Forest microbiome and global change
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
36941408
DOI
10.1038/s41579-023-00876-4
PII: 10.1038/s41579-023-00876-4
Knihovny.cz E-zdroje
- MeSH
- Bacteria MeSH
- dusík MeSH
- ekosystém * MeSH
- klimatické změny MeSH
- lesy MeSH
- mikrobiota * MeSH
- půda MeSH
- rostliny MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- dusík MeSH
- půda MeSH
Forests influence climate and mitigate global change through the storage of carbon in soils. In turn, these complex ecosystems face important challenges, including increases in carbon dioxide, warming, drought and fire, pest outbreaks and nitrogen deposition. The response of forests to these changes is largely mediated by microorganisms, especially fungi and bacteria. The effects of global change differ among boreal, temperate and tropical forests. The future of forests depends mostly on the performance and balance of fungal symbiotic guilds, saprotrophic fungi and bacteria, and fungal plant pathogens. Drought severely weakens forest resilience, as it triggers adverse processes such as pathogen outbreaks and fires that impact the microbial and forest performance for carbon storage and nutrient turnover. Nitrogen deposition also substantially affects forest microbial processes, with a pronounced effect in the temperate zone. Considering plant-microorganism interactions would help predict the future of forests and identify management strategies to increase ecosystem stability and alleviate climate change effects. In this Review, we describe the impact of global change on the forest ecosystem and its microbiome across different climatic zones. We propose potential approaches to control the adverse effects of global change on forest stability, and present future research directions to understand the changes ahead.
Zobrazit více v PubMed
Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008). PubMed DOI
Harris, N. L. et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Chang. 11, 234–240 (2021). DOI
Högberg, P. et al. Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411, 789–792 (2001). PubMed DOI
Baldrian, P. Forest microbiome: diversity, complexity and dynamics. FEMS Microbiol. Rev. 41, 109–130 (2017). This review displays the structure and function of microbiomes across forest habitats and describes the factors affecting the dynamics of microbiomes. PubMed
Žifčáková, L. et al. Feed in summer, rest in winter: microbial carbon utilization in forest topsoil. Microbiome 5, 122 (2017). PubMed DOI PMC
Tlaskal, V. et al. Complementary roles of wood-inhabiting fungi and bacteria facilitate deadwood decomposition. Msystems 6, e01078-20 (2021). PubMed DOI PMC
Miyauchi, S. et al. Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nat. Commun. 11, 5125 (2020). PubMed DOI PMC
Llado, S., Lopez-Mondejar, R. & Baldrian, P. Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change. Microbiol. Mol. Biol. Rev. 81, 00063-16 (2017). DOI
Levy-Booth, D. J., Prescott, C. E. & Grayston, S. J. Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil. Biol. Biochem. 75, 11–25 (2014). DOI
Gao, Z. L., Karlsson, I., Geisen, S., Kowalchuk, G. & Jousset, A. Protists: puppet masters of the rhizosphere microbiome. Trends Plant Sci. 24, 165–176 (2019). PubMed DOI
Offre, P., Spang, A. & Schleper, C. Archaea in biogeochemical cycles. Annu. Rev. Microbiol. 67, 437–457 (2013). PubMed DOI
Fremin, B. J. et al. Thousands of small, novel genes predicted in global phage genomes. Cell Rep. 39, 110984 (2022). PubMed DOI PMC
IPCC in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) 3–32 (Cambridge Univ. Press, 2021).
