Forest Microhabitat Affects Succession of Fungal Communities on Decomposing Fine Tree Roots

. 2021 ; 12 () : 541583. [epub] 20210128

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33584602

Belowground litter derived from tree roots has been shown as a principal source of soil organic matter in coniferous forests. Fate of tree root necromass depends on fungal communities developing on the decaying roots. Local environmental conditions which affect composition of tree root mycobiome may also influence fungal communities developing on decaying tree roots. Here, we assessed fungal communities associated with decaying roots of Picea abies decomposing in three microhabitats: soil with no vegetation, soil with ericoid shrubs cover, and P. abies deadwood, for a 2-year period. Forest microhabitat showed stronger effect on structuring fungal communities associated with decaying roots compared to living roots. Some ericoid mycorrhizal fungi showed higher relative abundance on decaying roots in soils under ericoid shrub cover, while saprotrophic fungi had higher relative abundance in roots decomposing inside deadwood. Regardless of the studied microhabitat, we observed decline of ectomycorrhizal fungi and increase of endophytic fungi during root decomposition. Interestingly, we found substantially more fungal taxa with unknown ecology in late stages of root decomposition, indicating that highly decomposed roots may represent so far overlooked niche for soil fungi. Our study shows the importance of microhabitats on the fate of the decomposing spruce roots.

Zobrazit více v PubMed

Aronesty E. (2011). ea-utils: Command-line Tools for Processing Biological Sequencing Data. Available online at: http://code.google.com/p/ea-utils (accessed November 19, 2019).

Asplund J., Kauserud H., Bokhorst S., Lie M. H., Ohlson M., Nybakken L. (2018). Fungal communities influence decomposition rates of plant litter from two dominant tree species. Fungal Ecol. 32 1–8. 10.1016/j.funeco.2017.11.003 DOI

Baldrian P. (2009). Ectomycorrhizal fungi and their enzymes in soils: is there enough evidence for their role as facultative soil saprotrophs? Oecologia 161 657–660. 10.1007/s00442-009-1433-1437 PubMed DOI

Baldrian P., Zrøustová P., Tláskal V., Davidová A., Merhautová V., Vrška T. (2016). Fungi associated with decomposing deadwood in a natural beech-dominated forest. Fungal Ecol. 23 109–122. 10.1016/j.funeco.2016.07.001 DOI

Barel J. M., Kuyper T. W., de Boer W., De Deyn G. B. (2019). Plant presence reduces root and shoot litter decomposition rates of crops and wild relatives. Plant Soil 438 313–327. 10.1007/s11104-019-03981-3987 DOI

Bengtsson-Palme J., Ryberg M., Hartmann M., Branco S., Wang Z., Godhe A., et al. (2013). Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol. Evol. 4 914–919. 10.1111/2041-210X.12073 DOI

Bödeker I. T. M., Clemmensen K. E., de Boer W., Martin F., Olson Å, Lindahl B. D. (2014). Ectomycorrhizal Cortinarius species participate in enzymatic oxidation of humus in northern forest ecosystems. New Phytol. 203 245–256. 10.1111/nph.12791 PubMed DOI

Brabcová V., Štursová M., Baldrian P. (2018). Nutrient content affects the turnover of fungal biomass in forest topsoil and the composition of associated microbial communities. Soil Biol. Biochem. 118 187–198. 10.1016/j.soilbio.2017.12.012 DOI

Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., et al. (2009). BLAST+: architecture and applications. BMC Bioinform. 10:421. 10.1186/1471-2105-10-421 PubMed DOI PMC

Chambers S. M., Curlevski N. J. A., Cairney J. W. G. (2008). Ericoid mycorrhizal fungi are common root inhabitants of non-Ericaceae plants in a south-eastern Australian sclerophyll forest. FEMS Microbiol. Ecol. 65 263–270. 10.1111/j.1574-6941.2008.00481.x PubMed DOI

Clemmensen K. E., Bahr A., Ovaskainen O., Dahlberg A., Ekblad A., Wallander H., et al. (2013). Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339 1615–1618. 10.1126/science.1231923 PubMed DOI

Dang C. K., Schindler M., Chauvet E., Gessner M. O. (2009). Temperature oscillation coupled with fungal community shifts pi can modulate warming effects on litter decomposition. Ecology 90 122–131. 10.1890/07-1974.1 PubMed DOI

de Cárcer D. A., Denman S. E., McSweeney C., Morrison M. (2011). Evaluation of subsampling-based normalization strategies for tagged high-throughput sequencing data sets from gut microbiomes. Appl. Environ. Microbiol. 77 8795–8798. 10.1128/AEM.05491-5411 PubMed DOI PMC

