Global patterns of vascular plant alpha diversity
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36050293
PubMed Central
PMC9436951
DOI
10.1038/s41467-022-32063-z
PII: 10.1038/s41467-022-32063-z
Knihovny.cz E-zdroje
- MeSH
- biodiverzita * MeSH
- cévnaté rostliny * MeSH
- ekosystém MeSH
- rostliny MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Global patterns of regional (gamma) plant diversity are relatively well known, but whether these patterns hold for local communities, and the dependence on spatial grain, remain controversial. Using data on 170,272 georeferenced local plant assemblages, we created global maps of alpha diversity (local species richness) for vascular plants at three different spatial grains, for forests and non-forests. We show that alpha diversity is consistently high across grains in some regions (for example, Andean-Amazonian foothills), but regional 'scaling anomalies' (deviations from the positive correlation) exist elsewhere, particularly in Eurasian temperate forests with disproportionally higher fine-grained richness and many African tropical forests with disproportionally higher coarse-grained richness. The influence of different climatic, topographic and biogeographical variables on alpha diversity also varies across grains. Our multi-grain maps return a nuanced understanding of vascular plant biodiversity patterns that complements classic maps of biodiversity hotspots and will improve predictions of global change effects on biodiversity.
Botany Department Senckenberg Museum of Natural History Görlitz PO Box 300 154 02806 Görlitz Germany
CEFE Univ Montpellier CNRS EPHE IRD Montpellier France
Charles University Department of Botany Benátská 2 12801 Prague Czech Republic
Cirad UPR Forêts et Sociétés Yamoussoukro Côte d'Ivoire
College of Tropical Crops Hainan University Haikou 570228 China
Faculty of Environment UJEP Pasteurova 3632 15 400 96 Ústí nad Labem Czech Republic
INIBOMA Department of Ecology Pasaje Gutierrez 125 8400 Bariloche Argentina
Institute of Environmental Sciences Leiden University 2333 CC Leiden the Netherlands
Instituto de Ecología y Biodiversidad Las Palmeras 342 7750000 Santiago Chile
International Institute Zittau Technische Universität Dresden Markt 23 02763 Zittau Germany
Jardín Botánico de Missouri Oxapampa Bolognesi Mz E 6 Oxapampa Pasco Peru
Palmengarten Frankfurt Scientific Service Siesmayerstr 61 60323 Frankfurt Germany
Peking University College of Urban and Environmental Sciences Yiheyuan Rd 5 100871 Beijing China
Santa Clara University Department of Biology 500 El Camino Real 95053 Santa Clara CA USA
Sapienza University of Rome Department of Environmental Biology P le Aldo Moro 5 00185 Rome Italy
Sigur Nature Trust Chadapatti Mavinhalla PO Nilgiris 643223 Mavinhalla India
Smithsonian National Zoo and Conservation Biology Institute Washington DC USA
Transilvania University of Brasov Department of Silviculture Sirul Beethoven 1 500123 Brasov Romania
Universidad Nacional de San Antonio Abad del Cusco Av de la Cultura 733 Cusco Peru
Université de Montpellier UPR Forêts et Sociétés Montpellier France
Université Félix Houphouët Boigny Laboratoire de Botanique Campus de Cocody Abdijan Côte d'Ivoire
University of Göttingen Biodiversity Macroecology and Biogeography 37077 Göttingen Germany
University of Göttingen Centre of Biodiversity and Sustainable Land Use 37077 Göttingen Germany
University of Leeds School of Geography Woodhouse Lane LS2 9JT Leeds UK
University of North Carolina Department of Biology Campus Box 3280 27599 3280 Chapel HIll NC USA
University of Nottingham School of Geography University Park NG7 2RD Nottingham UK
University of Zurich Systematic and Evolutionary Botany Zollikerstrasse 107 8008 Zurich Switzerland
Zurich University of Applied Sciences Grüentalstr 14 8820 Wädenswil Switzerland
Zobrazit více v PubMed
Linder HP. Plant diversity and endemism in sub‐Saharan tropical Africa. J. Biogeogr. 2001;28:169–182. doi: 10.1046/j.1365-2699.2001.00527.x. DOI
Kier G, et al. Global patterns of plant diversity and floristic knowledge. J. Biogeogr. 2005;32:1107–1116. doi: 10.1111/j.1365-2699.2005.01272.x. DOI
Kreft H, Jetz W. Global patterns and determinants of vascular plant diversity. Proc. Nat. Acad. Sci. 2007;104:5925–5930. doi: 10.1073/pnas.0608361104. PubMed DOI PMC
Brummitt N, Araújo AC, Harris T. Areas of plant diversity—What do we know? Plants, People, Planet. 2020;3:33–44. doi: 10.1002/ppp3.10110. DOI
Gentry AH. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann. Mo. Bot. Gard. 1988;75:1–34. doi: 10.2307/2399464. DOI
Slik JF, et al. An estimate of the number of tropical tree species. Proc. Natl Acad. Sci. 2015;112:7472–7477. doi: 10.1073/pnas.1423147112. PubMed DOI PMC
Parmentier I, et al. The odd man out? Might climate explain the lower tree α‐diversity of African rain forests relative to Amazonian rain forests? J. Ecol. 2007;95:1058–1071. doi: 10.1111/j.1365-2745.2007.01273.x. DOI
Weigand A, et al. Global fern and lycophyte richness explained: How regional and local factors shape plot richness. J. Biogeogr. 2020;47:59–71. doi: 10.1111/jbi.13782. DOI
Keil P, Chase JM. Global patterns and drivers of tree diversity integrated across a continuum of spatial grains. Nat. Ecol. Evol. 2019;3:390–399. doi: 10.1038/s41559-019-0799-0. PubMed DOI
Lenoir J, et al. Cross-scale analysis of the region effect on vascular plant species diversity in southern and northern European mountain ranges. PLoS ONE. 2010;5:e15734. doi: 10.1371/journal.pone.0015734. PubMed DOI PMC
Chase JM, et al. Species richness change across spatial scales. Oikos. 2019;128:1079–1091. doi: 10.1111/oik.05968. DOI
Bruelheide H, Jiménez-Alfaro B, Jandt U, Sabatini FM. Deriving site-specific species pools from large databases. Ecography. 2020;43:1215–1228. doi: 10.1111/ecog.05172. DOI
Dengler J, et al. Species–area relationships in continuous vegetation: Evidence from Palaearctic grasslands. J. Biogeogr. 2020;47:72–86. doi: 10.1111/jbi.13697. DOI
Whittaker, R. J. & Fernández-Palacios, J. M. Island Biogeography: Ecology, Evolution, And Conservation (Oxford University Press, 2007).
