Global patterns in endemicity and vulnerability of soil fungi

. 2022 Nov ; 28 (22) : 6696-6710. [epub] 20220902

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36056462

Fungi are highly diverse organisms, which provide multiple ecosystem services. However, compared with charismatic animals and plants, the distribution patterns and conservation needs of fungi have been little explored. Here, we examined endemicity patterns, global change vulnerability and conservation priority areas for functional groups of soil fungi based on six global surveys using a high-resolution, long-read metabarcoding approach. We found that the endemicity of all fungi and most functional groups peaks in tropical habitats, including Amazonia, Yucatan, West-Central Africa, Sri Lanka, and New Caledonia, with a negligible island effect compared with plants and animals. We also found that fungi are predominantly vulnerable to drought, heat and land-cover change, particularly in dry tropical regions with high human population density. Fungal conservation areas of highest priority include herbaceous wetlands, tropical forests, and woodlands. We stress that more attention should be focused on the conservation of fungi, especially root symbiotic arbuscular mycorrhizal and ectomycorrhizal fungi in tropical regions as well as unicellular early-diverging groups and macrofungi in general. Given the low overlap between the endemicity of fungi and macroorganisms, but high conservation needs in both groups, detailed analyses on distribution and conservation requirements are warranted for other microorganisms and soil organisms.

Altai State University Barnaul Russia

Biology Department Stanford University Stanford California USA

BioMicro Escuela de Microbiología Universidad de Antioquia UdeA Medellin Antioquia Colombia

Center for Macroecology Evolution and Climate University of Copenhagen Copenhagen Denmark

Center For Mountain Futures Kunming Institute of Botany Chinese Academy of Sciences Kunming China

Center of Excellence in Fungal Research Mae Fah Luang University Chiang Rai Thailand

Centre for Environmental Sciences Hasselt University Hasselt Belgium

Centro de Investigación e Innovación para el Cambio Climático Universidad SantoTomás Santiago Chile

Centro de Investigaciones en Microbiología y Biotecnología UR Universidad del Rosario Bogotá Colombia

Chair of Hydrobiology and Fishery Estonian University of Life Sciences Tartu Estonia

College of Biological Resource and Food Engineering Qujing Normal University Qujing China

College of Science King Saud University Riyadh Saudi Arabia

CSIRO Land and Water Wembley Western Australia Australia

Departamento de Ecología Instituto Multidisciplinar para el Estudio del Medio 'Ramón Margalef' Universidad de Alicante Alicante Spain

Departamento de Zootecnia Universidade Federal do Paraná Curitiba Brazil

Department Biology Ghent University Ghent Belgium

Department of Agricultural Food and Forest Sciences University of Palermo Palermo Italy

Department of Arctic and Marine Biology The Arctic University of Norway Tromsø Norway

Department of Biological Sciences and Biotechnology Botswana International University of Science and Technology Palapye Botswana

Department of Biological Sciences California State Polytechnic University Arcata California USA

Department of Biology College of Science United Arab Emirates University Abu Dhabi UAE

Department of Biology Philipps University Marburg Germany

Department of Biology Syracuse University Syracuse New York USA

Department of Biomedical Sciences University of Cagliari Cagliari Italy

Department of Biomedicine Indonesia International Institute for Life Sciences Jakarta Indonesia

Department of Botany Jawaharlal Nehru Rajkeeya Mahavidyalaya Pondicherry University Port Blair India

Department of Crop Science University of Dschang Dschang Cameroon

Department of Ecology and Genetics Uppsala University Uppsala Sweden

Department of Ecology and Plant Geography Moscow Lomonosov State University Moscow Russia

Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden

Department of Environment Ghent University Ghent Belgium

Department of Environmental and Forest Biology State University of New York College of Environmental Science and Forestry Syracuse New York USA

Department of Environmental Science Saint Mary's University Halifax Canada

Department of Food Science and Technology University of Burundi Bujumbura Burundi

Department of Genetics University of the Free State Bloemfontein South Africa

Department of Mycology and Plant Resistance School of Biology 5 N Karazin Kharkiv National University Kharkiv Ukraine

Department of Natural Sciences Manchester Metropolitan University Manchester UK

Department of Plant Biology University of Ilorin Ilorin Nigeria

Department of Plant Sciences Quaid i Azam University Islamabad Pakistan

Department of Silviculture and Ecology Institute of Forestry of Lithuanian Research Centre for Agriculture and Forestry Girionys Lithuania

