Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33507570
DOI
10.1111/nph.17240
Knihovny.cz E-zdroje
- Klíčová slova
- arbuscular mycorrhizal fungi, ecological niche, molecular taxa, niche optimum, niche width, pH, phylogenetic correlation, temperature,
- MeSH
- ekosystém MeSH
- fylogeneze MeSH
- houby MeSH
- koncentrace vodíkových iontů MeSH
- mykorhiza * MeSH
- půda MeSH
- půdní mikrobiologie MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- půda MeSH
The arbuscular mycorrhizal (AM) fungi are a globally distributed group of soil organisms that play critical roles in ecosystem function. However, the ecological niches of individual AM fungal taxa are poorly understood. We collected > 300 soil samples from natural ecosystems worldwide and modelled the realised niches of AM fungal virtual taxa (VT; approximately species-level phylogroups). We found that environmental and spatial variables jointly explained VT distribution worldwide, with temperature and pH being the most important abiotic drivers, and spatial effects generally occurring at local to regional scales. While dispersal limitation could explain some variation in VT distribution, VT relative abundance was almost exclusively driven by environmental variables. Several environmental and spatial effects on VT distribution and relative abundance were correlated with phylogeny, indicating that closely related VT exhibit similar niche optima and widths. Major clades within the Glomeraceae exhibited distinct niche optima, Acaulosporaceae generally had niche optima in low pH and low temperature conditions, and Gigasporaceae generally had niche optima in high precipitation conditions. Identification of the realised niche space occupied by individual and phylogenetic groups of soil microbial taxa provides a basis for building detailed hypotheses about how soil communities respond to gradients and manipulation in ecosystems worldwide.
Botanical Garden Institute FEB RAS Vladivostok 690024 Russia
Botany and Microbiology Department Faculty of Science Beni Suef University Bani Suwayf 62511 Egypt
Chair of Biodiversity and Nature Tourism Estonian University of Life Sciences Tartu 51006 Estonia
Chair of Crop Science and Plant Biology Estonian University of Life Sciences Tartu 51006 Estonia
CIRAD UPR Forêts et Sociétés Yamoussoukro Côte d'Ivoire
Departamento de Biodiversidade Universidade Estadual Paulista Rio Claro São Paulo 13506 900 Brazil
Department of Agricultural Food and Forest Sciences University of Palermo Palermo 90128 Italy
Department of Biological Sciences University of Alberta Edmonton AB T6G 2E9 Canada
Department of Biology and CESAM University of Aveiro Aveiro 3810 193 Portugal
Department of Biology Nakhon Phanom University Nakhon Phanom 48000 Thailand
Department of Biology University of Pennsylvania Philadelphia PA 19104 4544 USA
Department of Biology University of Western Ontario London ON N6A 5B7 Canada
Department of Botany University of Tartu Tartu 51005 Estonia
Department of Ecology Swedish University of Agricultural Sciences Uppsala 756 51 Sweden
Department of Experimental Plant Biology Faculty of Science Charles University Prague 12843 Czechia
Department of Microbiology and Plant Pathology University of California Riverside CA 92521 USA
Department of Natural Resource Sciences Thompson Rivers University Kamloops BC V2C 0C8 Canada
Environmental Science Centre Qatar University Doha 2713 Qatar
Forêts et Sociétés Université de Montpellier CIRAD Montpellier 34000 France
Institut National Polytechnique Félix Houphouët Boigny INP HB Yamoussoukro Côte d'Ivoire
Institute of Ecology and Earth Sciences University of Tartu Tartu 51005 Estonia
Institute of Microbiology Czech Academy of Science Prague 14220 Czechia
Institute of Plant Sciences University of Bern Bern 3013 Switzerland
Instituto Amazónico de Investigaciones Científicas Sinchi Leticia Amazonas 910001 Colombia
Natural History Museum University of Tartu Tartu 51014 Estonia
School of Earth and Environmental Sciences University of Manchester Manchester M13 9PL UK
School of Science College of Science and Technology University of Rwanda Kigali 3900 Rwanda
Zoology Department College of Science King Saud University Riyadh 11451 Saudi Arabia
Zobrazit více v PubMed
Aguilar-Trigueros CA, Hempel S, Powell JR, Cornwell WK, Rillig MC. 2019. Bridging reproductive and microbial ecology: a case study in arbuscular mycorrhizal fungi. ISME Journal 13: 873-884.
