Defending Earth's terrestrial microbiome
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
36192539
DOI
10.1038/s41564-022-01228-3
PII: 10.1038/s41564-022-01228-3
Knihovny.cz E-zdroje
- MeSH
- biodiverzita * MeSH
- lesy MeSH
- mikrobiota * MeSH
- půda MeSH
- Země (planeta) MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- půda MeSH
Microbial life represents the majority of Earth's biodiversity. Across disparate disciplines from medicine to forestry, scientists continue to discover how the microbiome drives essential, macro-scale processes in plants, animals and entire ecosystems. Yet, there is an emerging realization that Earth's microbial biodiversity is under threat. Here we advocate for the conservation and restoration of soil microbial life, as well as active incorporation of microbial biodiversity into managed food and forest landscapes, with an emphasis on soil fungi. We analyse 80 experiments to show that native soil microbiome restoration can accelerate plant biomass production by 64% on average, across ecosystems. Enormous potential also exists within managed landscapes, as agriculture and forestry are the dominant uses of land on Earth. Along with improving and stabilizing yields, enhancing microbial biodiversity in managed landscapes is a critical and underappreciated opportunity to build reservoirs, rather than deserts, of microbial life across our planet. As markets emerge to engineer the ecosystem microbiome, we can avert the mistakes of aboveground ecosystem management and avoid microbial monocultures of single high-performing microbial strains, which can exacerbate ecosystem vulnerability to pathogens and extreme events. Harnessing the planet's breadth of microbial life has the potential to transform ecosystem management, but it requires that we understand how to monitor and conserve the Earth's microbiome.
Department of Ecological Science Vrije Universiteit Amsterdam the Netherlands
Department of Environmental Systems Science ETH Zürich Zurich Switzerland
Zobrazit více v PubMed
Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B. & Worm, B. How many species are there on earth and in the ocean? PLoS Biol. 9, e1001127 (2011). PubMed DOI PMC
Costello, M. J., May, R. M. & Stork, N. E. Can we name earth’s species before they go extinct? Science 339, 413–416 (2013). PubMed DOI
Corlett, R. T. Plant diversity in a changing world: status, trends, and conservation needs. Plant Divers. 38, 10–16 (2016). PubMed DOI PMC
Baldrian, P., Větrovský, T., Lepinay, C. & Kohout, P. High-throughput sequencing view on the magnitude of global fungal diversity. Fungal Divers. 114, 539–547 (2022). DOI
Taylor, D. L. et al. A first comprehensive census of fungi in soil reveals both hyperdiversity and fine-scale niche partitioning. Ecol. Monogr. 84, 3–20 (2014). DOI
Locey, K. J. & Lennon, J. T. Scaling laws predict global microbial diversity. Proc. Natl Acad. Sci. USA 113, 5970–5975 (2016). PubMed DOI PMC
Schopf, J. W. Disparate rates, differing fates: tempo and mode of evolution changed from the Precambrian to the Phanerozoic. Proc. Natl Acad. Sci. USA 91, 6735–6742 (1994). PubMed DOI PMC
Seager, S., Huang, J., Petkowski, J. J. & Pajusalu, M. Laboratory studies on the viability of life in H2-dominated exoplanet atmospheres. Nat. Astron. 4, 802–806 (2020). DOI
Halme, P., Holec, J. & Heilmann-Clausen, J. The history and future of fungi as biodiversity surrogates in forests. Fungal Ecol. 27, 193–201 (2017). DOI
Arnolds, E. Decline of ectomycorrhizal fungi in Europe. Agric. Ecosyst. Environ. 35, 209–244 (1991). DOI
Boddy, L. in The Fungi (eds Watkinson, S. C. et al.) 361–400 (Elsevier, 2016); https://doi.org/10.1016/B978-0-12-382034-1.00011-6
Zimmerman, M. The mushroom message. Sun 11A (1992).