Bruelheide H, et al. sPlot —a new tool for global vegetation analyses. J. Veg. Sci. 2019;30:161–186. doi: 10.1111/jvs.12710. DOI
Sabatini FM, et al. sPlotOpen—an environmentally balanced, open-access, global dataset of vegetation plots. Glob. Ecol. Biogeogr. 2021;30:1740–1764. doi: 10.1111/geb.13346. DOI
Ricklefs RE. Community diversity—relative roles of local and regional processes. Science. 1987;235:167–171. doi: 10.1126/science.235.4785.167. PubMed DOI
Crawley MJ, Harral JE. Scale dependence in plant biodiversity. Science. 2001;291:864–868. doi: 10.1126/science.291.5505.864. PubMed DOI
Antonelli A, et al. An engine for global plant diversity: highest evolutionary turnover and emigration in the American tropics. Front. Genet. 2015;6:130. doi: 10.3389/fgene.2015.00130. PubMed DOI PMC
Jiménez-Alfaro B, et al. History and environment shape species pools and community diversity in European beech forests. Nat. Ecol. Evol. 2018;2:483–490. doi: 10.1038/s41559-017-0462-6. PubMed DOI
Sabatini FM, Jiménez-Alfaro B, Burrascano S, Blasi C. Drivers of herb-layer species diversity in two unmanaged temperate forests in northern Spain. Community Ecol. 2014;15:147–157. doi: 10.1556/ComEc.15.2014.2.3. DOI
Bruelheide H, et al. Global trait–environment relationships of plant communities. Nat. Ecol. Evol. 2018;2:1906–1917. doi: 10.1038/s41559-018-0699-8. PubMed DOI
Pärtel M, Bennett JA, Zobel M. Macroecology of biodiversity: disentangling local and regional effects. N. Phytol. 2016;211:404–410. doi: 10.1111/nph.13943. PubMed DOI
Field R, et al. Spatial species‐richness gradients across scales: a meta‐analysis. J. Biogeogr. 2009;36:132–147. doi: 10.1111/j.1365-2699.2008.01963.x. DOI
Biurrun I, et al. Benchmarking plant diversity of Palaearctic grasslands and other open habitats. J. Veg. Sci. 2021;32:e13050. doi: 10.1111/jvs.13050. DOI
Da SS, et al. Plant biodiversity patterns along a climatic gradient and across protected areas in West Africa. Afr. J. Ecol. 2018;56:641–652. doi: 10.1111/aje.12517. DOI
Gerstner K, Dormann CF, Václavík T, Kreft H, Seppelt R. Accounting for geographical variation in species–area relationships improves the prediction of plant species richness at the global scale. J. Biogeogr. 2014;41:261–273. doi: 10.1111/jbi.12213. DOI
Myers JA, et al. Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly. Ecol. Lett. 2013;16:151–157. doi: 10.1111/ele.12021. PubMed DOI
Muñoz Mazón M, et al. Mechanisms of community assembly explaining beta-diversity patterns across biogeographic regions. J. Veg. Sci. 2021;32:e13032. doi: 10.1111/jvs.13032. DOI
Sabatini FM, Jiménez-Alfaro B, Burrascano S, Lora A, Chytrý M. Beta-diversity of central European forests decreases along an elevational gradient due to the variation in local community assembly processes. Ecography. 2018;41:1038–1048. doi: 10.1111/ecog.02809. DOI
Večeřa M, et al. Alpha diversity of vascular plants in European forests. J. Biogeogr. 2019;46:1919–1935. doi: 10.1111/jbi.13624. DOI
Wüest RO, et al. Macroecology in the age of Big Data—Where to go from here? J. Biogeogr. 2019;47:1–12. doi: 10.1111/jbi.13633. DOI
Valavi R, Elith J, Lahoz-Monfort JJ, Guillera-Arroita G. blockCV: an r package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models. Methods Ecol. Evol. 2019;10:225–232. doi: 10.1111/2041-210X.13107. DOI
Ploton P, et al. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nat. Commun. 2020;11:4540. doi: 10.1038/s41467-020-18321-y. PubMed DOI PMC
Belitz K, Stackelberg P. Evaluation of six methods for correcting bias in estimates from ensemble tree machine learning regression models. Environ. Model. Softw. 2021;139:105006. doi: 10.1016/j.envsoft.2021.105006. DOI
Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J. Biodiversity hotspots for conservation priorities. Nature. 2000;403:853. doi: 10.1038/35002501. PubMed DOI
Barthlott W, Mutke J, Rafiqpoor D, Kier G, Kreft H. Global centers of vascular plant diversity. Nova Acta Leopoldina NF. 2005;92:61–83.
Testolin R, et al. Global patterns and drivers of alpine plant species richness. Glob. Ecol. Biogeogr. 2021;30:1218–1231. doi: 10.1111/geb.13297. DOI
Wilson JB, Peet RK, Dengler J, Pärtel M. Plant species richness: the world records. J. Veg. Sci. 2012;23:796–802. doi: 10.1111/j.1654-1103.2012.01400.x. DOI
Chytrý M, et al. The most species-rich plant communities in the Czech Republic and Slovakia (with new world records) Preslia. 2015;87:217–278.