Alzarhani AK, Clark DR, Underwood GJ, Ford H, Cotton TA, Dumbrell AJ. 2019. Are drivers of root-associated fungal community structure context specific? ISME Journal 13: 1330-1344.
Antunes PM, Koch AM, Morton JB, Rillig MC, Klironomos JN. 2011. Evidence for functional divergence in arbuscular mycorrhizal fungi from contrasting climatic origins. New Phytologist 189: 507-514.
Araújo MB, Guisan A. 2006. Five (or so) challenges for species distribution modelling. Journal of Biogeography 33: 1677-1688.
Augustin NH, Sauleau EA, Wood SN. 2012. On quantile quantile plots for generalized linear models. Computational Statistics and Data Analysis 56: 2404-2409.
Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, Bodegom PM, Bengtsson-Palme J, Anslan S, Coelho LP, Harend H et al. 2018. Structure and function of the global topsoil microbiome. Nature 560: 233-237.
Bainard LD, Klironomos JN, Hart MM. 2010. Differential effect of sample preservation methods on plant and arbuscular mycorrhizal fungal DNA. Journal of Microbiological Methods 82: 124-130.
Blanchet FG, Legendre P, Borcard D. 2008. Forward selection of explanatory variables. Ecology 89: 2623-2632.
Bouffaud ML, Creamer RE, Stone D, Plassart P, van Tuinen D, Lemanceau P, Wipf D, Redecker D. 2016. Indicator species and co-occurrence in communities of arbuscular mycorrhizal fungi at the European scale. Soil Biology and Biochemistry 103: 464-470.
Bruns TD, Taylor JW. 2016. Comment on “Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism”. Science 351: 826.
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10: 421.
Chaudhary VB, Nolimal S, Sosa-Hernández MA, Egan C, Kastens J. 2020. Trait-based aerial dispersal of arbuscular mycorrhizal fungi. New Phytologist 228: 238-252.
Cotton TA. 2018. Arbuscular mycorrhizal fungal communities and global change: an uncertain future. FEMS Microbiology Ecology 94: p.fiy179.
Coughlan AP, Dalpé Y, Lapointe L, Piché Y. 2000. Soil pH-induced changes in root colonization, diversity, and reproduction of symbiotic arbuscular mycorrhizal fungi from healthy and declining maple forests. Canadian Journal of Forest Research 30: 1543-1554.
Davison J, García de León D, Zobel M, Moora M, Bueno CG, Barceló M, Gerz M, León D, Meng Y, Pillar VD et al. 2020. Plant functional groups associate with distinct arbuscular mycorrhizal fungal communities. New Phytologist 226: 1117-1128.
Davison J, Moora M, Jairus T, Vasar M, Öpik M, Zobel, M. 2016. Hierarchical assembly rules in arbuscular mycorrhizal (AM) fungal communities. Soil Biology and Biochemistry 97: 63-70.
Davison J, Moora M, Öpik M, Adholeya A, Ainsaar L, Bâ A, Burla S, Diedhiou AG, Hiiesalu I, Jairus T et al. 2015. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349: 970-973.
Davison J, Moora M, Öpik M, Ainsaar L, Ducousso M, Hiiesalu I, Jairus T, Johnson N, Jourand P, Kalamees R et al. 2018. Microbial island biogeography: isolation shapes the life history characteristics but not diversity of root-symbiotic fungal communities. ISME Journal 12: 2211-2224.
Dray S, Legendre P, Peres-Neto PR. 2006. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling 196: 483-493.
Drummond AJ, Suchard MA, Xie D, Rambaut A. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29: 1969-1973.
Dumbrell AJ, Ashton PD, Aziz N, Feng G, Nelson M, Dytham C, Fitter AH, Helgason T. 2011. Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyrosequencing. New Phytologist 190: 794-804.
Dumbrell AJ, Nelson M, Helgason T, Dytham C, Fitter AH. 2010. Relative roles of niche and neutral processes in structuring a soil microbial community. ISME Journal 4: 337-345.
Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulissen D. 1991. Zeigerwerte von Pfanzen in Mitteleuropa. Scripta Geobotanika 18: 1-248.
Engelmoer DJ, Behm JE, Toby KE. 2014. Intense competition between arbuscular mycorrhizal mutualists in an in vitro root microbiome negatively affects total fungal abundance. Molecular Ecology 23: 1584-1593.
Fitter AH. 2005. Darkness visible: reflections on underground ecology. Journal of Ecology 93: 231-243.
Frey-Klett P, Garbaye JA, Tarkka M. 2007. The mycorrhiza helper bacteria revisited. New Phytologist 176: 22-36.
García de León D, Davison J, Moora M, Öpik M, Feng H, Hiiesalu I, Jairus T, Koorem K, Liu Y, Phosri C et al. 2018. Anthropogenic disturbance equalizes diversity levels in arbuscular mycorrhizal fungal communities. Global Change Biology 24: 2649-2659.
García de León D, Moora M, Öpik M, Neuenkamp L, Gerz M, Jairus T, Vasar M, Bueno CG, Davison J, Zobel M. 2016. Symbiont dynamics during ecosystem succession: co-occurring plant and arbuscular mycorrhizal fungal communities. FEMS Microbiolgy. Ecology 92: p.fiw097.
Gazol A, Zobel M, Cantero JJ, Davison J, Esler KJ, Jairus T, Öpik M, Vasar M, Moora M. 2016. Impact of alien pines on local arbuscular mycorrhizal fungal communities-evidence from two continents. FEMS Microbiology Ecology 92: fiw073.
Gerz M, Bueno CG, Ozinga WA, Zobel M, Moora M. 2018. Niche differentiation and expansion of plant species are associated with mycorrhizal symbiosis. Journal of Ecology 106: 254-264.
Gittleman JL, Kot M. 1990. Adaptation: statistics and a null model for estimating phylogenetic effects. Systematic Biology 39: 227-241.
Glassman SI, Wang IJ, Bruns TD. 2017. Environmental filtering by pH and soil nutrients drives community assembly in fungi at fine spatial scales. Molecular Ecology 26: 6960-6973.
Grünfeld L, Wulf M, Rillig MC, Manntschke A, Veresoglou SD. 2020. Neighbours of arbuscular-mycorrhiza associating trees are colonized more extensively by arbuscular mycorrhizal fungi than their conspecifics in ectomycorrhiza dominated stands. New Phytologist 227: 10-13.
Guisan A, Zimmermann NE. 2000. Predictive habitat distribution models in ecology. Ecological Modelling 135: 147-186.
Hart MM, Reader RJ. 2002. Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytologist 153: 335-344.
Hastie T, Tibshirani R, Friedman J. 2009. The elements of statistical learning: data mining, inference, and prediction, 2nd edn. New York, NY, USA: Springer.
Hazard C, Gosling P, Van Der Gast CJ, Mitchell DT, Doohan FM, Bending GD. 2013. The role of local environment and geographical distance in determining community composition of arbuscular mycorrhizal fungi at the landscape scale. ISME Journal 7: 498-508.
van der Heijden MG, Bardgett RD, van Straalen NM. 2008. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters 11: 296-310.
Helgason T, Fitter AH. 2009. Natural selection and the evolutionary ecology of the arbuscular mycorrhizal fungi (Phylum Glomeromycota). Journal of Experimental Botany 60: 2465-2480.
Helgason T, Merryweather JW, Young JPW, Fitter AH. 2007. Specificity and resilience in the arbuscular mycorrhizal fungi of a natural woodland community. Journal of Ecology 95: 623-630.
Hoeksema JD, Bever JD, Chakraborty S, Chaudhary VB, Gardes M, Gehring CA, Hart MM, Housworth EA, Kaonongbua W, Klironomos JN et al. 2018. Evolutionary history of plant hosts and fungal symbionts predicts the strength of mycorrhizal mutualism. Communications Biology 1: 116.
Johnson NC, Wilson GW, Bowker MA, Wilson JA, Miller RM. 2010. Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Proceedings of the National Academy of Sciences, USA 107: 2093-2098.