Bader, P., Jansson, S. & Jonsson, B. G. Wood-inhabiting fungi and substratum decline in selectively logged boreal spruce forests. Biol. Conserv. 72, 355–362 (1995). DOI
Weinbauer, M. G. & Rassoulzadegan, F. Extinction of microbes: evidence and potential consequences. Endanger. Species Res. 3, 205–215 (2007). DOI
Chomicki, G., Kiers, E. T. & Renner, S. S. The evolution of mutualistic dependence. Annu. Rev. Ecol. Evol. Syst. 51, 409–432 (2020). DOI
Blaser, M. J. The theory of disappearing microbiota and the epidemics of chronic diseases. Nat. Rev. Immunol. 17, 461–463 (2017). PubMed DOI
Carthey, A. J., Blumstein, D. T., Gallagher, R. V., Tetu, S. G. & Gillings, M. R. Conserving the holobiont. Funct. Ecol. 34, 764–776 (2020). DOI
Schapheer, C., Pellens, R. & Scherson, R. Arthropod-microbiota integration: its importance for ecosystem conservation. Front. Microbiol. 12, 2094 (2021). DOI
Zhou, Z., Wang, C. & Luo, Y. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nat. Commun. 11, 3072 (2020). PubMed DOI PMC
Anthony, M. A., Stinson, K. A., Moore, J. A. M. & Frey, S. D. Plant invasion impacts on fungal community structure and function depend on soil warming and nitrogen enrichment. Oecologia 194, 659–672 (2020). PubMed DOI PMC
Lilleskov, E., Hobbie, E. A. & Horton, T. Conservation of ectomycorrhizal fungi: exploring the linkages between functional and taxonomic responses to anthropogenic N deposition. Fungal Ecol. 4, 174–183 (2011). DOI
Gibbons, S. M. et al. Invasive plants rapidly reshape soil properties in a grassland ecosystem. mSystems 2, e00178-16 (2017). PubMed DOI PMC
Rillig, M. C. et al. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366, 886–890 (2019). PubMed DOI PMC
Certini, G., Moya, D., Lucas-Borja, M. E. & Mastrolonardo, G. The impact of fire on soil-dwelling biota: a review. For. Ecol. Manage. 488, 118989 (2021). DOI
Caruso, T., Hempel, S., Powell, J. R., Barto, E. K. & Rillig, M. C. Compositional divergence and convergence in arbuscular mycorrhizal fungal communities. Ecology 93, 1115–1124 (2012). PubMed DOI
Anthony, M., Frey, S. & Stinson, K. Fungal community homogenization, shift in dominant trophic guild, and appearance of novel taxa with biotic invasion. Ecosphere 8, e01951 (2017). DOI
Guerra, C. A. et al. Global projections of the soil microbiome in the Anthropocene. Glob. Ecol. Biogeogr. 30, 987–999 (2021). PubMed DOI
Enright, D. J., Frangioso, K. M., Isobe, K., Rizzo, D. M. & Glassman, S. I. Mega‐fire in redwood tanoak forest reduces bacterial and fungal richness and selects for pyrophilous taxa that are phylogenetically conserved. Mol. Ecol. 31, 2475–2493 (2022). PubMed DOI
Anthony, M. A. et al. Forest tree growth is linked to mycorrhizal fungal composition and function across Europe. ISME J. 16, 1327–1336 (2022). PubMed DOI PMC
Crowther, T. W. et al. The global soil community and its influence on biogeochemistry. Science 365, eaav0550 (2019). PubMed DOI
Ceballos, G. et al. Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015). PubMed DOI PMC
Novacek, M. J. & Cleland, E. E. The current biodiversity extinction event: scenarios for mitigation and recovery. Proc. Natl Acad. Sci. USA 98, 5466–5470 (2001). PubMed DOI PMC
Guerra, C. A. et al. Tracking, targeting, and conserving soil biodiversity. Science 371, 239–241 (2021). PubMed DOI
Guerra, C. A. et al. Blind spots in global soil biodiversity and ecosystem function research. Nat. Commun. 11, 3870 (2020). PubMed DOI PMC
Cameron, E. K. et al. Global mismatches in aboveground and belowground biodiversity. Conserv. Biol. 33, 1187–1192 (2019). PubMed DOI
Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014). PubMed DOI
Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018). PubMed DOI
Delgado-Baquerizo, M. et al. A global atlas of the dominant bacteria found in soil. Science 359, 320–325 (2018). PubMed DOI
Peixoto, R. S. et al. Harnessing the microbiome to prevent global biodiversity loss. Nat. Microbiol. https://doi.org/10.1038/s41564-022-01173-1 (2022).