Anderegg, W. R. L. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, aaz7005 (2020). DOI
Mitchard, E. T. A. The tropical forest carbon cycle and climate change. Nature 559, 527–534 (2018). PubMed DOI
Gauthier, S., Bernier, P., Kuuluvainen, T., Shvidenko, A. Z. & Schepaschenko, D. G. Boreal forest health and global change. Science 349, 819–822 (2015). PubMed DOI
Millar, C. I. & Stephenson, N. L. Temperate forest health in an era of emerging megadisturbance. Science 349, 823–826 (2015). PubMed DOI
Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020). PubMed DOI
Norby, R. J. & Zak, D. R. Ecological lessons from free-air CO DOI
Kuzyakov, Y., Horwath, W. R., Dorodnikov, M. & Blagodatskaya, E. Review and synthesis of the effects of elevated atmospheric CO DOI
Patoine, G. et al. Drivers and trends of global soil microbial carbon over two decades. Nat. Commun. 13, 4195 (2022). PubMed DOI PMC
Brodribb, T. J., Powers, J., Cochard, H. & Choat, B. Hanging by a thread? Forests and drought. Science 368, aat7631 (2020). DOI
Lloret, F. & Batllori, E. in Ecosystem Collapse and Climate Change Vol. 241 (eds Jackson, R. B. & Canadell, J. G.) 155–186 (Springer, 2021).
Wang, C. T., Sun, Y., Chen, H. Y. H., Yang, J. Y. & Ruan, H. H. Meta-analysis shows non-uniform responses of above- and belowground productivity to drought. Sci. Total. Environ. 782, 146901 (2021). PubMed DOI
Ackerman, D., Millet, D. B. & Chen, X. Global estimates of inorganic nitrogen deposition across four decades. Glob. Biogeochem. Cycles 33, 100–107 (2019). DOI
Högberg, M. N. et al. The return of an experimentally N-saturated boreal forest to an N-limited state: observations on the soil microbial community structure, biotic N retention capacity and gross N mineralisation. Plant Soil 381, 45–60 (2014). DOI
Du, E. Z. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226 (2020). DOI
Fernandez-Martinez, M. et al. Nutrient availability as the key regulator of global forest carbon balance. Nat. Clim. Change 4, 471–476 (2014). DOI
Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Ecol. Manag. 259, 660–684 (2010). DOI
Brando, P. M. et al. Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proc. Natl Acad. Sci. USA 111, 6347–6352 (2014). PubMed DOI PMC
Anderegg, W. R. L., Kane, J. M. & Anderegg, L. D. L. Consequences of widespread tree mortality triggered by drought and temperature stress. Nat. Clim. Change 3, 30–36 (2013). DOI
Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 7537 (2015). PubMed DOI
Williams, A. P. et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Change 3, 292–297 (2013). DOI
Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Change 7, 395–402 (2017). This paper provides a global synthesis of climate change effects on important abiotic and biotic disturbance agents. DOI
Avolio, M. L. et al. Determinants of community compositional change are equally affected by global change. Ecol. Lett. 24, 1892–1904 (2021). PubMed DOI
Forzieri, G., Dakos, V., McDowell, N. G., Ramdane, A. & Cescatti, A. Emerging signals of declining forest resilience under climate change. Nature 608, 534–539 (2022). PubMed DOI PMC
Luyssaert, S. et al. CO DOI
Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011). PubMed DOI
Clemmensen, K. E. et al. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339, 1615–1618 (2013). This paper identifies belowground root and mycorrhizal fungal activities as key processes of carbon sequestration. PubMed DOI
Price, D. T. et al. Anticipating the consequences of climate change for Canada’s boreal forest ecosystems. Environ. Rev. 21, 322–365 (2013). DOI
