A meta-analysis of global fungal distribution reveals climate-driven patterns

. 2019 Nov 13 ; 10 (1) : 5142. [epub] 20191113

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, metaanalýza, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31723140
Odkazy

PubMed 31723140
PubMed Central PMC6853883
DOI 10.1038/s41467-019-13164-8
PII: 10.1038/s41467-019-13164-8
Knihovny.cz E-zdroje

The evolutionary and environmental factors that shape fungal biogeography are incompletely understood. Here, we assemble a large dataset consisting of previously generated mycobiome data linked to specific geographical locations across the world. We use this dataset to describe the distribution of fungal taxa and to look for correlations with different environmental factors such as climate, soil and vegetation variables. Our meta-study identifies climate as an important driver of different aspects of fungal biogeography, including the global distribution of common fungi as well as the composition and diversity of fungal communities. In our analysis, fungal diversity is concentrated at high latitudes, in contrast with the opposite pattern previously shown for plants and other organisms. Mycorrhizal fungi appear to have narrower climatic tolerances than pathogenic fungi. We speculate that climate change could affect ecosystem functioning because of the narrow climatic tolerances of key fungal taxa.

Zobrazit více v PubMed

Peay KG, Kennedy PG, Talbot JM. Dimensions of biodiversity in the Earth mycobiome. Nat. Rev. Microbiol. 2016;14:434–447. doi: 10.1038/nrmicro.2016.59. PubMed DOI

Amundson R, et al. Soil and human security in the 21st century. Science. 2015;348:1261071. doi: 10.1126/science.1261071. PubMed DOI

Crowther TW, et al. Quantifying global soil carbon losses in response to warming. Nature. 2016;540:104–108. doi: 10.1038/nature20150. PubMed DOI

Wall DH, Nielsen UN, Six J. Soil biodiversity and human health. Nature. 2015;528:69–76. doi: 10.1038/nature15744. PubMed DOI

Hillebrand H. On the generality of the latitudinal diversity gradient. Am. Nat. 2004;163:192–211. doi: 10.1086/381004. PubMed DOI

Kivlin SN, Emery SM, Rudgers JA. Fungal symbionts alter plant responses to global change. Am. J. Bot. 2013;100:1445–1457. doi: 10.3732/ajb.1200558. PubMed DOI

Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM. Thermotolerance generated by plant/fungal symbiosis. Science. 2002;298:1581. doi: 10.1126/science.1072191. PubMed DOI

Bardgett RD, van der Putten WH. Belowground biodiversity and ecosystem functioning. Nature. 2014;515:505–511. doi: 10.1038/nature13855. PubMed DOI

Kreft H, Jetz W. Global patterns and determinants of vascular plant diversity. Proc. Natl Acad. Sci. USA. 2007;104:5925–5930. doi: 10.1073/pnas.0608361104. PubMed DOI PMC

Tedersoo L, et al. Global diversity and geography of soil fungi. Science. 2014;346:1256688. doi: 10.1126/science.1256688. PubMed DOI

Jetz W, McPherson JM, Guralnick RP. Integrating biodiversity distribution knowledge: toward a global map of life. Trends Ecol. Evol. 2012;27:151–159. doi: 10.1016/j.tree.2011.09.007. PubMed DOI

Joppa LN, et al. Filling in biodiversity threat gaps. Science. 2016;352:416–418. doi: 10.1126/science.aaf3565. PubMed DOI

Newsham KK, et al. Relationship between soil fungal diversity and temperature in the maritime Antarctic. Nat. Clim. Change. 2016;6:182–186. doi: 10.1038/nclimate2806. DOI

Wollan AK, Bakkestuen V, Kauserud H, Gulden G, Halvorsen R. Modelling and predicting fungal distribution patterns using herbarium data. J. Biogeogr. 2008;35:2298–2310. doi: 10.1111/j.1365-2699.2008.01965.x. DOI

Põlme S, et al. Biogeography of ectomycorrhizal fungi associated with alders (Alnus spp.) in relation to biotic and abiotic variables at the global scale. New Phytol. 2013;198:1239–1249. doi: 10.1111/nph.12170. PubMed DOI

Maestre FT, et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc. Natl Acad. Sci. USA. 2015;112:15684–15689. PubMed PMC

Thompson LR, et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 2017;551:457–463. doi: 10.1038/nature24621. PubMed DOI PMC

Kreft H, Jetz W. A framework for delineating biogeographical regions based on species distributions. J. Biogeogr. 2010;37:2029–2053. doi: 10.1111/j.1365-2699.2010.02375.x. DOI

Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH. Beyond biogeographic patterns: processes shaping the microbial landscape. Nat. Rev. Microbiol. 2012;10:497–506. doi: 10.1038/nrmicro2795. PubMed DOI