ELKH EKKE Lendület Environmental Microbiome Research Group Eszterházy Károly Catholic University Eger Hungary

Environmental Science Center Qatar University Doha Qatar

Faculty of Natural and Environmental Sciences Agricultural University of Iceland Hvanneyri Iceland

Gothenburg Centre for Sustainable Development Gothenburg Sweden

Gothenburg Global Biodiversity Centre University of Gothenburg Gothenburg Sweden

Helmholtz Zentrum München Neuherberg Germany

Institut für Biologie Freie Universität Berlin Berlin Germany

Institute of Agricultural and Environmental Sciences Estonian University of Life Sciences Tartu Estonia

Institute of Botany University of the Punjab Lahore Pakistan

Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia

Institute of Forestry and Engineering Estonian University of Life Sciences Tartu Estonia

Institute of Microbiology Czech Academy of Sciences Prague Czech Republic

Instituto Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia Chile

Instituto de Biología Universidad Nacional Autónoma de México Ciudad de México Mexico

Instituto Multidisciplinario de Biología Vegetal Universidad Nacional de Córdoba Cordoba Argentina

Laboratorio de Biodiversidad y Funcionamiento Ecosistémico Instituto de Recursos Naturales y Agrobiología de Sevilla Universidad Pablo de Olavide Sevilla Spain

Latvian State Forest Research Insitute Silava Salaspils Latvia

Mycology and Microbiology Center University of Tartu Tartu Estonia

Mycology Working Group Goethe University Frankfurt am Main Frankfurt am Main Germany

Natural History Museum of Denmark Copenhagen Denmark

Natural History Museum of Zimbabwe Bulawayo Zimbabwe

NERC British Antarctic Survey Cambridge UK

Plant Ecology and Nature Conservation Wageningen University and Research Wageningen The Netherlands

Plant Soil and Microbial Sciences Michigan State University East Lansing Michigan USA

Research Unit Tropical Mycology and Plants Soil Fungi Interactions University of Parakou Parakou Benin

Royal Botanic Gardens Kew UK

School of Biological Sciences and Institute of Microbiology Seoul National University Seoul South Korea

University of Tartu Natural History Museum Tartu Estonia

Utah Valley University Orem Utah USA

Zobrazit více v PubMed

Aslani, F. , Geisen, S. , Ning, D. , Tedersoo, L. , & Bahram, M. (2022). Towards revealing the global diversity and community assembly of soil eukaryotes. Ecology Letters, 25, 65–76. PubMed

Bach, E. M. , Ramirez, K. S. , Fraser, T. D. , & Wall, D. H. (2020). Soil biodiversity integrates solutions for a sustainable future. Sustainability, 12, 2662.

Bahram, M. , Hildebrand, F. , Forslund, S. K. , Anderson, J. L. , Soudzilovskaia, N. A. , Bodegom, P. M. , & Bork, P. (2018). Structure and function of the global topsoil microbiome. Nature, 560, 233–237. PubMed

Bahram, M. , Koljalg, U. , Courty, P. E. , Diedhiou, A. G. , Kjøller, R. , Polme, S. , Ryberg, M. , Veldre, V. , & Tedersoo, L. (2013). The distance decay of similarity in communities of ectomycorrhizal fungi in different ecosystems and scales. Journal of Ecology, 101, 1335–1344.

Bahram, M. , Espenberg, M. , Pärn, J. , Lehtovirta‐Morley, L. , Anslan, S. , Kasak, K. , & Mander, Ü. (2022). Structure and function of the soil microbiome underlying N2O emissions from global wetlands. Nature Communications, 13, 1430. PubMed PMC

Barcenas‐Moreno, G. E. , Gomez‐Brandon, M. A. , Rousk, J. , & Bååth, E. (2009). Adaptation of soil microbial communities to temperature: Comparison of fungi and bacteria in a laboratory experiment. Global Change Biology, 15, 2950–2957.

Barlow, J. , França, F. , Gardner, T. A. , Hicks, C. C. , Lennox, G. D. , Berenguer, E. , & Graham, N. A. (2018). The future of hyperdiverse tropical ecosystems. Nature, 559, 517–526. PubMed

Baselga, A. , & Orme, C. D. L. (2012). Betapart: An R package for the study of beta diversity. Methods in Ecology and Evolution, 3, 808–812.