Box, G. E. P. & Draper, N. R. Empirical Model-building and Response Surfaces (Wiley, 1987).
Box, G. E. P., Hunter, W. G. & Hunter, J. S. Statistics for Experimenters: an Introduction to Design, Data Analysis, and Model Building (Wiley, 1978).
Kothamasi, D., Spurlock, M. & Kiers, E. T. Agricultural microbial resources: private property or global commons? Nat. Biotechnol. 29, 1091–1093 (2011). PubMed DOI
Davison, J. et al. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349, 970–973 (2015). PubMed DOI
van der Linde, S. et al. Environment and host as large-scale controls of ectomycorrhizal fungi. Nature 558, 243–248 (2018). PubMed DOI
Davison, J. et al. Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi. New Phytol. 231, 763–776 (2021). PubMed DOI
Ramirez, K. S. et al. Detecting macroecological patterns in bacterial communities across independent studies of global soils. Nat. Microbiol. 3, 189–196 (2018). PubMed DOI
Wild, S. Quest to map Africa’s soil microbiome begins. Nature 539, 152 (2016). PubMed DOI
Bissett, A. et al. Introducing BASE: the Biomes of Australian Soil Environments soil microbial diversity database. GigaScience 5, 21 (2016). PubMed DOI PMC
Pan, K., Guo, Z. & Liu, J. Building and materializing of China Soil Microbiome Data Platform. Acta Pedol. Sin. 56, 1023–1033 (2019).
Orgiazzi, A., Ballabio, C., Panagos, P., Jones, A. & Fernández‐Ugalde, O. LUCAS Soil, the largest expandable soil dataset for Europe: a review. Eur. J. Soil Sci. 69, 140–153 (2018). DOI
Hinckley, E. S. et al. The soil and plant biogeochemistry sampling design for The National Ecological Observatory Network. Ecosphere 7, e01234 (2016). DOI
Větrovský, T. et al. GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Sci. Data 7, 228 (2020). PubMed DOI PMC
Jackson, F. Sustainable agriculture and a low carbon future: are we missing out on mycelium? Forbes https://www.forbes.com/sites/feliciajackson/2021/12/02/sustainable-agriculture-and-a-low-carbon-future-are-we-missing-out-on-mycelium/?sh=3dc1a6d076ed (2021).
Gilbert, J. A., Jansson, J. K. & Knight, R. The Earth Microbiome project: successes and aspirations. BMC Biol. 12, 69 (2014). PubMed DOI PMC
Fedrowitz, K. et al. Can retention forestry help conserve biodiversity? A meta‐analysis. J. Appl. Ecol. 51, 1669–1679 (2014). PubMed DOI PMC
Schmidt, R., Mitchell, J. & Scow, K. Cover cropping and no-till increase diversity and symbiotroph:saprotroph ratios of soil fungal communities. Soil Biol. Biochem. 129, 99–109 (2019). DOI
Status of the World’s Soil Resources: Main Report (FAO, 2015).
