A meta-analysis of global fungal distribution reveals climate-driven patterns
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, metaanalýza, práce podpořená grantem
PubMed
31723140
PubMed Central
PMC6853883
DOI
10.1038/s41467-019-13164-8
PII: 10.1038/s41467-019-13164-8
Knihovny.cz E-zdroje
- MeSH
- biodiverzita MeSH
- déšť MeSH
- druhová specificita MeSH
- fylogeografie MeSH
- houby fyziologie MeSH
- internacionalita * MeSH
- podnebí * MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- práce podpořená grantem MeSH
The evolutionary and environmental factors that shape fungal biogeography are incompletely understood. Here, we assemble a large dataset consisting of previously generated mycobiome data linked to specific geographical locations across the world. We use this dataset to describe the distribution of fungal taxa and to look for correlations with different environmental factors such as climate, soil and vegetation variables. Our meta-study identifies climate as an important driver of different aspects of fungal biogeography, including the global distribution of common fungi as well as the composition and diversity of fungal communities. In our analysis, fungal diversity is concentrated at high latitudes, in contrast with the opposite pattern previously shown for plants and other organisms. Mycorrhizal fungi appear to have narrower climatic tolerances than pathogenic fungi. We speculate that climate change could affect ecosystem functioning because of the narrow climatic tolerances of key fungal taxa.
Biodiversity Research Centre University of British Columbia 2212 Main Mall Vancouver V6T 1Z4 Canada
Department of Biology Stanford University Stanford CA 94305 USA
Faculty of Science Charles University Albertov 6 12844 Praha 2 Czech Republic
Gladstone Institutes San Francisco CA 94158 USA
Institute of Botany of the Czech Academy of Sciences Zámek 1 25243 Průhonice Czech Republic
Zobrazit více v PubMed
Peay KG, Kennedy PG, Talbot JM. Dimensions of biodiversity in the Earth mycobiome. Nat. Rev. Microbiol. 2016;14:434–447. doi: 10.1038/nrmicro.2016.59. PubMed DOI
Amundson R, et al. Soil and human security in the 21st century. Science. 2015;348:1261071. doi: 10.1126/science.1261071. PubMed DOI
Crowther TW, et al. Quantifying global soil carbon losses in response to warming. Nature. 2016;540:104–108. doi: 10.1038/nature20150. PubMed DOI
Wall DH, Nielsen UN, Six J. Soil biodiversity and human health. Nature. 2015;528:69–76. doi: 10.1038/nature15744. PubMed DOI
Hillebrand H. On the generality of the latitudinal diversity gradient. Am. Nat. 2004;163:192–211. doi: 10.1086/381004. PubMed DOI
Kivlin SN, Emery SM, Rudgers JA. Fungal symbionts alter plant responses to global change. Am. J. Bot. 2013;100:1445–1457. doi: 10.3732/ajb.1200558. PubMed DOI
Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM. Thermotolerance generated by plant/fungal symbiosis. Science. 2002;298:1581. doi: 10.1126/science.1072191. PubMed DOI
Bardgett RD, van der Putten WH. Belowground biodiversity and ecosystem functioning. Nature. 2014;515:505–511. doi: 10.1038/nature13855. PubMed DOI
Kreft H, Jetz W. Global patterns and determinants of vascular plant diversity. Proc. Natl Acad. Sci. USA. 2007;104:5925–5930. doi: 10.1073/pnas.0608361104. PubMed DOI PMC
Tedersoo L, et al. Global diversity and geography of soil fungi. Science. 2014;346:1256688. doi: 10.1126/science.1256688. PubMed DOI
Jetz W, McPherson JM, Guralnick RP. Integrating biodiversity distribution knowledge: toward a global map of life. Trends Ecol. Evol. 2012;27:151–159. doi: 10.1016/j.tree.2011.09.007. PubMed DOI
Joppa LN, et al. Filling in biodiversity threat gaps. Science. 2016;352:416–418. doi: 10.1126/science.aaf3565. PubMed DOI
Newsham KK, et al. Relationship between soil fungal diversity and temperature in the maritime Antarctic. Nat. Clim. Change. 2016;6:182–186. doi: 10.1038/nclimate2806. DOI
Wollan AK, Bakkestuen V, Kauserud H, Gulden G, Halvorsen R. Modelling and predicting fungal distribution patterns using herbarium data. J. Biogeogr. 2008;35:2298–2310. doi: 10.1111/j.1365-2699.2008.01965.x. DOI