Karger DN, Conrad O, Böhner J, Kawohl T, Kreft H, Soria-Auza RW, Zimmermann NE, Linder HP, Kessler M. 2017. Climatologies at high resolution for the earth’s land surface areas. Scientific Data 4: 170122.
Kivlin SN. 2020. Global mycorrhizal fungal range sizes vary within and among mycorrhizal guilds but are not correlated with dispersal traits. Journal of Biogeography 47: 1994-2001.
Kivlin SN, Hawkes CV, Treseder KK. 2011. Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biology and Biochemistry 43: 2294-2303.
Kivlin SN, Muscarella R, Hawkes CV, Treseder KK. 2017. The predictive power of ecological niche modeling for global arbuscular mycorrhizal fungal biogeography. In: Tedersoo L, ed. Biogeography of mycorrhizal symbiosis. Cham, Switzerland: Springer, 143-158.
Klironomos J, Zobel M, Tibbett M, Stock WD, Rillig MC, Parrent JL, Moora M, Koch AM, Facelli JM, Facelli E et al. 2011. Forces that structure plant communities: quantifying the importance of the mycorrhizal symbiosis. New Phytologist 189: 366-370.
Knegt B, Jansa J, Franken O, Engelmoer DJ, Werner GD, Bücking H, Kiers ET. 2016. Host plant quality mediates competition between arbuscular mycorrhizal fungi. Fungal Ecology 20: 233-240.
Kraft NJ, Valencia R, Ackerly DD. 2008. Functional traits and niche-based tree community assembly in an Amazonian forest. Science 322: 580-582.
Lee J, Lee S, Young JP. 2008. Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiology and Ecology 65: 339-349.
Leibold MA, McPeek MA. 2006. Coexistence of the niche and neutral perspectives in community ecology. Ecology 87: 1399-1410.
Lekberg Y, Meadow J, Rohr JR, Redecker D, Zabinski CA. 2011. Importance of dispersal and thermal environment for mycorrhizal communities: lessons from Yellowstone National Park. Ecology 92: 1292-1302.
Llado S, Lopez-Mondejar R, Baldrian P. 2018. Drivers of microbial community structure in forest soils. Applied Microbiology and Biotechnology 102: 4331-4338.
MacArthur R, Levins R. 1967. The limiting similarity, convergence, and divergence of coexisting species. American Naturalist 101: 377-385.
Magoč T, Salzberg SL. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27: 2957-2963.
Maherali H, Klironomos JN. 2007. Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316: 1746-1748.
Moora M, Berger S, Davison J, Öpik M, Bommarco R, Bruelheide H, Kühn I, Kunin WE, Metsis M, Rortais A et al. 2011. Alien plants associate with widespread generalist arbuscular mycorrhizal fungal taxa: evidence from a continental-scale study using massively parallel 454 sequencing. Journal of Biogeography 38: 1305-1317.
Morton JB, Bentivenga SP, Bever JD. 1995. Discovery, measurement, and interpretation of diversity in arbuscular endomycorrhizal fungi (Glomales, Zygomycetes). Canadian Journal of Botany 73: 25-32.
Oehl F, Laczko E, Bogenrieder A, Stahr K, Bösch R, van der Heijden M, Sieverding E. 2010. Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biology and Biochemistry 42: 724-738.
Ohsowski BM, Zaitsoff PD, Öpik M, Hart MM. 2014. Where the wild things are: looking for uncultured Glomeromycota. New Phytologist 204: 171-179.
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P et al. 2019. vegan: Community Ecology Package. R package v.2.5-6. 2019 [WWW document] URL https://CRAN.R-project.org/package=vegan.
Oliverio AM, Geisen S, Delgado-Baquerizo M, Maestre FT, Turner BL, Fierer N. 2020. The global-scale distributions of soil protists and their contributions to belowground systems. Science Advances 6: eaax8787.
Öpik M, Davison J. 2016. Uniting species-and community-oriented approaches to understand arbuscular mycorrhizal fungal diversity. Fungal Ecology 24: 106-113.
Öpik M, Davison J, Moora M, Pärtel M, Zobel M. 2016. Response to Comment on “Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism”. Science 351: 826.