Treseder, K. K., Marusenko, Y., Romero-Olivares, A. L. & Maltz, M. R. Experimental warming alters potential function of the fungal community in boreal forest. Glob. Change Biol. 22, 3395–3404 (2016). DOI
Karhu, K. et al. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513, 81–84 (2014). PubMed DOI
Walker, X. J. et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572, 520–523 (2019). PubMed DOI
Koster, K. et al. Impacts of wildfire on soil microbiome in boreal environments. Curr. Opin. Environ. Sci. Health 22, 100258 (2021). This paper summarizes the direct and indirect effects of wildfires on the microbiome of boreal forest and changes in resilience and functional recovery of the microbiome due to the increase of return intervals, intensity and severity expected in future. DOI
Bergner, B., Johnstone, J. & Treseder, K. K. Experimental warming and burn severity alter soil CO DOI
Holden, S. R., Gutierrez, A. & Treseder, K. K. Changes in soil fungal communities, extracellular enzyme activities, and litter decomposition across a fire chronosequence in Alaskan Boreal Forests. Ecosystems 16, 34–46 (2013). DOI
Day, N. J. et al. Wildfire severity reduces richness and alters composition of soil fungal communities in boreal forests of western Canada. Glob. Change Biol. 25, 2310–2324 (2019). DOI
Clemmensen, K. E. et al. Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests. N. Phytol. 205, 1525–1536 (2015). DOI
Whitman, T. et al. Soil bacterial and fungal response to wildfires in the Canadian boreal forest across a burn severity gradient. Soil. Biol. Biochem. 138, 107571 (2019). DOI
Nelson, A. R. et al. Wildfire-dependent changes in soil microbiome diversity and function. Nat. Microbiol. 7, 1419–1430 (2022). PubMed DOI PMC
Hogberg, P., Nasholm, T., Franklin, O. & Hogberg, M. N. Tamm review: on the nature of the nitrogen limitation to plant growth in Fennoscandian boreal forests. Ecol. Manag. 403, 161–185 (2017). DOI
Forsmark, B., Nordin, A., Rosenstock, N. P., Wallander, H. & Gundale, M. J. Anthropogenic nitrogen enrichment increased the efficiency of belowground biomass production in a boreal forest. Soil. Biol. Biochem. 155, 108154 (2021). DOI
Shao, P., Han, H., Sun, J. & Xie, H. Effects of global change and human disturbance on soil carbon cycling in boreal forest: a review. Pedosphere https://doi.org/10.1016/j.pedsph.2022.06.035 (2022). DOI
Jorgensen, K., Granath, G., Strengbom, J. & Lindahl, B. D. Links between boreal forest management, soil fungal communities and below-ground carbon sequestration. Funct. Ecol. 36, 392–405 (2022). DOI
Karlsson, P. E., Akselsson, C., Hellsten, S. & Karlsson, G. P. Twenty years of nitrogen deposition to Norway spruce forests in Sweden. Sci. Total Environ. 809, 152192 (2022). PubMed DOI
Bebber, D. P. The gap between atmospheric nitrogen deposition experiments and reality. Sci. Total Environ. 801, 149774 (2021). PubMed DOI
Schutte, U. M. E. et al. Effect of permafrost thaw on plant and soil fungal community in a boreal forest: does fungal community change mediate plant productivity response? J. Ecol. 107, 1737–1752 (2019). DOI
Zhang, Z. et al. Emerging role of wetland methane emissions in driving 21st century climate change. Proc. Natl Acad. Sci. USA 114, 9647–9652 (2017). PubMed DOI PMC
Hagedorn, F., Gavazov, K. & Alexander, J. M. Above- and belowground linkages shape responses of mountain vegetation to climate change. Science 365, 1119–1123 (2019). PubMed DOI
Alvarez-Garrido, L., Vinegla, B., Hortal, S., Powell, J. R. & Carreira, J. A. Distributional shifts in ectomycorrizhal fungal communities lag behind climate-driven tree upward migration in a conifer forest-high elevation shrubland ecotone. Soil. Biol. Biochem. 137, 107545 (2019). DOI
