Contrasting stability of fungal and bacterial communities during long-term decomposition of fungal necromass in Arctic tundra

. 2025 Jun 20 ; 20 (1) : 75. [epub] 20250620

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40542454

Grantová podpora
21-20802M Grantová Agentura České Republiky
21-20802M Grantová Agentura České Republiky
17-20839S Grantová Agentura České Republiky
21-20802M Grantová Agentura České Republiky
CZ.02.01.01/00/22_008/0004597 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.01.01/00/22_008/0004597 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.01.01/00/22_008/0004597 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.01.01/00/22_008/0004597 Ministerstvo Školství, Mládeže a Tělovýchovy

Odkazy

PubMed 40542454
PubMed Central PMC12180224
DOI 10.1186/s40793-025-00730-5
PII: 10.1186/s40793-025-00730-5
Knihovny.cz E-zdroje

Decomposition is a crucial process in terrestrial ecosystems, driving nutrient cycling and carbon storage dynamics. Considering the amount of fungal necromass produced in soils annually, its decomposition represents an important nutrient recycling process. Understanding the decomposition dynamics and associated microbial communities of fungal necromass is essential for elucidating ecosystem functioning, especially in environmentally sensitive regions such as the Arctic tundra, which remain under-explored. In a three-year field experiment conducted in the Svalbard archipelago, we investigated the decomposition of two types of fungal necromass with differing biochemical properties. We studied the decomposition rate, changes in chemical composition, and the succession of fungal and bacterial communities associated with the decaying fungal necromass. We discovered that up to 20% of fungal necromass remained even after three years of decomposition, indicating that the decomposition process was incomplete. Our results indicate the crucial role of Pseudogymnoascus in decomposing low-quality, highly melanized necromass with a high C:N ratio in Arctic soils, underscoring its importance in carbon cycling in the Arctic tundra. Notably, we observed dynamic changes in bacterial communities, with increasing richness over time and a shift from copiotrophic to oligotrophic species specializing in decomposing recalcitrant material. Our study indicates the strong potential that fungal necromass can play in carbon sequestration of arctic soils and reveals the distinct dynamics between rather stable fungal and rapidly changing bacterial communities associated with the decomposing fungal necromass in the Arctic tundra. These findings enhance our understanding of microbial succession during decomposition in extreme environments and highlight the potentially differing roles of fungi and bacteria in these processes.

Zobrazit více v PubMed

Algora C, Odriozola I, Human ZR, Awokunle Hollá S, Baldrian P, López-Mondéjar R. Specific utilization of biopolymers of plant and fungal origin reveals the existence of substrate-specific guilds for bacteria in temperate forest soils. Soil Biol Biochemis. 2022;171:108696. 10.1016/j.soilbio.2022.108696. DOI

Aronesty E. Comparison of sequencing utility programs. TOBIOIJ. 2013;7:1–8. DOI

Ash K, Brown T, Watford T, Scott LE, Stephens C, Ely B. A comparison of the Caulobacter NA1000 and K31 genomes reveals extensive genome rearrangements and differences in metabolic potential. Open Biol. 2014;4(10): 140128. 10.1098/rsob.140128. PubMed DOI PMC

Baldrian P, Voříšková J, Dobiášová P, Merhautová V, Lisá L, Valášková V. Production of extracellular enzymes and degradation of biopolymers by saprotrophic microfungi from the upper layers of forest soil. Plant Soil. 2011;338(1):111–25. 10.1007/s11104-010-0324-3. DOI

Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Statistic Softw. 2015;67(1):1–48. 10.18637/jss.v067.i01. DOI

Beidler KV, Phillips RP, Andrews E, Maillard F, Mushinski RM, Kennedy PG. Substrate quality drives fungal necromass decay and decomposer community structure under contrasting vegetation types. J Ecol. 2020;108(5):1845–59. 10.1111/1365-2745.13385. DOI

Bergero R, Girlanda M, Varese GC, Intili D, Luppi AM. Psychrooligotrophic fungi from Arctic soils of Franz Joseph land. Polar Biol. 1999;21(6):361–8. 10.1007/s003000050374. DOI