Whitmore TC, Peralta R, Brown K. Total species count in a Costa Rican tropical rain forest. J. Trop. Ecol. 1985;1:375–378. doi: 10.1017/S0266467400000481. DOI
Chytrý M, et al. High species richness in hemiboreal forests of the northern Russian Altai, southern Siberia. J. Veg. Sci. 2012;23:605–616. doi: 10.1111/j.1654-1103.2011.01383.x. DOI
Duivenvoorden J. Vascular plant species counts in the rain forests of the middle Caquetá area, Colombian Amazonia. Biodivers. Conserv. 1994;3:685–715. doi: 10.1007/BF00126860. DOI
Balslev, H., Valencia, R., Paz y Miño, G., Christensen, H. & Nielsen, I. in Forest Biodiversity in North, Central and South America and the Carribean: Research and Monitoring. Man and the Biosphere Series (eds. Dallmeier, F. & Comiskey, J. A.) (Unesco and The Parthenon Publishing Group, 1998).
Mendieta‐Leiva G, et al. EpIG‐DB: a database of vascular epiphyte assemblages in the Neotropics. J. Veg. Sci. 2020;31:518–528. doi: 10.1111/jvs.12867. DOI
Spicer ME, Mellor H, Carson WP. Seeing beyond the trees: a comparison of tropical and temperate plant growth forms and their vertical distribution. Ecology. 2020;101:e02974. doi: 10.1002/ecy.2974. PubMed DOI
Royo AA, Carson WP. The herb community of a tropical forest in central Panama: dynamics and impact of mammalian herbivores. Oecologia. 2005;145:66–75. doi: 10.1007/s00442-005-0079-3. PubMed DOI
Sosef MSM, et al. Exploring the floristic diversity of tropical Africa. BMC Biol. 2017;15:15. doi: 10.1186/s12915-017-0356-8. PubMed DOI PMC
Dwomoh FK, Wimberly MC. Fire regimes and forest resilience: alternative vegetation states in the West African tropics. Landsc. Ecol. 2017;32:1849–1865. doi: 10.1007/s10980-017-0553-4. DOI
Condit R, et al. Beta-diversity in tropical forest trees. Science. 2002;295:666–669. doi: 10.1126/science.1066854. PubMed DOI
Cao K, et al. Species packing and the latitudinal gradient in beta-diversity. Proc. R. Soc. B. 2021;288:20203045. doi: 10.1098/rspb.2020.3045. PubMed DOI PMC
Zhong Y, et al. Arbuscular mycorrhizal trees influence the latitudinal beta-diversity gradient of tree communities in forests worldwide. Nat. Commun. 2021;12:3137. doi: 10.1038/s41467-021-23236-3. PubMed DOI PMC
Graco-Roza C, et al. Distance decay 2.0—a global synthesis of taxonomic and functional turnover in ecological communities. Glob. Ecol. Biogeogr. 2022;31:1399–1421. doi: 10.1111/geb.13513. PubMed DOI PMC
Johnson DJ, Condit R, Hubbell SP, Comita LS. Abiotic niche partitioning and negative density dependence drive tree seedling survival in a tropical forest. Proc. R. Soc. B. 2017;284:20172210. doi: 10.1098/rspb.2017.2210. PubMed DOI PMC
Stevens GC. The latitudinal gradient in geographical range: how so many species coexist in the tropics. Am. Naturalist. 1989;133:240–256. doi: 10.1086/284913. DOI
Andermann T, et al. Estimating alpha, beta, and gamma diversity through deep learning. Front Plant Sci. 2022;13:839407. doi: 10.3389/fpls.2022.839407. PubMed DOI PMC
Cardoso D, et al. Amazon plant diversity revealed by a taxonomically verified species list. Proc. Nat. Acad. Sci. 2017;114:10695–10700. doi: 10.1073/pnas.1706756114. PubMed DOI PMC
Cayuela L, et al. Species distribution modeling in the tropics: problems, potentialities, and the role of biological data for effective species conservation. Trop. Conserv. Sci. 2009;2:319–352. doi: 10.1177/194008290900200304. DOI
Lenoir J, et al. Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe. Glob. Change Biol. 2013;19:1470–1481. doi: 10.1111/gcb.12129. PubMed DOI
Ellis EC, Antill EC, Kreft H. All is not loss: plant biodiversity in the Anthropocene. PLoS ONE. 2012;7:e30535. doi: 10.1371/journal.pone.0030535. PubMed DOI PMC
Kattge J, et al. TRY plant trait database-enhanced coverage and open access. Glob. Change Biol. 2020;26:119–188. doi: 10.1111/gcb.14904. PubMed DOI
Dengler J, et al. The Global Index of Vegetation-Plot Databases (GIVD): a new resource for vegetation science. J. Veg. Sci. 2011;22:582–597. doi: 10.1111/j.1654-1103.2011.01265.x. DOI
Lopez‐Gonzalez G, Lewis SL, Burkitt M, Phillips OL. ForestPlots.net: a web application and research tool to manage and analyse tropical forest plot data. J. Veg. Sci. 2011;22:610–613. doi: 10.1111/j.1654-1103.2011.01312.x. DOI
Chytrý M. Database of Masaryk University Vegetation Research in Siberia. Biodiver. Ecol. 2012;4:290. doi: 10.7809/b-e.00088. DOI
Schmidt M, et al. The West African Vegetation Database. Biodiv. Ecol. 2012;4:105–110. doi: 10.7809/b-e.00065. DOI
Muche G, Schmiedel U, Jürgens N. BIOTA Southern Africa Biodiversity Observatories Vegetation Database. Biodiver. Ecol. 2012;4:111–123. doi: 10.7809/b-e.00066. DOI
Revermann R, et al. Vegetation database of the Okavango Basin. Phytocoenologia. 2016;46:103–104. doi: 10.1127/phyto/2016/0103. DOI
N’Guessan AE, et al. Drivers of biomass recovery in a secondary forested landscape of West Africa. Ecol. Manag. 2019;433:325–331. doi: 10.1016/j.foreco.2018.11.021. DOI
Müller, J. Zur Vegetationsökologie der Savannenlandschaften im Sahel Burkina Fasos (Frankfurt-Main Universität, 2003).