Norby, R. J., Ledford, J., Reilly, C. D., Miller, N. E. & O’Neill, E. G. Fine-root production dominates response of a deciduous forest to atmospheric CO PubMed DOI PMC
Schlesinger, W. H. & Lichter, J. Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO PubMed DOI
Phillips, R. P. et al. Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO PubMed DOI
Schleppi, P., Bucher-Wallin, I., Hagedorn, F. & Körner, C. Increased nitrate availability in the soil of a mixed mature temperate forest subjected to elevated CO DOI
Dunbar, J. et al. Surface soil fungal and bacterial communities in aspen stands are resilient to eleven years of elevated CO DOI
Phillips, R. L., Whalen, S. C. & Schlesinger, W. H. Response of soil methanotrophic activity to carbon dioxide enrichment in a North Carolina coniferous forest. Soil. Biol. Biochem. 33, 793–800 (2001). DOI
Kirschke, S. et al. Three decades of global methane sources and sinks. Nat. Geosci. 6, 813–823 (2013). DOI
Melillo, J. M. et al. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 358, 101–104 (2017). This study describes how the response of soil microbial biomass and organic carbon in forest soil to warming changes in time. PubMed DOI
DeAngelis, K. M. et al. Long-term forest soil warming alters microbial communities in temperate forest soils. Front. Microbiol. 6, 104 (2015). PubMed DOI PMC
Pold, G. et al. Long-term warming alters carbohydrate degradation potential in temperate forest soils. Appl. Environ. Microbiol. 82, 6518–6530 (2016). PubMed DOI PMC
Baldrian, P. et al. Responses of the extracellular enzyme activities in hardwood forest to soil temperature and seasonality and the potential effects of climate change. Soil Biol. Biochem. 56, 60–68 (2013). DOI
Bastida, F. et al. When drought meets forest management: effects on the soil microbial community of a Holm oak forest ecosystem. Sci. Total Environ. 662, 276–286 (2019). PubMed DOI
Willing, C. E., Pierroz, G., Coleman-Derr, D. & Dawson, T. E. The generalizability of water-deficit on bacterial community composition; site-specific water-availability predicts the bacterial community associated with coast redwood roots. Mol. Ecol. 29, 4721–4734 (2020). PubMed DOI
Gehring, C., Sevanto, S., Patterson, A., Ulrich, D. E. M. & Kuske, C. R. Ectomycorrhizal and dark septate fungal associations of pinyon pine are differentially affected by experimental drought and warming. Front. Plant Sci. 11, 1570 (2020). DOI
Berard, A., Ben Sassi, M., Kaisermann, A. & Renault, P. Soil microbial community responses to heat wave components: drought and high temperature. Clim. Res. 66, 243–264 (2015). DOI
Dannenmann, M. et al. Climate change impairs nitrogen cycling in European beech forests. PLoS ONE 11, e0158823 (2016). PubMed DOI PMC
Baldrian, P., Merhautová, V., Petránková, M., Cajthaml, T. & Šnajdr, J. Distribution of microbial biomass and activity of extracellular enzymes in a hardwood forest soil reflect soil moisture content. Appl. Soil. Ecol. 46, 177–182 (2010). DOI
Brabcová, V. et al. Fungal community development in decomposing fine deadwood is largely affected by microclimate. Front. Microbiol. 13, 835274 (2022). PubMed DOI PMC
Hernandez, L., de Dios, R. S., Montes, F., Sainz-Ollero, H. & Canellas, I. Exploring range shifts of contrasting tree species across a bioclimatic transition zone. Eur. J. Res. 136, 481–492 (2017). DOI
Bowd, E. J., Banks, S. C., Bissett, A., May, T. W. & Lindenmayer, D. B. Disturbance alters the forest soil microbiome. Mol. Ecol. 31, 419–435 (2022). PubMed DOI