Bastida, F. , Eldridge, D. J. , García, C. , Kenny Png, G. , Bardgett, R. D. , & Delgado‐Baquerizo, M. (2021). Soil microbial diversity–biomass relationships are driven by soil carbon content across global biomes. The ISME Journal, 15, 2081–2091. PubMed PMC

Bebbington, A. J. , Humphreys Bebbington, D. , Sauls, L. A. , Rogan, J. , Agrawal, S. , Gamboa, C. , & Verdum, R. (2018). Resource extraction and infrastructure threaten forest cover and community rights. Proceedings of the National Academy of Sciences of the USA, 115, 13164–13173. PubMed PMC

Brinkmann, N. , Schneider, D. , Sahner, J. , Ballauff, J. , Edy, N. , Barus, H. , & Polle, A. (2019). Intensive tropical land use massively shifts soil fungal communities. Scientific Reports, 9, 3403. PubMed PMC

Brook, B. W. , Sodhi, N. S. , & Bradshaw, C. J. (2008). Synergies among extinction drivers under global change. Trends in Ecology & Evolution, 23, 453–460. PubMed

Brooks, T. M. , Mittermeier, R. A. , Da Fonseca, G. A. , Gerlach, J. , Hoffmann, M. , Lamoreux, J. F. , & Rodrigues, A. S. (2006). Global biodiversity conservation priorities. Science, 313, 58–61. PubMed

Brown, J. H. (2014). Why are there so many species in the tropics? Journal of Biogeography, 41, 8–22. PubMed PMC

Buchhorn, M. , Lesiv, M. , Tsendbazar, N. E. , Herold, M. , Bertels, L. , & Smets, B. (2020). Copernicus global land cover layers—Collection 2. Remote Sensing, 12, 1044.

Cameron, E. K. , Martins, I. S. , Lavelle, P. , Mathieu, J. , Tedersoo, L. , Bahram, M. , & Eisenhauer, N. (2019). Global mismatches in aboveground and belowground biodiversity. Conservation Biology, 33, 1187–1192. PubMed

Cao, Y. , Wu, G. , & Yu, D. (2021). Include macrofungi in biodiversity targets. Science, 372, 1160. PubMed

Chen, L. , Swenson, N. G. , Ji, N. , Mi, X. , Ren, H. , Guo, L. , & Ma, K. (2019). Differential soil fungus accumulation and density dependence of trees in a subtropical forest. Science, 366, 124–128. PubMed

Correia, M. , Espelta, J. M. , Morillo, J. A. , Pino, J. , & Rodríguez‐Echeverría, S. (2021). Land‐use history alters the diversity, community composition and interaction networks of ectomycorrhizal fungi in beech forests. Journal of Ecology, 109, 2856–2870.

Crisp, M. D. , Laffan, S. , Linder, H. P. , & Monro, A. (2001). Endemism in the Australian flora. Journal of Biogeography, 28, 183–198.

Crowther, T. W. , Van den Hoogen, J. , Wan, J. , Mayes, M. A. , Keiser, A. D. , Mo, L. , Averill, C. , & Maynard, D. S. (2019). The global soil community and its influence on biogeochemistry. Science, 365, eaav0550. PubMed

Davison, J. , Moora, M. , Semchenko, M. , Adenan, S. B. , Ahmed, T. , Akhmetzhanova, A. A. , & Öpik, M. (2021). Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi. New Phytologist, 231, 763–776. PubMed

Davison, J. , Moora, M. , Öpik, M. , Adholeya, A. , Ainsaar, L. , Bâ, A. , & Zobel, M. (2015). Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science, 349, 970–973. PubMed

de Vries, F. T. , Griffiths, R. I. , Bailey, M. , Craig, H. , Girlanda, M. , Gweon, H. S. , & Bardgett, R. D. (2018). Soil bacterial networks are less stable under drought than fungal networks. Nature Communications, 9, 3033. PubMed PMC

Delgado‐Baquerizo, M. , Eldridge, D. J. , Liu, Y. R. , Sokoya, B. , Wang, J. T. , Hu, H. W. , He, J. Z. , Bastida, F. , Moreno, J. L. , Bamigboye, A. R. , & Blanco‐Pastor, J. L. (2021). Global homogenization of the structure and function in the soil microbiome of urban greenspaces. Science Advances, 7, eabg5809. PubMed PMC