Besaury L, Fromentin J, Detain J, Rodrigues CM, Harakat D, Rémond C. Transcriptomic analysis of lignocellulose degradation by PubMed DOI

Bowman SM, Free SJ. The structure and synthesis of the fungal cell wall. In BioEssays. 2006;28(8):799–808. 10.1002/bies.20441. PubMed DOI

Brabcová V, Nováková M, Davidová A, Baldrian P. Dead fungal mycelium in forest soil represents a decomposition hotspot and a habitat for a specific microbial community. New Phytol. 2016;210(4):1369–81. 10.1111/nph.13849. PubMed DOI

Brabcová V, Štursová M, Baldrian P. Nutrient content affects the turnover of fungal biomass in forest topsoil and the composition of associated microbial communities. Soil Biol Biochem. 2018;118:187–98. 10.1016/j.soilbio.2017.12.012. DOI

Cantoran A, Maillard F, Baldrian P, Kennedy PG. Defining a core microbial necrobiome associated with decomposing fungal necromass. FEMS Microbiol Ecol. 2023. 10.1093/femsec/fiad098. PubMed DOI

Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. 2011. 10.1073/pnas.1000080107 PubMed PMC

Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Finlay RD, Wardle DA, Lindahl BD. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science. 2013;339(6127):1615–8. 10.1126/science.1231923. PubMed DOI

Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM. Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014. 10.1093/nar/gkt1244. PubMed DOI PMC

Crowther TW, van den Hoogen J, Wan J, Mayes MA, Keiser AD, Mo L, Averill C, Maynard DS The global soil community and its influence on biogeochemistry. In: Science (Vol. 365, Issue 6455). American Association for the Advancement of Science, (2019). 10.1126/science.aav0550 PubMed

Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10(10):996–8. 10.1038/nmeth.2604. PubMed DOI

Fernandez CW, Heckman K, Kolka R, Kennedy PG. Melanin mitigates the accelerated decay of mycorrhizal necromass with peatland warming. Ecol Lett. 2019;22(3):498–505. 10.1111/ele.13209. PubMed DOI

Fernandez CW, Kennedy PG. Melanization of mycorrhizal fungal necromass structures microbial decomposer communities. J Ecol. 2018;106(2):468–79. 10.1111/1365-2745.12920. DOI

Fernandez CW, Koide RT. The function of melanin in the ectomycorrhizal fungus DOI

Fernandez CW, Koide RT. Initial melanin and nitrogen concentrations control the decomposition of ectomycorrhizal fungal litter. Soil Biol Biochem. 2014;77:150–7. 10.1016/j.soilbio.2014.06.026. DOI

Fujiyoshi M, Yoshitake S, Watanabe K, Murota K, Tsuchiya Y, Uchida M, Nakatsubo T. Successional changes in ectomycorrhizal fungi associated with the polar willow Salix polaris in a deglaciated area in the High Arctic. Svalbard Polar Biology. 2011;34(5):667–73. 10.1007/s00300-010-0922-9. DOI

García Criado M, Myers-Smith IH, Bjorkman AD, Normand S, Blach-Overgaard A, Thomas HJD, Eskelinen A, Happonen K, Alatalo JM, Anadon-Rosell A, Aubin I, te Beest M, Betway-May KR, Blok D, Buras A, Cerabolini BEL, Christie K, Cornelissen JHC, Forbes BC, Virkkala A-M. Plant traits poorly predict winner and loser shrub species in a warming tundra biome. Nat Commun. 2023;14(1):3837. 10.1038/s41467-023-39573-4. PubMed DOI PMC

Hawkins H, Cargill RI, Van Nuland ME, Hagen SC, Field KJ, Sheldrake M, Soudzilovskaia NA, Kiers ET. Mycorrhizal mycelium as a global carbon pool. Current Biol. 2023;33(11):R560–73. 10.1016/j.cub.2023.02.027. PubMed DOI

Hobbie JE, Hobbie EA. 15N in symbiotic fungi and plants estimates nitrogen and carbon flux rates in Arctic tundra. Ecology. 2006;87(4):816–22. 10.1890/0012-9658(2006)87[816:NISFAP]2.0.CO;2. PubMed DOI