Kearsley E, et al. Conventional tree height–diameter relationships significantly overestimate aboveground carbon stocks in the Central Congo Basin. Nat. Commun. 2013;4:2269. doi: 10.1038/ncomms3269. PubMed DOI
Djomo Nana E, et al. Relationship between Survival Rate of Avian Artificial Nests and Forest Vegetation Structure along a Tropical Altitudinal Gradient on Mount Cameroon. Biotropica. 2015;47:758–764. doi: 10.1111/btp.12262. DOI
Wana D, Beierkuhnlein C. Responses of plant functional types to environmental gradients in the south‐west Ethiopian highlands. J. Trop. Ecol. 2011;27:289–304. doi: 10.1017/S0266467410000799. DOI
Finckh M. Vegetation Database of Southern Morocco. Biodiver. Ecol. 2012;4:297. doi: 10.7809/b-e.00094. DOI
Strohbach B, Kangombe F. National Phytosociological Database of Namibia. Biodiver. Ecol. 2012;4:298–298. doi: 10.7809/b-e.00095. DOI
Samimi, C. Das Weidepotential im Gutu‐Distrikt (Zimbabwe)—Möglichkeiten und Grenzen der Modellierung unter Verwendung von Landsat TM‐5. Vol. 19 (2003).
Černý T, et al. Classification of Korean forests: patterns along geographic and environmental gradients. Appl. Veg. Sci. 2015;18:5–22. doi: 10.1111/avsc.12124. DOI
Nowak A, et al. Vegetation of Middle Asia: the project state of the art after ten years of survey and future perspectives. Phytocoenologia. 2017;47:395–400. doi: 10.1127/phyto/2017/0208. DOI
Liu H, Cui H, Pott R, Speier M. Vegetation of the woodland‐steppe ecotone in southeastern Inner Mongolia, China. J. Veg. Sci. 2000;11:525–532. doi: 10.2307/3246582. DOI
Wang Y, et al. Combined effects of livestock grazing and abiotic environment on vegetation and soils of grasslands across Tibet. Appl. Veg. Sci. 2017;20:327–339. doi: 10.1111/avsc.12312. DOI
Bruelheide H, et al. Community assembly during secondary forest succession in a Chinese subtropical forest. Ecol. Monogr. 2011;81:25–41. doi: 10.1890/09-2172.1. DOI
Cheng X-L, et al. Taxonomic and phylogenetic diversity of vascular plants at Ma’anling volcano urban park in tropical Haikou, China: Reponses to soil properties. PLoS ONE. 2018;13:e0198517. doi: 10.1371/journal.pone.0198517. PubMed DOI PMC
Hatim M. Vegetation Database of Sinai in Egypt. Biodiver. Ecol. 2012;4:303. doi: 10.7809/b-e.00099. DOI
Drescher J, et al. Ecological and socio-economic functions across tropical land use systems after rainforest conversion. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 2016;371:20150275. doi: 10.1098/rstb.2015.0275. PubMed DOI PMC
Dolezal J, Dvorsky M, Kopecky M. Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya. Sci. Rep. 2016;6:24881. doi: 10.1038/srep24881. PubMed DOI PMC
Borchardt P, Schickhoff U. Vegetation Database of South‐Western Kyrgyzstan—the walnut‐wildfruit forests and alpine pastures. Biodiver. Ecol. 2012;4:309. doi: 10.7809/b-e.00105. DOI
Wagner V. Eurosiberian meadows at their southern edge: patterns and phytogeography in the NW Tien Shan. J. Veg. Sci. 2009;20:199–208. doi: 10.1111/j.1654-1103.2009.01032.x. DOI
von Wehrden H, Wesche K, Miehe G. Plant communities of the southern Mongolian Gobi. Phytocoenologia. 2009;39:331–376. doi: 10.1127/0340-269X/2009/0039-0331. DOI
Chepinoga VV. Wetland Vegetation Database of Baikal Siberia (WETBS) Biodiver. Ecol. 2012;4:311. doi: 10.7809/b-e.00107. DOI
Korolyuk A, et al. Database of Siberian Vegetation (DSV) Biodiver. Ecol. 2012;4:312–312. doi: 10.7809/b-e.00108. DOI
El-Sheikh MA, et al. SaudiVeg ecoinformatics: aims, current status and perspectives. Saudi J. Biol. Sci. 2017;24:389–398. doi: 10.1016/j.sjbs.2016.02.012. PubMed DOI PMC
Vanselow KA. Eastern Pamirs—a vegetation‐plot database for the high mountain pastures of the Pamir Plateau (Tajikistan) Phytocoenologia. 2016;46:105. doi: 10.1127/phyto/2016/0122. DOI
De Sanctis M, Attorre F. Socotra Vegetation Database. Biodiver. Ecol. 2012;4:315. doi: 10.7809/b-e.00111. DOI
Chabbi, A. & Loescher, H. W. Terrestrial Ecosystem Research Infrastructures: Challenges and Opportunities (CRC Press, 2017).
Ibanez, T. et al. Structural and floristic diversity of mixed rainforest in New Caledonia: New data from the New Caledonian Plant Inventory and Permanent Plot Network (NC‐PIPPN). Appl. Veg. Sci.17, 386–397 (2014).
Wiser SK, Bellingham PJ, Burrows LE. Managing biodiversity information: development of New Zealand’s National Vegetation Survey databank. N. Z. J. Ecol. 2001;25:1–17.
Whitfeld TJS, et al. Species richness, forest structure, and functional diversity during succession in the New Guinea lowlands. Biotropica. 2014;46:538–548. doi: 10.1111/btp.12136. DOI
Dengler J, Rūsiņa S. Database dry grasslands in the Nordic and Baltic Region. Biodiver. Ecol. 2012;4:319–320. doi: 10.7809/b-e.00114. DOI
Biurrun I, García-Mijangos I, Campos JA, Herrera M, Loidi J. Vegetation-plot database of the University of the Basque Country (BIOVEG) Biodiver. Ecol. 2012;4:328. doi: 10.7809/b-e.00121. DOI
Vassilev K, Stevanović ZD, Cušterevska R, Bergmeier E, Apostolova I. Balkan Dry Grasslands Database. Biodiver. Ecol. 2012;4:330–330. doi: 10.7809/b-e.00123. DOI
Marcenò C, Jiménez‐Alfaro B. The Mediterranean Ammophiletea Database: a comprehensive dataset of coastal dune vegetation. Phytocoenologia. 2017;47:95–105.
