Metabarcoding of soil environmental DNA to estimate plant diversity globally
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37143888
PubMed Central
PMC10151745
DOI
10.3389/fpls.2023.1106617
Knihovny.cz E-zdroje
- Klíčová slova
- TRNL, distribution, diversity, environmental DNA, molecular methods, plant, soil,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Traditional approaches to collecting large-scale biodiversity data pose huge logistical and technical challenges. We aimed to assess how a comparatively simple method based on sequencing environmental DNA (eDNA) characterises global variation in plant diversity and community composition compared with data derived from traditional plant inventory methods. METHODS: We sequenced a short fragment (P6 loop) of the chloroplast trnL intron from from 325 globally distributed soil samples and compared estimates of diversity and composition with those derived from traditional sources based on empirical (GBIF) or extrapolated plant distribution and diversity data. RESULTS: Large-scale plant diversity and community composition patterns revealed by sequencing eDNA were broadly in accordance with those derived from traditional sources. The success of the eDNA taxonomy assignment, and the overlap of taxon lists between eDNA and GBIF, was greatest at moderate to high latitudes of the northern hemisphere. On average, around half (mean: 51.5% SD 17.6) of local GBIF records were represented in eDNA databases at the species level, depending on the geographic region. DISCUSSION: eDNA trnL gene sequencing data accurately represent global patterns in plant diversity and composition and thus can provide a basis for large-scale vegetation studies. Important experimental considerations for plant eDNA studies include using a sampling volume and design to maximise the number of taxa detected and optimising the sequencing depth. However, increasing the coverage of reference sequence databases would yield the most significant improvements in the accuracy of taxonomic assignments made using the P6 loop of the trnL region.
Center of Mycology and Microbiology University of Tartu Tartu Estonia
Department of Biology Nakhon Phanom University Nakhon Phanom Thailand
Department of Botany University of Tartu Tartu Estonia
Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
Department of Geography and Environmental Studies Stellenbosch University Stellenbosch South Africa
Department of Natural Resource Sciences Thompson Rivers University Kamloops BC Canada
Department of Wildlife Management and Ecotourism University of Namibia Katima Mulilo Namibia
Ecologie et Dynamique des Systèmes Anthropisés Jules Verne University of Picardie Amiens France
Faculty of Science University of South Bohemia České Budějovice Czechia
Institute of Botany The Czech Academy of Sciences Třeboň Czechia
Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
Institute of Forestry and Engineering Estonian University of Life Sciences Tartu Estonia
Instituto de Biología Universidad Nacional Autónoma de México Ciudad de México Mexico
Zoology Department College of Science King Saud University Riyadh Saudi Arabia
Zobrazit více v PubMed
Banchi E., Ametrano C. G., Greco S., Stanković D., Muggia L., Pallavicini A. (2020). PLANiTS: a curated sequence reference dataset for plant ITS DNA metabarcoding. Database 2020. doi: 10.1093/database/baz155 PubMed DOI PMC
Barnes C. J., Nielsen I. B., Aagaard A., Ejrnæs R., Hansen A. J., Frøslev T. G. (2022). Metabarcoding of soil environmental DNA replicates plant community variation but not specificity. Environ. DNA 4 (4), 732–746. doi: 10.1002/edn3.287 DOI
Bell K. L., Loeffler V. M., Brosi B. J. (2017). An rbcL reference library to aid in the identification of plant species mixtures by DNA metabarcoding. Appl. Plant Sci. 5 (3), 1600110. doi: 10.3732/apps.1600110 PubMed DOI PMC
Bolger A. M., Lohse M., Usadel B. (2014). Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30 (15), 2114–2120. doi: 10.1093/bioinformatics/btu170 PubMed DOI PMC
Bousquin J. (2021). Discrete global grid systems as scalable geospatial frameworks for characterizing coastal environments. Environ. Model. Software 146, 105210. doi: 10.1016/j.envsoft.2021.105210 PubMed DOI PMC
Brummitt N., Araújo A. C., Harris T. (2021). Areas of plant diversity–what do we know? Plants People Planet 3 (1), 33–44. doi: 10.1002/ppp3.10110 DOI
Cai L., Kreft H., Taylor A., Denelle P., Schrader J., Essl F., et al. . (2022). Machine learning improves global models of plant diversity. bioRxiv. doi: 10.1101/2022.04.08.487610 PubMed DOI
Cai L., Kreft H., Taylor A., Denelle P., Schrader J., Essl F., et al. . (2023). Global models and predictions of plant diversity based on advanced machine learning techniques. New Phytologist. 237 (4), 1432–1445. doi: 10.1111/nph.18533 PubMed DOI
