2011. Global multi-resolution terrain elevation data 2010 (GMTED2010). [WWW document] URL http://pubs.er.usgs.gov/publication/ofr20111073 [accessed 27 February 2018].
Dormann C, McPherson JM, Araújo MB, Bivand R, Bolliger J, Carl G, Davies RG, Hirzel A, Jetz W, Daniel Kissling W et al. 2007. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30: 609-628.
Dowsett H, Dolan A, Rowley D, Moucha R, Forte AM, Mitrovica JX, Pound M, Salzmann U, Robinson M, Chandler M et al. 2016. The PRISM4 (mid-Piacenzian) paleoenvironmental reconstruction. Climate of the Past 12: 1519-1538.
Dynesius M, Jansson R. 2000. Evolutionary consequences of changes in species' geographical distributions driven by Milankovitch climate oscillations. Proceedings of the National Academy of Sciences, USA 97: 9115-9120.
Eiserhardt WL, Borchsenius F, Sandel B, Kissling WD, Svenning J-C. 2015. Late Cenozoic climate and the phylogenetic structure of regional conifer floras world-wide. Global Ecology and Biogeography 24: 1136-1148.
Elith J, Kearney M, Phillips S. 2010. The art of modelling range-shifting species. Methods in Ecology and Evolution 1: 330-342.
Endress PK. 2001. The flowers in extant basal angiosperms and inferences on ancestral flowers. International Journal of Plant Sciences 162: 1111-1140.
Enquist BJ, Condit R, Peet RK, Schildhauer M, Thiers BM. 2016. Cyberinfrastructure for an integrated botanical information network to investigate the ecological impacts of global climate change on plant biodiversity. PeerJ Preprints. doi: 10.7287/peerj.preprints.2615v2.
Faith DP. 1992. Conservation evaluation and phylogenetic diversity. Biological Conservation 61: 1-10.
Fine PVA. 2015. Ecological and evolutionary drivers of geographic variation in species diversity. Annual Review of Ecology, Evolution, and Systematics 46: 369-392.
Forest F, Grenyer R, Rouget M, Davies TJ, Cowling RM, Faith DP, Balmford A, Manning JC, Procheş Ş, van der Bank M et al. 2007. Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445: 757-760.
Francis AP, Currie DJ. 2003. A globally consistent richness-climate relationship for angiosperms. The American Naturalist 161: 523-536.
GBIF. 2020. GBIF: the global biodiversity information facility (year) what is GBIF? [WWW document] URL https://www.gbif.org/what-is-gbif [accessed 13 January 2020].
Genuer R, Poggi J-M, Tuleau-Malot C. 2015. vsurf: an R package for variable selection using random forests. The R Journal 7: 19-33.
Gillooly JF, Allen AP. 2007. Linking global patterns in biodiversity to evolutionary dynamics using metabolic theory. Ecology 88: 1890-1894.
Govaerts R, Nic Lughadha E, Black N, Turner R, Paton A. 2021. The World Checklist of Vascular Plants, a continuously updated resource for exploring global plant diversity. Scientific Data 8: 215.
Günther F, Fritsch S. 2010. neuralnet: training of neural networks. The R Journal 2: 30-38.
Hagen O, Skeels A, Onstein RE, Jetz W, Pellissier L. 2021. Earth history events shaped the evolution of uneven biodiversity across tropical moist forests. Proceedings of the National Academy of Sciences, USA 118: e2026347118.
Hawkins BA, Field R, Cornell HV, Currie DJ, Guégan J-F, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O'Brien EM et al. 2003. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84: 3105-3117.
Hengl T, Mendes de Jesus J, Heuvelink GBM, Ruiperez Gonzalez M, Kilibarda M, Blagotić A, Shangguan W, Wright MN, Geng X, Bauer-Marschallinger B et al. 2017. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12: e0169748.
Henrot A-J, François L, Favre E, Butzin M, Ouberdous M, Munhoven G. 2010. Effects of CO2, continental distribution, topography and vegetation changes on the climate at the Middle Miocene: a model study. Climate of the Past 6: 675-694.
Isbell F, Calcagno V, Hector A, Connolly J, Harpole WS, Reich PB, Scherer-Lorenzen M, Schmid B, Tilman D, van Ruijven J et al. 2011. High plant diversity is needed to maintain ecosystem services. Nature 477: 199-202.
James G, Witten D, Hastie T, Tibshirani R. 2013. An introduction to statistical learning: with applications in r. New York, NY, USA: Springer.
Jin Y, Qian H. 2019. V.PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography 42: 1353-1359.
Karger DN, Conrad O, Böhner J, Kawohl T, Kreft H, Soria-Auza RW, Zimmermann NE, Linder HP, Kessler M. 2017. Climatologies at high resolution for the earth's land surface areas. Scientific Data 4: 170122.