DeLong H. B., Lieffers V. J., Blenis P. V. (1997). Microsite effects on first-year establishment and overwinter survival of white spruce in aspen-dominated boreal mixedwoods. Can. J. For. Res. 27 1452–1457. 10.1139/x97-109 DOI

Edgar R. C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10 996–998. 10.1038/nmeth.2604 PubMed DOI

Fernandez C. W., Kennedy P. G. (2016). Revisiting the ‘Gadgil effect’: do interguild fungal interactions control carbon cycling in forest soils? New Phytol. 209 1382–1394. 10.1111/nph.13648 PubMed DOI

Freschet G. T., Cornwell W. K., Wardle D. A., Elumeeva T. G., Liu W., Jackson B. G., et al. (2013). Linking litter decomposition of above- and below-ground organs to plant-soil feedbacks worldwide. J. Ecol. 101 943–952. 10.1111/1365-2745.12092 DOI

Gray L., Kernaghan G. (2019). Fungal succession during the decomposition of ectomycorrhizal fine roots. Microb. Ecol. 79 271–284. 10.1007/s00248-019-01418-1413 PubMed DOI

Grünig C. R., Queloz V., Sieber T. N., Holdenrieder O. (2008). Dark septate endophytes (DSE) of the Phialocephala fortinii s.l. – Acephala applanata species complex in tree roots: classification, population biology, and ecology. Botany 86 1355–1369. 10.1139/B08-108 DOI

Herzog C., Hartmann M., Frey B., Stierli B., Rumpel C., Buchmann N., et al. (2019). Microbial succession on decomposing root litter in a drought-prone Scots pine forest. ISME J. 13 2346–2362. 10.1038/s41396-019-0436-436 PubMed DOI PMC

Hobbie S. E., Oleksyn J., Eissenstat D. M., Reich P. B. (2010). Fine root decomposition rates do not mirror those of leaf litter among temperate tree species. Oecologia 162 505–513. 10.1007/s00442-009-1479-6 PubMed DOI

Högberg P., Nordgren A., Buchmann N., Taylor A. F. S., Ekblad A., Högberg M. N., et al. (2001). Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411 789–792. 10.1038/35081058 PubMed DOI

Ihrmark K., Bödeker I. T. M., Cruz-Martinez K., Friberg H., Kubartova A., Schenck J., et al. (2012). New primers to amplify the fungal ITS2 region - evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol. Ecol. 82 666–677. 10.1111/j.1574-6941.2012.01437.x PubMed DOI

Iwański M., Rudawska M. (2007). Ectomycorrhizal colonization of naturally regenerating Pinus sylvestris L. seedlings growing in different micro-habitats in boreal forest. Mycorrhiza 17 461–467. 10.1007/s00572-007-0132-137 PubMed DOI

Jacobs L. M., Sulman B. N., Brzostek E. R., Feighery J. J., Phillips R. P., Richard Phillips C. P. (2018). Interactions among decaying leaf litter, root litter and soil organic matter vary with mycorrhizal type. J. Ecol. 106 502–513. 10.1111/1365-2745.12921 DOI

Jumpponen A., Trappe J. M. (1998). Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytol. 140 295–310. 10.1046/j.1469-8137.1998.00265.x PubMed DOI

Kaiser C., Koranda M., Kitzler B., Fuchslueger L., Schnecker J., Schweiger P., et al. (2010). Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil. New Phytol. 187 843–858. 10.1111/j.1469-8137.2010.03321.x PubMed DOI PMC

Kohler A., Kuo A., Nagy L. G., Morin E., Barry K. W., Buscot F., et al. (2015). Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat. Genet. 47 410–415. 10.1038/ng.3223 PubMed DOI

Kohout P., Charvátová M., Štursová M., Mašínová T., Tomšovský M., Baldrian P. (2018). Clearcutting alters decomposition processes and initiates complex restructuring of fungal communities in soil and tree roots. ISME J. 12 692–703. 10.1038/s41396-017-0027-23 PubMed DOI PMC