Smith, G. R., Edy, L. C. & Peay, K. G. Contrasting fungal responses to wildfire across different ecosystem types. Mol. Ecol. 30, 844–854 (2021). PubMed DOI
Dove, N. C., Taş, N. & Hart, S. C. Ecological and genomic responses of soil microbiomes to high-severity wildfire: linking community assembly to functional potential. ISME J. 16, 1853–1863 (2022). PubMed DOI PMC
Hart, S. C., DeLuca, T. H., Newman, G. S., MacKenzie, M. D. & Boyle, S. I. Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils. Ecol. Manag. 220, 166–184 (2005). DOI
Pellegrini, A. F. A. et al. Decadal changes in fire frequencies shift tree communities and functional traits. Nat. Ecol. Evol. 5, 504–512 (2021). PubMed DOI
Kurz, W. A. et al. Mountain pine beetle and forest carbon feedback to climate change. Nature 452, 987–990 (2008). PubMed DOI
Quinn Thomas, R., Canham, C. D., Weathers, K. C. & Goodale, C. L. Increased tree carbon storage in response to nitrogen deposition in the US. Nat. Geosci. 3, 13–17 (2010). DOI
Frey, S. D. et al. Chronic nitrogen additions suppress decomposition and sequester soil carbon in temperate forests. Biogeochemistry 121, 305–316 (2014). DOI
Frey, B., Carnol, M., Dharmarajah, A., Brunner, I. & Schleppi, P. Only minor changes in the soil microbiome of a sub-alpine forest after 20 years of moderately increased nitrogen loads. Front. Glob. Change 3, 77 (2020). DOI
Hood-Nowotny, R. et al. Functional response of an Austrian forest soil to N addition. Environ. Res. Commun. 3, 025001 (2021). DOI
Wallenstein, M. D., McNulty, S., Fernandez, I. J., Boggs, J. & Schlesinger, W. H. Nitrogen fertilization decreases forest soil fungal and bacterial biomass in three long-term experiments. Ecol. Manag. 222, 459–468 (2006). DOI
Moore, J. A. M. et al. Fungal community structure and function shifts with atmospheric nitrogen deposition. Glob. Change Biol. 27, 1349–1364 (2021). DOI
Tahovska, K. et al. Positive response of soil microbes to long-term nitrogen input in spruce forest: results from Gardsjon whole-catchment N-addition experiment. Soil Biol. Biochem. 143, 107732 (2020). DOI
Baldrian, P., Bell-Dereske, L., Lepinay, C., Větrovský, T. & Kohout, P. Fungal communities in soils under global change. Stud. Mycol. 103, 1–24 (2022). PubMed DOI PMC
van der Linde, S. et al. Environment and host as large-scale controls of ectomycorrhizal fungi. Nature 558, 243–248 (2018). This paper shows that nitrogen deposition affects the communities of symbiotic ectomycorrhizal fungi. PubMed DOI
Morrison, E. W. et al. Chronic nitrogen additions fundamentally restructure the soil fungal community in a temperate forest. Fungal Ecol. 23, 48–57 (2016). DOI
de Witte, L. C., Rosenstock, N. P., van der Linde, S. & Braun, S. Nitrogen deposition changes ectomycorrhizal communities in Swiss beech forests. Sci. Total Environ. 605, 1083–1096 (2017). PubMed DOI
Zak, D. R., Holmes, W. E., Burton, A. J., Pregitzer, K. S. & Talhelm, A. F. Simulated atmospheric NO PubMed DOI
Freedman, Z. B., Upchurch, R. A., Zak, D. R. & Cline, L. C. Anthropogenic N deposition slows decay by favoring bacterial metabolism: insights from metagenomic analyses. Front. Microbiol. 7, 259 (2016). PubMed DOI PMC
Freedman, Z. et al. Towards a molecular understanding of N cycling in northern hardwood forests under future rates of N deposition. Soil. Biol. Biochem. 66, 130–138 (2013). DOI
Aber, J. et al. Nitrogen saturation in temperate forests. Bioscience 48, 921–934 (1998). DOI
Venterea, R. T. et al. Nitrogen oxide gas emissions from temperate forest soils receiving long-term nitrogen inputs. Glob. Change Biol. 9, 346–357 (2003). DOI