Delgado‐Baquerizo, M. , Eldridge, D. J. , Ochoa, V. , Gozalo, B. , Singh, B. K. , & Maestre, F. T. (2017). Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe. Ecology Letters, 20, 1295–1305. PubMed

Delgado‐Baquerizo, M. , Eldridge, D. J. , Travers, S. K. , Val, J. , Oliver, I. , & Bissett, A. (2018). Effects of climate legacies on above‐ and belowground community assembly. Global Change Biology, 24, 4330–4339. PubMed

Delgado‐Baquerizo, M. , Oliverio, A. M. , Brewer, T. E. , Benavent‐González, A. , Eldridge, D. J. , Bardgett, R. D. , & Fierer, N. (2018). A global atlas of the dominant bacteria found in soil. Science, 359, 320–325. PubMed

Ducarme, F. , Luque, G. M. , & Courchamp, F. (2013). What are “charismatic species” for conservation biologists. BioSciences Master Reviews, 10, 1–8.

Egidi, E. , Delgado‐Baquerizo, M. , Plett, J. M. , Wang, J. , Eldridge, D. J. , Bardgett, R. D. , & Singh, B. K. (2019). A few Ascomycota taxa dominate soil fungal communities worldwide. Nature Communications, 10, 2369. PubMed PMC

FAO , ITPS , GSBI , SCBD , EC . (2020). State of knowledge of soil biodiversity – Status, challenges and potentialities . FAO. 10.4060/cb1928en. DOI

Filipponi, F. , Valentini, E. , Nguyen Xuan, A. , Guerra, C. A. , Wolf, F. , Andrzejak, M. , & Taramelli, A. (2018). Global MODIS fraction of green vegetation cover for monitoring abrupt and gradual vegetation changes. Remote Sensing, 10, 653.

Finderup Nielsen, T. , Sand‐Jensen, K. , Dornelas, M. , & Bruun, H. H. (2019). More is less: Net gain in species richness, but biotic homogenization over 140 years. Ecology Letters, 22, 1650–1657. PubMed

Foden, W. B. , Young, B. E. , Akçakaya, H. R. , Garcia, R. A. , Hoffmann, A. A. , Stein, B. A. , & Huntley, B. (2019). Climate change vulnerability assessment of species. Wiley Interdisciplinary Reviews: Climate Change, 10, e551.

Godoy, R. , & Marin, C. (2019). Mycorrhizal studies in temperate rainforests of southern Chile. In Pagano M. C. & Lugo M. A. (Eds.), Mycorrhizal fungi in South America (pp. 315–341). Springer.

Golan, J. J. , & Pringle, A. (2017). Long‐distance dispersal of fungi. Microbiology Spectrum, 5, 1–24. PubMed PMC

Gonçalves, S. C. , Haelewaters, D. , Furci, G. , & Mueller, G. M. (2021). Include all fungi in biodiversity goals. Science, 373, 403. PubMed

Guerra, C. A. , Bardgett, R. D. , Caon, L. , Crowther, T. W. , Delgado‐Baquerizo, M. , Montanarella, L. , & Eisenhauer, N. (2021). Tracking, targeting, and conserving soil biodiversity. Science, 371, 239–241. PubMed

Guerra, C. A. , Delgado‐Baquerizo, M. , Duarte, E. , Marigliano, O. , Görgen, C. , Maestre, F. T. , & Eisenhauer, N. (2021). Global projections of the soil microbiome in the Anthropocene. Global Ecology and Biogeography, 30, 987–999. PubMed PMC

Hawksworth, D. L. , & Lücking, R. (2017). Fungal diversity revisited: 2.2 to 3.8 million species. Microbiology Spectrum, 5, 79–95. PubMed PMC

Hengl, T. , & MacMillan, R. A. (2019). Predictive soil mapping with R . www.soilmapper.org (OpenGeoHub foundation, 2019).

Hijmans, R. J. , Van Etten, J. , Mattiuzzi, M. , Cheng, J. , Sumner, M. , & Greenberg, J. A. (2021). Raster: Geographic data analysis and modeling. R package version 3.5–9. https://CRAN.R‐project.org/package=raster

Hurtt, G. C. , Chini, L. , Sahajpal, R. , Frolking, S. , Bodirsky, B. L. , Calvin, K. , & Zhang, X. (2020). Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geoscientific Model Development, 13, 5425–5464.