Calderón-Sanou I., Munkemuller T., Boyer F., Zinger L., Thuiller W. (2020). From environmental DNA sequences to ecological conclusions: how strong is the influence of methodological choices? J. Biogeogr. 47, 193–206. doi: 10.1111/jbi.13681 DOI
Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., et al. . (2009). BLAST+: architecture and applications. BMC Bioinf. 10 (1), 1–9. doi: 10.1186/1471-2105-10-421 PubMed DOI PMC
Carini P., Marsden P. J., Leff J. W., Morgan E. E., Strickland M. S., Fierer N. (2016). Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat. Microbiol. 2 (3), 16242. doi: 10.1038/nmicrobiol.2016.242 PubMed DOI
Cristescu M. E., Hebert P. D. N. (2018). Uses and misuses of environmental DNA in biodiversity science and conservation. Annual Review of Ecology, Evolution, and Systematics 49, 209–230. doi: 10.1146/annurev-ecolsys-110617-062306 DOI
Davison J., Vasar M., Sepp S. K., Oja J., Al-Quraishy S., Bueno C. G., et al. . (2022). Dominance, diversity, and niche breadth in arbuscular mycorrhizal fungal communities. Ecology 103 (9), e3761. doi: 10.1002/ecy.3761 PubMed DOI
Dutilleul P., Clifford P., Richardson S., Hemon D. (1993). Modifying the t test for assessing the correlation between two spatial processes. Biometrics 49, 305–314. doi: 10.2307/2532625 PubMed DOI
Edwards M. E., Alsos I. G., Yoccoz N., Coissac E., Goslar T., Gielly L., et al. . (2018). Metabarcoding of modern soil DNA gives a highly local vegetation signal in Svalbard tundra. Holocene 28 (12), 2006–2016. doi: 10.1177/0959683618798095 DOI
Foster N. R., van Dijk K.-j., Biffin E., Young J. M., Thomson V. A., Gillanders B. M., et al. . (2021). A multi-gene region targeted capture approach to detect plant DNA in environmental samples: a case study from coastal environments. Front. Ecol. Evol. 9. doi: 10.3389/fevo.2021.735744 DOI
Hiiesalu I., Klimešová J., Doležal J., Mudrák O., Götzenberger L., Horník J., et al. . (2021). Hidden below-ground plant diversity buffers against species loss during land-use change in species-rich grasslands. J. Vegetation Sci. 32 (1), e12971. doi: 10.1111/jvs.12971 DOI
Hiiesalu I., Öpik M., Metsis M., Lilje L., Davison J., Vasar M., et al. . (2012). Plant species richness belowground: higher richness and new patterns revealed by next-generation sequencing. Mol. Ecol. 21 (8), 2004–2016. doi: 10.1111/j.1365-294X.2011.05390.x PubMed DOI
Hiiesalu I., Pärtel M., Davison J., Gerhold P., Metsis M., Moora M., et al. . (2014). Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass. New Phytol. 203 (1), 233–244. doi: 10.1111/nph.12765 PubMed DOI
Karger D. N., Conrad O., Böhner J., Kawohl T., Kreft H., Soria-Auza R. W., et al. . (2017). Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4 (1), 1–20. doi: 10.1038/sdata.2017.122 PubMed DOI PMC
Keppel G., Craven D., Weigelt P., Smith S. A., van der Sande M. T., Sandel B., et al. . (2021). Synthesizing tree biodiversity data to understand global patterns and processes of vegetation. J. Vegetation Sci. 32, e13021. doi: 10.1111/jvs.13021 DOI
Kolter A., Gemeinholzer B. (2021). Plant DNA barcoding necessitates marker-specific efforts to establish more comprehensive reference databases. Genome 64 (3), 265–298. doi: 10.1139/gen-2019-0198 PubMed DOI
Kreft H., Jetz W. (2007). Global patterns and determinants of vascular plant diversity. Proc. Natl. Acad. Sci. United States America 104 (14), 5925–5930. doi: 10.1073/pnas.0608361104 PubMed DOI PMC
Leff J. W., Bardgett R. D., Wilkinson A., Jackson B. G., Pritchard W. J., De Long J. R., et al. . (2018). Predicting the structure of soil communities from plant community taxonomy, phylogeny, and traits. ISME J. 12 (7), 1794–1805. doi: 10.1038/s41396-018-0089-x PubMed DOI PMC
Magoč T., Salzberg S. L. (2011). FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963. doi: 10.1093/bioinformatics/btr507 PubMed DOI PMC
Mallott E. K., Garber P. A., Malhi R. S. (2018). trnL outperforms rbcL as a DNA metabarcoding marker when compared with the observed plant component of the diet of wild white-faced capuchins (Cebus capucinus, primates). PloS One 13 (6), e0199556. doi: 10.1371/journal.pone.0199556 PubMed DOI PMC
McMurdie P. J., Holmes S. (2014). Waste not, want not: why rarefying microbiome data is inadmissible. PloS Comput. Biol. 10 (4), e1003531. doi: 10.1371/journal.pcbi.1003531 PubMed DOI PMC
Mokany K., McCarthy J. K., Falster D. S., Gallagher R. V., Harwood T. D., Kooyman R., et al. . (2022). Patterns and drivers of plant diversity across Australia. Ecography 11, e06426. doi: 10.1111/ecog.06426 DOI
Oksanen J., Blanchet F. G., Kindt R., Legendre P., Minchin P. R., O’hara R. B., et al. . (2013). Package ‘vegan’. Community Ecol. Package version 2, 1–295.