Delgado-Baquerizo M, et al. A global atlas of the dominant bacteria found in soil. Science. 2018;359:320–325. doi: 10.1126/science.aap9516. PubMed DOI

Norros V, Penttila R, Suominen M, Ovaskainen O. Dispersal may limit the occurrence of specialist wood decay fungi already at small spatial scales. Oikos. 2012;121:961–974. doi: 10.1111/j.1600-0706.2012.20052.x. DOI

Peay KG, Garbelotto M, Bruns TD. Evidence of dispersal limitation in soil microorganisms: Isolation reduces species richness on mycorrhizal tree islands. Ecology. 2010;91:3631–3640. doi: 10.1890/09-2237.1. PubMed DOI

Brown JKM, Hovmoller MS. Epidemiology—aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science. 2002;297:537–541. doi: 10.1126/science.1072678. PubMed DOI

Harrower E, Bougher NL, Henkel TW, Horak E, Matheny PB. Long-distance dispersal and speciation of Australasian and American species of Cortinarius sect Cortinarius. Mycologia. 2015;107:697–709. doi: 10.3852/14-182. PubMed DOI

Talbot JM, et al. Endemism and functional convergence across the North American soil mycobiome. Proc. Natl Acad. Sci. USA. 2014;111:6341–6346. doi: 10.1073/pnas.1402584111. PubMed DOI PMC

Amend AS, Seifert KA, Samson R, Bruns TD. Indoor fungal composition is geographically patterned and more diverse in temperate zones than in the tropics. Proc. Natl Acad. Sci. USA. 2010;107:13748–13753. doi: 10.1073/pnas.1000454107. PubMed DOI PMC

Davison J, et al. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science. 2015;349:970–973. doi: 10.1126/science.aab1161. PubMed DOI

Bahram M, et al. Structure and function of the global topsoil microbiome. Nature. 2018;560:233–237. doi: 10.1038/s41586-018-0386-6. PubMed DOI

Egidi E, et al. A few Ascomycota taxa dominate soil fungal communities worldwide. Nat. Commun. 2019;10:2369. doi: 10.1038/s41467-019-10373-z. PubMed DOI PMC

Nilsson RH, et al. Mycobiome diversity: high-throughput sequencing and identification of fungi. Nat. Rev. Microbiol. 2019;17:95–109. doi: 10.1038/s41579-018-0116-y. PubMed DOI

Kõljalg U, et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 2013;22:5271–5277. doi: 10.1111/mec.12481. PubMed DOI

Palmer TN, Räisänen J. Quantifying the risk of extreme seasonal precipitation events in a changing climate. Nature. 2002;415:512–514. doi: 10.1038/415512a. PubMed DOI

Kohler A, et al. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat. Genet. 2015;47:410–415. doi: 10.1038/ng.3223. PubMed DOI

Miyamoto Y, Terashima Y, Nara K. Temperature niche position and breadth of ectomycorrhizal fungi: reduced diversity under warming predicted by a nested community structure. Glob. Change Biol. 2018;24:5724–5737. doi: 10.1111/gcb.14446. PubMed DOI

Branco S, et al. Genetic isolation between two recently diverged populations of a symbiotic fungus. Mol. Ecol. 2015;24:2747–2758. doi: 10.1111/mec.13132. PubMed DOI

Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann. Intern. Med. 2009;151:264–269. doi: 10.7326/0003-4819-151-4-200908180-00135. PubMed DOI

Bengtsson-Palme J, et al. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol. Evol. 2013;4:914–919.

Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584. doi: 10.7717/peerj.2584. PubMed DOI PMC

Karger DN, et al. Data Descriptor: Climatologies at high resolution for the earth’s land surface areas. Sci. Data. 2017;4:20. doi: 10.1038/sdata.2017.122. PubMed DOI PMC

Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017;37:4302–4315. doi: 10.1002/joc.5086. DOI

Hengl T, et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE. 2017;12:e0169748. doi: 10.1371/journal.pone.0169748. PubMed DOI PMC

Reuter, H. I. & Hengl, T. Worldgrids—a public repository of global soil covariates. In Digital Soil Assessments and Beyond, Sydney, Australia (eds Minasny, B., Malone, B. P. & McBratney, A. B.). (CRC Press, 2012).

Running, S., Mu, Q. & Zhao, M. MOD17A2H MODIS/Terra Gross Primary Productivity 8-Day L4 Global 500m SIN Grid V006. 2015, distributed by NASA EOSDIS Land Processes DAAC. 10.5067/MODIS/MOD17A2H.006 (2015).