Hu J, Du M, Chen J, Tie L, Zhou S, Buckeridge KM, Cornelissen JHC, Huang C, Kuzyakov Y. Microbial necromass under global change and implications for soil organic matter. Glob Change Biol. 2023;29(12):3503–15. 10.1111/gcb.16676. PubMed DOI

Ihrmark K, Bö deker IT, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, Strid Y, Stenlid J, Brandströ m-Durling M, Clemmensen KE, Lindahl BD New primers to amplify the fungal ITS2 region-evaluation by 454-sequencing of artificial and natural communities, (2012). 10.1111/j.1574-6941.2012.01437.x PubMed

Janssen P. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol. 2006;72:1719–28. PubMed DOI PMC

Jílková V, Devetter M, Bryndová M, Hájek T, Kotas P, Luláková P, Meador T, Navrátilová D, Saccone P, Macek P. Carbon sequestration related to soil physical and chemical properties in the high arctic. Global Biogeochem Cycles. 2021;35(9):e2020GB006877. 10.1029/2020GB006877. DOI

Jílková V, Macek P, Angst G, Bartuška M, Starý J, Šustr V, Devetter M. Macrofauna amplify plant litter decomposition and stabilization in arctic soils in a warming climate. Soil Biology and Biochem. 2024;188:109245. 10.1016/j.soilbio.2023.109245. DOI

Kejžar A, Gobec S, Plemenitaš A, Lenassi M. Melanin is crucial for growth of the black yeast PubMed DOI

Kohler A, Kuo A, Nagy LG, Morin E, Barry KW, Buscot F, Martin F. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat Genet. 2015;47(4):410–5. 10.1038/ng.3223. PubMed DOI

Kohout P, Charvátová M, Štursová M, Mašínová T, Tomšovský M, Baldrian P. Clearcutting alters decomposition processes and initiates complex restructuring of fungal communities in soil and tree roots. ISME J. 2018;12(3):692–703. 10.1038/s41396-017-0027-3. PubMed DOI PMC

Kohout P, Sudová R, Brabcová V, Vosolsobě S, Baldrian P, Albrechtová J. Forest microhabitat affects succession of fungal communities on decomposing fine tree roots. Front Microbiol. 2021. 10.3389/fmicb.2021.541583. PubMed DOI PMC

Kuyper TW Chapter 20—carbon and energy sources of mycorrhizal fungi: obligate symbionts or latent saprotrophs? In: NC Johnson, C Gehring, J Jansa (Eds.), Mycorrhizal Mediation of Soil (pp. 357–374), (2017), Elsevier. 10.1016/B978-0-12-804312-7.00020-6

Kyaschenko J, Clemmensen KE, Karltun E, Lindahl BD. Below-ground organic matter accumulation along a boreal forest fertility gradient relates to guild interaction within fungal communities. Ecol Lett. 2017;20(12):1546–55. 10.1111/ele.12862. PubMed DOI

Liang C, Schimel JP, Jastrow JD. The importance of anabolism in microbial control over soil carbon storage. Nat Microbiol. 2017;2(8):1–6. 10.1038/nmicrobiol.2017.105. PubMed DOI

Lindahl BD, Tunlid A. Ectomycorrhizal fungi – potential organic matter decomposers, yet not saprotrophs. New Phytol. 2015;205(4):1443–7. 10.1111/nph.13201. PubMed DOI

López-Mondéjar R, Brabcová V, Štursová M, Davidová A, Jansa J, Cajthaml T, Baldrian P. Decomposer food web in a deciduous forest shows high share of generalist microorganisms and importance of microbial biomass recycling. ISME J. 2018;12(7):1768–78. 10.1038/s41396-018-0084-2. PubMed DOI PMC

Maillard F, Colin Y, Viotti C, Buée M, Brunner I, Brabcová V, Kohout P, Baldrian P, Kennedy PG. A cryptically diverse microbial community drives organic matter decomposition in forests. Appl Soil Ecol. 2024;193:105148. 10.1016/j.apsoil.2023.105148. DOI

