Global hotspots of mycorrhizal fungal richness are poorly protected
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
834164
European Research Council - International
PubMed
40702191
PubMed Central
PMC12422971
DOI
10.1038/s41586-025-09277-4
PII: 10.1038/s41586-025-09277-4
Knihovny.cz E-zdroje
- MeSH
- biodiverzita * MeSH
- ekosystém MeSH
- mykorhiza * klasifikace genetika izolace a purifikace fyziologie MeSH
- půdní mikrobiologie * MeSH
- strojové učení MeSH
- zachování přírodních zdrojů * MeSH
- Publikační typ
- časopisecké články MeSH
Mycorrhizal fungi are ecosystem engineers that sustain plant life and help regulate Earth's biogeochemical cycles1-3. However, in contrast to plants and animals, the global distribution of mycorrhizal fungal biodiversity is largely unknown, which limits our ability to monitor and protect key underground ecosystems4,5. Here we trained machine-learning algorithms on a global dataset of 25,000 geolocated soil samples comprising >2.8 billion fungal DNA sequences. We predicted arbuscular mycorrhizal and ectomycorrhizal fungal richness and rarity across terrestrial ecosystems. On the basis of these predictions, we generated high-resolution, global-scale maps and identified key reservoirs of highly diverse and endemic mycorrhizal communities. Intersecting protected areas with mycorrhizal hotspots indicated that less than 10% of predicted mycorrhizal richness hotspots currently exist in protected areas. Our results describe a largely hidden component of Earth's underground ecosystems and can help identify conservation priorities, set monitoring benchmarks and create specific restoration plans and land-management strategies.
Centro de Investigación e Innovación para el Cambio Climático Universidad Santo Tomás Valdivia Chile
College of Science King Saud University Riyadh Saudi Arabia
Department of Biology Lund University Lund Sweden
Department of Biology Oxford University Oxford UK
Department of Biology Stanford University Stanford CA USA
Department of Earth System Science Stanford University Stanford CA USA
Falz Fein Biosphere Reserve Askania Nova Kherson Oblast Ukraine
Funga Public Benefit Corporation Austin TX USA
Fungi Foundation Brooklyn NY USA
Mycology and Microbiology Center University of Tartu Tartu Estonia
Society for the Protection of Underground Networks Dover DE USA
Zobrazit více v PubMed
Högberg, M. N. & Högberg, P. Extramatrical ectomycorrhizal mycelium contributes one-third of microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest soil. PubMed
van Der Heijden, M. G., Martin, F. M., Selosse, M. A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. PubMed
Hawkins, H. J. et al. Mycorrhizal mycelium as a global carbon pool. PubMed
Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. PubMed PMC
Guerra, C. A. et al. Tracking, targeting, and conserving soil biodiversity. PubMed
Větrovský, T. et al. GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. PubMed PMC
Tedersoo, L. et al. The Global Soil Mycobiome consortium dataset for boosting fungal diversity research.
Větrovský, T. et al. GlobalAMFungi: a global database of arbuscular mycorrhizal fungal occurrences from high‐throughput sequencing metabarcoding studies. PubMed
Frey, S. D. Mycorrhizal fungi as mediators of soil organic matter dynamics.
Tedersoo, L. & Bahram, M. Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes. PubMed
Brundrett, M. C. & Tedersoo, L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. PubMed
Crowther, T. W. et al. The global soil community and its influence on biogeochemistry. PubMed
Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. PubMed
Soudzilovskaia, N. A. et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. PubMed PMC
Kivlin, S. N., Hawkes, C. V. & Treseder, K. K. Global diversity and distribution of arbuscular mycorrhizal fungi.
Tedersoo, L. et al. Global diversity and geography of soil fungi. PubMed
Větrovský, T. et al. A meta-analysis of global fungal distribution reveals climate-driven patterns. PubMed PMC
Guerra, C. A. et al. Global hotspots for soil nature conservation. PubMed
Tedersoo, L. et al. Global patterns in endemicity and vulnerability of soil fungi. PubMed PMC
Cameron, E. K. et al. Global mismatches in aboveground and belowground biodiversity. PubMed
Meyer, H. & Pebesma, E. Machine learning-based global maps of ecological variables and the challenge of assessing them. PubMed PMC
Jansen, J. et al. Stop ignoring map uncertainty in biodiversity science and conservation policy. PubMed
Albuquerque, F., Astudillo-Scalia, Y., Loyola, R. & Beier, P. Towards an understanding of the drivers of broad-scale patterns of rarity-weighted richness for vertebrates.
Kinlock, N. L. et al. Explaining global variation in the latitudinal diversity gradient: meta‐analysis confirms known patterns and uncovers new ones.
Sabatini, F. M. et al. Global patterns of vascular plant alpha diversity. PubMed PMC
Toussaint, A. et al. Asymmetric patterns of global diversity among plants and mycorrhizal fungi.
Kokkoris, V. et al. Codependency between plant and arbuscular mycorrhizal fungal communities: what is the evidence? PubMed
Read, D. J. Mycorrhizas in ecosystems.