Kohout P., Sýkorová Z., Bahram M., Hadincová V., Albrechtová J., Tedersoo L., et al. (2011). Ericaceous dwarf shrubs affect ectomycorrhizal fungal community of the invasive Pinus strobus and native Pinus sylvestris in a pot experiment. Mycorrhiza 21 403–412. 10.1007/s00572-010-0350-352 PubMed DOI

Kohout P., Těšitelová T., Roy M., Vohník M., Jersáková J. (2013). A diverse fungal community associated with Pseudorchis albida (Orchidaceae) roots. Fungal Ecol. 6 50–64. 10.1016/j.funeco.2012.08.005 DOI

Kolaříková Z., Kohout P., Krüger C., Janoušková M., Mrnka L., Rydlová J. (2017). Root-associated fungal communities along a primary succession on a mine spoil: distinct ecological guilds assemble differently. Soil Biol. Biochem. 113 143–152. 10.1016/j.soilbio.2017.06.004 DOI

Kõljalg U., Nilsson R. H., Abarenkov K., Tedersoo L., Taylor A. F. S., Bahram M. (2013). Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22 5271–5277. 10.1111/mec.12481 PubMed DOI

Lange B. M., Lapierre C., Sandermann H. (1995). Elicitor-induced spruce stress lignin: structural similarity to early developmental lignins. Plant Physiol. 108 1277–1287. 10.1104/pp.108.3.1277 PubMed DOI PMC

Langley A. J., Chapman S. K., Hungate B. A. (2006). Ectomycorrhizal colonization slows root decomposition: the post-mortem fungal legacy. Ecol. Lett. 9 955–959. 10.1111/j.1461-0248.2006.00948.x PubMed DOI

Li A., Fahey T. J., Pawlowska T. E., Fisk M. C., Burtis J. (2015). Fine root decomposition, nutrient mobilization and fungal communities in a pine forest ecosystem. Soil Biol. Biochem. 83 76–83. 10.1016/j.soilbio.2015.01.019 DOI

Lindahl B. D., Tunlid A. (2015). Ectomycorrhizal fungi - potential organic matter decomposers, yet not saprotrophs. New Phytol. 205 1443–1447. 10.1111/nph.13201 PubMed DOI

Litton C. M., Raich J. W., Ryan M. G. (2007). Carbon allocation in forest ecosystems. Glob. Chang. Biol. 13 2089–2109. 10.1111/j.1365-2486.2007.01420.x DOI

Loader N. J., Robertson I., Barker A. C., Switsur V. R., Waterhouse J. S. (1997). An improved technique for the batch processing of small wholewood samples to α-cellulose. Chem. Geol. 136 313–317. 10.1016/S0009-2541(96)00133-137 DOI

Lukešová T., Kohout P., Větrovský T., Vohník M. (2015). The potential of dark septate endophytes to form root symbioses with ectomycorrhizal and ericoid mycorrhizal middle european forest plants. PLoS One 10:e0124752. 10.1371/journal.pone.0124752 PubMed DOI PMC

Maillard F., Schilling J., Andrews E., Schreiner K. M., Kennedy P. (2020). Functional convergence in the decomposition of fungal necromass in soil and wood. FEMS Microbiol. Ecol. 96:fiz209. 10.1093/femsec/fiz209 PubMed DOI

Martino E., Morin E., Grelet G.-A., Kuo A., Kohler A., Daghino S., et al. (2018). Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. New Phytol. 217 1213–1229. 10.1111/nph.14974 PubMed DOI

Miyauchi S., Kiss E., Kuo A., Drula E., Kohler A., Sánchez-García M., et al. (2020). Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nat. Commun. 11:5125. PubMed PMC

Newsham K. K. (2011). A meta-analysis of plant responses to dark septate root endophytes. New Phytol. 190 783–793. 10.1111/j.1469-8137.2010.03611.x PubMed DOI

Nguyen N. H., Song Z., Bates S. T., Branco S., Tedersoo L., Menke J., et al. (2016). FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20 241–248. 10.1016/j.funeco.2015.06.006 DOI

O’Hanlon-Manners D. L., Kotanen P. M. (2004). Logs as refuges from fungal pathogens for seeds of eastern hemlock (Tsuga canadensis). Ecology 85 284–289. 10.1890/03-3030 DOI

Oksanen A. J., Blanchet F. G., Kindt R., Legendre P., Minchin P. R., O’Hara R. B., et al. (2012). Vegan: Community ecology package. R package version 2.0–10.