Boisvert-Marsh, L., Perie, C. & de Blois, S. Shifting with climate? Evidence for recent changes in tree species distribution at high latitudes. Ecosphere 5, 33 (2014). DOI
Reich, P. B. et al. Even modest climate change may lead to major transitions in boreal forests. Nature 608, 540–545 (2022). PubMed DOI
Bauer, A., Farrell, R. & Goldblum, D. The geography of forest diversity and community changes under future climate conditions in the eastern United States. Ecoscience 23, 41–53 (2016). DOI
Averill, C., Dietze, M. C. & Bhatnagar, J. M. Continental-scale nitrogen pollution is shifting forest mycorrhizal associations and soil carbon stocks. Glob. Change Biol. 24, 4544–4553 (2018). DOI
Jo, I., Fei, S., Oswalt, C. M., Domke, G. M. & Phillips, R. P. Shifts in dominant tree mycorrhizal associations in response to anthropogenic impacts. Sci. Adv. 5, eaav6358 (2019). PubMed DOI PMC
Averill, C. & Hawkes, C. V. Ectomycorrhizal fungi slow soil carbon cycling. Ecol. Lett. 19, 937–947 (2016). PubMed DOI
Mushinski, R. M. et al. Nitrogen cycling microbiomes are structured by plant mycorrhizal associations with consequences for nitrogen oxide fluxes in forests. Glob. Change Biol. 27, 1068–1082 (2021). This paper links plant mycorrhizal associations with the composition and function of soil microbiomes involved in nitrogen cycling. DOI
Baccini, A. et al. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358, 230–233 (2017). PubMed DOI
Guerra, C. A. et al. Blind spots in global soil biodiversity and ecosystem function research. Nat. Commun. 11, 3870 (2020). PubMed DOI PMC
Nottingham, A. T., Meir, P., Velasquez, E. & Turner, B. L. Soil carbon loss by experimental warming in a tropical forest. Nature 584, 234–237 (2020). This paper explores the effects of warming on microbial activity in the context of the tropical forest that is so far rarely studied. PubMed DOI
Cunha, H. F. V. et al. Direct evidence for phosphorus limitation on Amazon forest productivity. Nature 608, 558–562 (2022). PubMed DOI
Poorter, L. et al. Biodiversity and climate determine the functioning of Neotropical forests. Glob. Ecol. Biogeogr. 26, 1423–1434 (2017). DOI
Bauman, D. et al. Tropical tree mortality has increased with rising atmospheric water stress. Nature 608, 528–533 (2022). PubMed DOI
Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009). PubMed DOI
Bouskill, N. J. et al. Belowground response to drought in a tropical forest soil. I. Changes in microbial functional potential and metabolism. Front. Microbiol. 7, 525 (2016). PubMed PMC
Oliveira, U. et al. Determinants of fire impact in the Brazilian biomes. Front. Glob. Change 5, 735017 (2022). DOI
Corrales, A., Turner, B. L., Tedersoo, L., Anslan, S. & Dalling, J. W. Nitrogen addition alters ectomycorrhizal fungal communities and soil enzyme activities in a tropical montane forest. Fungal Ecol. 27, 14–23 (2017). DOI
Carey, J. C. et al. Temperature response of soil respiration largely unaltered with experimental warming. Proc. Natl Acad. Sci. USA 113, 13797–13802 (2016). PubMed DOI PMC
Holden, S. R. & Treseder, K. K. A meta-analysis of soil microbial biomass responses to forest disturbances. Front. Microbiol. 4, 163 (2013). PubMed DOI PMC
Stursova, M. et al. When the forest dies: the response of forest soil fungi to a bark beetle-induced tree dieback. ISME J. 8, 1920–1931 (2014). PubMed DOI PMC
Davison, J. et al. Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi. N. Phytol. 231, 763–776 (2021). DOI
Větrovský, T. et al. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat. Commun. 10, 5142 (2019). This paper identifies climate as the most important driver of fungal distribution with particular effects on ectomycorrhizal fungi. PubMed DOI PMC