Keil P, Chase JM. 2019. Global patterns and drivers of tree diversity integrated across a continuum of spatial grains. Nature Ecology & Evolution 3: 390-399.
Kisel Y, Barraclough TG. 2010. Speciation has a spatial scale that depends on levels of gene flow. The American Naturalist 175: 316-334.
Kissling WD, Baker WJ, Balslev H, Barfod AS, Borchsenius F, Dransfield J, Govaerts R, Svenning J-C. 2012. Quaternary and pre-Quaternary historical legacies in the global distribution of a major tropical plant lineage. Global Ecology and Biogeography 21: 909-921.
Kissling WD, Carl G. 2008. Spatial autocorrelation and the selection of simultaneous autoregressive models. Global Ecology and Biogeography 17: 59-71.
König C, Weigelt P, Schrader J, Taylor A, Kattge J, Kreft H. 2019. Biodiversity data integration-the significance of data resolution and domain. PLoS Biology 17: e3000183.
Kreft H, Jetz W. 2007. Global patterns and determinants of vascular plant diversity. Proceedings of the National Academy of Sciences, USA 104: 5925-5930.
Kuhn M. 2008. Building predictive models in R using the caret package. Journal of Statistical Software 28: 1-26.
Li L. 2019. Geographically weighted machine learning and downscaling for high-resolution spatiotemporal estimations of wind speed. Remote Sensing 11: 1378.
Marmion M, Parviainen M, Luoto M, Heikkinen RK, Thuiller W. 2009. Evaluation of consensus methods in predictive species distribution modelling. Diversity and Distributions 15: 59-69.
Meyer C, Weigelt P, Kreft H. 2016. Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecology Letters 19: 992-1006.
Mittelbach GG, Schemske DW, Cornell HV, Allen AP, Brown JM, Bush MB, Harrison SP, Hurlbert AH, Knowlton N, Lessios HA et al. 2007. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecology Letters 10: 315-331.
Morrissey MB, Ruxton GD. 2018. Multiple regression is not multiple regressions: the meaning of multiple regression and the non-problem of collinearity. Philosophy, Theory, and Practice in Biology 10. doi: 10.3998/ptpbio.16039257.0010.003.
Mutke J, Barthlott W. 2005. Patterns of vascular plant diversity at continental to global scales. Biologiske Skrifter 55: 521-538.
Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853-858.
Olden JD, Lawler JJ, Poff NL. 2008. Machine learning methods without tears: a primer for ecologists. The Quarterly Review of Biology 83: 171-193.
Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D'amico JA, Itoua I, Strand HE, Morrison JC et al. 2001. Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51: 933-938.
Ouborg NJ. 1993. Isolation, population size and extinction: the classical and metapopulation approaches applied to vascular plants along the dutch rhine-system. Oikos 66: 298-308.
Owens HL, Guralnick R. 2019. climateStability: an R package to estimate climate stability from time-slice climatologies. Biodiversity Informatics 14: 8-13.
Park DS, Willis CG, Xi Z, Kartesz JT, Davis CC, Worthington S. 2020. Machine learning predicts large scale declines in native plant phylogenetic diversity. New Phytologist 227: 1544-1556.
Phillips HRP, Guerra CA, Bartz MLC, Briones MJI, Brown G, Crowther TW, Ferlian O, Gongalsky KB, van den Hoogen J, Krebs J et al. 2019. Global distribution of earthworm diversity. Science 366: 480-485.
Ploton P, Mortier F, Réjou-Méchain M, Barbier N, Picard N, Rossi V, Dormann C, Cornu G, Viennois G, Bayol N et al. 2020. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nature Communications 11: 4540.
Qian H, Jin Y. 2021. Are phylogenies resolved at the genus level appropriate for studies on phylogenetic structure of species assemblages? Plant Diversity 43: 255-263.
Qian H, Ricklefs RE. 2004. Taxon richness and climate in angiosperms: is there a globally consistent relationship that precludes region effects? The American Naturalist 163: 773-779.
Qian H, Zhang J, Jiang M-C. 2022. Global patterns of fern species diversity: an evaluation of fern data in GBIF. Plant Diversity 44: 135-140.
Rahbek C, Borregaard MK, Antonelli A, Colwell RK, Holt BG, Nogues-Bravo D, Rasmussen CMØ, Richardson K, Rosing MT, Whittaker RJ et al. 2019. Building mountain biodiversity: geological and evolutionary processes. Science 365: 1114-1119.
Ray N, Adams JM. 2001. A GIS-based vegetation map of the world at the last glacial maximum (25,000-15,000 BP). Internet Archaeology 11. doi: 10.11141/ia.11.2.
Ricklefs RE, He F. 2016. Region effects influence local tree species diversity. Proceedings of the National Academy of Sciences, USA 113: 674-679.