Phillips, R. P., Brzostek, E. & Midgley, M. G. The mycorrhizal‐associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. PubMed
Jung, M. et al. Areas of global importance for conserving terrestrial biodiversity, carbon and water. PubMed
Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. PubMed PMC
Kass, J. M. et al. The global distribution of known and undiscovered ant biodiversity. PubMed PMC
Chen, C. et al. China and India lead in greening of the world through land-use management. PubMed PMC
Tedersoo, L. in
Bingham, H. C. et al. Sixty years of tracking conservation progress using the World Database on Protected Areas. PubMed
Joppa, L. N. & Pfaff, A. High and far: biases in the location of protected areas. PubMed PMC
van den Hoogen, J., van Nuland, M. & Kumar, S. Data and code for: Global Hotspots of Mycorrhizal Fungal Richness are Poorly Protected. PubMed PMC
Lundberg, S. M. et al. From local explanations to global understanding with explainable AI for trees. PubMed PMC
Mikryukov, V. et al. Connecting the multiple dimensions of global soil fungal diversity. PubMed PMC
Averill, C., Turner, B. L. & Finzi, A. C. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. PubMed
Hicks Pries, C. E. et al. Differences in soil organic matter between EcM‐and AM‐dominated forests depend on tree and fungal identity. PubMed
Davison, J. et al. Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi. PubMed
Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch-Mordo, S. & Kiesecker, J. Managing the middle: a shift in conservation priorities based on the global human modification gradient. PubMed
Chaudhary, V. B., Nolimal, S., Sosa‐Hernández, M. A., Egan, C. & Kastens, J. Trait‐based aerial dispersal of arbuscular mycorrhizal fungi. PubMed
Guerra, C. A. et al. Global projections of the soil microbiome in the Anthropocene. PubMed PMC
Guzman, A. et al. Crop diversity enriches arbuscular mycorrhizal fungal communities in an intensive agricultural landscape. PubMed PMC
Lang, N., Jetz, W., Schindler, K. & Wegner, J. D. A high-resolution canopy height model of the Earth. PubMed PMC
Barron, E. Conservation of abundance: How fungi can contribute to rethinking conservation.
Guerra, C. A. et al. Blind spots in global soil biodiversity and ecosystem function research. PubMed PMC
Senior, R. A. et al. Global shortfalls in documented actions to conserve biodiversity. PubMed PMC
Labouyrie, M. et al. Patterns in soil microbial diversity across Europe. PubMed PMC
Averill, C. et al. Defending Earth’s terrestrial microbiome. PubMed
Fleischman, F. et al. Restoration prioritization must be informed by marginalized people. PubMed
Langhammer, P. F. et al. The positive impact of conservation action. PubMed
Lutz, S. et al. Global richness of arbuscular mycorrhizal fungi.
Tedersoo, L. & Lindahl, B. Fungal identification biases in microbiome projects. PubMed
Yang, R. H. et al. Evaluation of the ribosomal DNA internal transcribed spacer (ITS), specifically ITS1 and ITS2, for the analysis of fungal diversity by deep sequencing. PubMed PMC
Bengtsson‐Palme, J. et al. Improved software detection and extraction of ITS1 and ITS 2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data.
Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. PubMed
Põlme, S. et al. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles.
Öpik, M. et al. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). PubMed
Bruns, T. D. & Taylor, J. W. Comment on “Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism”. PubMed
Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies.
Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers).
Bissett, A. et al. Introducing BASE: the Biomes of Australian Soil Environments soil microbial diversity database. PubMed PMC
Yan, D. et al. High-throughput eDNA monitoring of fungi to track functional recovery in ecological restoration.
Usher, M. B. in
Albuquerque, F. & Beier, P. Predicted rarity‐weighted richness, a new tool to prioritize sites for species representation. PubMed PMC
van den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. PubMed
van den Hoogen, J. et al. A global database of soil nematode abundance and functional group composition. PubMed PMC
Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PubMed PMC
Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. PubMed PMC
Herrando-Moraira, S. et al. Climate Stability Index maps, a global high resolution cartography of climate stability from Pliocene to 2100. PubMed PMC
Ruesch, A. & Gibbs, H. K. New IPCC Tier-1 global biomass carbon map for the year 2000.
Tuanmu, M. N. & Jetz, W. A global 1‐km consensus land‐cover product for biodiversity and ecosystem modelling.
Tuanmu, M. N. & Jetz, W. A global, remote sensing‐based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling.
Cai, L. et al. Global models and predictions of plant diversity based on advanced machine learning techniques. PubMed
Trabucco, A. & Zomer, R. J. Global aridity index and potential evapo-transpiration (ET0) climate database v2.
Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. PubMed PMC
Ploton, P. et al. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. PubMed PMC
Wadoux, A. M. C., Heuvelink, G. B., De Bruin, S. & Brus, D. J. Spatial cross-validation is not the right way to evaluate map accuracy.
Meyer, H. & Pebesma, E. Predicting into unknown space? Estimating the area of applicability of spatial prediction models.
Milà, C., Mateu, J., Pebesma, E. & Meyer, H. Nearest neighbour distance matching leave‐one‐out cross‐validation for map validation.
Linnenbrink, J., Milà, C., Ludwig, M. & Meyer, H. kNNDM CV:
Phillips, H. R. et al. Global distribution of earthworm diversity. PubMed PMC
Potapov, A. M. et al. Globally invariant metabolism but density–diversity mismatch in springtails. PubMed PMC
Hiemstra, P. H., Pebesma, E. J., Twenhöfel, C. J. & Heuvelink, G. B. Real-time automatic interpolation of ambient gamma dose rates from the Dutch radioactivity monitoring network.
Parry J. sfdep: Spatial Dependence for Simple Features. R package version 0.2.3 https://CRAN.R-project.org/package=sfdep (2023).
Dormann, C. F. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: A review.
Dray S. et al. adespatial: Multivariate Multiscale Spatial Analysis. R package version 0.3-21 https://CRAN.R-project.org/package=adespatial (2023).
Borcard, D., Gillet, F. & Legendre, P.
Zhu, K., Woodall, C. W. & Clark, J. S. Failure to migrate: lack of tree range expansion in response to climate change.
Wickham, H. et al. Welcome to the Tidyverse.
Liang, J. et al. Co-limitation towards lower latitudes shapes global forest diversity gradients. PubMed
None
Global hotspots of mycorrhizal fungal richness are poorly protected