Aronson, J., Goodwin, N., Orlando, L., Eisenberg, C. & Cross, A. T. A world of possibilities: six restoration strategies to support the United Nation’s Decade on Ecosystem Restoration. Restor. Ecol. 28, 730–736 (2020). DOI
Seymour, F. Seeing the forests as well as the (trillion) trees in corporate climate strategies. One Earth 2, 390–393 (2020). DOI
Dinerstein, E. et al. A global deal for nature: guiding principles, milestones, and targets. Sci. Adv. 5, eaaw2869 (2019). PubMed DOI PMC
Philipson, C. D. et al. Active restoration accelerates the carbon recovery of human-modified tropical forests. Science 369, 838–841 (2020). PubMed DOI
Coleman, E. A. et al. Limited effects of tree planting on forest canopy cover and rural livelihoods in Northern India. Nat. Sustain. 4, 997–1004 (2021). DOI
Neuenkamp, L., Prober, S. M., Price, J. N., Zobel, M. & Standish, R. J. Benefits of mycorrhizal inoculation to ecological restoration depend on plant functional type, restoration context and time. Fungal Ecol. 40, 140–149 (2019). DOI
Koziol, L. et al. Manipulating plant microbiomes in the field: native mycorrhizae advance plant succession and improve native plant restoration. J. Appl. Ecol. https://doi.org/10.1111/1365-2664.14036 (2021).
Wubs, E. R. J., van der Putten, W. H., Bosch, M. & Bezemer, T. M. Soil inoculation steers restoration of terrestrial ecosystems. Nat. Plants 2, 16107 (2016). PubMed DOI
Bever, J. & Schultz, P. Prairie mycorrhizal fungi inoculant may increase native plant diversity on restored sites (Illinois). Ecol. Restor. 21, 311–312 (2003).
Vahter, T. et al. Co-introduction of native mycorrhizal fungi and plant seeds accelerates restoration of post-mining landscapes. J. Appl. Ecol. 57, 1741–1751 (2020). DOI
Egan, C. P. et al. Restoration of the mycobiome of the endangered Hawaiian mint Phyllostegia kaalaensis increases its resistance to a common powdery mildew. Fungal Ecol. 52, 101070 (2021). DOI
Wubs, E. R. J. et al. Single introductions of soil biota and plants generate long‐term legacies in soil and plant community assembly. Ecol. Lett. 22, 1145–1151 (2019). PubMed DOI PMC
Abrego, N. et al. Reintroduction of threatened fungal species via inoculation. Biol. Conserv. 203, 120–124 (2016). DOI
Salomon, M. J. et al. Global evaluation of commercial arbuscular mycorrhizal inoculants under greenhouse and field conditions. Appl. Soil Ecol. 169, 104225 (2022). DOI
Maltz, M. R. & Treseder, K. K. Sources of inocula influence mycorrhizal colonization of plants in restoration projects: a meta-analysis: mycorrhizal inoculation in restoration. Restor. Ecol. 23, 625–634 (2015). DOI
Busby, P. E., Newcombe, G., Neat, A. S. & Averill, C. Facilitating reforestation through the plant microbiome: perspectives from the phyllosphere. Annu. Rev. Phytopathol. https://doi.org/10.1146/annurev-phyto-021320-010717 (2022).