Vassilev K, et al. Balkan Vegetation Database: historical background, current status and future perspectives. Phytocoenologia. 2016;46:89–95. doi: 10.1127/phyto/2016/0109. DOI
Landucci F, et al. WetVegEurope: a database of aquatic and wetland vegetation of Europe. Phytocoenologia. 2015;45:187–194. doi: 10.1127/phyto/2015/0050. DOI
Peterka T, Jiroušek M, Hájek M, Jiménez‐Alfaro B. European Mire Vegetation Database: a gap‐oriented database for European fens and bogs. Phytocoenologia. 2015;45:291–297. doi: 10.1127/phyto/2015/0054. DOI
De Sanctis M, Fanelli G, Mullaj A, Attorre F. Vegetation database of Albania. Phytocoenologia. 2017;47:107–108. doi: 10.1127/phyto/2017/0178. DOI
Willner W, Berg C, Heiselmayer P. Austrian Vegetation Database. Biodiver. Ecol. 2012;4:333. doi: 10.7809/b-e.00125. DOI
Apostolova I, Sopotlieva D, Pedashenko H, Velev N, Vasilev K. Bulgarian Vegetation Database: historic background, current status and future prospects. Biodiver. Ecol. 2012;4:141–148. doi: 10.7809/b-e.00069. DOI
Wohlgemuth T. Swiss Forest Vegetation Database. Biodiver. Ecol. 2012;4:340. doi: 10.7809/b-e.00131. DOI
Chytrý M, Rafajová M. Czech National Phytosociological Database: basic statistics of the available vegetation‐plot data. Preslia. 2003;75:1–15.
Jansen F, Dengler J, Berg C. VegMV—the vegetation database of Mecklenburg‐Vorpommern. Biodiver. Ecol. 2012;4:149–160. doi: 10.7809/b-e.00070. DOI
Ewald J, May R, Kleikamp M. VegetWeb—the national online‐repository of vegetation plots from Germany. Biodiver. Ecol. 2012;4:173–175. doi: 10.7809/b-e.00073. DOI
Jandt U, Bruelheide H. German vegetation reference database (GVRD) Biodiver. Ecol. 2012;4:355–355. doi: 10.7809/b-e.00146. DOI
Garbolino E, De Ruffray P, Brisse H, Grandjouan G. The phytosociological database SOPHY as the basis of plant socio-ecology and phytoclimatology in France. Biodiver. Ecol. 2012;4:177–184. doi: 10.7809/b-e.00074. DOI
Dimopoulos P, Tsiripidis I. Hellenic Natura 2000 Vegetation Database (HelNAtVeg) Biodiver. Ecol. 2012;4:388. doi: 10.7809/b-e.00177. DOI
Fotiadis G, Tsiripidis I, Bergmeier E, Dimopoulos P. Hellenic Woodland Database. Biodiver. Ecol. 2012;4:389. doi: 10.7809/b-e.00178. DOI
Stančić Z. Phytosociological Database of Non‐Forest Vegetation in Croatia. Biodiver. Ecol. 2012;4:391. doi: 10.7809/b-e.00180. DOI
Lájer K, et al. Hungarian Phytosociological database (COENODATREF): sampling methodology, nomenclature and its actual stage. Ann. Botanica Nuova Ser. 2008;7:197–201.
Landucci F, et al. VegItaly: The Italian collaborative project for a national vegetation database. Plant Biosyst. 2012;146:756–763. doi: 10.1080/11263504.2012.740093. DOI
Casella L, Bianco PM, Angelini P, Morroni E. Italian National Vegetation Database (BVN/ISPRA) Biodiver. Ecol. 2012;4:404. doi: 10.7809/b-e.00192. DOI
Agrillo E, et al. Nationwide Vegetation Plot Database—Sapienza University of Rome: state of the art, basic figures and future perspectives. Phytocoenologia. 2017;47:221–229. doi: 10.1127/phyto/2017/0139. DOI
Rūsiņa S. Semi‐natural Grassland Vegetation Database of Latvia. Biodiver. Ecol. 2012;4:409. doi: 10.7809/b-e.00197. DOI
Schaminée, J. H. J. et al. Schatten voor de natuur. Achtergronden, inventaris en toepassingen van de Landelijke Vegetatie Databank (KNNV Uitgeverij, 2006).
Kącki Z, Śliwiński M. The Polish Vegetation Database: structure, resources and development. Acta Soc. Bot. Pol. 2012;81:75–79. doi: 10.5586/asbp.2012.014. DOI
Indreica A, Turtureanu PD, Szabó A, Irimia I. Romanian Forest Database: a phytosociological archive of woody vegetation. Phytocoenologia. 2017;47:389–393. doi: 10.1127/phyto/2017/0201. DOI
Vassilev K, et al. The Romanian Grassland Database (RGD): historical background, current status and future perspectives. Phytocoenologia. 2018;48:91–100. doi: 10.1127/phyto/2017/0229. DOI
Aćić S, Petrović M, Dajić Stevanović Z, Šilc U. Vegetation database Grassland vegetation in Serbia. Biodiver. Ecol. 2012;4:418. doi: 10.7809/b-e.00206. DOI
Golub V, et al. Lower Volga Valley Phytosociological Database. Biodiver. Ecol. 2012;4:419. doi: 10.7809/b-e.00207. DOI
Lysenko T, Kalmykova O, Mitroshenkova A. Vegetation Database of the Volga and the Ural Rivers Basins. Biodiver. Ecol. 2012;4:420–421. doi: 10.7809/b-e.00208. DOI
Prokhorov V, Rogova T, Kozhevnikova M. Vegetation database of Tatarstan. Phytocoenologia. 2017;47:309–313. doi: 10.1127/phyto/2017/0172. DOI
Šilc U. Vegetation Database of Slovenia. Biodiver. Ecol. 2012;4:428. doi: 10.7809/b-e.00215. DOI
Šibík J. Slovak Vegetation Database. Biodiver. Ecol. 2012;4:429. doi: 10.7809/b-e.00216. DOI
Kuzemko A. Ukrainian Grasslands Database. Biodiver. Ecol. 2012;4:430. doi: 10.7809/b-e.00217. DOI
Cayuela L, et al. The Tree Biodiversity Network (BIOTREE-NET): prospects for biodiversity research and conservation in the Neotropics. Biodiver. Ecol. 2012;4:211–224. doi: 10.7809/b-e.00078. DOI
Wagner V, Spribille T, Abrahamczyk S, Bergmeier E. Timberline meadows along a 1000 km transect in NW North America: species diversity and community patterns. Appl. Veg. Sci. 2014;17:129–141. doi: 10.1111/avsc.12045. DOI
Aubin I, Gachet S, Messier C, Bouchard A. How resilient are northern hardwood forests to human disturbance? An evaluation using a plant functional group approach. Ecoscience. 2007;14:259–271. doi: 10.2980/1195-6860(2007)14[259:HRANHF]2.0.CO;2. DOI
Sieg B, Drees B, Daniëls FJA. Vegetation and altitudinal zonation in continental West Greenland. Medd. om. Gr.ønland Biosci. 2006;57:1–93.