Põlme S, et al. Biogeography of ectomycorrhizal fungi associated with alders (Alnus spp.) in relation to biotic and abiotic variables at the global scale. New Phytol. 2013;198:1239–1249. doi: 10.1111/nph.12170. PubMed DOI
Maestre FT, et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc. Natl Acad. Sci. USA. 2015;112:15684–15689. PubMed PMC
Thompson LR, et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 2017;551:457–463. doi: 10.1038/nature24621. PubMed DOI PMC
Kreft H, Jetz W. A framework for delineating biogeographical regions based on species distributions. J. Biogeogr. 2010;37:2029–2053. doi: 10.1111/j.1365-2699.2010.02375.x. DOI
Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH. Beyond biogeographic patterns: processes shaping the microbial landscape. Nat. Rev. Microbiol. 2012;10:497–506. doi: 10.1038/nrmicro2795. PubMed DOI
Delgado-Baquerizo M, et al. A global atlas of the dominant bacteria found in soil. Science. 2018;359:320–325. doi: 10.1126/science.aap9516. PubMed DOI
Norros V, Penttila R, Suominen M, Ovaskainen O. Dispersal may limit the occurrence of specialist wood decay fungi already at small spatial scales. Oikos. 2012;121:961–974. doi: 10.1111/j.1600-0706.2012.20052.x. DOI
Peay KG, Garbelotto M, Bruns TD. Evidence of dispersal limitation in soil microorganisms: Isolation reduces species richness on mycorrhizal tree islands. Ecology. 2010;91:3631–3640. doi: 10.1890/09-2237.1. PubMed DOI
Brown JKM, Hovmoller MS. Epidemiology—aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science. 2002;297:537–541. doi: 10.1126/science.1072678. PubMed DOI
Harrower E, Bougher NL, Henkel TW, Horak E, Matheny PB. Long-distance dispersal and speciation of Australasian and American species of Cortinarius sect Cortinarius. Mycologia. 2015;107:697–709. doi: 10.3852/14-182. PubMed DOI
Talbot JM, et al. Endemism and functional convergence across the North American soil mycobiome. Proc. Natl Acad. Sci. USA. 2014;111:6341–6346. doi: 10.1073/pnas.1402584111. PubMed DOI PMC
Amend AS, Seifert KA, Samson R, Bruns TD. Indoor fungal composition is geographically patterned and more diverse in temperate zones than in the tropics. Proc. Natl Acad. Sci. USA. 2010;107:13748–13753. doi: 10.1073/pnas.1000454107. PubMed DOI PMC
Davison J, et al. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science. 2015;349:970–973. doi: 10.1126/science.aab1161. PubMed DOI
Bahram M, et al. Structure and function of the global topsoil microbiome. Nature. 2018;560:233–237. doi: 10.1038/s41586-018-0386-6. PubMed DOI
Egidi E, et al. A few Ascomycota taxa dominate soil fungal communities worldwide. Nat. Commun. 2019;10:2369. doi: 10.1038/s41467-019-10373-z. PubMed DOI PMC
Nilsson RH, et al. Mycobiome diversity: high-throughput sequencing and identification of fungi. Nat. Rev. Microbiol. 2019;17:95–109. doi: 10.1038/s41579-018-0116-y. PubMed DOI
Kõljalg U, et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 2013;22:5271–5277. doi: 10.1111/mec.12481. PubMed DOI
Palmer TN, Räisänen J. Quantifying the risk of extreme seasonal precipitation events in a changing climate. Nature. 2002;415:512–514. doi: 10.1038/415512a. PubMed DOI
Kohler A, et al. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat. Genet. 2015;47:410–415. doi: 10.1038/ng.3223. PubMed DOI
Miyamoto Y, Terashima Y, Nara K. Temperature niche position and breadth of ectomycorrhizal fungi: reduced diversity under warming predicted by a nested community structure. Glob. Change Biol. 2018;24:5724–5737. doi: 10.1111/gcb.14446. PubMed DOI
Branco S, et al. Genetic isolation between two recently diverged populations of a symbiotic fungus. Mol. Ecol. 2015;24:2747–2758. doi: 10.1111/mec.13132. PubMed DOI
Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann. Intern. Med. 2009;151:264–269. doi: 10.7326/0003-4819-151-4-200908180-00135. PubMed DOI
Bengtsson-Palme J, et al. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol. Evol. 2013;4:914–919.
Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584. doi: 10.7717/peerj.2584. PubMed DOI PMC
Karger DN, et al. Data Descriptor: Climatologies at high resolution for the earth’s land surface areas. Sci. Data. 2017;4:20. doi: 10.1038/sdata.2017.122. PubMed DOI PMC
Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017;37:4302–4315. doi: 10.1002/joc.5086. DOI
Hengl T, et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE. 2017;12:e0169748. doi: 10.1371/journal.pone.0169748. PubMed DOI PMC
Reuter, H. I. & Hengl, T. Worldgrids—a public repository of global soil covariates. In Digital Soil Assessments and Beyond, Sydney, Australia (eds Minasny, B., Malone, B. P. & McBratney, A. B.). (CRC Press, 2012).
Running, S., Mu, Q. & Zhao, M. MOD17A2H MODIS/Terra Gross Primary Productivity 8-Day L4 Global 500m SIN Grid V006. 2015, distributed by NASA EOSDIS Land Processes DAAC. 10.5067/MODIS/MOD17A2H.006 (2015).
Nguyen NH, et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016;20:241–248. doi: 10.1016/j.funeco.2015.06.006. DOI
Breiman L. Random forests. Mach. Learn. 2001;45:5–32. doi: 10.1023/A:1010933404324. DOI
Ellis N, Smith SJ, Pitcher CR. Gradient forests: calculating importance gradients on physical predictors. Ecology. 2012;93:156–168. doi: 10.1890/11-0252.1. PubMed DOI
Sing T, Sander O, Beerenwinkel N, Lengauer T. ROCR: visualizing classifier performance in R. Bioinformatics. 2005;21:3940–3941. doi: 10.1093/bioinformatics/bti623. PubMed DOI
Kruskal JB. Nonmetric multidimensional scaling: a numerical method. Psychometrika. 1964;29:115–129. doi: 10.1007/BF02289694. DOI
Hurlbert AH, Jetz W. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proc. Natl Acad. Sci. USA. 2007;104:13384–13389. doi: 10.1073/pnas.0704469104. PubMed DOI PMC
Holt B, et al. An update of Wallace’s zoogeographic regions of the world. Science. 2013;339:74–78. doi: 10.1126/science.1228282. PubMed DOI
Hawkins BA, et al. Energy, water, and broad-scale geographic patterns of species richness. Ecology. 2003;84:3105–3117. doi: 10.1890/03-8006. DOI
Lozupone C, Hamady M, Knight R. UniFrac—an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinforma. 2006;7:371. doi: 10.1186/1471-2105-7-371. PubMed DOI PMC
Lumley T. Pseudo-R-2 statistics under complex sampling. Aust. N. Z. J. Stat. 2017;59:187–194. doi: 10.1111/anzs.12187. DOI
Liaw A, Wiener M. Classification and regression by randomForest. R. News. 2002;2-3:18–22.
Chao A. Non-parametric estimation of the number of classes in a population. Scand. J. Stat. 1984;11:265–270.
The contribution of tropical long-term studies to mycology
Connecting the multiple dimensions of global soil fungal diversity
Sympoietic growth: living and producing with fungi in times of ecological distress
Forest microbiome and global change
Regional biogeography versus intra-annual dynamics of the root and soil microbiome
Wild rodents harbour high diversity of Arthroderma
Global patterns in endemicity and vulnerability of soil fungi
Fungal communities in soils under global change
Fungal Community Development in Decomposing Fine Deadwood Is Largely Affected by Microclimate
Phylogenetic Reassessment, Taxonomy, and Biogeography of Codinaea and Similar Fungi
Forest Microhabitat Affects Succession of Fungal Communities on Decomposing Fine Tree Roots
Production of Fungal Mycelia in a Temperate Coniferous Forest Shows Distinct Seasonal Patterns