IUCN . (2021). IUCN red list of threatened species . version 2021–2. IUCN, Gland. https://www.iucnredlist.org/

Karger, D. N. , Conrad, O. , Böhner, J. , Kawohl, T. , Kreft, H. , Soria‐Auza, R. W. , Zimmermann, N. E. , Linder, H. P. , & Kessler, M. (2017). Climatologies at high resolution for the earth's land surface areas. Scientific Data, 4, 170122. PubMed PMC

Karger, D. N. , Nobis, M. P. , Normand, S. , Graham, C. H. , & Zimmermann, N. E. (2021) CHELSA‐TraCE21k v1. 0. Downscaled transient temperature and precipitation data since the last glacial maximum. Climate Past Discussions, 2021, 30.

Karger, D. N. , Schmatz, D. R. , Dettling, G. , & Zimmermann, N. E. (2020). High‐resolution monthly precipitation and temperature time series from 2006 to 2100. Scientific Data, 7, 248. PubMed PMC

Kennedy, P. G. , Matheny, P. B. , Ryberg, K. M. , Henkel, T. W. , Uehling, J. K. , & Smith, M. E. (2012). Scaling up: Examining the macroecology of ectomycorrhizal fungi. Molecular Ecology, 21, 4151–4154. PubMed

Kennedy, P. G. , Walker, J. K. M. , & Bogar, L. M. (2015). Interspecific mycorrhizal networks and non‐networking hosts: Exploring the ecology of host genus Alnus . Ecologial Studies, 224, 227–254.

Kier, G. , Kreft, H. , Lee, T. M. , Jetz, W. , Ibisch, P. L. , Nowicki, C. , & Barthlott, W. (2009). A global assessment of endemism and species richness across Island and mainland regions. Proceedings of the National Academy of Sciences of the USA, 106, 9322–9327. PubMed PMC

Le Provost, G. , Thiele, J. , Westphal, C. , Penone, C. , Allan, E. , Neyret, M. , Van Der Plas, F. , Ayasse, M. , Bardgett, R. D. , Birkhofer, K. , & Boch, S. (2021). Contrasting responses of above‐and belowground diversity to multiple components of land‐use intensity. Nature Communications, 12, 3918. PubMed PMC

Makiola, A. , Dickie, I. A. , Holdaway, R. J. , Wood, J. R. , Orwin, K. H. , & Glare, T. R. (2019). Land use is a determinant of plant pathogen alpha‐but not beta‐diversity. Molecular Ecology, 28, 3786–3798. PubMed

Maestre, F. T. , Eldridge, D. J. , Gross, N. , Le Bagousse‐Pinguet, Y. , Saiz, H. , Gozalo, B. , Ochoa, V. , & Gaitán, J. J. (2022). The BIODESERT survey: Assessing the impacts of grazing on the structure and functioning of global drylands. Web Ecology. In press. 10.5194/we-21-1-2021 DOI

Malcolm, G. M. , Lopez‐Gutierrez, J. C. , Koide, R. T. , & Eissenstat, D. M. (2008). Acclimation to temperature and temperature sensitivity of metabolism by ectomycorrhizal fungi. Global Change Biology, 14, 1169–1180.

Maynard, D. S. , Bradford, M. A. , Covey, K. R. , Lindner, D. , Glaeser, J. , Talbert, D. A. , & Crowther, T. W. (2019). Consistent trade‐offs in fungal trait expression across broad spatial scales. Nature Microbiology, 4, 846–853. PubMed

Misiak, M. , Goodall‐Copestake, W. P. , Sparks, T. H. , Worland, M. R. , Boddy, L. , Magan, N. , & Newsham, K. K. (2021). Inhibitory effects of climate change on the growth and extracellular enzyme activities of a widespread Antarctic soil fungus. Global Change Biology, 27, 1111–1125. PubMed PMC

Nilsson, R. H. , Larsson, K. H. , Taylor, A. F. S. , Bengtsson‐Palme, J. , Jeppesen, T. S. , Schigel, D. , & Abarenkov, K. (2019). The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Research, 47(D1), D259–D264. PubMed PMC

Olson, D. M. , Dinerstein, E. , Wikramanayake, E. D. , Burgess, N. D. , Powell, G. V. N. , Underwood, E. C. , & Kassem, K. R. (2001). Terrestrial ecoregions of the world: A new map of life on earth. Bioscience, 51, 933–938.