Öpik M, Davison J, Moora M, Zobel M. 2014. DNA-based detection and identification of Glomeromycota: the virtual taxonomy of environmental sequences. Botany-Botanique 92: 135-147.
Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier Ü, Zobel M. 2010. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytologist 188: 223-241.
Ozinga WA, Colles A, Bartish IV, Hennion F, Hennekens SM, Pavoine S, Poschlod P, Hermant M, Schaminée JH, Prinzing A. 2013. Specialists leave fewer descendants within a region than generalists. Global Ecology and Biogeography 22: 213-222.
Pärtel M, Öpik M, Moora M, Tedersoo L, Szava-Kovats R, Rosendahl S, Rillig MC, Lekberg Y, Kreft H, Helgason T et al. 2017. Historical biome distribution and recent human disturbance shape the diversity of arbuscular mycorrhizal fungi. New Phytologist 216: 227-238.
Paudel S, Longcore T, MacDonald B, McCormick MK, Szlavecz K, Wilson GW, Loss SR. 2016. Belowground interactions with aboveground consequences: invasive earthworms and arbuscular mycorrhizal fungi. Ecology 97: 605-614.
Powell JR, Parrent JL, Hart MM, Klironomos JN, Rillig MC, Maherali H. 2009. Phylogenetic trait conservatism and the evolution of functional trade-offs in arbuscular mycorrhizal fungi. Proceedings of the Royal Society of London B 276: 4237-4245.
Rasmussen PU, Hugerth LW, Blanchet FG, Andersson AF, Lindahl BD, Tack AJ. 2018. Multiscale patterns and drivers of arbuscular mycorrhizal fungal communities in the roots and root-associated soil of a wild perennial herb. New Phytologist 220: 1248-1261.
Rodríguez-Echeverría S, de la Pena E, Moens M, Freitas H, van der Putten WH. 2009. Can root-feeders alter the composition of AMF communities? Experimental evidence from the dune grass Ammophila arenaria. Basic and Applied Ecology 10: 131-140.
Rognes T, Flouri T, Nichols B, Quince C, Mahé F. 2016. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4: e2584.
Rosendahl S, Mcgee P, Morton JB. 2009. Lack of global population genetic differentiation in the arbuscular mycorrhizal fungus Glomus mosseae suggests a recent range expansion which may have coincided with the spread of agriculture. Molecular Ecology 18: 4316-4329.
Savary R, Masclaux FG, Wyss T, Droh G, Corella JC, Machado AP, Morton JB, Sanders IR. 2018. A population genomics approach shows widespread geographical distribution of cryptic genomic forms of the symbiotic fungus Rhizophagus irregularis. ISME Journal 12: 17-30.
Siqueira JO, Hubbell DH, Mahmud AW. 1984. Effect of liming on spore germination, germ tube growth and root colonization by vesicular-arbuscular mycorrhizal fungi. Plant and Soil 76: 115-124.
Smith SE, Read DJ. 2010. Mycorrhizal symbiosis. Cambridge, UK: Academic Press.
Stürmer SL, Bever JD, Morton JB. 2018. Biogeography of arbuscular mycorrhizal fungi (Glomeromycota): a phylogenetic perspective on species distribution patterns. Mycorrhiza 28: 587-603.
Sýkorová Z, Ineichen K, Wiemken A, Redecker D. 2007. The cultivation bias: different communities of arbuscular mycorrhizal fungi detected in roots from the field, from bait plants transplanted to the field, and from a greenhouse trap experiment. Mycorrhiza 18: 1-14.
Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-Palacios AM, Thu PQ, Ave Suija A et al. 2014. Global diversity and geography of soil fungi. Science 346: 1256688.
Tedersoo L, Bahram M, Zobel M. 2020. How mycorrhizal associations drive plant population and community biology. Science 367: 6480.
Tedersoo L, Sánchez-Ramírez S, Kõljalg U, Bahram M, Döring M, Schigel D, May T, Ryberg M, Abarenkov K. 2018. High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Diversity 90: 135-159.
Tibbett M, Cairney JW. 2007. The cooler side of mycorrhizas: their occurrence and functioning at low temperatures. Botany-Botanique 85: 51-62.
Tilman D. 1982. Resource competition and community structure. Princeton, NJ, USA: Princeton University Press.