Otsing E., Barantal S., Anslan S., Koricheva J., Tedersoo L. (2018). Litter species richness and composition effects on fungal richness and community structure in decomposing foliar and root litter. Soil Biol. Biochem. 125 328–339. 10.1016/j.soilbio.2018.08.006 DOI

Parker T. C., Sadowsky J., Dunleavy H., Subke J.-A., Frey S. D., Wookey P. A. (2017). Slowed biogeochemical cycling in sub-arctic birch forest linked to reduced mycorrhizal growth and community change after a defoliation event. Ecosystems 20 316–330. 10.1007/s10021-016-0026-27 PubMed DOI PMC

Parladé J., Queralt M., Pera J., Bonet J. A., Castaño C., Martínez-Peña F., et al. (2019). Temporal dynamics of soil fungal communities after partial and total clear-cutting in a managed Pinus sylvestris stand. For. Ecol. Manage. 449:117456 10.1016/j.foreco.2019.117456 DOI

Pec G. J., Karst J., Taylor D. L., Cigan P. W., Erbilgin N., Cooke J. E. K., et al. (2017). Change in soil fungal community structure driven by a decline in ectomycorrhizal fungi following a mountain pine beetle (Dendroctonus ponderosae) outbreak. New Phytol. 213 864–873. 10.1111/nph.14195 PubMed DOI

Perotto S., Daghino S., Martino E. (2018). Ericoid mycorrhizal fungi and their genomes: another side to the mycorrhizal symbiosis? New Phytol. 220 1141–1147. 10.1111/nph.15218 PubMed DOI

Põlme S., Bahram M., Jacquemyn H., Kennedy P., Kohout P., Moora M., et al. (2018). Host preference and network properties in biotrophic plant-fungal associations. New Phytol. 217 1230–1239. 10.1111/nph.14895 PubMed DOI

R Core Team (2020). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing; Available online at: https://www.R-project.org/

Rasse D. P., Rumpel C., Dignac M. F. (2005). Is soil carbon mostly root carbon? mechanisms for a specific stabilisation. Plant Soil 269 341–356. 10.1007/s11104-004-0907-y DOI

Reininger V., Grünig C. R., Sieber T. N. (2012). Host species and strain combination determine growth reduction of spruce and birch seedlings colonized by root-associated dark septate endophytes. Environ. Microbiol. 14 1064–1076. 10.1111/j.1462-2920.2011.02686.x PubMed DOI

Renvall P. (1995). Community structure and dynamics of wood-rotting Basidiomycetes on decomposing conifer trunks in northern Finland. Karstenia 35 1–51.

Roberts D. (2015). Labdsv: Ordination and Multivariate Analysis for Ecology. R package version 1.6.

Saravesi K., Aikio S., Wäli P. R., Ruotsalainen A. L., Kaukonen M., Huusko K., et al. (2015). Moth outbreaks alter root-associated fungal communities in subarctic mountain birch forests. Microb. Ecol. 69 788–797. 10.1007/s00248-015-0577-578 PubMed DOI

Schlegel M., Münsterkötter M., Güldener U., Bruggmann R., Duò A., Hainaut M., et al. (2016). Globally distributed root endophyte Phialocephala subalpina links pathogenic and saprophytic lifestyles. BMC Genom. 17:1015 10.1186/s12864-016-3369-3368 PubMed DOI PMC

Schmidt M. W. I., Torn M. S., Abiven S., Dittmar T., Guggenberger G., Janssens I. A., et al. (2011). Persistence of soil organic matter as an ecosystem property. Nature 478 49–56. 10.1038/nature10386 PubMed DOI

Shah F., Nicolás C., Bentzer J., Ellström M., Smits M., Rineau F., et al. (2016). Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors. New Phytol. 209 1705–1719. 10.1111/nph.13722 PubMed DOI PMC

Sietiö O.-M., Tuomivirta T., Santalahti M., Kiheri H., Timonen S., Sun H., et al. (2018). Ericoid plant species and Pinus sylvestris shape fungal communities in their roots and surrounding soil. New Phytol. 218 738–751. 10.1111/nph.15040 PubMed DOI

Smith S. E., Read D. J. (2008). Mycorrhizal Symbiosis. London: Academic Press.