Nguyen NH, et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016;20:241–248. doi: 10.1016/j.funeco.2015.06.006. DOI

Breiman L. Random forests. Mach. Learn. 2001;45:5–32. doi: 10.1023/A:1010933404324. DOI

Ellis N, Smith SJ, Pitcher CR. Gradient forests: calculating importance gradients on physical predictors. Ecology. 2012;93:156–168. doi: 10.1890/11-0252.1. PubMed DOI

Sing T, Sander O, Beerenwinkel N, Lengauer T. ROCR: visualizing classifier performance in R. Bioinformatics. 2005;21:3940–3941. doi: 10.1093/bioinformatics/bti623. PubMed DOI

Kruskal JB. Nonmetric multidimensional scaling: a numerical method. Psychometrika. 1964;29:115–129. doi: 10.1007/BF02289694. DOI

Hurlbert AH, Jetz W. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proc. Natl Acad. Sci. USA. 2007;104:13384–13389. doi: 10.1073/pnas.0704469104. PubMed DOI PMC

Holt B, et al. An update of Wallace’s zoogeographic regions of the world. Science. 2013;339:74–78. doi: 10.1126/science.1228282. PubMed DOI

Hawkins BA, et al. Energy, water, and broad-scale geographic patterns of species richness. Ecology. 2003;84:3105–3117. doi: 10.1890/03-8006. DOI

Lozupone C, Hamady M, Knight R. UniFrac—an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinforma. 2006;7:371. doi: 10.1186/1471-2105-7-371. PubMed DOI PMC

Lumley T. Pseudo-R-2 statistics under complex sampling. Aust. N. Z. J. Stat. 2017;59:187–194. doi: 10.1111/anzs.12187. DOI

Liaw A, Wiener M. Classification and regression by randomForest. R. News. 2002;2-3:18–22.

Chao A. Non-parametric estimation of the number of classes in a population. Scand. J. Stat. 1984;11:265–270.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The contribution of tropical long-term studies to mycology

. 2024 Nov 11 ; 15 (1) : 35. [epub] 20241111

Connecting the multiple dimensions of global soil fungal diversity

. 2023 Dec ; 9 (48) : eadj8016. [epub] 20231129

Sympoietic growth: living and producing with fungi in times of ecological distress

. 2023 ; 40 (1) : 359-371. [epub] 20221015

Forest microbiome and global change

. 2023 Aug ; 21 (8) : 487-501. [epub] 20230320

Regional biogeography versus intra-annual dynamics of the root and soil microbiome

. 2023 Jun 07 ; 18 (1) : 50. [epub] 20230607

Wild rodents harbour high diversity of Arthroderma

. 2023 Jun ; 50 () : 27-47. [epub] 20230201

Global patterns in endemicity and vulnerability of soil fungi

. 2022 Nov ; 28 (22) : 6696-6710. [epub] 20220902

Fungal communities in soils under global change

. 2022 Sep ; 103 () : 1-24. [epub] 20220921

Consolidation of Chloridium: new classification into eight sections with 37 species and reinstatement of the genera Gongromeriza and Psilobotrys

. 2022 Sep ; 103 () : 87-212. [epub] 20221214

Fungal Community Development in Decomposing Fine Deadwood Is Largely Affected by Microclimate

. 2022 ; 13 () : 835274. [epub] 20220413

Phylogenetic Reassessment, Taxonomy, and Biogeography of Codinaea and Similar Fungi

. 2021 Dec 20 ; 7 (12) : . [epub] 20211220

Recommendations for connecting molecular sequence and biodiversity research infrastructures through ELIXIR

. 2021 ; 10 () : . [epub] 20211203

Successional Development of Fungal Communities Associated with Decomposing Deadwood in a Natural Mixed Temperate Forest

. 2021 May 25 ; 7 (6) : . [epub] 20210525

Explorative Meta-Analysis of 417 Extant Archaeal Genomes to Predict Their Contribution to the Total Microbiome Functionality

. 2021 Feb 13 ; 9 (2) : . [epub] 20210213

Forest Microhabitat Affects Succession of Fungal Communities on Decomposing Fine Tree Roots

. 2021 ; 12 () : 541583. [epub] 20210128

Production of Fungal Mycelia in a Temperate Coniferous Forest Shows Distinct Seasonal Patterns

. 2020 Sep 26 ; 6 (4) : . [epub] 20200926

Alien ectomycorrhizal plants differ in their ability to interact with co-introduced and native ectomycorrhizal fungi in novel sites

. 2020 Sep ; 14 (9) : 2336-2346. [epub] 20200604

GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies

. 2020 Jul 13 ; 7 (1) : 228. [epub] 20200713

Explorative Meta-Analysis of 377 Extant Fungal Genomes Predicted a Total Mycobiome Functionality of 42.4 Million KEGG Functions

. 2020 ; 11 () : 143. [epub] 20200206

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...