Pacifici, M. , Foden, W. B. , Visconti, P. , Watson, J. E. , Butchart, S. H. , Kovacs, K. M. , & Rondinini, C. (2015). Assessing species vulnerability to climate change. Nature Climate Change, 5, 215–224.

Pebesma, E. (2018). Simple features for R: Standardized support for spatial vector data. R Journal, 10, 439–446.

Poggio, L. , De Sousa, L. M. , Batjes, N. H. , Heuvelink, G. , Kempen, B. , Ribeiro, E. , & Rossiter, D. (2021). SoilGrids 2.0: Producing soil information for the globe with quantified spatial uncertainty. The Soil, 7, 217–240.

Põlme, S. , Abarenkov, K. , Henrik Nilsson, R. , Lindahl, B. D. , Clemmensen, K. E. , Kauserud, H. , & Tedersoo, L. (2020). FungalTraits: A user‐friendly traits database of fungi and fungus‐like stramenopiles. Fungal Diversity, 105, 1–16.

Põlme, S. , Bahram, M. , Jacquemyn, H. , Kennedy, P. , Kohout, P. , Moora, M. , & Tedersoo, L. (2018). Host preference and network properties in biotrophic plant–fungal associations. New Phytologist, 217, 1230–1239. PubMed

Põlme, S. , Bahram, M. , Yamanaka, T. , Nara, K. , Dai, Y. C. , Grebenc, T. , & Tedersoo, L. (2013). Biogeography of ectomycorrhizal fungi associated with alders (Alnus spp.) in relation to biotic and abiotic variables at the global scale. New Phytologist, 198, 1239–1249. PubMed

R Core Team . (2021). R: A language and environment for statistical computing . R Foundation for Statistical Computing, Vienna. https://www.R‐project.org/

Rillig, M. C. , Ryo, M. , Lehmann, A. , Aguilar‐Trigueros, C. A. , Buchert, S. , Wulf, A. , & Yang, G. (2019). The role of multiple global change factors in driving soil functions and microbial biodiversity. Science, 366, 886–890. PubMed PMC

Rodriguez‐Ramos, J. C. , Cale, J. A. , Cahill, J. F., Jr. , Simard, S. W. , Karst, J. , & Erbilgin, N. (2021). Changes in soil fungal community composition depend on functional group and forest disturbance type. New Phytologist, 229, 1105–1117. PubMed

Romero‐Olivares, A. L. , Allison, S. D. , & Treseder, K. K. (2017). Soil microbes and their response to experimental warming over time: A meta‐analysis of field studies. Soil Biology and Biochemistry, 107, 32–40.

Rosauer, D. F. , & Jetz, W. (2015). Phylogenetic endemism in terrestrial mammals. Global Ecology and Biogeography, 24, 168–179.

Sánchez‐Ramírez, S. , Etienne, R. S. , & Moncalvo, J. M. (2015). High speciation rate at temperate latitudes explains unusual diversity gradients in a clade of ectomycorrhizal fungi. Evolution, 69, 2196–2209. PubMed

Sandel, B. , Weigelt, P. , Kreft, H. , Keppel, G. , van der Sande, M. T. , Levin, S. , & Knight, T. M. (2020). Current climate, isolation and history drive global patterns of tree phylogenetic endemism. Global Ecology and Biogeography, 29, 4–15. PubMed

Schmidt, P. A. , Schmitt, I. , Otte, J. , Bandow, C. , Römbke, J. , Bálint, M. , & Rolshausen, G. (2018). Season‐long experimental drought alters fungal community composition but not diversity in a grassland soil. Microbial Ecology, 75, 468–478. PubMed

Schulte to Bühne, H. , Tobias, J. A. , Durant, S. M. , & Pettorelli, N. (2021). Improving predictions of climate change–land use change interactions. Trends in Ecology & Evolution, 36, 29–38. PubMed

Sivakumar, M. V. K. (2007). Interactions between climate and desertification. Agricultural and Forest Meteorology, 142, 143–155.