Maillard F, Fernandez CW, Mundra S, Heckman KA, Kolka RK, Kauserud H, Kennedy PG. Warming drives a ‘hummockification’ of microbial communities associated with decomposing mycorrhizal fungal necromass in peatlands. New Phytol. 2022;234(6):2032–43. 10.1111/nph.17755. PubMed DOI

Maillard F, Kennedy PG, Adamczyk B, Heinonsalo J, Buée M. Root presence modifies the long-term decomposition dynamics of fungal necromass and the associated microbial communities in a boreal forest. Mol Ecol. 2021;30(8):1921–35. 10.1111/mec.15828. PubMed DOI

Maillard F, Michaud TJ, See CR, DeLancey LC, Blazewicz SJ, Kimbrel JA, Pett-Ridge J, Kennedy PG. Melanization slows the rapid movement of fungal necromass carbon and nitrogen into both bacterial and fungal decomposer communities and soils. MSystems. 2023. 10.1128/msystems.00390-23. PubMed DOI PMC

Maillard F, Schilling J, Andrews E, Schreiner KM, Kennedy P. Functional convergence in the decomposition of fungal necromass in soil and wood. FEMS Microbiol Ecol. 2020. 10.1093/femsec/fiz209. PubMed DOI

Majumdar S, Lukk T, Solbiati JO, Bauer S, Nair SK, Cronan JE, Gerlt JA. Roles of small laccases from streptomyces in lignin degradation. Biochemistry. 2014;53(24):4047–58. 10.1021/bi500285t. PubMed DOI

Marx DH. The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections.II. Production, identification, and biological activity of antibiotics produced by PubMed

Miltner A, Bombach P, Schmidt-Brücken B. SOM genesis: microbial biomass as a significant source. Biogeochemistry. 2012;111:41–55. 10.1007/s10533-011-9658-z. DOI

Moravcová A, Barbi F, Brabcová V, Cajthaml T, Martinović T, Soudzilovskaia N, Vlk L, Baldrian P, Kohout P. Climate-driven shifts in plant and fungal communities can lead to topsoil carbon loss in alpine ecosystems. FEMS Microbiol Ecol. 2023. 10.1093/femsec/fiad041. PubMed DOI

Mundra S, Bahram M, Tedersoo L, Kauserud H, Halvorsen R, Eidesen PB. Temporal variation of PubMed DOI

Nilsson RH, Larsson K-H, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, Kennedy P, Picard K, Gï Ockner 10 FO, Tedersoo L, Saar I, Abarenkov K The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Research, 2018; 47, 259–264. 10.1093/nar/gky1022 PubMed PMC

Nilsson RH, Veldre V, Hartmann M, Unterseher M, Amend A, Bergsten J, Kristiansson E, Ryberg M, Jumpponen A, Abarenkov K. An open source software package for automated extraction of ITS1 and ITS2 from fungal ITS sequences for use in high-throughput community assays and molecular ecology. Fungal Ecol. 2010;3(4):284–7. 10.1016/J.FUNECO.2010.05.002. DOI

Oksanen J. Vegan: community ecology package. In: R package version 1.8–5. CRAN, 2007. https://cran.r-project.org/

Olanrewaju OS, Babalola OO. Streptomyces: implications and interactions in plant growth promotion. Appl Microbiol Biotechnol. 2019;103(3):1179–88. 10.1007/s00253-018-09577-y. PubMed DOI PMC

Pánek M, Vlková T, Michalová T, Borovička J, Tedersoo L, Adamczyk B, Baldrian P, Lopéz-Mondéjar R. Variation of carbon, nitrogen and phosphorus content in fungi reflects their ecology and phylogeny. Front Microbiol. 2024. 10.3389/fmicb.2024.1379825. PubMed DOI PMC

Põlme S, Abarenkov K, Henrik Nilsson R, Lindahl BD, Engelbrecht Clemmensen K, Kauserud H, Nguyen N, Kjøller R, Bates ST, Baldrian P, Guldberg Frøslev T, Adojaan K, Vizzini A, Suija A, Pfister D, Baral H-O, Järv H, Madrid H, Nordén J, Tedersoo L. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 2021. 10.1007/s13225-020-00466-2. DOI

Post WM, Emanuel WR, Zinke PJ, Stangenberger AG. Soil carbon pools and world life zones. Nature. 1982;298(5870):156–9. 10.1038/298156a0. DOI

Prewitt L, Kang Y, Kakumanu ML, Williams M. Fungal and bacterial community succession differs for three wood types during decay in a forest soil. Microb Ecol. 2014;68(2):212–21. 10.1007/s00248-014-0396-3. PubMed DOI

R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing, 2022.