Peet RK, Lee MT, Jennings MD, Faber-Langendoen D. VegBank—a permanent, open-access archive for vegetation-plot data. Biodiv. Ecol. 2012;4:233–241. doi: 10.7809/b-e.00080. DOI
Peet RK, et al. Vegetation‐plot database of the Carolina Vegetation Survey. Biodiver. Ecol. 2012;4:243–253. doi: 10.7809/b-e.00081. DOI
Walker, D. A. et al. The Alaska Arctic Vegetation Archive (AVA‐AK). Phytocoenologia46, 221–229 (2016).
Peyre G, et al. VegPáramo, a flora and vegetation database for the Andean páramo. Phytocoenologia. 2015;45:195–201. doi: 10.1127/phyto/2015/0045. DOI
Vibrans AC, Sevgnani L, Lingner DV, Gasper AL, Sabbagh S. The Floristic and Forest Inventory of Santa Catarina State (IFFSC): methodological and operational aspects. Pesqui. Florest. Brasileira. 2010;30:291–302. doi: 10.4336/2010.pfb.30.64.291. DOI
Pauchard, A., Fuentes, N., Jiménez, A., Bustamante, R. & Marticorena, A. In Plant Invasions in Protected Areas (eds Foxcroft, L., Pyšek, P., Richardson, D., Genovesi, P.) (Springer, 2013).
González-Caro S, Umaña MN, Álvarez E, Stevenson PR, Swenson NG. Phylogenetic alpha and beta diversity in tropical tree assemblages along regional-scale environmental gradients in northwest South America. J. Plant Ecol. 2014;7:145–153. doi: 10.1093/jpe/rtt076. DOI
Bresciano, D., Altesor, A. & Rodríguez, C. The growth form of dominant grasses regulates the invasibility of Uruguayan grasslands. Ecosphere5, 1–12 (2014).
Aiba S-i, Kitayama K. Structure, composition and species diversity in an altitude-substrate matrix of rain forest tree communities on Mount Kinabalu, Borneo. Plant Ecol. 1999;140:139–157. doi: 10.1023/A:1009710618040. DOI
Armstrong AH, Shugart HH, Fatoyinbo TE. Characterization of community composition and forest structure in a Madagascar lowland rainforest. Tropical Conserv. Sci. 2011;4:428–444. doi: 10.1177/194008291100400406. DOI
Ayyappan N, Parthasarathy N. Biodiversity inventory of trees in a large-scale permanent plot of tropical evergreen forest at Varagalaiar, Anamalais, Western Ghats, India. Biodivers. Conserv. 1999;8:1533–1554. doi: 10.1023/A:1008940803073. DOI
Balslev, H., Valencia, R., Paz y Miño, G., Christensen, H. & Nielsen, I. In Forest biodiversity in North, Central and South America, and the Caribbean: research and monitoring (eds. Dallmeier, F. & Comiskey, J. A.) 585–594 (1998).
Bordenave, B. G., Granville, J.-J. D. & Hoff, M. Measurement of species richness of vascular plants in a neotropical rain forest in French Guiana. (1998).
Boyle, T. J. B. & Boontawee, B. CIFOR’s Research Programme on Conservation of Tropical Forest Genetic Resources, 395 (Center for International Forestry Research CIFOR, 1995).
Bunyavejchewin S, Baker PJ, LaFrankie JV, Ashton PS. Stand structure of a seasonal dry evergreen forest at Huai Kha Khaeng Wildlife Sanctuary, western Thailand. Nat. Hist. Bull. Siam Soc. 2001;49:89–106.
Cadotte MW, Franck R, Reza L, Lovett-Doust J. Tree and shrub diversity and abundance in fragmented littoral forest of southeastern Madagascar. Biodivers. Conserv. 2002;11:1417–1436. doi: 10.1023/A:1016282023542. DOI
Cano Ortiz, A. et al. Phytosociological study, diversity and conservation status of the cloud forest in the Dominican Republic. Plants (Basel, Switzerland)9, 741 (2020). PubMed PMC
Chisholm RA, et al. Scale-dependent relationships between tree species richness and ecosystem function in forests. J. Ecol. 2013;101:1214–1224. doi: 10.1111/1365-2745.12132. DOI
Chu C, et al. Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees. Ecol. Lett. 2019;22:245–255. PubMed
Condit, R. S. et al. Tropical Tree a—Diversity: Results From a Worldwide Network of Large Plots (CABI, 2005).
D’Amico C, Gautier L. Inventory of a 1-ha lowland rainforest plot in Manongarivo, (NW Madagascar) Candollea. 2000;55:319–340.
Davidar P, Mohandass D, Vijayan L. Floristic inventory of woody plants in a tropical montane (shola) forest in the Palni hills of the Western Ghats, India. Trop. Ecol. 2007;12:42–58.
Davies SJ, Becker P. Floristic composition and stand structure of mixed dipterocarp and heath forests in Brunei Darussalam. J. Trop. Sci. 1996;8:542–569.