Olson D. M., Dinerstein E., Wikramanayake E. D., Burgess N. D., Powell G. V. N., Underwood E. C., et al. . (2001). Terrestrial ecoregions of the world: a new map of life on earth. BioScience 51, 933–938. doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2 DOI
Rijal D. P., Heintzman P. D., Lammers Y., Yoccoz N. G., Lorberau K. E., Pitelkova I., et al. . (2021). Sedimentary ancient DNA shows terrestrial plant richness continuously increased over the Holocene in northern fennoscandia. Sci. Adv. 7 (31), eabf9557. doi: 10.1126/sciadv.abf9557 PubMed DOI PMC
Rognes T., Flouri T., Nichols B., Quince C., Mahé F. (2016). VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584. doi: 10.7717/peerj.2584 PubMed DOI PMC
Sabatini F. M., Jiménez-Alfaro B., Jandt U., Chytrý M., Field R., Kessler M., et al. . (2022). Global patterns of vascular plant alpha diversity. Nat. Commun. 13 (1), 1–16. doi: 10.1038/s41467-022-32063-z PubMed DOI PMC
Sepp S.-K., Davison J., Moora M., Neuenkamp L., Oja J., Roslin T., et al. . (2021). Woody encroachment in grassland elicits complex changes in the functional structure of above- and belowground biota. Ecosphere 12 (5), e03512. doi: 10.1002/ecs2.3512 DOI
Taberlet P., Coissac E., Pompanon F., Gielly L., Miquel C., Valentini A., et al. . (2007). Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res. 35 (3), e14. doi: 10.1093/nar/gkl938 PubMed DOI PMC
Taberlet P., Prud’Homme S. M., Campione E., Roy J., Miquel C., Shehzad W., et al. . (2012). Soil sampling and isolation of extracellular DNA from large amount of starting material suitable for metabarcoding studies. Mol. Ecol. 21 (8), 1816–1820. doi: 10.1111/j.1365-294X.2011.05317.x PubMed DOI
Tamme R., Pärtel M., Kõljalg U., Laanisto L., Liira J., Mander Ü., et al. . (2021). Global macroecology of nitrogen-fixing plants. Global Ecol. Biogeogr. 30 (2), 514–526. doi: 10.1111/geb.13236 DOI
Träger S., Öpik M., Vasar M., Wilson S. D. (2019). Belowground plant parts are crucial for comprehensively estimating total plant richness in herbaceous and woody habitats. Ecology 100 (2), e02575. doi: 10.1002/ecy.2575 PubMed DOI
Vallejos R., Osorio F., Bevilacqua M. (2020). Spatial relationships between two georeferenced variables: with applications in R (Berlin/Heidelberg, Germany: Springer Nature; ). doi: 10.1007/978-3-030-56681-4 DOI
Vasar M., Davison J., Neuenkamp L., Sepp S.-K., Young J. P. W., Moora M., et al. . (2021). User-friendly bioinformatics pipeline gDAT (graphical downstream analysis tool) for analysing rDNA sequences. Mol. Ecol. Resour. 21 (4), 1380–1392. doi: 10.1111/1755-0998.13340 PubMed DOI
Vasar M., Davison J., Sepp S.-K., Mucina L., Oja J., Al-Quraishy S., et al. . (2022). Global soil microbiomes: a new frontline of biome-ecology research. Global Ecol. Biogeogr. 31 (6), 1120–1132. doi: 10.1111/geb.13487 DOI
Wang Y., Pedersen M. W., Alsos I. G., De Sanctis B., Racimo F., Prohaska A., et al. . (2021). Late quaternary dynamics of Arctic biota from ancient environmental genomics. Nature 600 (7887), 86–92. doi: 10.1038/s41586-021-04016-x PubMed DOI PMC
Willerslev E., Davison J., Moora M., Zobel M., Coissac E., Edwards M. E., et al. . (2014). Fifty thousand years of Arctic vegetation and megafaunal diet. Nature 506 (7486), 47–51. doi: 10.1038/nature12921 PubMed DOI
Wood S. N. (2003). Thin plate regression splines. J. R. Stat. Society: Ser. B (Statistical Methodology) 65, 95–114. doi: 10.1111/1467-9868.00374 DOI
Yoccoz N. G., Brathen K. A., Gielly L., Haile J., Edwards M. E., Goslar T., et al. . (2012). DNA From soil mirrors plant taxonomic and growth form diversity. Mol. Ecol. 21 (15), 3647–3655. doi: 10.1111/j.1365-294X.2012.05545.x PubMed DOI