Smith, P. , Calvin, K. , Nkem, J. , Campbell, D. , Cherubini, F. , Grassi, G. , Korotkov, V. , Le Hoang, A. , Lwasa, S. , McElwee, P. , & Nkonya, E. (2020). Which practices co‐deliver food security, climate change mitigation and adaptation, and combat land degradation and desertification? Global Change Biology, 26, 1532–1575. PubMed PMC

Smith, R. J. , Jovan, S. , & McCune, B. (2020). Climatic niche limits and community‐level vulnerability of obligate symbioses. Journal of Biogeography, 47, 382–395.

Stein, A. , Gerstner, K. , & Kreft, H. (2014). Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters, 17, 866–880. PubMed

Talbot, J. M. , Bruns, T. D. , Taylor, J. W. , Smith, D. P. , Branco, S. , Glassman, S. I. , & Peay, K. G. (2014). Endemism and functional convergence across the north American soil mycobiome. Proceedings of the National Academy of Sciences of the USA, 111, 6341–6346. PubMed PMC

Tedersoo, L. , Albertsen, M. , Anslan, S. , & Callahan, B. (2021). Perspectives and benefits of high‐throughput long‐read sequencing in microbial ecology. Applied and Environmental Microbiology, 87, e00626‐21. PubMed PMC

Tedersoo, L. , Bahram, M. , Põlme, S. , Kõljalg, U. , Yorou, N. S. , Wijesundera, R. , & Abarenkov, K. (2014). Global diversity and geography of soil fungi. Science, 346, 1256688. PubMed

Tedersoo, L. , Bahram, M. , Ryberg, M. , Otsing, E. , Kõljalg, U. , & Abarenkov, K. (2014). Global biogeography of the ectomycorrhizal/sebacina lineage (fungi, Sebacinales) as revealed from comparative phylogenetic analyses. Molecular Ecology, 23, 4168–4183. PubMed

Tedersoo, L. , Mikryukov, V. , Anslan, S. , Bahram, M. , Khalid, A. N. , Corrales, A. , & Abarenkov, K. (2021). The global soil mycobiome consortium dataset for boosting fungal diversity research. Fungal Diversity, 111, 573–588.

Tedersoo, L. , Mikryukov, V. , Zizka, A. , Bahram, M. , Hagh‐Doust, N. , Anslan, S. , & Abarenkov, K. (2022). Towards understanding diversity, endemicity and global change vulnerability of soil fungi. bioRxiv, 2022, 484796. PubMed

Tedersoo, L. , Sánchez‐Ramírez, S. , Kõljalg, U. , Bahram, M. , Döring, M. , Schigel, D. , & Abarenkov, K. (2018). High‐level classification of the fungi and a tool for evolutionary ecological analyses. Fungal Diversity, 90, 135–159.

van der Linde, S. , Suz, L. M. , Orme, C. D. L. , Cox, F. , Andreae, H. , Asi, E. , & Bidartondo, M. I. (2018). Environment and host as large‐scale controls of ectomycorrhizal fungi. Nature, 558, 243–248. PubMed

Vázquez, D. P. , & Stevens, R. D. (2004). The latitudinal gradient in niche breadth: Concepts and evidence. The American Naturalist, 164, E1–E19. PubMed

Větrovský, T. , Kohout, P. , Kopecký, M. , Machac, A. , Man, M. , Bahnmann, B. D. , & Baldrian, P. (2019). A meta‐analysis of global fungal distribution reveals climate‐driven patterns. Nature Communications, 10, 1–9. PubMed PMC

Villéger, S. , & Brosse, S. (2012). Measuring changes in taxonomic dissimilarity following species introductions and extirpations. Ecological Indicators, 18, 552–558.

Wardle, D. A. , & Lindahl, B. D. (2014). Disentangling global soil fungal diversity. Science, 346, 1052–1053. PubMed

Warren, R. , VanDerWal, J. , Price, J. , Welbergen, J. A. , Atkinson, I. , Ramirez‐Villegas, J. , & Lowe, J. (2013). Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nature Climate Change, 3, 678–682.

Watson, J. E. , Iwamura, T. , & Butt, N. (2013). Mapping vulnerability and conservation adaptation strategies under climate change. Nature Climate Change, 3, 989–994.

Wood, S. N. (2011). Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73, 3–36.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...