Duivenvoorden JF. Vascular plant species counts in the rain forests of the middle Caquet area. Colomb. Amazon. Biodivers. Conserv. 1994;3:685–715. doi: 10.1007/BF00126860. DOI
Ek, R. C. Botanical diversity in the tropical rain forest of Guyana: Botanische diversiteit in het tropisch regenwoud van Guyana. (Met een samenvatting in het Nederlands) (Universiteit Utrecht, 1997).
Galeano G, Suárez S, Balslev H. Vascular plant species count in a wet forest in the Chocó area on the Pacific coast of Colombia. Biodivers. Conserv. 1998;7:1563–1575. doi: 10.1023/A:1008802624275. DOI
Garrigues, J. P. Action anthropique sur la dynamique des formations végétales au sud de l’Inde (Ghâts occidentaux, Etat du Karnataka, District de Shimoga) (University of Claude Bernard, Lyon I, 1999).
Gastauer M, Leyh W, Meira-Neto JAA. Tree Diversity and Dynamics of the Forest of Seu Nico, Viçosa, Minas Gerais, Brazil. Biodiv. Data J. 2015;3:e5425. doi: 10.3897/BDJ.3.e5425. PubMed DOI PMC
Helmi N, Kartawinata K, Samsoedin I. An undescribed lowland natural forest at Bodogol, Gunung Gede Pangrango National Park, Cibodas Biosphere Reserve, West Java, Indonesia. Reinwardtia. 2009;13:33–44.
Hernández L, Dezzeo N, Sanoja E, Salazar L, Castellanos H. Changes in structure and composition of evergreen forests on an altitudinal gradient in the Venezuelan Guayana Shield. Rev. de. Biol.ía Tropical. 2012;60:11–33. PubMed
Ho BC, et al. The plant diversity in Bukit Timah Nature Reserve, Singapore. Gardens’ Bull. Singap. 2019;71:41–144. doi: 10.26492/gbs71(suppl.1).2019-04. DOI
Hubbel, S. P. & Foster, R. B. In Tropical Rain Forest: Ecology and Management (eds Sutton, S. L., Whitmore, T. C. & Chadwick, S.) 25–41 (Blackwell Scientific Publications,1983).
Kartawinata K, Samsoedin I, Heriyanto M, Afriastini JJ. A tree species inventory in a one-hectare plot at the Batang Gadis National Park, North Sumatra, Indonesia. Reinwardtia. 2013;12:145. doi: 10.14203/reinwardtia.v12i2.60. DOI
Kiratiprayoon, S. Measuring and monitoring biodiversity in tropical and temperate forests. In: IUFRO Symposium, Chiang Mai (Thailand), 27 Aug-2 (CIFOR, 1994).
KuoJung C, WeiChun C, KeiMei C, ChangFu H. Vegetation dynamics of a lowland rainforest at the northern border of the paleotropics at Nanjenshan, southern Taiwan. Taiwan J. Sci. 2010;25:29–40.
Lan G, Zhu H, Cao M. Tree species diversity of a 20-ha plot in a tropical seasonal rainforest in Xishuangbanna, southwest China. J. For. Res. 2012;17:432–439. doi: 10.1007/s10310-011-0309-y. DOI
Lee HS, et al. Floristic and structural diversity of 52 hectares of mixed dipterocarp forest in Lambir Hills National Park, Sarawak, Malaysia. J. Trop. Sci. 2002;14:379–400.
Linares-Palomino R, et al. Non-woody life-form contribution to vascular plant species richness in a tropical American forest. Plant Ecol. 2009;201:87–99. doi: 10.1007/s11258-008-9505-z. DOI
Lubini A, Mandango A. Etude phytosociologique et ecologique des forets a Uapaca guineensis dans le nord-est du district forestier central (Zaire) Bull. Jard. Bot. Natl Belg. 1981;51:231. doi: 10.2307/3668066. DOI
Makana, J.-R., Hart, T. & Hart, J. Forest structure and diversity of lianas and understory treelets in monodominant and mixed stands in the Ituri Forest, Democratic Republic of the Congo. Liana Article Index20 (1998).
Mansur M, Kartawinata K. Phytosociology of a lower montane forest on Mt. Batulanteh, Sumbawa, Indonesia. Reinwardtia. 2017;16:77. doi: 10.14203/reinwardtia.v16i2.3369. DOI
Mikoláš M, et al. Natural disturbance impacts on trade-offs and co-benefits of forest biodiversity and carbon. Proc. R. Soc. B. 2021;288:20211631. doi: 10.1098/rspb.2021.1631. PubMed DOI PMC
Mohandass D, Davidar P. Floristic structure and diversity of a tropical montane evergreen forest (shola) of the Nilgiri Mountains, southern India. Trop. Ecol. 2009;50:219–229.
Monge González, M. et al. BIOVERA-Tree: tree diversity, community composition, forest structure and functional traits along gradients of forest-use intensity and elevation in Veracruz, Mexico. Biodiv. Data J. 9, e69560 (2021). PubMed PMC
Ngo KM, Davies S, Nik H, Faizu N, Lum S. Resilience of a forest fragment exposed to long-term isolation in Singapore. Plant Ecol. Diver. 2016;9:397–407. doi: 10.1080/17550874.2016.1262924. DOI
Parthasarathy N. Tree diversity and distribution in undisturbed and human-impacted sites of tropical wet evergreen forest in southern Western Ghats, India. Biodivers. Conserv. 1999;8:1365–1381. doi: 10.1023/A:1008949407385. DOI
Parthasarathy, N. & Karthikeyan, R. Biodiversity and population density of woody species in a tropical evergreen forest in Courtallum reserve forest, Western Ghats, India. Trop. Ecol. 38 (1997).
Pascal, J. P. Wet Evergreen Forests of the Western Ghats of India (Institut français de Pondichéry, 1988).