Delgado-Baquerizo, M. et al. A global atlas of the dominant bacteria found in soil. Science 359, 320–325 (2018). PubMed DOI
Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017). PubMed DOI PMC
Lennon, J. T., Aanderud, Z. T., Lehmkuhl, B. K. & Schoolmaster, D. R. Mapping the niche space of soil microorganisms using taxonomy and traits. Ecology 93, 1867–1879 (2012). PubMed DOI
Urbanová, M., Šnajdr, J. & Baldrian, P. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil. Biol. Biochem. 84, 53–64 (2015). DOI
Gange, A. C., Gange, E. G., Mohammad, A. B. & Boddy, L. Host shifts in fungi caused by climate change? Fungal Ecol. 4, 184–190 (2011). DOI
Baldrian, P., Větrovský, T., Lepinay, C. & Kohout, P. High-throughput sequencing view on the magnitude of global fungal diversity. Fungal Divers. 114, 539–547 (2022). DOI
Jansson, J. K. & Hofmockel, K. S. Soil microbiomes and climate change. Nat. Rev. Microbiol. 18, 35–46 (2019). PubMed DOI
Zak, D. R. et al. Anthropogenic N deposition, fungal gene expression, and an increasing soil carbon sink in the northern hemisphere. Ecology 100, 8 (2019). DOI
Kauserud, H. et al. Warming-induced shift in European mushroom fruiting phenology. Proc. Natl Acad. Sci. USA 109, 14488–14493 (2012). PubMed DOI PMC
Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404–408 (2019). PubMed DOI
Kluber, L. A., Smith, J. E. & Myrold, D. D. Distinctive fungal and bacterial communities are associated with mats formed by ectomycorrhizal fungi. Soil. Biol. Biochem. 43, 1042–1050 (2011). DOI
van der Heijden, M. G. A., Martin, F. M., Selosse, M.-A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. N. Phytol. 205, 1406–1423 (2015). DOI
Steidinger, B. S. et al. Ectomycorrhizal fungal diversity predicted to substantially decline due to climate changes in North American Pinaceae forests. J. Biogeogr. 47, 772–782 (2020). This paper makes a prediction of a future loss of diversity of ectomycorrhizal fungi as a consequence of global change. DOI
Miyamoto, Y., Terashima, Y. & Nara, K. Temperature niche position and breadth of ectomycorrhizal fungi: reduced diversity under warming predicted by a nested community structure. Glob. Change Biol. 24, 5724–5737 (2018). DOI
Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018). PubMed DOI
Delgado-Baquerizo, M. et al. The proportion of soil-borne pathogens increases with warming at the global scale. Nat. Clim. Change 10, 550–554 (2020). This paper analyses the risk of fungal pathogen rise in response to global change. DOI
Guerra, C. A. et al. Global projections of the soil microbiome in the Anthropocene. Glob. Ecol. Biogeogr. 30, 987–999 (2021). PubMed DOI
Garcia, M. O. et al. Soil microbes trade-off biogeochemical cycling for stress tolerance traits in response to year-round climate change. Front. Microbiol. 11, 616 (2020). PubMed DOI PMC
Royo, A. A. et al. The forest of unintended consequences: anthropogenic actions trigger the rise and fall of black cherry. Bioscience 71, 683–696 (2021). DOI
McLane, S. C. & Aitken, S. N. Whitebark pine (Pinus albicaulis) assisted migration potential: testing establishment north of the species range. Ecol. Appl. 22, 142–153 (2012). PubMed DOI
Pedro, M. S., Rammer, W. & Seidl, R. Tree species diversity mitigates disturbance impacts on the forest carbon cycle. Oecologia 177, 619–630 (2015). DOI
Pretzsch, H. et al. Mixing of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) enhances structural heterogeneity, and the effect increases with water availability. Ecol. Manag. 373, 149–166 (2016). DOI
Větrovský, T. et al. GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Sci. Data 7, 228 (2020). PubMed DOI PMC