Šnajdr J., Cajthaml T., Valášková V., Merhautová V., Petránková M., Spetz P., et al. (2011). Transformation of Quercus petraea litter: successive changes in litter chemistry are reflected in differential enzyme activity and changes in the microbial community composition. FEMS Microbiol. Ecol. 75 291–303. 10.1111/j.1574-6941.2010.00999.x PubMed DOI

St Hilaire L. R., Leopold D. J. (1995). Conifer seedling distribution in relation to microsite conditions in a central New York forested minerotrophic peatland. Can. J. For. Res. 25 261–269. 10.1139/x95-031 DOI

Štursová M., Šnajdr J., Cajthaml T., Bárta J., Šantrùèková H., Baldrian P. (2014). When the forest dies: the response of forest soil fungi to a bark beetle-induced tree dieback. ISME J. 8 1920–1931. 10.1038/ismej.2014.37 PubMed DOI PMC

Štursová M., Žifčáková L., Leigh M. B., Burgess R., Baldrian P. (2012). Cellulose utilization in forest litter and soil: Identification of bacterial and fungal decomposers. FEMS Microbiol. Ecol. 80 735–746. 10.1111/j.1574-6941.2012.01343.x PubMed DOI

Talbot J. M., Allison S. D., Treseder K. K. (2008). Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Funct. Ecol. 22 955–963. 10.1111/j.1365-2435.2008.01402.x DOI

Tedersoo L., Suvi T., Jairus T., Kõljalg U. (2008). Forest microsite effects on community composition of ectomycorrhizal fungi on seedlings of Picea abies and Betula pendula. Environ. Microbiol. 10 1189–1201. 10.1111/j.1462-2920.2007.01535.x PubMed DOI

Treu R., Karst J., Randall M., Pec G. J., Cigan P. W., Simard S. W., et al. (2014). Decline of ectomycorrhizal fungi following a mountain pine beetle epidemic. Ecology 95 1096–1103. 10.1890/13-1233.1 PubMed DOI

van der Linde S., Suz L. M., Orme C. D. L., Cox F., Andreae H., Asi E., et al. (2018). Environment and host as large-scale controls of ectomycorrhizal fungi. Nature 558 243–248. 10.1038/s41586-018-0189-189 PubMed DOI

Veblen T. T. (1989). Tree regeneration responses to gaps along a transandean gradient. Ecology 70 541–543. 10.2307/1940197 DOI

Větrovský T., Baldrian P., Morais D. (2018). SEED 2: a user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics 34 2292–2294. 10.1093/bioinformatics/bty071 PubMed DOI PMC

Větrovský T., Kohout P., Kopecký M., Machac A., Man M., Bahnmann B. D., et al. (2019). A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat. Commun. 10:5142 10.1038/s41467-019-13164-13168 PubMed DOI PMC

Vohník M., Mrnka L., Lukešová T., Bruzone M. C., Kohout P., Fehrer J. (2013). The cultivable endophytic community of Norway spruce ectomycorrhizas from microhabitats lacking ericaceous hosts is dominated by ericoid mycorrhizal Meliniomyces variabilis. Fungal Ecol. 6 281–292. 10.1016/j.funeco.2013.03.006 DOI

Vohník M., Sadowsky J. J., Kohout P., Lhotáková Z., Nestby R., Kolaøík M. (2012). Novel root-fungus symbiosis in ericaceae: sheathed ericoid mycorrhiza formed by a hitherto undescribed basidiomycete with affinities to Trechisporales. PLoS One 7:e39524. 10.1371/journal.pone.0039524 PubMed DOI PMC

Voříšková J., Baldrian P. (2013). Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J. 7 477–486. 10.1038/ismej.2012.116 PubMed DOI PMC

Walker J. K. M., Jones M. D. (2013). Little evidence for niche partitioning among ectomycorrhizal fungi on spruce seedlings planted in decayed wood versus mineral soil microsites. Oecologia 173 1499–1511. 10.1007/s00442-013-2713-2719 PubMed DOI

White T. J., Bruns T. D., Lee S. B., Taylor J. W. (1990). “Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics,” in PCR - Protocols and Applications - A Laboratory Manual, eds Innis M. A., Gelfand D. H., Sninsky J. J., White T. J. (New York, NY: Academic Press; ).

Žifčáková L., Větrovský T., Howe A., Baldrian P. (2016). Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter. Environ. Microbiol. 18 288–301. 10.1111/1462-2920.13026 PubMed DOI

Žifčáková L., Větrovský T., Lombard V., Henrissat B., Howe A., Baldrian P. (2017). Feed in summer, rest in winter: microbial carbon utilization in forest topsoil. Microbiome 5:122 10.1186/s40168-017-0340-340 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...