Pascal JP, Pelissier R. Structure and floristic composition of a tropical evergreen forest in south-west India. J. Trop. Ecol. 1996;12:191–214. doi: 10.1017/S026646740000941X. DOI
Phillips OL, et al. Efficient plot-based floristic assessment of tropical forests. J. Trop. Ecol. 2003;19:629–645. doi: 10.1017/S0266467403006035. DOI
Proctor J, Anderson JM, Chai P, Vallack HW. Ecological Studies in Four Contrasting Lowland Rain Forests in Gunung Mulu National Park, Sarawak: I. Forest Environment, Structure and Floristics. J. Ecol. 1983;71:237. doi: 10.2307/2259975. DOI
Ramesh BR, et al. Forest stand structure and composition in 96 sites along environmental gradients in the central Western Ghats of India. Ecology. 2010;91:3118. doi: 10.1890/10-0133.1. DOI
Razak SA, Haron NW. Phytosociology of Aquilaria Malaccensis Lamk. and its communities from a tropical forest reserve in peninsular Malaysia. Pak. J. Bot. 2015;47:2143–2150.
Romoleroux, K. et al. Especies leñosas (dap= 1 cm) encontradas en dos hectáreas de un bosque de la Amazonía ecuatoriana. Estudios sobre diversidad y ecología de plantas, 189–215 (1997).
Sarah AR, Nuradnilaila H, Haron NW, Azani M. A Phytosociological Study on the Community of Palaquium gutta (Hook. f.) Baill.(Sapotaceae) at Ayer Hitam Forest Reserve, Selangor, Malaysia. Sains Malaysiana. 2015;44:491–496. doi: 10.17576/jsm-2015-4404-02. DOI
Schrader J, Moeljono S, Tambing J, Sattler C, Kreft H. A new dataset on plant occurrences on small islands, including species abundances and functional traits across different spatial scales. Biodiv. Data J. 2020;8:e55275. doi: 10.3897/BDJ.8.e55275. PubMed DOI PMC
Sheil D, Kartawinata K, Samsoedin I, Priyadi H, Afriastini JJ. The lowland forest tree community in Malinau, Kalimantan (Indonesian Borneo): results from a one-hectare plot. Plant Ecol. Diver. 2010;3:59–66. doi: 10.1080/17550874.2010.484840. DOI
Sukumar R, et al. Long-term monitoring of vegetation in a tropical deciduous forest in Mudumalai, southern India. Curr. Sci. 1992;62:608–616.
van Andel TR. Floristic composition and diversity of three swamp forests in northwest Guyana. Plant Ecol. 2003;167:293–317. doi: 10.1023/A:1023935326706. DOI
Webb EL, Fa’aumu S. Diversity and structure of tropical rain forest of Tutuila, American Samoa: effects of site age and substrate. Plant Ecol. 1999;144:257–274. doi: 10.1023/A:1009862618250. DOI
Zimmerman JK, et al. Responses of Tree Species to Hurricane Winds in Subtropical Wet Forest in Puerto Rico: Implications for Tropical Tree Life Histories. J. Ecol. 1994;82:911. doi: 10.2307/2261454. DOI
Olson DM, et al. Terrestrial ecoregions of the worlds: a new map of life on Earth. Bioscience. 2001;51:933–938. doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2. DOI
Karger DN, et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data. 2017;4:170122. doi: 10.1038/sdata.2017.122. PubMed DOI PMC
Hengl T, et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE. 2017;12:e0169748. doi: 10.1371/journal.pone.0169748. PubMed DOI PMC
Amatulli G, et al. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Sci. Data. 2018;5:180040. doi: 10.1038/sdata.2018.40. PubMed DOI PMC
Sandel B, et al. The influence of Late Quaternary climate-change velocity on species endemism. Science. 2011;334:660–664. doi: 10.1126/science.1210173. PubMed DOI
Schultz, J. The Ecozones of the World (Springer, 2005).
Körner C, et al. A global inventory of mountains for bio-geographical applications. Alp. Bot. 2017;127:1–15. doi: 10.1007/s00035-016-0182-6. DOI
Elith J, Leathwick JR, Hastie T. A working guide to boosted regression trees. J. Anim. Ecol. 2008;77:802–813. doi: 10.1111/j.1365-2656.2008.01390.x. PubMed DOI
Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. Package ‘dismo’. Available online at: http://cran.r-project.org/web/packages/dismo/index.html (2011).
Zhou S, et al. Estimating stock depletion level from patterns of catch history. Fish. Fish. 2017;18:742–751. doi: 10.1111/faf.12201. DOI
Rocchini D, et al. Accounting for uncertainty when mapping species distributions: the need for maps of ignorance. Prog. Phys. Geogr. 2011;35:211–226. doi: 10.1177/0309133311399491. DOI
Potapov, P., Laestadius, L. & Minnemeyer, S. Global map of potential forest coverwww.wri.org/forest-restoration-atlas (2011).
Tuanmu MN, Jetz W. A global 1‐km consensus land‐cover product for biodiversity and ecosystem modelling. Glob. Ecol. Biogeogr. 2014;23:1031–1045. doi: 10.1111/geb.12182. DOI
Roberts DR, et al. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography. 2017;40:913–929. doi: 10.1111/ecog.02881. DOI
Pebesma E, Heuvelink G. Spatio-temporal interpolation using gstat. RFID J. 2016;8:204–218.
R Development Core Team. R: A language and environment for statistical computing v.3.6.1. R Foundation for Statistical Computinghttp://www.R-project.org/ (2019).
South, A. rnaturalearth: World Map Data from Natural Earth v.0.1.0. R packagehttps://CRAN.R-project.org/package=rnaturalearth (2017).
Sabatini, F. M. et al. Global patterns of vascular plant alpha-diversity [Dataset]. iDiv Data Repository. 10.25829/idiv.3506-p4c0mo (2022). PubMed PMC
Sabatini, F. M. fmsabatini/GlobalLocal\_PlantRichness: NatComms R3 v.3. Zenodo10.5281/zenodo.6659837 (2022).
Connecting the multiple dimensions of global soil fungal diversity
Mycorrhizal feedbacks influence global forest structure and diversity
Geography of Indian Butterflies: Patterns Revealed by Checklists of Federal States
Metabarcoding of soil environmental DNA to estimate plant diversity globally
Climate-trait relationships exhibit strong habitat specificity in plant communities across Europe