van der Heijden, M. G. A., Martin, F. M., Selosse, M.-A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205, 1406–1423 (2015). PubMed DOI
Crowther, T. W. et al. Predicting the responsiveness of soil biodiversity to deforestation: a cross-biome study. Glob. Change Biol. 20, 2983–2994 (2014). DOI
Lilleskov, E. A., Kuyper, T. W., Bidartondo, M. I. & Hobbie, E. A. Atmospheric nitrogen deposition impacts on the structure and function of forest mycorrhizal communities: a review. Environ. Pollut. 246, 148–162 (2019). PubMed DOI
Smith, G. R., Steidinger, B. S., Bruns, T. D. & Peay, K. G. Competition–colonization tradeoffs structure fungal diversity. ISME J. 12, 1758–1767 (2018). PubMed DOI PMC
Ceballos, I. et al. The in vitro mass-produced model mycorrhizal fungus, Rhizophagus irregularis, significantly increases yields of the globally important food security crop cassava. PLoS ONE 8, e70633 (2013). PubMed DOI PMC
Buysens, C., César, V., Ferrais, F., de Boulois, H. D. & Declerck, S. Inoculation of Medicago sativa cover crop with Rhizophagus irregularis and Trichoderma harzianum increases the yield of subsequently-grown potato under low nutrient conditions. Appl. Soil Ecol. 105, 137–143 (2016). DOI
Antunes, P. M. et al. Influence of commercial inoculation with Glomus intraradices on the structure and functioning of an AM fungal community from an agricultural site. Plant Soil 317, 257–266 (2009). DOI
Emam, T. Local soil, but not commercial AMF inoculum, increases native and non‐native grass growth at a mine restoration site. Restor. Ecol. 24, 35–44 (2016). DOI
Hoeksema, J. D. et al. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol. Lett. 13, 394–407 (2010). PubMed DOI
Policelli, N., Horton, T. R., Hudon, A. T., Patterson, T. R. & Bhatnagar, J. M. Back to roots: the role of ectomycorrhizal fungi in boreal and temperate forest restoration. Front. For. Glob. Change 3, 97 (2020). DOI
Hoeksema, J. D. et al. Ectomycorrhizal plant-fungal co-invasions as natural experiments for connecting plant and fungal traits to their ecosystem consequences. Front. Glob. Change 3, 84 (2020). DOI
Land Use Statistics and Indicators. Global, Regional and Country Trends 1990– 2019 FAOSTAT Analytical Brief Series No. 28 (FAO, 2021).
Stewart, W. M., Dibb, D. W., Johnston, A. E. & Smyth, T. J. The contribution of commercial fertilizer nutrients to food production. Agron. J. 97, 1–6 (2005). DOI
Harlander, S. K. The evolution of modern agriculture and its future with biotechnology. J. Am. Coll. Nutr. 21, 161S–165S (2002). PubMed DOI
Cooper, J. & Dobson, H. The benefits of pesticides to mankind and the environment. Crop Prot. 26, 1337–1348 (2007). DOI
Zsögön, A., Peres, L. E. P., Xiao, Y., Yan, J. & Fernie, A. R. Enhancing crop diversity for food security in the face of climate uncertainty. Plant J. https://doi.org/10.1111/tpj.15626 (2021).
IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).
McDonald, B. A. & Stukenbrock, E. H. Rapid emergence of pathogens in agro-ecosystems: global threats to agricultural sustainability and food security. Phil. Trans. R. Soc. Lond. B 371, 20160026 (2016). DOI
Avelino, J. et al. The coffee rust crises in Colombia and Central America (2008–2013): impacts, plausible causes and proposed solutions. Food Sec. 7, 303–321 (2015). DOI
Goss, E. M. et al. The Irish potato famine pathogen Phytophthora infestans originated in central Mexico rather than the Andes. Proc. Natl Acad. Sci. USA 111, 8791–8796 (2014). PubMed DOI PMC
Ploetz, R. C. Panama disease: a classic and destructive disease of banana. Plant Health Prog. https://doi.org/10.1094/PHP-2000-1204-01-HM (2000).
Craven, D. et al. Multiple facets of biodiversity drive the diversity–stability relationship. Nat. Ecol. Evol. 2, 1579–1587 (2018). PubMed DOI
Thibaut, L. M. & Connolly, S. R. Understanding diversity–stability relationships: towards a unified model of portfolio effects. Ecol. Lett. 16, 140–150 (2013). PubMed DOI
Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015). PubMed DOI
Prieto, I. et al. Complementary effects of species and genetic diversity on productivity and stability of sown grasslands. Nat. Plants 1, 15033 (2015). PubMed DOI
Liang, J. et al. Positive biodiversity-productivity relationship predominant in global forests. Science 354, aaf8957 (2016). PubMed DOI
Cornell, C. et al. Do bioinoculants affect resident microbial communities? A meta-analysis. Front. Agron. 3, 753474 (2021). DOI
Manning, L. Groundwork BioAg raises $11m to expand mycorrhizal inputs business. AgFunder Network https://agfundernews.com/groundwork-bioag-raises-11m-to-expand-mycorrhizal-inputs-business (2021).