Torrez V, Ceulemans T, Mergeay J, De Meester L, Honnay O. 2016. Effects of adding an arbuscular mycorrhizal fungi inoculum and of distance to donor sites on plant species recolonization following topsoil removal. Applied Vegetation Science 19: 7-19.
Treseder KK, Allen EB, Egerton-Warburton LM, Hart MM, Klironomos JN, Maherali H, Tedersoo L, Wurzburger N. 2018. Arbuscular mycorrhizal fungi as mediators of ecosystem responses to nitrogen deposition: a trait-based predictive framework. Journal of Ecology 106: 480-489.
U’Ren JM, Riddle JM, Monacell JT, Carbone I, Miadlikowska J. 2014. Tissue storage and primer selection influence pyrosequencing-based inferences of diversity and community composition of endolichenic and endophytic fungi. Molecular Ecology Resources 14: 1032-1048.
Vályi K, Rillig MC, Hempel S. 2015. Land-use intensity and host plant identity interactively shape communities of arbuscular mycorrhizal fungi in roots of grassland plants. New Phytologist 205: 1577-1586.
Van Geel M, Jacquemyn H, Plue J, Saar L, Kasari L, Peeters G, van Acker K, Honnay O, Ceulemans T. 2018. Abiotic rather than biotic filtering shapes the arbuscular mycorrhizal fungal communities of European seminatural grasslands. New Phytologist 220: 1262-1272.
Vasar M, Andreson R, Davison J, Jairus T, Moora M, Remm M, Young JP, Zobel M, Öpik M. 2017. Increased sequencing depth does not increase captured diversity of arbuscular mycorrhizal fungi. Mycorrhiza 27: 761-773.
Veresoglou SD, Caruso T, Rillig MC. 2013. Modelling the environmental and soil factors that shape the niches of two common arbuscular mycorrhizal fungal families. Plant and Soil 368: 507-518.
Veresoglou SD, Liu L, Xu T, Rillig MC, Wang M, Wang J, Chen Y, Hu Y, Hao Z, Chen B. 2019. Biogeographical constraints in Glomeromycotinan distribution across forest habitats in China. Journal of Ecology 107: 684-695.
Větrovský T, Kohout P, Kopecký M, Machac A, Man M, Bahnmann BD, Brabcová V, Choi J, Meszárošová L, Human ZR. 2019. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nature Communications 10: 5142.
Wang GM, Stribley DP, Tinker PB, Walker C. 1993. Effects of pH on arbuscular mycorrhiza I. Field observations on the long-term liming experiments at Rothamsted and Woburn. New Phytologist 124: 465-472.
Wasof S, Lenoir J, Aarrestad PA, Alsos IG, Armbruster WS, Austrheim G, Bakkestuen V, Birks HJB, Bråthen KA, Broennimann O. 2015. Disjunct populations of European vascular plant species keep the same climatic niches. Global Ecology and Biogeography 24: 1401-1412.
Wiens JJ, Ackerly DD, Allen AP, Anacker BL, Buckley LB, Cornell HV, Damschen EI, Davies J, Grytnes JA, Harrison SP et al. 2010. Niche conservatism as an emerging principle in ecology and conservation biology. Ecology Letters 13: 1310-1324.
Wurzburger N, Brookshire EN, McCormack ML, Lankau RA. 2017. Mycorrhizal fungi as drivers and modulators of terrestrial ecosystem processes. New Phytologist 213: 996-999.
Zhao X, Yang Y, Shen H, Geng X, Fang, J. 2019. Global soil-climate-biome diagram: linking surface soil properties to climate and biota. Biogeosciences 16: 2857-2871.
Zimmermann NE, Edwards TC Jr, Graham CH, Pearman PB, Svenning J-C. 2010. New trends in species distribution modelling. Ecography 33: 985-989.
Effect of plant communities on bacterial and fungal communities in a Central European grassland
Connecting the multiple dimensions of global soil fungal diversity
Global patterns in endemicity and vulnerability of soil fungi
Defending Earth's terrestrial microbiome
Fungal communities in soils under global change
Agricultural management and pesticide use reduce the functioning of beneficial plant symbionts