Zimov, S. A., Schuur, E. A. G. & Chapin, F. S. Permafrost and the global carbon budget. Science 312, 1612–1613 (2006). PubMed DOI
Averill, C. et al. Defending Earth’s terrestrial microbiome. Nat. Microbiol. 7, 1717–1725 (2022). PubMed DOI
Martinović, T. et al. Temporal turnover of the soil microbiome composition is guild-specific. Ecol. Lett. 24, 2726–2738 (2021). PubMed DOI
Knusel, B. et al. Applying big data beyond small problems in climate research. Nat. Clim. Change 9, 196–202 (2019). DOI
Bullock, E. L., Woodcock, C. E., Souza, C. & Olofsson, P. Satellite-based estimates reveal widespread forest degradation in the Amazon. Glob. Change Biol. 26, 2956–2969 (2020). DOI
Reiche, J. et al. Combining satellite data for better tropical forest monitoring. Nat. Clim. Change 6, 120–122 (2016). DOI
Zou, W., Jing, W., Chen, G., Lu, Y. & Song, H. A survey of big data analytics for smart forestry. IEEE Access. 7, 46621–46636 (2019). DOI
Seibold, S. et al. The contribution of insects to global forest deadwood decomposition. Nature 597, 77–81 (2021). This paper assesses the combined effects of the microbiome and insects on decomposition of deadwood across the globe, pointing to the importance of the interactions between microorganisms and macroorganisms. PubMed DOI
Crowther, T. W. et al. Biotic interactions mediate soil microbial feedbacks to climate change. Proc. Natl Acad. Sci. USA 112, 7033–7038 (2015). PubMed DOI PMC
Ashton, L. A. et al. Termites mitigate the effects of drought in tropical rainforest. Science 363, 174–177 (2019). PubMed DOI
Thakur, M. P. et al. Reduced feeding activity of soil detritivores under warmer and drier conditions. Nat. Clim. Change 8, 75–78 (2018). DOI
Cambon, M. C. et al. Drought tolerance traits in neotropical trees correlate with the composition of phyllosphere fungal communities. Phytobiomes J. https://doi.org/10.1094/PBIOMES-04-22-0023-R (2022). DOI
Laforest-Lapointe, I., Paquette, A., Messier, C. & Kembel, S. W. Leaf bacterial diversity mediates plant diversity and ecosystem function relationships. Nature 546, 145–147 (2017). PubMed DOI
Vesterdal, L., Clarke, N., Sigurdsson, B. D. & Gundersen, P. Do tree species influence soil carbon stocks in temperate and boreal forests? Ecol. Manag. 309, 4–18 (2013). DOI
Magnusson, R. I., Tietema, A., Cornelissen, J. H. C., Hefting, M. M. & Kalbitz, K. Tamm review: sequestration of carbon from coarse woody debris in forest soils. Ecol. Manag. 377, 1–15 (2016). DOI
Sterck, F. et al. Optimizing stand density for climate-smart forestry: a way forward towards resilient forests with enhanced carbon storage under extreme climate events. Soil. Biol. Biochem. 162, 108396 (2021). DOI
Lohila, A. et al. Greenhouse gas flux measurements in a forestry-drained peatland indicate a large carbon sink. Biogeosciences 8, 3203–3218 (2011). DOI
Leppä, K. et al. Selection cuttings as a tool to control water table level in boreal drained peatland forests. Front. Earth Sci. 8, 576510 (2020). DOI
Stephens, S. L. et al. Temperate and boreal forest mega-fires: characteristics and challenges. Front. Ecol. Environ. 12, 115–122 (2014). DOI
Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020). PubMed DOI
Hong, P. B. et al. Biodiversity promotes ecosystem functioning despite environmental change. Ecol. Lett. 25, 555–569 (2022). PubMed DOI
Long-read sequencing sheds light on key bacteria contributing to deadwood decomposition processes
Variation of carbon, nitrogen and phosphorus content in fungi reflects their ecology and phylogeny
Editorial: Theme issue on the ecology of soil microorganisms