Egidi, E. et al. A few Ascomycota taxa dominate soil fungal communities worldwide. Nat. Commun. 10, 2369 (2019). PubMed DOI PMC
Olle, M. & Williams, I. H. Effective microorganisms and their influence on vegetable production—a review. J. Hortic. Sci. Biotechnol. 88, 380–386 (2013). DOI
Mayer, J., Scheid, S., Widmer, F., Fließbach, A. & Oberholzer, H.-R. How effective are ‘Effective microorganisms® (EM)’? Results from a field study in temperate climate. Appl. Soil Ecol. 46, 230–239 (2010). DOI
Kodippili, K. P. A. N. & Nimalan, J. Effect of homemade effective microorganisms on the growth and yield of chilli (Capsicum annuum) MI-2. AGRIEAST J. Agric. Sci. https://doi.org/10.4038/agrieast.v12i2.57 (2018).
de Araujo Avila, G. M., Gabardo, G., Clock, D. C. & de Lima Junior, O. S. Use of efficient microorganisms in agriculture. Res. Soc. Dev. https://doi.org/10.33448/rsd-v10i8.17515 (2021).
Saleem, M., Hu, J. & Jousset, A. More than the sum of its parts: microbiome biodiversity as a driver of plant growth and soil health. Annu. Rev. Ecol. Evol. Syst. 50, 145–168 (2019). DOI
Bradford, M. A. et al. Thermal adaptation of soil microbial respiration to elevated temperature. Ecol. Lett. 11, 1316–1327 (2008). PubMed DOI
Romero-Olivares, A. L., Allison, S. D. & Treseder, K. K. Soil microbes and their response to experimental warming over time: a meta-analysis of field studies. Soil Biol. Biochem. 107, 32–40 (2017). DOI
Klironomos, J. N. Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84, 2292–2301 (2003). DOI
Veen, C. G. F., Snoek, B. L., Bakx-Schotman, T., Wardle, D. A. & van der Putten, W. H. Relationships between fungal community composition in decomposing leaf litter and home-field advantage effects. Funct. Ecol. 33, 1524–1535 (2019). DOI
Wang, Q., Zhong, M. & He, T. Home-field advantage of litter decomposition and nitrogen release in forest ecosystems. Biol. Fertil. Soils 49, 427–434 (2013). DOI
Hawkes, C. V., Waring, B. G., Rocca, J. D. & Kivlin, S. N. Historical climate controls soil respiration responses to current soil moisture. Proc. Natl Acad. Sci. USA 114, 6322–6327 (2017). PubMed DOI PMC
Morriën, E. et al. Soil networks become more connected and take up more carbon as nature restoration progresses. Nat. Commun. 8, 14349 (2017). PubMed DOI PMC
Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 111, 5266–5270 (2014). PubMed DOI PMC
Wittebolle, L. et al. Initial community evenness favours functionality under selective stress. Nature 458, 623–626 (2009). PubMed DOI
de Graaff, M.-A., Adkins, J., Kardol, P. & Throop, H. A meta-analysis of soil biodiversity impacts on the carbon cycle. Soil 1, 257–271 (2015). DOI
Gao, J. et al. Assessing the effect of leaf litter diversity on the decomposition and associated diversity of fungal assemblages. Forests 6, 2371–2386 (2015). DOI
Selosse, M.-A., Bouchard, D., Martin, F. & Tacon, F. L. Effect of Laccaria bicolor strains inoculated on Douglas-fir (Pseudotsuga menziesii) several years after nursery inoculation. Can. J. Res. 30, 360–371 (2000). DOI
Banerjee, S. et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J. 13, 1722–1736 (2019). PubMed DOI PMC
Diversity and biogeography of the bacterial microbiome in glacier-fed streams
Forest microbiome and global change