Rohde K. 1992. Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65: 514-527.
Rosenzweig ML. 2003. Reconciliation ecology and the future of species diversity. Oryx 37: 194-205.
Sabatini FM, Jiménez-Alfaro B, Jandt U, Chytrý M, Field R, Kessler M, Lenoir J, Schrodt F, Wiser SK, Arfin Khan MAS et al. 2022. Global patterns of vascular plant alpha diversity. Nature Communications 13: 4683.
Sabatini FM, Lenoir J, Hattab T, Arnst EA, Chytrý M, Dengler J, Ruffray PD, Hennekens SM, Jandt U, Jansen F et al. 2021. sPlotOpen-an environmentally balanced, open-access, global dataset of vegetation plots. Global Ecology and Biogeography 30: 1740-1764.
Sandel B, Arge L, Dalsgaard B, Davies RG, Gaston KJ, Sutherland WJ, Svenning J-C. 2011. The influence of late quaternary climate-change velocity on species endemism. Science 334: 660-664.
Sandel B, Weigelt P, Kreft H, Keppel G, van der Sande MT, Levin S, Smith S, Craven D, Knight TM. 2020. Current climate, isolation and history drive global patterns of tree phylogenetic endemism. Global Ecology and Biogeography 29: 4-15.
Smith SA, Brown JW. 2018. Constructing a broadly inclusive seed plant phylogeny. American Journal of Botany 105: 302-314.
Stein A, Gerstner K, Kreft H. 2014. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters 17: 866-880.
Svenning J-C, Eiserhardt WL, Normand S, Ordonez A, Sandel B. 2015. The influence of paleoclimate on present-day patterns in biodiversity and ecosystems. Annual Review of Ecology, Evolution, and Systematics 46: 551-572.
Takhtajan AL. 1986. Floristic regions of the world. Oakland, CA, USA: University of California Press.
Terborgh J. 1973. On the notion of favorableness in plant ecology. The American Naturalist 107: 481-501.
Testolin R, Attorre F, Borchardt P, Brand RF, Bruelheide H, Chytrý M, De Sanctis M, Dolezal J, Finckh M, Haider S et al. 2021. Global patterns and drivers of alpine plant species richness. Global Ecology and Biogeography 30: 1218-1231.
Thorne RF. 1999. Eastern Asia as a living museum for archaic angiosperms and other seed plants. Taiwania 44: 413-422.
Thuiller W, Lafourcade B, Engler R, Araújo MB. 2009. BIOMOD-a platform for ensemble forecasting of species distributions. Ecography 32: 369-373.
Tietje M, Antonelli A, Baker WJ, Govaerts R, Smith SA, Eiserhardt WL. 2022. Global variation in diversification rate and species richness are unlinked in plants. Proceedings of the National Academy of Sciences, USA 119: e2120662119.
Tilman D, Isbell F, Cowles JM. 2014. Biodiversity and ecosystem functioning. Annual Review of Ecology, Evolution, and Systematics 45: 471-493.
Tucker CM, Cadotte MW, Carvalho SB, Davies TJ, Ferrier S, Fritz SA, Grenyer R, Helmus MR, Jin LS, Mooers AO et al. 2017. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biological Reviews 92: 698-715.
Venables WN, Ripley BD. 2002. Modern applied statistics with s. New York, NY, USA: Springer.
Wadoux AMJ-C, Heuvelink GBM, de Bruin S, Brus DJ. 2021. Spatial cross-validation is not the right way to evaluate map accuracy. Ecological Modelling 457: 109692.
Weigelt P, König C, Kreft H. 2020. GIFT - a global inventory of floras and traits for macroecology and biogeography. Journal of Biogeography 47: 16-43.
Weigelt P, Kreft H. 2013. Quantifying island isolation-insights from global patterns of insular plant species richness. Ecography 36: 417-429.
Wood SN. 2006. Generalized additive models: an introduction with r. Boca Raton, FL, USA: Chapman & Hall/CRC.
Wright MN, Ziegler A. 2017. ranger: a fast implementation of random forests for high dimensional data in C++ and R. Journal of Statistical Software 77: 1-17.
Wulff EW. 1935. Versuch einer Einteilung der Vegetation der Erde in pflanzengeographische Gebiete auf Grund der Artenzahl. Repertorium Specierum Novarum Regni Vegetabilis 12: 57-83.
Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, FitzJohn RG, McGlinn DJ, O'Meara BC, Moles AT, Reich PB et al. 2014. Three keys to the radiation of angiosperms into freezing environments. Nature 506: 89-92.
Zhao M, Running SW. 2010. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329: 940-943.
Connecting the multiple dimensions of global soil fungal diversity
A latitudinal gradient in Darwin's naturalization conundrum at the global scale for flowering plants
Metabarcoding of soil environmental DNA to estimate plant diversity globally