Rantanen M, Karpechko AY, Lipponen A, Nordling K, Hyvärinen O, Ruosteenoja K, Vihma T, Laaksonen A. The Arctic has warmed nearly four times faster than the globe since 1979. Commun Earth Environ. 2022. 10.1038/s43247-022-00498-3. DOI

Reynolds HT, Barton HA. Comparison of the white-nose syndrome agent PubMed DOI PMC

Rice AV, Currah RS. Two new species of Pseudogymnoascus with Geomyces anamorphs and their phylogenetic relationship with Gymnostellatospora. Mycologia. 2006;98(2):307–18. 10.1080/15572536.2006.11832703. PubMed DOI

Sagova-Mareckova M, Cermak L, Novotna J, Plhackova K, Forstova J, Kopecky J. Innovative methods for soil DNA purification tested in soils with widely differing characteristics. Appl Environ Microbiol. 2008;74(9):2902–7. 10.1128/AEM.02161-07/FORMAT/EPUB. PubMed DOI PMC

Saltarelli R, Ceccaroli P, Vallorani L, Zambonelli A, Citterio B, Malatesta M, Stocchi V. Biochemical and morphological modifications during the growth of DOI

Sayers EW, Agarwala R, Bolton EE, Brister JR, Canese K, Clark K, Connor R, Fiorini N, Funk K, Hefferon T, Holmes JB, Kim S, Kimchi A, Kitts PA, Lathrop S, Lu Z, Madden TL, Marchler-Bauer A, Phan L, Ostell J. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2019;47(D1):D23–8. 10.1093/nar/gky1069. PubMed DOI PMC

Shaver GR, Billings WD, Chapin FS III, Giblin AE, Nadelhoffer KJ, Oechel WC, Rastetter EB. Global Change and the carbon balance of arctic ecosystems: carbon/nutrient interactions should act as major constraints on changes in global terrestrial carbon cycling. Bioscience. 1992;42(6):433–41. 10.2307/1311862. DOI

Siletti CE, Zeiner CA, Bhatnagar JM. Distributions of fungal melanin across species and soils. Soil Biol Biochem. 2017;113:285–93. 10.1016/j.soilbio.2017.05.030. DOI

Spohn M, Bagchi S, Biederman LA, Borer ET, Bråthen KA, Bugalho MN, Caldeira MC, Catford JA, Collins SL, Eisenhauer N, Hagenah N, Haider S, Hautier Y, Knops JMH, Koerner SE, Laanisto L, Lekberg Y, Martina JP, Martinson H, Yahdjian L. The positive effect of plant diversity on soil carbon depends on climate. Nat Commun. 2023;14(1):6624. 10.1038/s41467-023-42340-0. PubMed DOI PMC

Starke R, Morais D, Větrovský T, López Mondéjar R, Baldrian P, Brabcová V. Feeding on fungi: genomic and proteomic analysis of the enzymatic machinery of bacteria decomposing fungal biomass. Environ Microbiol. 2020;22(11):4604–19. 10.1111/1462-2920.15183. PubMed DOI

Tedersoo L, Mikryukov V, Zizka A, Bahram M, Hagh-Doust N, Anslan S, Prylutskyi O, Delgado-Baquerizo M, Maestre FT, Pärn J, Öpik M, Moora M, Zobel M, Espenberg M, Mander Ü, Khalid AN, Corrales A, Agan A, Vasco-Palacios A-M, Abarenkov K. Global patterns in endemicity and vulnerability of soil fungi. Global Change Biol. 2022;28(22):6696–710. 10.1111/gcb.16398. PubMed DOI PMC

Tláskal V, Voříšková J, Baldrian P. Bacterial succession on decomposing leaf litter exhibits a specific occurrence pattern of cellulolytic taxa and potential decomposers of fungal mycelia. FEMS Microbiol Ecol. 2016;92(11):fiw177. 10.1093/femsec/fiw177. PubMed DOI

Trivedi P, Delgado-Baquerizo M, Jeffries TC, Trivedi C, Anderson IC, Lai K, McNee M, Flower K, Pal Singh B, Minkey D, Singh BK. Soil aggregation and associated microbial communities modify the impact of agricultural management on carbon content. Environ Microbiol. 2017;19(8):3070–86. 10.1111/1462-2920.13779. PubMed DOI

Tveit A, Schwacke R, Svenning MM, Urich T. Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms. ISME J. 2013;7(2):299–311. 10.1038/ismej.2012.99. PubMed DOI PMC

Väre H, Vestberg M, Eurola S. Mycorrhiza and root-associated fungi in Spitsbergen. Mycorrhiza. 1992;1(3):93–104. 10.1007/BF00203256. DOI

Větrovský T, Baldrian P, Morais D Sequence analysis SEED 2: a user-friendly platform for amplicon high-throughput sequencing data analyses, 2018. 10.1093/bioinformatics/bty071 PubMed PMC

Větrovský T, Morais D, Kohout P, Lepinay C, Algora C, Awokunle Hollá S, Bahnmann BD, Bílohnědá K, Brabcová V, D’Alò F, Human ZR, Jomura M, Kolařík M, Kvasničková J, Lladó S, López-Mondéjar R, Martinović T, Mašínová T, Meszárošová L, Baldrian P. GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Sci Data. 2020;7(1):228. 10.1038/s41597-020-0567-7. PubMed DOI PMC

Voříšková J, Baldrian P. Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J. 2013;7(3):477–86. 10.1038/ismej.2012.116. PubMed DOI PMC

Wall DH, Bradford MA, St John MG, Trofymow JA, Behan-Pelletier V, Bignell DE, Dangerfield JM, Parton WJ, Rusek J, Voigt W, Wolters V, Gardel H Z, Ayuke FO, Bashford R, Beljakova OI, Bohlen PJ, Brauman A, Flemming S, Henschel JR, Zou X (2008). Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. In: Global Change Biology, 14(11), 2661–2677. 10.1111/j.1365-2486.2008.01672.x

Wallenstein MD, McMahon S, Schimel J. Bacterial and fungal community structure in Arctic tundra tussock and shrub soils. FEMS Microbiol Ecol. 2007;59(2):428–35. 10.1111/j.1574-6941.2006.00260.x. PubMed DOI

Wang S, Lin B, Liang T, Wang C, Wu P, Liu J. Purification and characterization of chitinase from a new species strain, Pseudomonas sp. TKU008. J Microbiol Biotechnol. 2010;20:1001–5. PubMed DOI

Wang C, Wang X, Pei G, Xia Z, Peng B, Sun L, Wang J, Gao D, Chen S, Liu D, Dai W, Jiang P, Fang Y, Liang C, Wu N, Bai E. Stabilization of microbial residues in soil organic matter after two years of decomposition. Soil Biol Biochem. 2020. 10.1016/j.soilbio.2019.107687. DOI

Warmink JA, Nazir R, Van Elsas JD. Universal and species-specific bacterial ‘fungiphiles’ in the mycospheres of different basidiomycetous fungi. Environ Microbiol. 2009;11(2):300–12. 10.1111/j.1462-2920.2008.01767.x. PubMed DOI

Zhang T, Wang NF, Liu HY, Zhang YQ, Yu LY. Soil pH is a key determinant of soil fungal community composition in the Ny-Ålesund region, Svalbard (High Arctic). Front Microbiol. 2016;7:227. 10.3389/fmicb.2016.00227. PubMed DOI PMC

Zhao Z, Liu H, Wang C, Xu J-R. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genomics. 2013;14(1):274. 10.1186/1471-2164-14-274. PubMed DOI PMC

Zhou H, He K, Chen J, Zhang X. LinDA: linear models for differential abundance analysis of microbiome compositional data. Genome Biol. 2022;23(1):95. 10.1186/s13059-022-02655-5. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...